初二数学---面积法解题
中考数学复习指导:面积法在几何解题中的应用
面积法在几何解题中的应用
面积法不但可探索各种图形面积的等量关系,而且还可求解某些线段的长度、证明两
角相等以及比例式等多种类型的题目.下面举例加以说明,
一、利用面积法求解垂线段的长度
例1 如图1,△ABC是等边三角形,点D是BC边上任意一点,DE⊥AB于点E,DF⊥AC于点F.若BC=2,则DE+DF=_______.
解连结AD,由等边三角形的面积公式,得
二、利用面积法证明两角相等
例2 如图2,点C为线段AB上任意一点(不与A、B重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和等腰△BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角,且∠ACD=∠BCE.连结AE交CD于点M,连结BD交CE于点N,AE与BD交于点P,连结PC.
(1)求证:△ACE≌△DCB;
(2)请你判断△AMC与△DMP的形状有何关系并说明理由;
1
(3)求证:∠APC=∠BPC.
三、利用面积法得到线段成比例
例3 如图3,在△ABC中.CD是高,CE为∠ACB的平分线.若AC=15,BC=20,CD=12,则CE的长等于_______.
2
四、利用面积法证明两线平行
例4 如图4(1),已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,并说明理由.
∴四边形CGHD为平行四边形,
∴AB∥CD.
利用上述预备知识,我们来证明以下的性质.
例5 如图5,点M、N在反比例函数y=k
x
(k>0)的图象上,过点M作ME⊥y轴,
3。
二次函数中面积的最值问题(六大题型)学生版-2024年中考数学压轴题专项训练
二次函数中面积的最值问题(六大题型)通用的解题思路:二次函数中的面积最值问题通常有以下3种解题方法:1)当所求图形的面积没有办法直接求出时,通常采用分割或补全图形的方法表示所求图形的面积,如下:一般步骤为:①设出要求的点的坐标;②通过割补将要求的图形转化成通过条件可以表示的图形面积和或差;③列出关系式求解;④检验是否每个坐标都符合题意.2)用铅垂定理巧求斜三角形面积的计算公式:三角形面积等于水平宽和铅锤高乘积的一半.3)利用平行线间的距离处处相等,根据同底等高,将所求图形的面积转移到另一个图形中,如图所示:一般步骤为:①设出直线解析式,两条平行直线k值相等;②通过已知点的坐标,求出直线解析式;③求出题意中要求点的坐标;④检验是否每个坐标都符合题意.题型01三角形面积最值问题1(2024·宁夏银川·一模)如图,二次函数y =-x 2+6x 的图象与x 轴的正半轴交于点A ,经过点A 的直线与该函数图象交于点B 1,5 ,与y 轴交于点C .(1)求直线AB 的函数表达式及点C 的坐标;(2)点P 是二次函数图象上的一个动点,且在直线AB 上方,过点P 作直线PE ⊥x 轴于点E ,与直线AB 交于点D ,设点P 的横坐标为m .①当PD =12OC 时,求m 的值;②设△PAB 的面积为S ,求S 关于m 的函数表达式,并求出S 的最大值.2(2024·新疆克孜勒苏·二模)如图,抛物线y =x ²+bx +c (b ,c 是常数)的顶点为C ,与x 轴交于A ,B 两点,A 2,0 ,AB =6,点P 为线段AB 上的动点,过P 作PQ ∥BC 交AC 于点Q .(1)求抛物线的解析式;(2)求△CPQ 面积的最大值,并求此时P 点坐标.3(23-24九年级下·湖北武汉·开学考试)如图,抛物线y =ax 2-4ax +3a 交x 轴于A ,B 两点(点A 在点B 的左侧),交y 轴正半轴于点C ,OB =OC ,点P 在抛物线上.(1)求抛物线的解析式;(2)若tan∠ACP=2,求点P的横坐标.(3)平面上有两点M m,-m-3,求△PMN的面积的最小值.,N m+2,-m-54(23-24九年级下·辽宁沈阳·阶段练习)△ABC中,∠BAC=90°,AB=2,AC=4,点P从点C出发,沿射线CA方向运动,速度为每秒1个单位长度,同时点Q以相同的速度从点B出发,沿射线BA方向运动.设运动时间为x(x≠2且x≠4)秒,△APQ的面积为S.(1)当0<x<2时,如图①,求S与x的函数关系式;(2)当2<x<4时,如图②,求S的最大值;(3)若在运动过程中,存在两个时刻x1,x2,对应的点P和点Q分别记为P1,P2和Q1,Q2,对应的△AP1Q1和△AP2Q2的面积分别记为S1和S2,且当CP1=P1P2时,S1=S2,请求出x1的值.5(2023·山东聊城·二模)如图,抛物线y=x2+bx+c与x轴交于A,B两点(点A在点B的左侧),点A 的坐标为-1,0,直线CD:y=2x-3与x轴交于点D.动点M在抛物线上运动, ,与y轴交于点C0,-3过点M作MP⊥x轴,垂足为点P,交直线CD于点N.(1)求抛物线的表达式;(2)当点P在线段OD上时,△CDM的面积是否存在最大值,若存在,请求出最大值;若不存在,请说明理由;(3)点M在运动过程中,能否使以C,N,M为顶点的三角形是以NM为腰的等腰直角三角形?若存在,请直接写出点M的坐标.6(2024·浙江宁波·模拟预测)如图,一次函数y=33x+3的图象与坐标轴交于点A、B,抛物线y=-33x2+bx+c的图象经过A、B两点.(1)求二次函数的表达式;(2)若点P为抛物线上一动点,在直线AB上方是否存在点P使△PAB的面积最大?若存在,请求出△PAB 面积的最大值及点P的坐标,请说明理由.7(2024·甘肃陇南·一模)如图,在平面直角坐标系xOy中,已知直线y=-x-3与x轴交于点A,与y轴交于点C,过A,C两点的抛物线y=ax2+bx+c与x轴交于另一点B1,0,抛物线对称轴为直线l.(1)求抛物线的解析式;(2)点M为直线AC下方抛物线上一点,当△MAC的面积最大时,求点M的坐标;(3)点P是抛物线上一点,过点P作l的垂线,垂足为D,E是l上一点.要使得以P,D,E为顶点的三角形与△BOC全等,请直接写出点P的坐标.8(2024·江苏盐城·模拟预测)已知抛物线y=x2+bx-3与x轴交于A,B(点A在点B的左侧),与y轴交于点C,且OB=OC.(1)求抛物线的解析式和点A的坐标;(2)如图1,点P为直线BC下方抛物线上一点,求△PBC的最大面积;(3)如图2,M、N是抛物线上异于B,C的两个动点,若直线BN与直线CM的交点始终在直线y=2x-9上,求证:直线MN必经过一个定点,并求该定点坐标.9(2024·四川广元·二模)如图,在平面直角坐标系中,抛物线y1=-x2+bx+c与x轴交于点B,A(-3, 0),与y轴交于点C(0,3).(1)求直线AC和抛物线的解析式.(2)若点M是抛物线对称轴上的一点,是否存在点M,使得以M,A,C三点为顶点的三角形是以AC为底的等腰三角形?若存在,请求出点M的坐标;若不存在,请说明理由.(3)若点P是第二象限内抛物线上的一个动点,求△PAC面积的最大值.10(2024·安徽安庆·一模)如图,抛物线y=ax2+bx+3与x轴交于点A1,0两点,与y轴交于、B3,0点C.(1)求此抛物线对应的函数表达式;(2)点E为直线BC上的任意一点,过点E作x轴的垂线与此抛物线交于点F.①若点E在第一象限,连接CF、BF,求△CFB面积的最大值;②此抛物线对称轴与直线BC交于点D,连接DF,若△DEF为直角三角形,请直接写出E点坐标.11(2024·安徽合肥·一模)如图,直线y=x-3与x轴交于点B,与y轴交于点C,抛物线y=x2+bx+c 经过B、C两点,抛物线与x轴负半轴交于点A.(1)求抛物线的函数表达式;(2)直接写出当x-3>x2+bx+c时,x的取值范围;(3)点P是位于直线BC下方抛物线上的一个动点,过点P作PE⊥BC于点E,连接OE.求△BOE面积的最大值及此时点P的坐标.12(2024·天津西青·一模)已知抛物线y=-x2-4ax-12a(a<0)与x轴交于A,B两点(点A在点B左边),与y轴交于点C.(1)若点D4,12在抛物线上.①求抛物线的解析式及点A的坐标;②连接AD,若点P是直线AD上方的抛物线上一点,连接PA,PD,当△PAD面积最大时,求点P的坐标及△PAD面积的最大值;(2)已知点Q的坐标为-2a,-8a,连接QC,将线段QC绕点Q顺时针旋转90°,点C的对应点M恰好落在抛物线上,求抛物线的解析式.13(2024·山东临沂·二模)如图,抛物线y=ax2+32x+c与x轴交于点A和点B4,0,与y轴交于点C0,2,连接BC,点D在抛物线上.(1)求抛物线的解析式;(2)小明探究点D位置时发现:如图1,点D在第一象限内的抛物线上,连接BD,CD,△BCD面积存在最大值,请帮助小明求出△BCD面积的最大值;(3)小明进一步探究点D位置时发现:如图2,点D在抛物线上移动,连接CD,存在∠DCB=∠ABC,请帮助小明求出∠DCB=∠ABC时点D的坐标.14(2024·广东深圳·二模)如图,在平面直角坐标系中,二次函数y=-x2+bx+c的图象与轴交于A,B 点,与y轴交于点C0,3,点B的坐标为3,0,点P是抛物线上一个动点.(1)求二次函数解析式;(2)若P点在第一象限运动,当P运动到什么位置时,△BPC的面积最大?请求出点P的坐标和△BPC面积的最大值;(3)连接PO,PC,并把△POC沿CO翻折,那么是否存在点P,使四边形POP C为菱形;若不存在,请说明理由.15(2024·湖北·模拟预测)如图,抛物线y=x-12+k与x轴相交于A,B两点(点A在点B的左侧),与y轴相交于点C0,-3.设P点在抛物线上运动,横坐标为m.(1)求此抛物线的解析式;(2)当P点位于第四象限时,求△BCP面积的最大值,并求出此时P点坐标;(3)设此抛物线在点C与点P之间部分(含点C和点P)最高点与最低点的纵坐标之差为h.① 求h关于m的函数解析式,并写出自变量m的取值范围;② 根据h的不同取值,试探索点P的个数情况.16(22-23九年级下·重庆·阶段练习)抛物线y=ax²+bx+5经过点A1,0和点B5,0.该抛物线与直线y=12x+5相交于C、D两点,点P是抛物线上的动点且位于x轴下方,直线PM∥y轴,分别与x轴和直线CD交于点M、N.(1)求该抛物线所对应的函数解析式;(2)连接PC、PD,如图1,在点P运动过程中,△PCD的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;(3)连接PB,过点C作CQ⊥PM,垂足为点Q,如图2,是否存在点P,使得△CNQ与△PBM相似?若存在,求出满足条件的点P的坐标;若不存在,说明理由.17(2024·江苏宿迁·一模)如图1,在平面直角坐标系xOy中,抛物线y=ax2+bx+3与x轴分别相交于A、B两点,与y轴相交于点C,已知点A的坐标为(-1,0),点B的坐标为(3,0).(1)求出这条抛物线的函数表达式;(2)如图2,点D是第一象限内该抛物线上一动点,过点D作直线l∥y轴,直线l与△ABD的外接圆相交于点E.①仅用无刻度直尺找出图2中△ABD外接圆的圆心P.②连接BC、CE,BC与直线DE的交点记为Q,如图3,设△CQE的面积为S,在点D运动的过程中,S是否存在最大值?如果存在,请求出S的最大值;如果不存在,请说明理由.18(2024·新疆乌鲁木齐·一模)如图,在△ABC中,AB=AC,AD⊥BC于点D,BC=10cm,AD=8cm,点P从点B出发,在线段BC上以每秒3cm的速度向点C匀速运动,与此同时,垂直于AD的直线m 从底边BC出发,以每秒2cm的速度沿DA方向匀速平移,分别交AB、AC、AD于E、F、H,当点P到达点C,点P与直线m同时停止运动,设运动时间为t秒t>0.(1)AH=,EF=(用含t的式子表示).