小学鸡兔同笼问题(二)
2022年北京版小学数学《密铺 鸡兔同笼 (2)》精美公开课课件
课件PPT
典题精讲 笼子里有若干只鸡和兔。从上面数,
有6个头,从下面数,有20只脚。鸡和 兔各有几只?
(2)假设法。 ①假设笼子里全是鸡。
6只鸡,12只脚。 比20只脚少8只。
6×2=12(只) 20-12=8(只) 4-2=2(只)
返N 回o
Image
借助计数器认识10:
No No No No No No No No No No
No
Image Image Image Image Image Image Image Image Image Image
Image
10个一 1个十
No Image
No Image
No
No Image No Image
情景导入1
课件PPT
用上面形状的地砖铺地,可以使它们彼 此之间不留空隙、不重叠地铺成一片, 通常把这种铺法叫作密铺。
探究新知
1.思考问题。
这些密铺图案是由哪 些基础图形组成的?
课件PPT
课件PPT
探究新知
2. 通过动手操作,探索可以密铺的平面 图形。
不能密铺
能密铺
能密铺
课件PPT
探究新知
2. 通过动手操作,探索可以密铺的平面 图形。
探究新知
1.解决问题。
方法一:画图法。
课件PPT
鸡有3只,兔有5只。
课件PPT
探究新知
1.解决问题。
方法二:列表法。
鸡的只数 7 6 5 4 3 2 …… 兔的只数 1 2 3 4 5 6 …… 共有腿数 18 20 22 24 26 28 ……
鸡有3只,兔有5只。
小学数学应用题之鸡兔同笼问题
小学数学应用题之鸡兔同笼问题【含义】这是古典的算术问题。
已知笼子里鸡、兔共有多少只头和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。
已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
【数量关系】第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)【解题思路和方法】解此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。
如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。
这类问题也叫置换问题。
通过先假设,再置换,使问题得到解决。
例1:鸡和兔在一个笼子里,共有35个头,94只脚,那么鸡有多少只,兔有多少只?解:假设笼子里全部都是鸡,每只鸡有2只脚,那么一共应该有35×2=70(只)脚,而实际有94只脚,这多出来的脚就是把兔子当作鸡多出来的,每只兔子比鸡多2只脚,一共多了94-70=24(只),则兔子有24÷2=12(只),那么鸡有35-12=23(只)。
例2:动物园里有鸵鸟和长颈鹿共70只,其中鸵鸟的脚比长颈鹿多80只,那么鸵鸟有多少只,长颈鹿有多少只?解:假设全部都是鸵鸟,则一共有70×2=140(只)脚,此时长颈鹿的脚数是0,鸵鸟脚比长颈鹿脚多140只,而实际上鸵鸟的脚比长颈鹿多80只,因此鸵鸟脚与长颈鹿脚的差数多了140-80=60(只),这是因为把其中的长颈鹿换成了鸵鸟。
把每一只长颈鹿换成鸵鸟,鸵鸟的脚数将增加2只,长颈鹿的脚数减少4只,那么鸵鸟脚数与长颈鹿脚数的差就增加了6只,所以换成鸵鸟的长颈鹿有60÷6=10(只),鸵鸟有70-10=60(只)。
小学奥数思维训练-典型应用题(二)鸡兔同笼、盈亏、平均数问题(经典透析)(通用,含答案)
保密★启用前小学奥数思维训练典型应用题(二)鸡兔同笼、盈亏、平均数问题(经典透析)一、填空题1.某次数学竞赛原定一等奖10人,二等奖20人,现在将一等奖中最后4人调整为二等奖,这样得二等奖的学生的平均分提高了1分,得一等奖的学生的平均分提高了3分,那么原来一等奖平均分比二等奖平均分多________分。