(2)在整个运动过程中,所形成的△PEF的面积存在最大值,当△PEF的面积最大时,求线段BP的长;(3)是否存在某一时刻t,使△PEF为直角三角形?若存在,请求出此时刻t的值;若不存在,请说明理由.19(2024·重庆·模拟预测)如图,在平面直角坐标系中,抛物线y=ax2+bx+c过点(3,-4),交x轴于点A(-1,0),B两点,交y轴于点C(0,2).(1)求抛物线的表达式;(2)连接AC ,BC ,M 为线段AB 上一动点,过点M 作MD ∥BC 交直线AC 于点D ,连接MC ,求△MDC 面积的最大值及此时M 点的坐标;(3)在(2)中△MDC 面积取得最大值的条件下,将该抛物线沿射线BC 方向平移2个单位长度,P 是平移后的抛物线上一动点,连接CP ,当∠PCM 与△OBC 的一个内角相等时,请直接写出所有符合条件的点P 的坐标.20(2024·湖南衡阳·一模)如图,已知抛物线y =ax 2+bx +c 经过A 1,0 ,B -3,0 ,C 0,3 三点.(1)求抛物线的解析式;(2)若点D 为第二象限内抛物线上一动点,求△BCD 面积的最大值;(3)设点P 为抛物线的对称轴上的一个动点,求使△BPC 为直角三角形的点P 的坐标.21(2024·甘肃天水·一模)如图,在平面直角坐标系中,开口向下的抛物线与x 轴交于A ,B 两点,D 是抛物线的顶点.O 为坐标原点.A ,B 两点的横坐标分别是方程x 2-4x -12=0的两根,且cos ∠DAB =22.(1)求抛物线的函数解析式;(2)作AC ⊥AD ,AC 交抛物线于点C ,求点C 的坐标及直线AC 的函数解析式;(3)在(2)的条件下,在x 轴上方的抛物线上是否存在一点P ,使△APC 的面积最大?如果存在,请求出点P 的坐标和△APC 的最大面积;如果不存在,请说明理由.22(2024·山东聊城·一模)在平面直角坐标系中,抛物线y =ax 2+bx -3与x 轴交于点A -1,0 和点B 3,0 ,与y 轴交于点C .(1)求抛物线的解析式及顶点坐标;(2)若点P 为第四象限内抛物线上一点,当△PBC 面积最大时,求点P 的坐标;(3)若点P 为抛物线上一点,点Q 是线段BC 上一点(点Q 不与两端点重合),是否存在以P 、Q 、O 为顶点的三角形是等腰直角三角形,若存在,请直接写出满足条件的点P 的坐标;若不存在,请说明理由.23(2024·吉林长春·一模)如图,在平面直角坐标系中,直线y =x +2分别交x 轴、y 轴于A 、B 两点,过点C 2,2 作x 轴垂线,垂足为D ,连接BC .现有动点P 、Q 同时从A 点出发,分别沿AB 、AD 向终点B 和终点D 运动,若点P 的运动速度为每秒2个单位长度,点Q 的运动速度为每秒2个单位长度.设运动的时间为t 秒.(1)求A、B两点的坐标;(2)当CQ∥AB时,t=;(3)设△CPQ的面积为y,写出y与t的函数关系式,并求△CPQ面积的最大值;(4)当△CPQ为轴对称图形时,直接写出t的值.24(2023·湖南娄底·中考真题)如图,抛物线y=x2+bx+c过点A-1,0,交y轴于点C.、点B5,0(1)求b,c的值.(2)点P x0,y0是抛物线上的动点0<x0<5①当x0取何值时,△PBC的面积最大?并求出△PBC面积的最大值;②过点P作PE⊥x轴,交BC于点E,再过点P作PF∥x轴,交抛物线于点F,连接EF,问:是否存在点P,使△PEF为等腰直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.25(2024·河南安阳·模拟预测)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与抛物线y=-x2+x-1的形状相同,且与x轴交于点-1,0.直线y=kx+2分别与x轴、y轴交于点A,B,和4,0与y=ax2+bx+c于点C,D(点C在点D的左侧).(1)求抛物线的解析式;(2)点P是直线y=kx+2上方抛物线上的任意一点,当k=2时,求△PCD面积的最大值;(3)若抛物线y=ax2+bx+c与线段AB有公共点,结合函数图象请直接写出k的取值范围.26(2024·湖南长沙·一模)如图,抛物线y=x2-bx+c与x轴交于A-1,0两点,与y轴交于,B m,0点C0,-3,顶点为D,直线BD交y轴于点E.(1)求抛物线的解析式.(2)设点P为线段BD上一点(点P不与B,D两点重合),过点P作x轴的垂线与抛物线交于点F,连接DF,BF,求△BDF面积的最大值.(3)连接CD,在线段BD上是否存在点Q,使得∠BDC=∠QCE?若存在,求出点Q的坐标;若不存在,请说明理由.27(2024·江西萍乡·一模)如图,已知抛物线y=-x2+bx+c与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D.已知A3,0,连接AC,BC.,C0,3(1)求抛物线的函数解析式;(2)在抛物线的对称轴上找一点P,使得以A、D、P为顶点的三角形与△OBC相似,求出点P的坐标;(3)若点M是抛物线上的一个动点,且位于第一象限内,连接MC,MA.设△ACM的面积为S,试求S的最大值.28(2024·四川广元·二模)如图1,抛物线y=ax²+bx+c与x轴交于A,B两点,且点B的坐标为5,0,与y轴交于点C,该抛物线的顶点坐标为(3,-4).(1)求抛物线和直线BC的解析式.(2)在抛物线上是否存在点M,使得△BCM是以BC为底边的等腰三角形?若存在,求出所有点M的坐标;若不存在,请说明理由.(3)如图2,以点B 为圆心,画半径为2的圆,点P 为⊙B 上的一个动点,连接AC ,求△ACP 面积的最大值.29(2023·山东青岛·中考真题)如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,AB =10cm ,BD =45cm .动点P 从点A 出发,沿AB 方向匀速运动,速度为1cm/s ;同时,动点Q 从点A 出发,沿AD 方向匀速运动,速度为2cm/s .以AP ,AQ 为邻边的平行四边形APMQ 的边PM 与AC 交于点E .设运动时间为t s 0<t ≤5 ,解答下列问题:(1)当点M 在BD 上时,求t 的值;(2)连接BE .设△PEB 的面积为S cm 2 ,求S 与t 的函数关系式和S 的最大值;(3)是否存在某一时刻t ,使点B 在∠PEC 的平分线上?若存在,求出t 的值;若不存在,请说明理由.30(2023·湖南怀化·中考真题)如图一所示,在平面直角坐标系中,抛物线y =ax 2+bx -8与x 轴交于A (-4,0)、B (2,0)两点,与y 轴交于点C .(1)求抛物线的函数表达式及顶点坐标;(2)点P 为第三象限内抛物线上一点,作直线AC ,连接PA 、PC ,求△PAC 面积的最大值及此时点P 的坐标;(3)设直线l 1:y =kx +k -354交抛物线于点M 、N ,求证:无论k 为何值,平行于x 轴的直线l 2:y =-374上总存在一点E ,使得∠MEN 为直角.31(2024·海南省直辖县级单位·一模)如图,已知抛物线y =ax 2+2x +c a ≠0 ,与x 轴交于点A -1,0 和点B 3,0 ,与y 轴交于点C ,E 为抛物线的顶点.图1图2(1)求该抛物线的函数表达式;(2)如图1,点P 是第一象限内抛物线上一动点,连接PC 、PB 、BC ,设点P 的横坐标为t .①当t 为何值时,△PBC 的面积最大?并求出最大面积;②当t 为何值时,△PBC 是直角三角形?(3)如图2,过E 作EF ⊥x 轴于F ,若M m ,0 是x 轴上一动点,N 是线段EF 上一点,若∠MNC =90°,请直接写出实数m 的取值范围.32(2024·四川成都·一模)如图,直线y =-x -4分别交x 轴,y 轴于A ,C 两点,点B 在x 轴正半轴上.抛物线y =15x 2+bx +c 过A ,B ,C 三点.(1)求抛物线的解析式;(2)过点B 作BD ∥AC 交y 轴于点D ,交抛物线于点F .若点P 为直线AC 下方抛物线上的一动点,连接PD 交AC 于点E ,连接EB ,求S △PEB 的最大值及最大值时点P 的坐标;(3)如图2,将原抛物线进行平移,使其顶点为原点,进而得到新抛物线,直线y =-2x 与新抛物线交于O ,G 两点,点H 是线段OG 的中点,过H 作直线RQ (不与OG 重合)与新抛物线交于R ,Q 两点,点R 在点Q 左侧.直线GR 与直线OQ 交于点T ,点T 是否在某条定直线上?若是,请求出该定直线的解析式,若不是,请说明理由.33(2024·江苏苏州·一模)如图,在平面直角坐标系中,抛物线y =ax 2-8ax +10a -1a <0 与x 轴的交点分别为A x 1,0 ,B x 2,0 ,其中(0<x 2<x 1),且AB =4,与y 轴的交点为C ,直线CD ∥x 轴,在x 轴上有一动点E t ,0 ,过点E 作直线l ⊥x 轴,与抛物线、直线CD 的交点分别为P 、Q .(1)求抛物线的解析式;(2)当0<t ≤8时,求△APC 面积的最大值;(3)当t >2时,是否存在点P ,使以C 、P 、Q 为顶点的三角形与△OBC 相似?若存在,求出此时t 的值;若不存在,请说明理由.题型02四边形面积最值问题1(2024·安徽阜阳·一模)如图,抛物线y =ax 2+bx +3与x 轴交于A -1,0 ,B 3,0 两点,与y 轴交于点C .(1)求抛物线的解析式;(2)在抛物线的对称轴上找一点P ,使△PAC 的周长最小,求△PAC 的周长的最小值及此时点P 的坐标;(3)若M 为抛物线在第一象限内的一动点,求出四边形OCMB 的面积的最大值及此时点M 的坐标.2(2024·山东临沂·一模)如图,在平面直角坐标系中,抛物线y =-14x 2+bx +c 与x 轴交于点A (-2,0)和点B ,与y 轴交于点C (0,4),点P 是直线BC 上方的抛物线上一点(点P 不与点B ,C 重合),过点P 作PD ∥y 轴交直线BC 于点D .(1)求抛物线的函数表达式;(2)求线段PD 长的最大值;(3)连接CP ,BP ,请直接写出四边形ABPC 的面积最大值为.3(2024·山西运城·一模)综合与探究如图,抛物线y=ax2+bx-3a≠0与x轴交于A-1,0、B两点,与y轴交于点C,点D-2,9 2在抛物线上,点P是抛物线在第四象限内的一个动点,过点P作PQ∥y轴交直线BD于点Q,连接PA、PB、QA,设点P的横坐标为m.(1)求抛物线的函数表达式;(2)求四边形PAQB面积的最大值及此时点P的坐标;(3)若点M是抛物线上任意一点,是否存在点M,使得∠MAB=2∠ACO,若存在,请直接写出所有符合条件的点M的坐标,若不存在,请说明理由.4(2024·安徽合肥·一模)在平面直角坐标系中,点O是坐标原点.抛物线y=ax2+bx-3a≠0与x轴交于A,B两点,直线l:y=kx+2与抛物线交于A,C两点,且A-1,0,B3,0.(1)求a,b,k的值;(2)点M是线段OB上的动点,点N在x轴上,MN=2,且点N在M的左边.过点M作MP⊥x轴,交抛物线于点P.过点N作x轴的垂线,交抛物线于点Q,交直线l于点R.①当以P,Q,R,M为顶点的四边形是平行四边形时,求点M的坐标.②记以P,Q,R,M为顶点的四边形面积为S,求S的最大值.5(2024·安徽蚌埠·一模)如图1,已知直线y=-x+5与坐标轴相交于A、B,点C坐标是-1,0,抛物线经过A、B、C三点.点P是抛物线上的一点,过点P作y轴的平行线,与直线AB交于点D,与x轴相交于点F.