二、解答题2.从前有座山,山里有个庙,庙里有许多小和尚,两个小和尚用一根扁担一个桶抬水,一个小和尚用一根扁担两个桶挑水,共用了38根扁担和58个桶,那么有多少个小和尚抬水?多少个挑水?3.某旅游点有儿童票、成人票两种规格的门票卖,儿童票的价格为30元,成人票的价格为40元,如果是团体还可以买平均32元一位的团体票,一个由8个家庭组成的旅游团(每个家庭由两位大人,或两个大人、一个小孩组成)来景点旅游,如果他们买团体票可以比他们各买各的少花120元,问这个旅游团一共有多少人?4.蜘蛛有8条腿,蝴蝶有6条腿和2对翅膀,蝉有6条腿和1对翅膀.现有这三种小虫16只,共有110条腿和14对翅膀.问:每种小虫各几只?5.老师给同学们分苹果,每人分10个,就多出8个,每人分11个则正好分完,那么一共有多少名学生?多少个苹果?6.皮皮从家到学校,如果每分钟走50米,上课就要迟到3分钟;如果每分钟60米,就可以比上课时间提前2分钟到校,那么皮皮家距离学校多远?7.国庆节快到了,学而思学校的少先队员去摆花盆.如果每人摆5盆花,还有3盆没人摆;如果其中2人各摆4盆,其余的人各摆6盆,这些花盆正好摆完.问有多少少先队员参加摆花盆活动,一共摆多少花盆?8.有四个数,每次去掉一个数,将其余三个数求平均数,这样算了四次,得下面四个数:36.4,47.8,46.2,41.6,那么原来四个数的平均数是多少?9.设四个不同的正整数构成的数组中,最小的数与其余三数的平均值之和为17,而最大的数与其余三数的平均值之和为29.在满足上述条件的所有数组中,其最大数的最大值是多少?参考答案:1.10.5【解析】【分析】首先从总体来看,矩形横向长度表示人数,竖向长度表示平均分,面积表示总分。
小学奥数--鸡兔同笼(含答案解析)
小学奥数--鸡兔同笼一.选择题(共7小题)1.把一些鸡和兔子放在一只笼子里,从上面数有29个头,从下面数有92只脚,那么笼子中有鸡()只.A.8 B.12 C.17 D.292.有鸡和兔20只,共有46只脚,鸡有()只.A.14 B.15 C.16 D.173.每只蛐蛐有6条腿,每只蜘蛛有8条腿,蛐蛐和蜘蛛共有10只,一共有68条腿.蛐蛐和蜘蛛各有多少只?()A.4,6 B.6,4 C.5,5 D.3,74.实验小学四(1)班12名学生参加植树活动,其中男生每人植树5棵,女生每人植株4棵,一共植树56棵,男生有()A.6人 B.7人 C.8人 D.9人5.两个大人带几个小孩去公园游玩,大人门票每人10元,小孩门票每人5元,买门票一共花了45元,则这两个大人带了()个小孩.A.3 B.4 C.56.一次数学竞赛小华得了86分,这次竞赛一共20题,答对一题得5分,答错一题或不做倒扣2分,小华答对()题.A.19 B.18 C.17 D.167.全班54人去划船,共租了11条船,每条船都坐满了,已知大船限乘6人,小船限乘4人,大船租了()只.A.4 B.5 C.6 D.7二.解答题(共8小题)8.今有鸡兔同笼,有33个头,有108只脚,求鸡和兔各多少只?9.鸡与兔共有100只,共有脚260只,鸡与兔各有多少只?10.体育室里有乒乓球、羽毛球共16副,正好能让54个同学进行活动.羽毛球3人玩一副,乒乓球4人玩一副.羽毛球、乒乓球各有多少副?11.一个池塘里栖息着一些乌龟和仙鹤,从上面数有15个头,从下面数有58只脚,乌龟和仙鹤各有多少只?12.公园里的每条大船能坐6人,每条小船能坐4人.48名师生租了10条船(大船不多于小船),正好坐满.大船和小船各租了多少条?13.小亮参加学校数学竞赛,共20题,全部作答,每答对一题加5分,每答错一题扣2分,结果小亮得了86分.他答错了多少题?14.58名同学去划船,一共乘坐12只船,已知每只大船坐6人,每只小船坐4人,大船、小船各需要几只?15.猴子分桃,大猴每只分3个桃,小猴3只分1个桃,正好可以把20个桃子分完.大猴、小猴可能会是多少只?小学奥数--鸡兔同笼参考答案与试题解析一.选择题(共7小题)1.把一些鸡和兔子放在一只笼子里,从上面数有29个头,从下面数有92只脚,那么笼子中有鸡()只.A.8 B.12 C.17 D.29【分析】假设全是鸡,则脚有29×2=58只,比实际少92﹣58=34只,又因为每只兔比每只鸡多4﹣2=2只脚,所以多出的脚是兔脚,所以兔的只数是:34÷2=17只,进而求出鸡的数量.【解答】解:兔的只数:(92﹣29×2)÷(4﹣2)=34÷2=17(只)鸡有29﹣17=12(只).答:鸡有12只.故选:B.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.2.