(1)求抛物线的解析式;(2)当点P在第一象限时,连接CP交OA于点E,连接EF,如图2所示;①求AE+DF的值;②设四边形AEFB的面积为S,则点P在运动过程中是否存在面积S的最大值,若存在,请求出此时点P的坐标;若不存在,请说明理由.6(2024·安徽马鞍山·一模)如图,过原点的二次函数y=ax2+bx的图象与x轴正半轴交于点A,经过点A的直线与该函数交于B1,-3,与y轴交于点C0,-4.(1)分别求此二次函数与直线AB的解析式.(2)点P是第四象限内二次函数图象上的一个动点,过点P作直线PE⊥x轴于点E,与直线AB交于点D,设点P的横坐标为t.①当PD=12OC时,求t的值;②当点P在直线AB下方时,连接OP,过点B作BQ⊥x轴于点Q,BQ与OP交于点F,连接DF,求四边形FQED面积的最大值.7(2024·山东济南·一模)如图,直线y=-12x+3交y轴于点A,交x轴于点C,抛物线y=-14x2+bx+c经过点A,点C,且交x轴于另一点B.(1)求抛物线的解析式;(2)在直线AC上方的抛物线上有一点M,求四边形ABCM面积的最大值及此时点M的坐标;(3)将线段OA绕x轴上的动点P m,0顺时针旋转90°得到线段O A ,若线段O A 与抛物线只有一个公共点,请结合函数图象,求m的取值范围.8(2024·四川广元·二模)如图,二次函数y=ax2+bx+c的图象与x轴交于原点O和点A4,0,经过点A的直线与该函数图象交于另一点B1,3,与y轴交于点C.(1)求直线AB的函数解析式及点C的坐标.(2)点P是抛物线上位于直线AB上方的一个动点,过点P作直线PE⊥x轴于点E,与直线AB交于点D,过点B作BF⊥x轴于点F,连接OP,与BF交于点G,连接DG.求四边形GDEF面积的最大值.(3)抛物线上是否存在这样的点Q,使得∠BOQ=45°?若存在,请求出点Q的坐标;若不存在,请说明理由.9(2024·广东珠海·一模)如图,抛物线y=-x2+3x+4和直线y=x+1交于A-1,0点,点B,B3,4在直线x=3上,直线x=3与x轴交于点C.(1)求∠BAC的度数.(2)点P从点A出发,以每秒2个单位长度的速度沿线段AB向点B运动,点Q从点C出发,以每秒2个单位长度的速度沿线段CA向点A运动,点P,Q同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t秒t>0.以PQ为边作矩形PQNM,使点N在直线x=3上.①当t为何值时,矩形PQNM的面积最小?并求出最小面积;②直接写出当t为何值时,恰好有矩形PQNM的顶点落在抛物线上.10(2024·安徽宿州·二模)如图1,抛物线y=ax2+bx-3(a,b是常数且a>0)与x轴交于点A-1,0和点B(点B在点A的右侧),点D是抛物线的顶点,CD是抛物线的对称轴且交x轴于点C1,0.(1)求a,b的值;(2)点P是抛物线上一点且位于点A和点D之间.(i)如图2,连接AP,DP,BD,求四边形ABDP面积的最大值;(ii)如图3,连接AP并延长交CD延长线于点Q,连接BP交CD于点E,求CE+CQ的值.11(2024·安徽·二模)如图1,在平面直角坐标系中,抛物线y=ax2+bx-4交x轴于点A-1,0,B4,0,交y轴于点C,点M在该抛物线上,横坐标为m,将该抛物线M,C两点之间(包括M,C两点)的部分记为图象W.(1)求抛物线的解析式;(2)图象W的最大值与最小值的差为4时,求m的值;(3)如图2,若点M位于BC下方,过点A作AE∥BC交拋物线于点E,点D为直线AE上一动点,连接CM, CD,BM,BD,求四边形CDBM面积的最大值及此时点M的坐标.12(2024·四川广安·二模)如图,抛物线y=-x2+bx+c交x轴于A-4,0.,B两点,交y轴于点C0,4(1)求抛物线的函数解析式.(2)点D在线段OA上运动,过点D作x轴的垂线,与AC交于点Q,与抛物线交于点P,连接AP、CP,求四边形AOCP的面积的最大值.(3)在抛物线的对称轴上是否存在点M,使得以点A、C、M为顶点的三角形是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.13(23-24九年级上·重庆渝北·期末)二次函数y=ax2+bx+4经过点A-1,0,点C,点D,点B4,0分别二次函数与y轴的交点和顶点,点M为二次函数图象上第一象限内的一个动点.(1)求二次函数的解析式;(2)如图1,连接BC ,过点A 作BC 的平行线交二次函数于点E ,连接CM ,BM ,BE ,CE .求四边形CMBE 面积的最大值以及此时点M 的坐标;(3)如图2,过点M 作MN ∥y 轴,交BC 于点N (点M 不与点D 重合),过点D 作DH ∥y 轴,交BC 于点H ,当DM =HN 时,直接写出点M 的坐标.题型03面积比最值问题14(2024·安徽合肥·一模)在平面直角坐标系xOy 中,已知抛物线y =a x +1 x -4 与x 轴交于A 、 B 两点,与y 轴交于点C 0,-2 .(1)求a 的值;(2)点D 为第四象限抛物线上一点①求△BCD 的面积最大值②连接AD ,BC 交于点E ,连接BD ,记△BDE 的面积为S 1,△ABE 的面积为S 2,求S 1S 2的最大值;15(2023·四川遂宁·中考真题)在平面直角坐标系中,O 为坐标原点,抛物线y =14x 2+bx +c 经过点O (0,0),对称轴过点B (2,0),直线l 过点C 2,-2 ,且垂直于y 轴.过点B 的直线l 1交抛物线于点M 、N ,交直线l 于点Q ,其中点M 、Q 在抛物线对称轴的左侧.(1)求抛物线的解析式;(2)如图1,当BM :MQ =3:5时,求点N 的坐标;(3)如图2,当点Q 恰好在y 轴上时,P 为直线l 1下方的抛物线上一动点,连接PQ 、PO ,其中PO 交l 1于点E ,设△OQE 的面积为S 1,△PQE 的面积为S 2.求S2S 1的最大值.16(2024·湖北省直辖县级单位·一模)抛物线y =x 2-4x 与直线y =x 交于原点O 和点B ,与x 轴交于另一点A ,顶点为D .(1)求出点B 和点D 的坐标;(2)如图①,连接OD ,P 为x 轴的负半轴上的一点,当tan ∠PDO =12时,求点P 的坐标;(3)如图②,M 是点B 关于抛物线的对称轴的对称点,Q 是抛物线上的动点,它的横坐标为m 0<m <5 ,连接MQ ,BQ ,MQ 与直线OB 交于点E ,设△BEQ 和△BEM 的面积分别为S 1和S 2,求S1S 2的最大值.17(2023·湖南永州·中考真题)如图1,抛物线y =ax 2+bx +c (a ,b ,c 为常数)经过点F 0,5 ,顶点坐标为2,9 ,点P x 1,y 1 为抛物线上的动点,PH ⊥x 轴于H ,且x 1≥52.(1)求抛物线的表达式;(2)如图1,直线OP :y =y 1x 1x 交BF 于点G ,求S △BPG S △BOG的最大值;(3)如图2,四边形OBMF 为正方形,PA 交y 轴于点E ,BC 交FM 的延长线于C ,且BC ⊥BE ,PH =FC ,求点P 的横坐标.18(2024·四川南充·一模)抛物线y =-38x 2+bx +c b >0 与x 轴分别交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C 0,3 ,抛物线对称轴为x =1,点P 是抛物线在第一象限上动点,连接CB ,PB .(1)求抛物线和直线BC 的解析式;(2)如图,连接PA ,交BC 于点M ,设△ABM 的面积为S 1,△PBM 的面积为S 2,求S 1S 2的最小值及此时点P的坐标.19(2024·湖北孝感·一模)如图1,已知抛物线y=ax2+bx+3与x轴交于点A-1,0,B3,0,与y轴交于点C,连接BC.(1)求a,b的值及直线BC的解析式;(2)如图1,点P是抛物线上位于直线BC上方的一点,连接AP交BC于点E,过P作PF⊥x轴于点F,交BC于点G,(ⅰ)若EP=EG,求点P的坐标,(ⅱ)连接CP,CA,记△PCE的面积为S1,△ACE的面积为S2,求S1S2的最大值;(3)如图2,将抛物线位于x轴下方面的部分不变,位于x轴上方面的部分关于x轴对称,得到新的图形,将直线BC向下平移n个单位,得到直线l,若直线l与新的图形有四个不同交点,请直接写出n的取值范围.题型04面积和最值问题1(2024·吉林长春·一模)在平面直角坐标系中,抛物线y=ax2+bx+3交x轴于点A(-1,0)、B(3,0),交y轴于点C,连结AC、BC.点D在该抛物线上,过点D作DE∥AC,交直线BC于点E,连结AD、AE、BD.设点D横坐标为m(m>0),△DAE的面积为S1,△DBE的面积为S2.(1)求a,b的值;(2)设抛物线上D、B两个点和它们之间的部分为图象G,当图象G的最高点的纵坐标与m无关时,求m的取值范围;(3)当点D在第一象限时,求S1+S2的最大值;(4)当S1:S2=2:1时,直接写出m的值.题型05面积差最值问题1(2024·安徽合肥·一模)如图1,在平面直角坐标系xOy中,抛物线y=x2+bx+c的对称轴为直线x=。
初中数学“面积法”解题分析
初中数学“面积法”解题分析姓名:__________指导:__________日期:__________面积法是中学数学的一种重要方法,所谓面积法就是利用图形的面积关系,建立一个或几个关于图形面积的等式或不等式,然后通过推理、演算,以达到证题目的的一种方法.三角形面积是一个数量,通过三角形面积公式把面积、边、角之间关系互相沟通,以恰当的转换求解.应用面积法解题简洁、明了,面积法是解几何题的常用方法.面积法的理论依据是面积公式,在△ABC中,约定三边长分别为a,b,c,h为边a上的高,r为内切圆半径,R为外接圆半径,则三角形的面积当问题涉及如下方面时,不妨用面积法尝试求解.(1)两个全等形面积相等;(2)一个图形的面积等于它的各部分面积之和;(3)等(同)底等(同)高的两个三角形面积相等;(4)等底(或等高)的两个三角形面积之比等于该底上的高(或对应底边)之比;(5)与平行四边形同底同高的三角形的面积是平行四边形面积的一半.面积法是中学数学中一种重要的证明方法.它在证明线段相等、角相等、不等关系、线段比例等方面都经常会用到.【典型例题1】已知,如图,在△ABC中,AB=AC,P为底边BC 上任意一点,PD⊥AB于点D,PE⊥AC于点E,求证:PD+PE是一个定值.【思路分析】本题的关键是看到垂线,就可看作三角形的高,于是连接AP,过点C 作CF⊥AB于点F,再通过面积法即可求证.【答案解析】【典型例题2】如图,以直角三角形ABC的两直角边AC,BC为一边各向外侧作正方形ACDE,BCGH,连接BE,AH 分别交AC,BC于点P,Q.求证:CP=CQ.【思路分析】本题两次利用了借助面积的等积变换,通过等底(高)等积的三角形对应高(底)相等来证线段等,往往能起到很好的效果,本题发现△AGQ 和△BPD 底相同,而又要证明等高,即CP=CQ,很容易想到要证明两个三角形面积相等即可得证,面积相等需要用等积变换来实现,本题是借助△ABC的面积当桥梁,使△ACH 和△BCE的面积都等于△ABC的面积,又可知△ACH 和△AGQ的面积相等,△BCE和△BPD 的面积也相等,进而得证.【答案解析】【典型例题3】如图,D是Rt△ABC直角边AC上任意一点,AE∥BC,DE=2AB,求证:∠ABC=3∠EBC.【思路分析】【答案解析】。
关注问题梯度,提升解题能力——以“一次函数面积问题”教学设计为例
1
1
CD xD + CD
2
2
(
xB -xD )
由点 C(
故 S△ABC =
1,
0),得 D (
1,
3),即 CD =3.
1
9
×3×3= .
2
2
由方法 2 可 以 发 现 S△ABC =
点 B 的坐标和 △OAB 的面积 .
解略 .
图4
1
CD xB .