有鸡和兔20只,共有46只脚,鸡有()只.A.14 B.15 C.16 D.17【分析】假设20只全是兔子,则一共有20×4=80只脚,这比已知的46只脚多出80﹣46=34只,又因为一只兔子比一只鸡多4﹣2=2只脚,所以鸡有34÷2=17只,据此即可解答.【解答】解:(20×4﹣46)÷(4﹣2)=34÷2=17(只),答:鸡17只.故选:D.【点评】此题属于典型的鸡兔同笼问题,采用假设法即可解答.3.每只蛐蛐有6条腿,每只蜘蛛有8条腿,蛐蛐和蜘蛛共有10只,一共有68条腿.蛐蛐和蜘蛛各有多少只?()A.4,6 B.6,4 C.5,5 D.3,7【分析】假设全是蜘蛛,则一共有腿:10×8=80条,这比已知多了80﹣68=12条,又因为一只蜘蛛比一只蛐蛐多8﹣6=2条腿,所以蛐蛐有12÷2=6只,那么蜘蛛就是10﹣6=4只,据此即可解答.【解答】解:(10×8﹣68)÷(8﹣6)=12÷2=6(只)10﹣6=4(只)答:蛐蛐和蜘蛛分别有6只、4只.故选:B.【点评】解答此类题目一般都用假设法,这类问题也叫置换问题.通过先假设,再置换,使问题得到解决.4.实验小学四(1)班12名学生参加植树活动,其中男生每人植树5棵,女生每人植株4棵,一共植树56棵,男生有()A.6人 B.7人 C.8人 D.9人【分析】假设全是男生,那么一共可以植树12×5=60(棵),多植了60﹣56=4(棵),是因为一位男生比一位女生多植5﹣4=1(棵),那么女生的人数就是4÷1=4(人),进而可以求出男生的人数.【解答】解:假设全是男生,那么女生有:(12×5﹣56)÷(5﹣4)=4÷1=4(人)男生有:12﹣4=8(人)答:男生有8人.故选:C.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.5.两个大人带几个小孩去公园游玩,大人门票每人10元,小孩门票每人5元,买门票一共花了45元,则这两个大人带了()个小孩.A.3 B.4 C.5【分析】用总钱数减去两个大人门票的钱可得小孩买门票花的钱,再用总钱数除以小孩门票的价格即可得小孩的个数.【解答】解:(45﹣2×10)÷5=(45﹣20)÷5=25÷5=5(个)答:这两个大人带了5个小孩,故选:C.【点评】此题属于鸡兔同笼问题,关键是得出小孩买门票花的钱.6.一次数学竞赛小华得了86分,这次竞赛一共20题,答对一题得5分,答错一题或不做倒扣2分,小华答对()题.A.19 B.18 C.17 D.16【分析】假设小华20道题全答对,应得100分,现在小华得了86分,少了14分.因为答对一题不但得不到5分还要倒扣2分,也就是每答错一题要减去5+2=7(分),那么,少的这14分,就是因为答错题的缘故,因此小华答错了:14÷7=2(道),进一步解决问题.【解答】解:20﹣(20×5﹣86)÷(5+2)=20﹣14÷7=20﹣2=18(道).答:小华答对了18道题.故选:B.【点评】此题解答的关键是运用了假设法,先求出答错了几道题,再求出答对的题的数量.7.全班54人去划船,共租了11条船,每条船都坐满了,已知大船限乘6人,小船限乘4人,大船租了()只.A.4 B.5 C.6 D.7【分析】假设11条全是大船,则一共有6×11=66人,这比已知的54人多了66﹣54=12人,又因为一条大船比一条小船多坐6﹣4=2人,所以可得小船有12÷2=6条,则大船就是11﹣6=5条,据此即可解答问题.【解答】解:(6×11﹣54)÷(6﹣4)=(66﹣54)÷2=12÷2=6(只)11﹣6=5(只)答:大船租了5只.故选:B.【点评】此题属于鸡兔同笼问题,采用假设法即可解答问题.二.解答题(共8小题)8.今有鸡兔同笼,有33个头,有108只脚,求鸡和兔各多少只?【分析】假设全是鸡,则脚的只数是(33×2)只,而实际有108只,实际就比假设多和(108﹣33×2)只脚,这因每只兔子比每只鸡多(4﹣2)只.据此解答.【解答】解:(108﹣33×2)÷(4﹣2)=42÷2=21(只)33﹣21=12(只)答:鸡有12只,兔有21只.【点评】此题属于典型的鸡兔同笼问题,解答此类题的关键是用假设设法进行分析比较,进而得出结论;也可以用方程,设其中的一个数为未知数,另一个数也用未知数表示,列出方程解答即可.9.鸡与兔共有100只,共有脚260只,鸡与兔各有多少只?【分析】假设全部为兔子,共有腿4×100=400条,比实际的260条多:400﹣260=140条,因为我们把鸡当成了兔子,每只多算了4﹣2=2条腿,所以可以算出鸡的只数,列式为:140÷2=70(只),那么兔子就有:100﹣70=30(只);据此解答.【解答】解:假设全是兔,鸡:(4×100﹣260)÷(4﹣2)=140÷2=70(只)兔:100﹣70=30(只)答:鸡有70只,兔有30只.【点评】解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔.如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔.这类问题也叫置换问题.通过先假设,再置换,使问题得到解决.10.体育室里有乒乓球、羽毛球共16副,正好能让54个同学进行活动.羽毛球3人玩一副,乒乓球4人玩一副.羽毛球、乒乓球各有多少副?【分析】假设全是羽毛球,则有16×3=48人,这样就少了54﹣48=6人,因为一副乒乓球比一副羽毛球少算了4﹣3=1人,即乒乓球有6÷1=6(副);进而求出羽毛球的数量.【解答】解:假设全是羽毛球,乒乓球:(54﹣16×3)÷(4﹣3)=6÷1=6(副)羽毛球:16﹣6=10(副)答:羽毛球有10副,乒乓球有6副.【点评】此题属于典型的鸡兔同笼问题,解答此类题的关键是用假设法,也可以用方程进行解答.11.一个池塘里栖息着一些乌龟和仙鹤,从上面数有15个头,从下面数有58只脚,乌龟和仙鹤各有多少只?【分析】假设全部为乌龟,共有脚4×15=60只,比实际的58只多:60﹣58=2只,因为我们把仙鹤当成了乌龟,每只多算了4﹣2=2只脚,所以可以算出仙鹤的只数,列式为:2÷2=1(只),那么乌龟就有:15﹣1=14(只);据此解答.【解答】解:假设全是乌龟,仙鹤有:(4×15﹣58)÷(4﹣2)=2÷2=1(只);乌龟:15﹣1=14(只);答:乌龟有14只,仙鹤有1只.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.12.公园里的每条大船能坐6人,每条小船能坐4人.48名师生租了10条船(大船不多于小船),正好坐满.大船和小船各租了多少条?【分析】假设全部租大船,10条船能坐6×10=60人,比实际多算了:60﹣48=12人,因为把小船看作了大船,每条小船多算了6﹣4=2人,所以小船的条数是:12÷2=6条,那么大船的条数就是:10﹣6=4条,据此解答.【解答】解:(6×10﹣48)÷(6﹣4)=12÷2=6(条)10﹣6=4(条)答:大船租了4条,小船租了6条.【点评】解答鸡兔同笼问题一般用假设法,也就是假设全部为某种量,和实际的总量相比较,就会出现矛盾,然后利用这个矛盾求出另一个量,继而求出假设的量.13.小亮参加学校数学竞赛,共20题,全部作答,每答对一题加5分,每答错一题扣2分,结果小亮得了86分.他答错了多少题?【分析】假设小亮20题全答对,他应得100分,但现在只得了86分,少了14分.因为答错一题不但不得分,而且要扣2分,也就是答错一题要少得7分.因此答错了14÷7=2(题),据此解答即可.【解答】解:(20×5﹣86)÷(5+2)=(100﹣86)÷7=14÷7=2(题)答:他答错了2题.【点评】此题运用了假设法解答盈亏问题,假设全答对,根据分数差即可求出答错了几题.14.58名同学去划船,一共乘坐12只船,已知每只大船坐6人,每只小船坐4人,大船、小船各需要几只?【分析】假设全是大船,能坐12×6=72人,比实际多72﹣58=14人,因为每条大船比每条小船多坐6﹣4=2人,所以小船有14÷2=7条,进而可以求出大船的数量.【解答】解:假设全是大船,则小船有:(12×6﹣58)÷(6﹣4)=14÷2=7(条);则大船有:10﹣7=3(条).答:大船有3条,小船有7条.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.15.猴子分桃,大猴每只分3个桃,小猴3只分1个桃,正好可以把20个桃子分完.大猴、小猴可能会是多少只?【分析】因为小猴子3只分1个桃子,所以1只小猴子分得个桃子,大猴子每只分3个桃子,则1只大猴子比1只小猴子多分(3﹣)个桃子;假设都是小猴子,则桃子的个数是20×个,实际是20个桃子,多出的桃子个数是(20﹣20×)个,(20﹣20×)÷(3﹣)即为大猴子的只数,运用减法求出小猴子只数.【解答】解:因为小猴子3只分1个桃子,所以1只小猴子分得个桃子.(20﹣20×)÷(3﹣)=(20﹣)÷=×=5(只)20﹣5=15(只)答:猴村有5只大猴子,15只小猴子.【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.。