2
1
CD |xB -xA|,
2
我们称 CD 为铅垂 高,
积,又直线 CP 平分四边形AOCB 的面积,可知 CP 平
分 △BDC 的面积,故 P 为线段 BD 的中点 .
点评:变式 2 为动直 线 平 分 不 规 则 四 边 形 的 面 积
问题,综合性 和 难 度 都 有 提 升,学 生 通 过 分 析 问 题 情
线”将 △ABC 的 面 积 转 化 为 △ABD (“横 平 竖 直 三 角
4
2
10
面积相 等,因 此 S△ABD =S△ABC =
15
,并求得 D (
0,-3).
2
由于 AB ∥CD ,因 此 kCD =
图8
kAB =1,则直线 CD 的解析式为y=x-3.
因为点 C 为直线CD 和直线l2 的交点,所以 联 立
1
方程得x-3=- x,解得x=2,故C(
2,-1).
2
点评:变 式 1 中 的 点 C 由 “定 点 ”变 为 直 线 上 的
和发展原有的认知结构为 目 标,从 数 学 知 识 的 逻 辑 发
复习课可 看 作 是 由 多 个 “对 话 模 块”组 成 的 有 机
等面积法例题初二数学
等面积法例题初二数学
等面积法例题初二数学指的是在初二数学中,使用等面积法解题的示例问题。
等面积法是一种常用的数学解题方法,主要基于面积的守恒原理,通过比较不同图形之间的面积关系来解决问题。
在初二数学中,等面积法常用于解决与面积有关的问题,如面积的证明、计算等。
以下是一些初二数学中应用等面积法的示例问题:
题目1:有一个矩形和一个三角形,它们的面积相等。
矩形的一条边长为6厘米,对应的另一条边长为8厘米。
三角形的底边长为12厘米,底边上的高为5厘米。
求矩形的另一条边长。
解法:我们设矩形的另一条边长为x厘米。
由于矩形的面积为长乘宽,所以矩形的面积为6×8=48平方厘米。
同理,三角形的面积为1/2×12×5=30平方厘米。
由于两者的面积相等,所以有:6x=30,解得x=5,所以,矩形的另一条边长是5厘米。
题目2:证明以下等式成立:a^2 + b^2 = c^2。
解法:我们可以将两个边长为a和b的正方形拼接成一个大的矩形,该矩形的长度为a+b,宽度为a。
矩形的面积为(a+b) × a = a^2 + ab。
由于大矩形的面积为两个小正方形的面积之和,所以有:a^2 + b^2 = c^2。
总的来说,“等面积法例题初二数学”就是初二数学中使用等面积法的例子及解析,通常用在解答关于几何形状的问题时帮助学生找到更快捷和直观的方法找到解题途径。
以上解答和解析仅供参考,如有疑问可以咨询数学老师或查阅教辅练习的解析。
浅谈初中数学面积法在解题中的应用
浅谈初中数学面积法在解题中的应用[论文摘要]随着新课程改革的不断深入,这几年我市初中数学教材也在不断更新与完善。
教材的变化带来的是中考题型的变化,但是这里解决数学问题的思想方法却是没有改变的。
笔者根据近几年的中考和日常的教学实际情况总结一下一种重要的数学方法—面积法。
一、直接运用公式法和割补法:对于三角形或者特殊四边形的面积,可以直接运用面积公式求解;对于不规则的几何图形的面积,可以运用割补法求解。
(一)规则图形面积有关的公式(二)不规则的图形可以通过割补法转化为规则图形二、运用转化法求解图形的面积:此法就是通过等积变换、平移、旋转等方法将不规则的图形转化成面积相等的规则图形,再利用规则图形的面积公式,计算出所求的不规则图形的面积。
(一)等积变换:同底等高,等底同高(二)通过平移变换求解面积(三)通过旋转变换求解面积随着新课程改革的不断深入,这几年我市初中数学教材也在不断更新与完善。
教材的变化带来的是中考题型的变化,但是这里解决数学问题的思想方法却是没有改变的。
笔者根据近几年的中考和日常的教学实际情况总结一下一种重要的数学方法—面积法。
所谓面积法,就是利用面积相等或者成比例,来证明其他的线段相等或成比例的方法。
它在初中数学中有着广泛的应用,这种方法有时显得特别简捷,有出奇制胜、事半功倍之效。
许多数学问题,表面上看来似与面积无关,但灵活运用面积法,往往能使问题顺利获解。
下面列举几个例子说说面积法在解题中的应用。
一、直接运用公式法和割补法 :对于三角形或者特殊四边形的 面积,可以直接运用面积公式求解;对于不规则的几何图形的面积,可以运用割补法求解。
(一)规则图形面积有关的公式1、三角形的面积公式:ah S 21=2、矩形的面积公式:S=长⨯宽3、平行四边形面积公式: S=底⨯高4、梯形面积公式: S=21⨯(上底+下底)⨯高 对于这些规则图形直接运用面积公式计算即可。
(二)不规则的图形可以通过割补法转化为规则图形1、 作对角线,化四边形为三角形例1. 如图1所示,凸四边形ABCD 的四边AB 、BC 、CD 和DA 的长分别是3、4、12和3,,求四边形ABCD 的面积。
面积法在初中数学解题中的应用
师生园地2022年4月下半月㊀㊀㊀面积法在初中数学解题中的应用◉辽宁省大连市第五十一中学㊀穆永强1引言面积法解题的基本思想是以 面积 当作思维起点,将题目中的已知量与未知量通过面积公式联系起来,这样显得更为简洁与直观,有助于学生快速理清思路,使其充分体会到面积法的妙用与价值.2应用面积法证明线段相等问题证明线段相等是一类较为常见的平面几何类问题,虽然运用常规方法能够证明,但有时,过程较为繁琐㊁步骤较多,有时学生容易陷入到思维障碍当中,影响他们的解题自信.对此,教师可以指导学生应用面积法证明线段相等的问题,使其转变解题思路,帮助他们找到正确的证明流程与方法.图1例1㊀如图1,已知在等腰三角形A B C 中,A B 和A C 相等,点D 在B C 边上,其中D B 的长度与D C 相等,D E 垂直于A B ,垂点是E ,D F 垂直于A C ,垂点为F ,请尝试证明D E 与D F 相等.分析:学生通过初步审题与观察图形,发现虽然题设中给出的条件较多,也极具条理性,不过他们一时间难以想到用何种方法来证明这两条线段相等,以至于陷入到困境当中.教师可提示学生应用面积法进行证明.具体证明方法如下:因为B D =C D ,所以әA B D 的面积同әA C D 的面积相等,得出12A B D E =12A C D E ,又因为AB =AC ,所以DE =DF .虽然本题可以使用全等三角形的相关知识进行证明,不过采用面积法思路更为简洁,既可以培养学生一题多解的意识,还能够让他们感受到面积法的优势,扩充认知范围.3应用面积法准确求出线段长度求线段长度是数学解题训练中的惯设题目,贯穿于小学㊁初中㊁高中整个教学阶段,虽然这类题目大多数难度都不是特别大,不过部分题目中给出的隐藏条件难以发现,影响解题的正常进行.此时,教师在教学中,应指引学生尝试应用面积法来处理此类题目,使其通过面积的拆分准确求出线段长度,帮助他们建立解题自信.图2例2㊀如图2所示,在三角形A B C 中,B C =90c m ,A D 为高,A D =60c m ,正方形P Q MN 的顶点Q ,M 在BC 边上,顶点P ,N 分别在边A B ,A C 上,其中AD 垂直于B C ,垂点是D ,同正方形的边P N 相交于点E ,那么正方形P Q MN 的边长是多少?分析:学生读完题目后,发现题目中给出的具体数据仅限于三角形,似乎与正方形的关系不大,所以他们很难找准切入点,极易遇到解题障碍,所以教师可引导学生应用面积法,并结合方程相关知识求解.设正方形的边长是x c m ,因为12ˑB C ˑA D =12ˑP N ˑA E +12ˑB Q ˑP Q +12ˑC M ˑMN +P Q 2,代入相关数据可得,12ˑ90ˑ60=x 2ˑ(60-x )+12ˑP Q (B Q +C M )+P Q 2,由此得12ˑ90ˑ60=x2ˑ(60-x )+x 2ˑ(90-x )+x 2,将这个方程化简,解得的x 值即为正方形的边长.在本例中,常规解法是用相似三角形的相似比等于对应高线的比列出比例式求得结果,这里用面积的拆分求解有异曲同工之妙,可以有效活化学生的解题思路.4应用面积法求得线段长度的和不少平面几何类问题都与线段有一定的联系,除09Copyright ©博看网. All Rights Reserved.2022年4月下半月㊀师生园地㊀㊀㊀㊀求一条线段的长度以外,还会求几条线段的总长,这类题目难度通常较大,学生处理起来颇费周折.为此,教师在教学中,可以引导学生尝试应用面积法求几条线段长度的和,使其通过拆分面积及面积公式顺利求得正确答案.图3例3㊀如图3所示,已知梯形A B C D 中,A D ʊB C ,A B =D C ,对角线A C 与B D 相交于点O ,E 为B C 上的一个动点(E 不与B ,C 两点重合),在点E 运动过程中,如果点E 到A C ,B D 的垂线段分别是E Q ,E P ,而B C =8,B D =6,梯形的高DF 的长度是3,求E P +E Q 的和.分析:本题涉及的元素较多,线段较为复杂,还存在一个动点,结果要求两条线段之和,对学生来说难度相对较大,不易找到突破口.应用面积法的解答方法如下:因为四边形A B C D 是一个等腰梯形,对角线A C 与B D 相交于点O ,据此能证明әO B C 是一个等腰三角形,又因为点E 是梯形下底上的一个动点,点E 到A C ,B D 的垂线段分别是E Q ,E P ,作辅助线延长B D 至H ,与C H 垂直,再根据等腰三角形底边上一点到两腰的距离之和等于一腰上的高这一性质,得出E P +E Q =C H .因为S әD B C =12B C D F =12B DC H ,由已知条件,求得C H =4,E P +E Q 的和是4.本案例,由于点E 是动点学生觉得无从下手,只要证明定理 等腰三角形底边上一点到两腰的距离之和等于一腰上的高 ,再结合同一个三角形面积的不同表示问题就轻松解决.5应用面积法求证线段比例等式求证线段比例也是初中数学解题教学中的一类常见题型,由于涉及到比例难度相对较大,对学生的解题能力与思维水平要求较高,通常要用到代数方面的知识,他们很难轻松证明.教师可引领学生巧妙采用面积法证明线段的比例等式,主要通过构建面积这一载体 ,证明几何图形的线段比例等式关系,显得清晰又直观.例4㊀已知在әA B C 中,D 是B C 上的一点,设点E 是A D 的中点,连接B E ,并延长与A C 交于点F ,假设B D ʒC D =2ʒ1,求证A F ʒF C =2ʒ3.分析:首先,根据题意画出图形,如图4,把点C 与点E 连接起来.设әC E D 的面积是x ,因为A E =D E ,所以әA E C 的面积也是x .又因为B D ʒC D =2ʒ1,图4可得әB E D 的面积是2x ,又因A E =D E ,可得әA E B 的面积也是2x .设әE F C 的面积为y ,则A F F C =S әA B F S әB F C =3x -y3x +y①A F F C =S әA E F S әE F C =x -yy②由式①㊁②式联立,可得x =53y .所以A F F C =S әA E F S әE F C =x -y y =53y -y y =23yy=23,即A F ʒF C =2ʒ3成立.本题采用面积法证明线段的比例等式十分巧妙,借助面积这一纽带,清楚地证明几何图形中线段比例的等式关系,使学生的解题思路变得愈加开阔.6应用面积法有效解决函数问题在求解初中函数类试题时,除运用待定系数法之外,还经常用到数形结合法,而面积法就属于数形结合思想的一种.有时,借助面积法也可以有效解决函数问题.例5㊀如果一次函数y =4x +b 的图象与两个坐标轴之间围成一个面积为8的三角形,求该一次函数的解析式.图5分析:本题虽然是一道代数题,但其求解过程要利用三角形的面积.为此,利用函数式找出两直角边的长即可.如图5所示.列出算式12ˑ|b |ˑ|b |4=8,解之得b =8,或b =-8,所以该一次函数的解析式为y =4x +8,或y =4x -8.本例结合面积法处理代数中的一次函数类题目,其实是对数形结合思想的巧妙应用,以此增进数与形之间的关系,使其掌握更多解题方法,优化他们的解题思路.总的来说,在初中数学解题教学活动中,教师很有必要把面积法的思想融会贯通至解题实践中,引领学生学会转变解题思路,思维变得发散与开阔起来,使其通过面积法的有效应用,将一些比较抽象㊁难懂㊁复杂的数学试题变得直观㊁易懂与简单,这对培养学生的解题能力㊁数学思想等均有着相当积极的意义.Z 19Copyright ©博看网. All Rights Reserved.。
面积法在初中数学解题中的应用-最新教育文档
面积法在初中数学解题中的应用数学是中学阶段基础教育的主要学科之一,对启发学生思维、开发学生智力、培养逻辑能力等方面都有举足轻重的作用。
其中,平面几何又是中学数学学科中重要的内容。
学习平面几何相关知识有助于帮助学生形成良好的几何思维习惯,同时能有效培育和提升学生的数学演绎和推理能力。
平面几何在中国也拥有十分悠久的发展历史,同样,平面几何中的面积问题与平面几何一样历史悠久,从溯源的角度上看,面积还是几何学的起源之一。
面积及面积法在日常生活中的运用随处可见,与生活息息相关、紧密相连。
文章围绕面积法在初中数学解题中的应用展开研究,从面积简史、面积及面积法的基本概念入手,结合解题实例,详细分析面积法在初中数学解?}过程中的巧妙应用。
在中学数学中,关于面积和面积法相关知识的教学已达到一定深度。
通过对面积和面积法的学习,一方面能够使学生更好、更直观地学习、理解和掌握数学知识,另一方面通过面积法,构建“数形结合”几何模型,能够将中学数学中一些较为抽象和代数化知识进行更为直观、具象的几何解释。
这些都对培养学生的数学品质,理解数学思想,提升和强化学生具象思维和直觉思维等大有裨益。
对此,有必要更加深入地研究和探索面积及面积法的相关发展历程、概念,以及其在中学数学解题中的巧妙运用,来增强中学生数学思维的灵活性,提高学生的数学素养。
一、与面积相关内容的概述(一)中国古代数学的面积发展史面积的发展史最早可以追溯到古埃及时期,其在中国的发展也同样历史悠久、源远流长。
与其他古代文明相比,面积在中国数学史上的发展有着独特的风格和特色,其在中国古代的实际运用主要在于对田垄、土地的测量。
早在公元前2世纪,中国古代的数学家就著有《算术书》,该书是中国数学史上首次系统性地提出和阐释面积相关的算题,其中就包括对田地的测量以及土地税征收等,以及与实际生产生活密切联系的面积问题。
在之后的历史发展中,又相继有《九章算术》《九章算术注》《孙子算经》《缀术》等相关著作问世。
初二数学-面积法解题
初二数学---面积法解题【本讲教育信息】【讲解内容】——怎样证明面积问题以及用面积法解几何问题 【教学目标】1. 使学生灵活掌握证明几何图形中的面积的方法。
2. 培养学生分析问题、解决问题的能力。
【 重点、难点】:重点:证明面积问题的理论依据和方法技巧。
难点:灵活运用所学知识证明面积问题。
【教学过程】(一)证明面积问题常用的理论依据1. 三角形的中线把三角形分成两个面积相等的部分。
2. 同底同高或等底等高的两个三角形面积相等。
3. 平行四边形的对角线把其分成两个面积相等的部分。
4. 同底(等底)的两个三角形面积的比等于高的比。
同高(或等高)的两个三角形面积的比等于底的比。
5. 三角形的面积等于等底等高的平行四边形的面积的一半。
6. 三角形的中位线截三角形所得的三角形的面积等于原三角形面积的。
147. 14三角形三边中点的连线所成的三角形的面积等于原三角形面积的。
8. 有一个角相等或互补的两个三角形的面积的比等于夹角的两边的乘积的比。
(二)证明面积问题常用的证题思路和方法1. 分解法:通常把一个复杂的图形,分解成几个三角形。
2. 作平行线法:通过平行线找出同高(或等高)的三角形。
3. 利用有关性质法:比如利用中点、中位线等的性质。
4. 还可以利用面积解决其它问题。
【典型例题】(一)怎样证明面积问题 1. 分解法例1. 从△ABC 的各顶点作三条平行线AD 、BE 、CF ,各与对边或延长线交于D 、E 、F ,求证:△DEF 的面积=2△ABC 的面积。
FEAB D C分析:从图形上观察,△DEF 可分为三部分,其中①是△ADE ,它与△ADB 同底等高,故S S ADE ADB ∆∆=②二是△,和上面一样,ADF S S ADF ADC ∆∆=③三是△AEF ,只要再证出它与△ABC 的面积相等即可 由S △CFE =S △CFB故可得出S △AEF =S △ABC 证明:∵AD//BE//CF∴△ADB 和△ADE 同底等高 ∴S △ADB =S △ADE同理可证:S △ADC =S △ADF ∴S △ABC =S △ADE +S △ADF 又∵S △CEF =S △CBF ∴S △ABC =S △AEF∴S △AEF +S △ADE +S △ADF =2S △ABC ∴S △DEF =2S △ABC2. 作平行线法例2. 已知:在梯形ABCD 中,DC//AB ,M 为腰BC 上的中点求证:S S ADM ABCD ∆=12分析:由M 为腰BC 的中点可想到过M 作底的平行线MN ,则MN 为其中位线,再利用平行线间的距离相等,设梯形的高为hA BS S S MN h S AMD DMN AMN ABCD ∆∆∆=+=⋅=1212证明:过M 作MN//AB ∵M 为腰BC 的中点 ∴MN 是梯形的中位线 设梯形的高为hMN DC AB=+2则S MN h ABCD =⋅又ΘS S S MN h AMD AMN MND ∆∆∆=+=⋅12∴=S S ADM ABCD ∆12(二)用面积法解几何问题有些几何问题,往往可以用面积法来解决,用面积法解几何问题常用到下列性质: 性质1:等底等高的三角形面积相等 性质2:同底等高的三角形面积相等性质3:三角形面积等于与它同底等高的平行四边形面积的一半 性质4:等高的两个三角形的面积比等于底之比性质5:等底的两个三角形的面积比等于高之比 1. 证线段之积相等例3. 设AD 、BE 和CF 是△ABC 的三条高,求证:AD ·BC =BE ·AC =CF ·ABAFEB D C分析:从结论可看出,AD 、BE 、CF 分别是BC 、AC 、AB 三边上的高,故可联想到可用面积法。
初二数学知识点专题讲解与练习23---面积的计算(培优版)
A
EF
D
5
8
10
B 例1图 C
【例 2】如图,在△ABC 中,已知 BD 和 CE 分别是两边上的中线,并且 BD⊥CE,BD=4,CE=6,
那么△AAB.C 的12面积等于 (
.)
B 14
.C 16
(全国初中数学联赛) .D 18
BG
上,ABCD
和
DEFG
都是正方形,面积分别为
7cm2
和
,则△ 11cm2
CDE
的面
积等于___________cm2.
(武汉市竞赛试题)
2.如图,P 为正方形 ABCD 内一点,PA=PB=10,并且 P 到 CD 边的距离也等于 10,那么正方形
的面积是 ABCD
_______________.
A
D
K
M
B 第 10 题图 C
11.如图 , , 1 AB CD 是两条线段,M 是 AB 的中点, , , △ △ △ S DMC S DAC S DBC 分别表示△DMC,△DAC,
△ 的面积,当 ∥ 时,有 = + ① DBC
AB CD
△S DMC △S DAC 2 S△DBC……….. .
(1) 如图 2,若图 1 中 AB 与 CD 不平行时,①式是否成立?请说明理由.
秒,AE 的长为 y.
(1) 求出 y 关于 x 的函数关系式,并写出自变量 x 的取值范围;
(2) 当 x 为何值时,△BDE 的面积 S 有最大值,最大值为多少?
(江西省中考试题)
解题思路:对于(1)利用△ADE∽△ABC 可得 y 与 x 的关系式;对于(2)先写出 S 关于 x 的函数关系式,
等面积法例题初二数学
等面积法例题初二数学摘要:一、等面积法基本概念1.等面积法的定义2.等面积法在初二数学中的应用二、等面积法例题解析1.例题一1.题目描述2.解题思路3.解题步骤2.例题二1.题目描述2.解题思路3.解题步骤3.例题三1.题目描述2.解题思路3.解题步骤三、等面积法在数学中的意义1.等面积法在几何证明中的应用2.等面积法在实际问题中的应用四、等面积法的学习方法与技巧1.掌握基本概念2.多做例题练习3.培养空间想象力正文:一、等面积法基本概念等面积法,是数学中一种常用的解题方法。
它是指在解决数学问题时,如果已知两个或多个图形的面积相等,那么可以通过面积相等这一条件,推导出其他相关量之间的关系。
在初二数学中,等面积法常常应用于几何证明和实际问题解决。
二、等面积法例题解析为了更好地理解等面积法的应用,我们通过以下三个例题来进行解析:例题一:已知矩形ABCD的面积为12平方厘米,矩形EFGH的面积为6平方厘米,若矩形ABCD与矩形EFGH的长和宽之和相等,求矩形ABCD与矩形EFGH的长和宽。
解题思路:由于已知矩形ABCD与矩形EFGH的面积之和,我们可以利用等面积法,设矩形ABCD的长为x,宽为y,矩形EFGH的长为a,宽为b,则有xy=ab=12和x+y=a+b。
通过解这个方程组,我们可以求得矩形ABCD与矩形EFGH的长和宽。
解题步骤:1.根据已知条件列出方程组:xy=12, x+y=a+b2.将第一个方程变形得到:y=12/x,代入第二个方程得到:x+12/x=a+b3.化简得到:x^2-ab+12=04.求解得到:x=2, y=6, a=3, b=2所以,矩形ABCD的长为2厘米,宽为6厘米,矩形EFGH的长为3厘米,宽为2厘米。
例题二:已知等腰三角形ABC,底边BC=6厘米,高AD=8厘米,求等腰三角形ABC的面积。
解题思路:由于已知等腰三角形ABC的底边和高,我们可以利用等面积法,设等腰三角形ABC的腰长为x,则有x^2=8^2+(6/2)^2=64+9=73。
中考数学复习之因动点产生的面积问题解题策略
因动点产生的面积问题解题策略一.解题策略解读:面积的存在性问题常见的题型和解题策略有两类:图1 图2 图3 计算面积常用到的策略还有:图4 图5 图6例1.已知抛物线y=mx2+(1-2m)x+1-3m与x轴交于不同的两点A、 B.(1) 求m的取值范围;(2) 证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3) 当<m≤8时,由(2)求出的点P和点A、 B构成的△ABP的面积是否有最值,若有,求出最值及相应的m的值;若没有,请说明理由.思路:1. 已知的抛物线的解析式可以因式分解的,抛物线过x轴上的定点(-1, 0).2. 第(2)题分两步,先对m赋予两个不同的值,联立求方程组的解,再验证这个点是确定的.3. 第(3)题中△ABP的高为定值,点A为定点,求△ABP的最大面积,其实就是求点B的横坐标的最大值.例2.问题提出(1) 如图1,已知△ABC,请画出△ABC关于直线AC对称的三角形.问题探究(2) 如图2,在矩形ABCD中,AB=4, AD=6, AE=4, AF=2.是否在边BC、CD上分别存在点G、 H,使得四边形EFGH的周长最小?若存在,求出它周长的最小值;若不存在,请说明理由.问题解决(3) 如图3,有一块矩形板材ABCD, AB=3米, AD=6米,现想从此板材中截出一个面积尽可能大的四边形EFGH部件,使∠EFG=90°,米,∠EHG=45°.经研究,只有当点E、 F、 G分别在边AD、 AB、 BC上时,且AF<BF,并满足点H在矩形ABCD内部或边上时,才有可能截出符合要求的部件.试问能否截得符合要求的面积尽可能大的四边形EFGH部件?若能,求出截得的四边形EFGH 部件的面积;若不能,请说明理由.图1 图2 图3思路:1. 第(2)题的模型是“打台球”两次碰壁问题,依据光的反射原理.2. 第(3)题需先设AF的长并求解,再验证点H在矩形内部,然后计算面积.例3.如图1,在平面直角坐标系中,矩形OCDE的顶点C和E分别在y轴的正半轴和x轴的正半轴上,OC=8, OE=17.抛物线y=x2-3x+m与y轴交于点A,抛物线的对称轴与x轴交于点B,与CD交于点K.(1) 将矩形OCDE沿AB折叠,点O恰好落在边CD上的点F处.①求点F的坐标;②请直接写出抛物线的函数表达式;(2) 将矩形OCDE沿着经过点E的直线折叠,点O恰好落在边CD上的点G处,连结OG,折痕与OG交于点H,点M是线段EH上的一个动点(不与点H重合),连结MG, MO,过点G作GP⊥OM于点P,交EH于点N,连结ON.点M从点E开始沿线段EH向点H运动,至与点N重合时停止,△MOG和△NOG的面积分别表示为S1和S2,在点M的运动过程中,S1·S2(即S1与S2的积)的值是否发生变化?若变化,请直接写出变化的范围;若不变,请直接写出这个值.温馨提示: 考生可以根据题意,在备用图中补充图形,以便作答.图1 备用图思路:1. 第(1)题中点F的位置是由A、 B两点确定的,A、 B两点的坐标都隐含在抛物线的解析式中.2. 第(2)题思路在画示意图过程中,点G是关键点.以E为圆心,EO为半径画弧,交CD于点G.例 4.如图,已知平行四边形ABCD的三个顶点A(n, 0)、 B(m, 0)、 D(0,2n)(m>n>0),作平行四边形ABCD关于直线AD的对称图形AB1C1 D.(1) 若m=3,试求四边形CC1B1B面积S的最大值;(2) 若点B1恰好落在y轴上,试求的值.思路:1. 第(1)题先说理再计算,说理四边形CC1B1B是矩形.2. 第(2)题根据AB1=AB列关于m、 n的方程,整理就可以得到m与n的关系.例5.如图,在平面直角坐标系中,抛物线y=-x2+bx+c经过点A(3, 0)和点B(2, 3),过点A的直线与y轴的负半轴相交于点C,且tan∠CAO=.(1) 求这条抛物线的表达式及对称轴;(2) 连结AB、 BC,求∠ABC的正切值;(3) 若点D在x轴下方抛物线的对称轴上,当S△ABC =S△ADC时,求点D的坐标.解析:1. 直觉告诉我们,△ABC是直角三角形.2. 第(3)题的意思可以表达为: B、 D在直线AC的两侧,到直线AC的距离相等.于是我们容易想到,平行线间的距离处处相等.例6.如图,半圆O的直径AB=10,有一条定长为6的动弦CD在弧AB上滑动(点C、D分别不与点A、 B重合),点E、 F在AB上,EC⊥CD, FD⊥CD.(1) 求证:EO=FO;(2) 连结OC,如果△ECO中有一个内角等于45°,求线段EF的长;(3) 当动弦CD在弧AB上滑动时,设变量CE=x,四边形CDFE的面积为S,周长为l,问:S与l是否分别随着x变化而变化?试用所学过的函数知识直接写出它们的函数解析式及函数定义域,以说明你的结论.思路:1. 用垂径定理和平行线等分线段定理证明点O是EF的中点.2. 第(2)题的△ECO中,∠ECO是定值,45°的角分两种情况.3. 第(3)题用x表示OE的长,在△ECO中,∠ECO是定值.例7.直线y=2x+m与抛物线y=ax2+ax+b都过点M(1, 0),且a<b.(1) 求抛物线顶点Q的坐标(用含a的式子表示);(2) 试说明抛物线与直线有两个交点;(3) 设抛物线与直线的另一个交点为N.①若-1≤a≤-时,求MN的取值范围;②求△QMN的面积最小值.思路:1. 将M(1, 0)分别代入直线和抛物线的解析式,可以确定m的值,用a表示b.2. 联立直线与抛物线的解析式,消去y,得到关于a的一元二次方程,判断Δ>0.3. 第(3)题①,分别求a=-1和a=-时直线与抛物线的交点M、 N的坐标,再求MN的长,两个MN的长,就是MN的取值范围的两端值.例8.已知Rt△EFP和矩形ABCD如图1摆放(点P与点B重合),点F、 B(P)、 C 在同一直线上,AB=EF=6cm, BC=FP=8cm, ∠EFP=90°.如图2, △EFP从图1位置出发,沿BC方向匀速运动,速度为1cm/s, EP与AB交于点G;同时,点Q从点C出发,沿CD方向匀速运动,速度为1cm/s.过点Q作QM⊥BD,垂足为H,交AD于点M,连结AF、 PQ.当点Q停止运动时,△EFP也停止运动.设运动时间为t(s)(0<t<6).解答下列问题:(1) 当t为何值时,PQ∥BD?(2) 设五边形AFPQM的面积为y(cm2),求y与t之间的函数关系式;(3) 在运动过程中,是否存在某一时刻t,使S五边形AFPQM ∶S矩形ABCD=9∶8?若存在,求出t的值;若不存在,请说明理由;(4) 在运动过程中,是否存在某一时刻t,使点M在线段PG的垂直平分线上?若存在,求出t的值;若不存在,请说明理由.图1 图2思路:1. 把线段BP、 PC、 CQ、 DQ的长用t表示出来.再把线段BG、 DM的长用t表示出来.2. 用割补法求五边形AFPQM的面积,等于直角梯形减去两个直角三角形的面积.3. 第(3)题用第(2)题的结果,直接解方程就可以了.4. 第(4)题是根据MP2=MG2列方程,需要构造以MP为斜边的直角三角形.例9.如图1,在平面直角坐标系中,过原点O及点A(8, 0)、 C(0, 6)作矩形OABC,连结OB,点D为OB的中点,点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF.已知点E从点A出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒.(1) 如图1,当t=3时,求DF的长;(2) 如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值;(3) 连结AD,当AD将△DEF分成的两部分的面积比为1∶2时,求相应的t的值.图1 图2思路;1. 作DM⊥AB于M, DN⊥OA于N,那么△NDF与△MDE的相似比为3∶4.2. 面积比为1∶2要分两种情况讨论.把面积比转化为两个同高三角形底边的比.3. 过点E作OA的平行线,构造“8字型”相似,这样就把底边的比利用起来了.例10.如图1,二次函数y=x2+bx+c的图象与x轴交于A、 B两点,与y轴交于点C, OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.(1) 求b、 c的值;(2) 如图1,连结BE,线段OC上点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;(3) 如图2,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.图1 图2思路:1. 由已知抛物线的解析式可得C(0, c),再用c表示B、 D两点的坐标,然后将B、 D代入抛物线的解析式列关于b、 c的方程组.2. 第(2)题: 通过点C、 F分别与点D、 F'关于直线l对称,得到点F'是BE的中点,从而求得点F的坐标.3. 第(3)题: 设点P的横坐标为m,用m表示点M、 N的坐标,进而用m表示线段PM、 PN、 PA的长,根据两个三角形的面积相等,求出PN边上的高QH.最后讨论NQ与QH的关系.例11.如图,在平面直角坐标系中,直线y=12x+2与x 轴交于点A,与y 轴交于点C.抛物线y=-x 2+bx+c 经过A 、 C 两点,与x 轴的另一个交点为点B.(1) 求抛物线的函数表达式;(2) 点D 为直线AC 上方抛物线上一动点.① 连结BC 、 CD.设直线BD 交线段AC 于点E, △CDE 的面积为S 1, △BCE 的面积为S 2,求 12S S 的最大值; ② 过点D 作DF ⊥AC,垂足为F,连结CD.是否存在点D,使得△CDF 中的某个角恰好等于∠BAC 的2倍?若存在,求出点D 的坐标;若不存在,请说明理由.图1 备用图思路: 1. △CDE 与△BCE 是同高三角形,面积比等于底边的比.构造“8字型”,把底边的比转化为竖直线段的比.2. 第(3)题的第一种情况∠DCF=2∠BAC,过点C 作x 轴的平行线,通过内错角相等,再作轴对称的角,很容易找到点D 的位置.3. 第(3)题的第二种情况∠CDF=2∠BAC,先要探求2∠BAC的大小(正切值),如果这一步探究不出来,基本上进行不下去.例12.已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜边OB=4,将Rt△OAB绕点O 顺时针旋转60°,如题图1,连接BC.(1)填空:∠OBC= ;(2)如图1,连接AC,作OP⊥AC,垂足为P,求OP的长度;(3)如图2,点M,N同时从点O出发,在△OCB边上运动,M沿O→C→B路径匀速运动,N沿O→B→C路径匀速运动,当两点相遇时运动停止,已知点M的运动速度为1.5单位/秒,点N的运动速度为1单位/秒,设运动时间为x秒,△OMN 的面积为y,求当x为何值时y取得最大值?最大值为多少?思路:(1)由旋转的性质可以证明△OBC是等边三角形,从而可得∠OBC的度数;(2)求出△AOC的面积,利用三角形的面积公式计算即可;(3)分三种情形讨论求解即可解决问题:①当0<x≤83时,M在OC上运动,N在OB上运动,此时过点N作NE⊥OC且交OC于点E,利用面积公式表示出△OMN的面积(y值);②当8 3<x≤4时,M在BC上运动,N在OB上运动.作MH⊥OB于H,利用∠CBO=60°表示出MH,再利用面积公式表示出△OMN的面积(y值);③当4<x≤4.8时,M、N都在BC上运动,作OG⊥BC于G,易求OG,再利用面积公式表示出△OMN的面积(y值),最后分别求出三种情况下面积最大值,从而求出整个运动过程中y的最大值.例13. 在平面直角坐标系中,抛物线2y ax bx c=++交x轴于A、B两点,交y轴于点C(0,43-),OA=1,OB=4,直线l过点A,交y轴于点D,交抛物线于点E,且满足tan∠OAD=34.(1)求抛物线的解析式;(2)动点P从点B出发,沿x轴正方向以每秒2个单位长度的速度向点A运动,动点Q从点A出发,沿射线AE以每秒1个单位长度的速度向点E运动,当点P运动到点A时,点Q也停止运动,设运动为t秒.①在P、Q的运动过程中,是否存在某一时刻t,使得△ADC与△PQA相似,若存在,求出t的值;若不存在,请说明理由;②在P、Q的运动过程中,是否存在某一时刻t,使得△APQ与△CAQ的面积之和最大?若存在,求出t的值;若不存在,请说明理由.思路:本题是代数几何综合题,以平面直角坐标系为背景,考查了求二次函数解析式,二次函数的性质,,方程组的解法,几何图形面积的表示,相似三角形的判定与性质,分类讨论思想,三角形的面积的最值问题,综合性强,难度大,解题的关键是需要学生有良好的运算能力及分析问题和解决问题的能力,还得富有耐心.(1)利用A、B、C三点的坐标确定二次函数的解析式.(2)利用题目的已知条件表示出相关线段的长,①中利用三角函数值探索出∠PAQ=∠ACD,再根据题目中的要求使得△ADC与△PQA相似,进行分类讨论得到对应线段成比例,列出关于t的方程求解即可;②直接利用三角形的面积公式列出△APQ与△CAQ 的面积之和与时间t之间的函数关系式,再将所得的二次函数的解析式配方确定最值即可得到答案.。
等面积法例题初二数学
等面积法例题初二数学
摘要:
1.等面积法的概念和原理
2.等面积法的应用举例
3.初二数学中常见的等面积题目类型
4.如何解答等面积题目
正文:
等面积法是一种用于解决数学问题的方法,主要通过将一个复杂的数学问题转换为简单的面积问题来解决。
这种方法在初二数学中非常常见,可以帮助学生更好地理解和掌握一些复杂的数学概念。
等面积法的原理非常简单,就是利用两个形状的面积相等来解决一些复杂的数学问题。
例如,如果一个学生需要求解一个三角形的面积,他可以利用等面积法将这个三角形转换为一个矩形,然后通过计算矩形的面积来求解三角形的面积。
在初二数学中,等面积法通常用于解决一些几何问题,例如求解三角形的面积、计算两个图形的交集面积等。
这些问题通常需要学生具备一定的几何知识和数学技巧,而等面积法则可以帮助学生更好地理解和解决这些问题。
对于等面积题目,学生需要先理解题目的要求和条件,然后找到一个合适的方法来解决这个问题。
例如,如果一个学生需要求解一个三角形的面积,他可以先找到这个三角形的底和高,然后利用等面积法将这个三角形转换为一个矩形,最后通过计算矩形的面积来求解三角形的面积。
总的来说,等面积法是一种非常实用的数学方法,可以帮助学生更好地理
解和掌握一些复杂的数学概念。
在初二数学中,等面积法通常用于解决一些几何问题,例如求解三角形的面积、计算两个图形的交集面积等。
中考数学复习:专题9-15 例谈求阴影部分面积的几种常见方法
例谈求阴影部分面积的几种常见方法【专题综述】在初中数学中,求阴影部分的面积问题是一个重要内容,在近年来的各地中考试题中屡见不鲜.这类试题大多数都是求不规则图形的面积,具有一定的难度,因此,正确把握求阴影部分面积问题的解题方法,显得尤为重要.本文举例介绍解决这类问题的常见方法.【方法解读】一、直接求解法例1 如图1,有一矩形纸片ABCD,AB=10,AD=6,将纸片折叠,使AD边落在AB边上,AD变到AD1位置,折痕为AE.再将△AED1以D1E为折痕,向右折叠,AE变到A1E位置,且A1E交BC于点F.求图中阴影部分的面积.分析因为阴影部分是一个规则的几何图形Rt△CEF,故根据已知条件可以直接计算阴影部分面积.解如图1,根据对称性可得AD=AD1=A1D1=6.由已知条件易知:EC=D1B=4,BC=6;Rt△FBA1∽Rt△FCE.设FC为x,则FB=6-x.二、间接求解法例2 如图2,⊙O1与⊙O2外切于点C,且两圆分别和直线l相切于A、B两点,若⊙O1半径为3cm;⊙O2半径为1cm,求阴影部分面积.分析这是求一个不规则图形的面积,没有现成的面积公式,因此应采用间接的方法,设法转化为规则图形的面积的和或差去计算.三、整体合并法例3 如图3,⊙A、⊙B、⊙C两两不相交,且半径都是0.5cm,求三个阴影部分面积之和.分析所求的阴影部分面积是三个扇形面积之和,因为三个扇形圆心角度数不知道,所以无法单独求解,但仔细观察发现,三个扇形的圆心角分别是△ABC的三个内角,其和为180°,而扇形半径都相等,所以三个扇形能合并成一个半圆.于是问题获解.解如图3,因为三个圆的半径相等,三个扇形圆心角之和是180°,所以其面积就是半圆面积.四、等积变换法例4 如图4,A是半径为R的⊙O外一点,弦BC为3R,OA∥BC,求阴影部分面积.分析本题的阴影部分是不规则的图形,求其面积较困难,但灵活运用等积变换,就可以把它的面积转化为扇形OBC的面积,从而获解.解连接OC,OB,五、分割法例5 如图5,在Rt△ABC中,∠C=90°,AC=4,BC=2,分别以AC、BC为直径画半圆,求阴影部分面积.分析阴影部分图形不规则,不能直接求面积,可以把它分割成几个部分求面积的和.解如图5,连接CD.∵AC、BC是直径,∴∠ADC=∠BDC=90°,∴A、D、B三点共线.设阴影部分面积被分割为S1、S2、S3、S4四部分.则六、转化法例6如图(1),大半圆O与小半圆O1相切于点C,大半圆的弦AB与小半圆相切于点F,且AB∥CD,AB =4cm,求阴影部分面积.分析如果想直接求阴影部分面积,无法求解,因为它不是规则图形.但要采取转化思想,把小半圆平移到与大半圆的圆心重合的位置,作OE⊥AB于点E.连接OB,可知BE=2cm,阴影部分面积等于大半圆面积减去小半圆的面积.解如图(2),将小半圆O1移至与大半圆圆心重合,作O E⊥AB于点E,则BE=12AB=2cm.设大圆半径为R,小圆半径为x,在Rt△OEB中,有七、割补法例7 如图7,点P(3a,a)是反比例函数y=12x与⊙O在第一象限内的一个交点,求阴影部分的面积.分析阴影部分分两部分,难于逐一求解,但考虑反比例函数的对称性,结合割补原理,问题变得特别简单.解如图7,把右上角的S1部分分割下来,移到左下方补在S3处,与S2就组成了一个扇形OAB.易知:∵P(3a,a)在反比例函数y=12x的图象上,∴3a=12a.解得:a1=2,a2=-2(舍去).∴P坐标为(6,2).连接OP,作PC⊥x轴于点C,得:八、方程建模法例8如图8,正方形边长为a,以每边为直径在正方形内画四个半圆,求阴影部分的面积.分析本题直接求阴影部分面积较复杂,但观察图形特点引入方程的思想,问题变得非常简单.解正方形由四个阴影花瓣和四个空白图形组成,如图8,设一个阴影花瓣面积为x,一个空白图形面积为y.根据题意得:因此阴影部分面积为.222aaπ-.【强化训练】1.(2017内蒙古包头市)如图,在△ABC中,AB=AC,∠ABC=45°,以AB为直径的⊙O交BC于点D,若BC=42,则图中阴影部分的面积为()A.π+1B.π+2C.2π+2D.4π+12.(2017四川省凉山州)如图,一个半径为1的⊙O1经过一个半径为2的⊙O的圆心,则图中阴影部分的面积为()A.1B.12C.2D.223.(2017四川省资阳市)如图,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,将Rt△ABC绕点A逆时针旋转30°后得到△ADE,则图中阴影部分的面积为()A.1312πB.34πC.43πD.2512π4.(2017衢州)运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD、EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是()A.252πB.10πC.24+4πD.24+5π5. (2017云南省)如图,边长为4的正方形ABCD外切于⊙O,切点分别为E、F、G、H.则图中阴影部分的面积为.6.(2017吉林省)如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画BE,CE.若AB=1,则阴影部分图形的周长为(结果保留π).7. (2017四川省达州市)如图,矩形ABCD中,E是BC上一点,连接AE,将矩形沿AE翻折,使点B落在CD边F处,连接AF,在AF上取点O,以O为圆心,OF长为半径作⊙O与AD相切于点P.若AB=6,BC=33,则下列结论:①F是CD的中点;②⊙O的半径是2;③AE=92CE;④32S阴影.其中正确结论的序号是.8. (2017湖北省恩施州)如图,在Rt△ABC中,∠BAC=30°,以直角边AB为直径作半圆交AC于点D,以AD为边作等边△ADE,延长ED交BC于点F,BC=23,则图中阴影部分的面积为.(结果不取近似值)9. (2017内蒙古赤峰市)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM垂足为D,BD 与⊙O交于点C,OC平分∠AOB,∠B=60°.(1)求证:A M是⊙O的切线;(2)若DC=2,求图中阴影部分的面积(结果保留π和根号).10.(2017新疆)如图,AC为⊙O的直径,B为⊙O上一点,∠ACB=30°,延长CB至点D,使得CB=BD,过点D作DE⊥AC,垂足E在CA的延长线上,连接BE.(1)求证:B E是⊙O的切线;(2)当BE=3时,求图中阴影部分的面积.。
八年级数学竞赛例题专题讲解27:面积法 含答案
专题27 面积法阅读与思考平面几何学的产生源于人们测量土地面积的需要,面积关联着几何图形的重要元素边与角.所谓面积法是指借助面积有关的知识来解决一些直接或间接与面积问题有关的数学问题的一种方法.有许多数学问题,虽然题目中没有直接涉及面积,但由于面积联系着几何图形的重要元素,所以借助于有关面积的知识求解,常常简捷明快.用面积法解题的基本思路是:对某一平面图形面积,采用不同方法或从不同角度去计算,就可得到一个含边或角的关系式,化简这个面积关系式就可得到求解或求证的结果.下列情况可以考虑用面积法:(1)涉及三角形的高、垂线等问题;(2)涉及角平分线的问题.例题与求解【例1】如图,从等边三角形内一点向三边作垂线,已知这三条垂线段的长分别为1,3,5,则这个等边三角形的边长为______________.(全国初中数学联赛试题) 解题思路:从寻求三条垂线段与等边三角形的高的关系入手.等腰三角形底边上任一点到两腰距离之和等于一腰上的高,那么等边三角形呢?等腰梯形呢?【例2】如图,△AOB中,∠O=,OA=OB,正方形CDEF的顶点C在DA上,点D在OB上,点F在AB上,如果正方形CDEF的面积是△AOB的面积的,则OC:OD等于( )A.3:1 B.2:1C.3:2 D.5:3解题思路:由面积关系,可能想到边、角之间的关系,这时通过设元,即可把几何问题代数化来解决.【例3】如图,在□ABCD中,E为AD上一点,F为AB上一点,且BE=DF,BE与DF 交于G,求证:∠BGC=∠DGC.(长春市竞赛试题)解题思路:要证∠BGC=∠DGC,即证CG为∠BGD的平分线,不妨用面积法寻找证题的突破口.【例4】如图,设P为△ABC内任意一点,直线AP,BP,CP交BC,CA,AB于点D、E、F.求证:(1);(2). (南京市竞赛试题)解题思路:过P点作平行线,产生比例线段.【例5】如图,在△ABC中,E,F,P分别在BC,CA,AB上,已知AE,BF,CP相交于一点D,且,求的值.解题思路:利用上例的结论,通过代数恒等变形求值.(黄冈市竞赛试题)【例6】如图,设点E,F,G,H分别在面积为1的四边形ABCD的边AB,BC,CD,DA 上,且(是正数),求四边形EFGH的面积.(河北省竞赛试题)解题思路:连对角线,把四边形分割成三角形,将线段的比转化为三角形的面积比.线段比与面积比的相互转化,是解面积问题的常用技巧.转化的基本知识有:(1) 等高三角形面积比,等于它们的底之比;(2) 等底三角形面积比,等于它们的高之比;(3) 相似三角形面积比,等于它们相似比的平方.能力训练1.如图,正方形ABCD的边长为4cm,E是AD的中点,BM⊥EC,垂足为M,则BM=______.(福建省中考试题)2.如图,矩形ABCD中,P为AB上一点,AP= 2BP,CE⊥DP于E,AD=,AB=,则CE=__________.(南宁市中考试题)第1题图第2题图第3题图3.如图,已知八边形ABCDEFGH中四个正方形的面积分别为25,48,121,114,PR=13,则该八边形的面积为____________.(江苏省竞赛试题)4. 在△ABC中,三边长为,,,表示边上的高的长,,的意义类似,则(++)的值为____________. (上海市竞赛试题)5.如图,△ABC的边AB=2,AC=3,Ⅰ,Ⅱ,Ⅲ分别表示以AB,BC,CA为边的正方形,则图中三个阴影部分的面积之和的最大值是__________.(全国竞赛试题)6.如图,过等边△ABC内一点P向三边作垂线,PQ=6,PR=8,PS=10,则△ABC的面积是 ( ).A. B. C. D.(湖北省黄冈市竞赛试题)第5题图第6题图第7题图7.如图,点D是△ABC的边BC上一点,若∠CAD=∠DAB=,AC=3,AB=6,则AD的长是( ).A.2 B. C.3 D.8.如图,在四边形ABCD中,M,N分别是AB,CD的中点,AN,BN,DM,CM划分四边形所成的7个区域的面积分别为,,,,,,,那么恒成立的关系式是( ).A. +=B.+=C. += D.+=9.已知等边△ABC和点P,设点P到△ABC三边AB,AC,BC的距离分别为,,,△ABC的高为.若点P在一边BC上(如图1),此时,可得结论:++=.请直接用上述信息解决下列问题:当点P在△ABC内(如图2)、点P在△ABC外(如图3)这两种情况时,上述结论是否还成立?若成立.请给予证明;若不成立,,,与之间又有怎样的关系?请写出你的猜想,不需证明.(黑龙江省中考试题)10.如图,已知D,E,F分别是锐角△ABC的三边BC,CA,AB上的点,且AD、BE、CF 相交于P点,AP=BP=CP=6,设PD=,PE=,PF=,若,求的值.(“希望杯”邀请赛试题)11.如图,在凸五边形ABCDE中,已知AB∥CE,BC∥AD,BE∥CD,DE∥AC,求证:AE∥BD.(加拿大数学奥林匹克试题)12.如图,在锐角△ABC中,D,E,F分别是AB,BC,CA边上的三等分点. P,Q,R分别是△ADF,△BDE,△CEF的三条中线的交点.(1) 求△DEF与△ABC的面积比;(2) 求△PDF与△ADF的面积比;(3) 求多边形PDQERF与△ABC的面积比.13.如图,依次延长四边形ABCD的边AB,BC,CD,DA至E,F,G,H,使,若,求的值.(上海市竞赛试题)14.如图,一直线截△ABC的边AB,AC及BC的延长线分别交于F,E,D三点,求证:.(梅涅劳斯定理)15.如图,在△ABC中,已知,求的值.(“华罗庚金杯”少年数学邀请赛试题)。
2021年人教版数学中考总复习课件-专题28求几何图形面积及面积法解题的问题
强化训练
一、选择题
1.(2020•株洲)如图所示,点 A、B、C 对应的 刻度分别为 0、2、4、将线段 CA 绕点 C 按顺时针 方向旋转,当点 A 首次落在矩形 BCDE 的边 BE 上 时,记为点 A1,则此时线段 CA 扫过的图形的面
积为( D )
A.4π
B.6
C.4
D. π
18
2.(2020•攀枝花)如图,直径 AB=6 的半圆, 绕 B 点顺时针旋转 30°,此时点 A 到了点 A',
则这个扇形的弧长为
cm(结果保留π).
19.(2020•凉山州)如图,点 C、D 分别是半圆 AOB 上的三等分点,若阴影部分的面积是 π, 则半圆的半径 OA 的长为 3 .
33
20.(2020•泰安)如图,点 O 是半圆圆心,BE 是半圆的直径, 点 A,D 在半圆上,且 AD∥BO,∠ABO=60°, AB=8,过点 D 作 DC⊥BE 于点 C,则阴影部分
12
解:(1)利用等腰三角形的性质得到 AD⊥BC,BD=CD,则可计算出 BD=6 ,然后利用扇形的面积 公式,利用由弧 EF 及线段 FC.CB.BE 围成图形(图中阴影部分)的面积=S△ABC﹣S 扇形 EAF 进行计算; ∵在等腰△ABC 中,∠BAC=120°,∴∠B=30°,∵AD 是∠BAC 的角平分线, ∴AD⊥BC,BD=CD,∴BD= AD=6 ,∴BC=2BD=12 , ∴由弧 EF 及线段 FC.CB.BE 围成图形(图中阴影部分)的面积
A.
B.π
C. 2 D.π﹣2
8
对点练习
1.如图,在▱ ABCD 中,∠B=60°,⊙C 的半径 为 3,则图中阴影部分的面积是( C )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学---面积法解题【本讲教育信息】【讲解内容】——怎样证明面积问题以及用面积法解几何问题 【教学目标】1. 使学生灵活掌握证明几何图形中的面积的方法。
2. 培养学生分析问题、解决问题的能力。
【 重点、难点】:重点:证明面积问题的理论依据和方法技巧。
难点:灵活运用所学知识证明面积问题。
【教学过程】(一)证明面积问题常用的理论依据1. 三角形的中线把三角形分成两个面积相等的部分。
2. 同底同高或等底等高的两个三角形面积相等。
3. 平行四边形的对角线把其分成两个面积相等的部分。
4. 同底(等底)的两个三角形面积的比等于高的比。
同高(或等高)的两个三角形面积的比等于底的比。
5. 三角形的面积等于等底等高的平行四边形的面积的一半。
6. 三角形的中位线截三角形所得的三角形的面积等于原三角形面积的。
147. 14三角形三边中点的连线所成的三角形的面积等于原三角形面积的。
8. 有一个角相等或互补的两个三角形的面积的比等于夹角的两边的乘积的比。
(二)证明面积问题常用的证题思路和方法1. 分解法:通常把一个复杂的图形,分解成几个三角形。
2. 作平行线法:通过平行线找出同高(或等高)的三角形。
3. 利用有关性质法:比如利用中点、中位线等的性质。
4. 还可以利用面积解决其它问题。
【典型例题】(一)怎样证明面积问题 1. 分解法例1. 从△ABC 的各顶点作三条平行线AD 、BE 、CF ,各与对边或延长线交于D 、E 、F ,求证:△DEF 的面积=2△ABC 的面积。
FEAB D C分析:从图形上观察,△DEF 可分为三部分,其中①是△ADE ,它与△ADB 同底等高,故S S ADE ADB ∆∆=②二是△,和上面一样,ADF S S ADF ADC ∆∆=③三是△AEF ,只要再证出它与△ABC 的面积相等即可 由S △CFE =S △CFB故可得出S △AEF =S △ABC 证明:∵AD//BE//CF∴△ADB 和△ADE 同底等高 ∴S △ADB =S △ADE同理可证:S △ADC =S △ADF ∴S △ABC =S △ADE +S △ADF 又∵S △CEF =S △CBF ∴S △ABC =S △AEF∴S △AEF +S △ADE +S △ADF =2S △ABC ∴S △DEF =2S △ABC2. 作平行线法例2. 已知:在梯形ABCD 中,DC//AB ,M 为腰BC 上的中点求证:S S ADM ABCD ∆=12分析:由M 为腰BC 的中点可想到过M 作底的平行线MN ,则MN 为其中位线,再利用平行线间的距离相等,设梯形的高为hD CN MA BS S S MN h S AMD DMN AMN ABCD ∆∆∆=+=⋅=1212证明:过M 作MN//AB ∵M 为腰BC 的中点 ∴MN 是梯形的中位线 设梯形的高为hMN DC AB=+2则S MN h ABCD =⋅又 S S S MN h AMD AMN MND ∆∆∆=+=⋅12∴=S S ADM ABCD ∆12(二)用面积法解几何问题有些几何问题,往往可以用面积法来解决,用面积法解几何问题常用到下列性质:性质1:等底等高的三角形面积相等 性质2:同底等高的三角形面积相等性质3:三角形面积等于与它同底等高的平行四边形面积的一半 性质4:等高的两个三角形的面积比等于底之比 性质5:等底的两个三角形的面积比等于高之比 1. 证线段之积相等例3. 设AD 、BE 和CF 是△ABC 的三条高,求证:AD ·BC =BE ·AC =CF ·ABAFEB D C分析:从结论可看出,AD 、BE 、CF 分别是BC 、AC 、AB 三边上的高,故可联想到可用面积法。
证明:∵AD 、BE 、CF 是△ABC 的三条高∴=⋅=⋅=⋅S AD BC BE AC CF ABABC ∆222∴⋅=⋅=⋅AD BC BE AC CF AB2. 证等积问题例4. 过平行四边形ABCD 的顶点A 引直线,和BC 、DC 或其延长线分别交于E 、F ,求证:S △ABF =S △ADEA DB E CF分析:因为AB//DF ,所以△ABF 与△ABC 是同底AB 和等高的两个三角形,所以这两个三角形的面积相等。
证明:连结AC ∵CF//AB∴==S S S ABF ABC ABCD ∆∆12平行四边形又∵CE//AD∴==S S SADE ACD ABCD ∆∆12平行四边形∴=S S ABF ADE ∆∆3. 证线段之和例5. 已知△ABC 中,AB =AC ,P 为底边BC 上任一点,PE ⊥AB ,PF ⊥AC ,BH ⊥AC ,求证:PE+PF =BHAHF EB P C分析:已知有垂线,就可看作三角形的高,连结AP ,则S S S AB PE AC PF ABC ABP APC ∆∆∆=+=⋅+⋅1212又由,所以AB AC S AC PE PF ABC ==⋅+∆12()又S AC BHABC ∆=⋅12故PE+PF =BH证明:连结AP ,则S S S ABC ABP APC ∆∆∆=+∵AB =AC ,PE ⊥AB ,PF ⊥AC∴=⋅+⋅=⋅+S AB PE AC PF AC PE PF ABC ∆121212()又∵BH ⊥AC∴=⋅S AC BH ABC ∆12∴⋅+=⋅1212AC PE PF AC BH ()∴PE+PF =BH4. 证角平分线例6. 在平行四边形ABCD 的两边AD 、CD 上各取一点F 、E ,使AE =CF ,连AE 、CF 交于P ,求证:BP 平分∠APC 。
F PA B分析:要证BP 平分∠APC ,我们可以考虑,只要能证出B 点到PA 、PC 的距离相等即可,也就是△ABE 和△BFC 的高相等即可,又由已知AE =FC 可联想到三角形的面积,因此只要证出S △ABE =S △BCF 即可由平行四边形ABCD 可得S △ABE =S △ABC ,S △BFC =S △ABC 所以S △ABE =S △BFC ,因此问题便得解。
证明:连结AC 、BE 、BF∵四边形ABCD 是平行四边形 ∴S △ABE =S △ABC S △BFC =S △ABC ∴S △ABE =S △BFC 又∵AE =CF而△ABE 和△BFC 的底分别是AE 、CF ∴△ABE 和△BFC 的高也相等 即B 到PA 、PC 的距离相等 ∴B 点在∠APC 的平分线上 ∴PB 平分∠APC【模拟试题】(答题时间:25分钟)1. 在平行四边形ABCD 中,E 、F 点分别为BC 、CD 的中点,连结AF 、AE ,求证:S △ABE =S △ADFD F CEA B2. 在梯形ABCD 中,DC//AB ,M 为腰BC 上的中点,求证:S S S ADM DCM ABM ∆∆∆=+D CMA B3. Rt △ABC 中,∠ACB =90°,a 、b 为两直角边,斜边AB 上的高为h ,求证:111222a b h += Cb a hA D B4. 已知:E 、F 为四边形ABCD 的边AB 的三等分点,G 、H 为边DC 的三等分点,求证:S S EFGH ABCD =13DA G EF HB C5. 在△ABC中,D是AB的中点,E在AC上,且CEAC13,CD和BE交于G,求△ABC和四边形ADGE的面积比。
ADG EB C【试题答案】1. 证明:连结AC ,则S S ABC ADC ∆∆= 又∵E 、F 分别为BC 、CD 的中点∴=S S ABE ABC ∆∆12S S ADF ADC ∆∆=12 ∴=S S ABEADF ∆∆2. 证明:过M 作MN//DC//ABN MA∵M 为腰BC 上的中点∴△DCM 和△ABM 的高相等,设为h 1∴+=⋅+⋅=+⋅S S DC h AB h DC AB h DCM ABM ∆∆121212111()又∵△DMN 与△AMN 的高也为h 1 ∴=+S S S ADM DMN AMN ∆∆∆=⋅+⋅=+=⋅12121211111MN h MN h MN h h MN h ()∵MN 为梯形的中位线 ∴MN AB CD =+12() ∴=+S S S ADMDCM ABM ∆∆∆3. 证明:∵在Rt △ABC 中,∠ACB =90°,CD ⊥AB∴==⋅S ab AB h ABC ∆1212∴=⋅ab AB h∴=⋅=+⋅a b AB h a b h 2222222()∴两边同时除以a b 22+得:111222ab h += 4. 证明:连结FD 、FG 、FCA G EF H则由已知可得S S FGH DFC ∆∆=13①作DM//AB ,设它们之间的距离为h ,G 到DM 的距离为a ,则由已知可得H 、C 到DM 的距离分别为2a 、3a∴=+S EF h a EFG ∆12()S S AF h BF h a AFD BFC ∆∆+=⋅+⋅+12123()=⋅+⋅+⋅EF h EF h EF a1232=⋅+⋅3232EF h EF a=⋅+⋅31212()EF h EF a =⋅⋅+312EF h a ()=3S EFG ∆即S S S EFG AFD BFC ∆∆∆=+13()②①+②得:S S EFGH ABCD=135. 证明:作DF//AC 交BE 于FDG EFB C可得△DFG ≌△CEG∴==⋅S S ABE CEG DFG ∆∆∆1412=⋅⋅=141223112S S ABC ABC∆∆ 而S S S S ADGE ABC ABC ABC=-=12112512∆∆∆∴△ABC 和四边形ADGE 的面积比是12:5。