小学奥数 鸡兔同笼问题(二) 精选练习例题 含答案解析(附知识点拨及考点)
1. 熟悉鸡兔同笼的“砍足法”和“假设法”.2. 利用鸡兔同笼的方法解决一些实际问题,需要把多个对象进行恰当组合以转化成两个对象.一、鸡兔同笼 这个问题,是我国古代著名趣题之一.大约在1500年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚.求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?二、解鸡兔同笼的基本步骤解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独脚鸡”,每只兔就变成了“双脚兔”.这样,鸡和兔的脚的总数就由94只变成了47只;如果笼子里有一只兔子,则脚的总数就比头的总数多1.因此,脚的总只数47与总头数35的差,就是兔子的只数,即473512-=(只).显然,鸡的只数就是351223-=(只)了.这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已.除此之外,“鸡兔同笼”问题的经典思路“假设法”.假设法顺口溜:鸡兔同笼很奥妙,用假设法能做到,假设里面全是鸡,算出共有几只脚,和脚总数做比较,做差除二兔找到.解鸡兔同笼问题的基本关系式是:如果假设全是兔,那么则有:数=(每只兔子脚数×鸡兔总数-实际脚数)÷(每只兔子脚数-每只鸡的脚数) 兔数=鸡兔总数-鸡数如果假设全是鸡,那么就有:兔数=(实际脚数-每只鸡脚数×鸡兔总数)÷(每只兔子脚数-每只鸡的脚数) 鸡数=鸡兔总数-兔数当头数一样时,脚的关系:兔子是鸡的2倍当脚数一样时,头的关系:鸡是兔子的2倍在学习的过程中,注重假设法的运用,渗透假设法的重要性,在以后的专题中,如工程,行程,方程等专题中也都会接触到假设法两个量的“鸡兔同笼”问题——变例【例 1】 某次数学竞赛,共有20道题,每道题做对得5分,没做或做错都要扣2分,小聪得了79分,他做对了多少道题?例题精讲 知识精讲教学目标6-1-9.鸡兔同笼问题(二)【考点】鸡兔同笼问题【难度】3星【题型】解答【关键词】假设思想方法【解析】做错(52079 ) (52)3-=(道).⨯-÷+=(道),因此,做对的20317【答案】17道【巩固】数学竞赛共有20道题,规定做对一道得5分,做错或不做倒扣3分,赵天在这次数学竞赛中得了60分,他做对了几道题?【考点】鸡兔同笼问题【难度】3星【题型】解答【关键词】假设思想方法【解析】假设他将所有题全部做对了,则可得100分,实际上只得了60分,比假设少了40分,做错一题要少得8分,少得的40分中,有多少个8分,就是他做错的题的数量,则知他做对了15道.【答案】15道【巩固】东湖路小学三年级举行数学竞赛,共20道试题.做对一题得5分,没有做一题或做错一题都要倒扣2分.刘钢得了86分,问他做对了几道题?【考点】鸡兔同笼问题【难度】3星【题型】解答【关键词】假设思想方法【解析】这道题也类似于“鸡兔同笼”问题.假设刘钢20道题全对,可得分520100⨯=(分),但他实际上只得86分,少了1008614-=(分),因此他没做或做错了一些题.由于做对一道题得5分,没做或做错一道题倒扣2分,所以没做或做错一道题比做对一道题要少527+=(分).14分中含有多少个7,就是刘钢没做或做错多少道题.所以,刘钢没做或做错题为1472-=÷=(道),做对题为20218(道).【答案】18道【巩固】某次数学竞赛,试题共有10道,每做对一题得6分,每做错一题倒扣2分。
鸡兔同笼问题
鸡兔同笼问题(一)例题:笼子里有若干只鸡和兔。
从上面数有8个头,从下面数,有26只脚。
鸡和兔各有几只?巩固练习:1、笼中共有鸡兔100只,鸡和兔的脚共248只。
求笼中鸡兔各有几只?2、兔、鹤共24只,有68条腿,求兔、鹤各几只?3、有龟和鹤共40只,龟的腿和鹤的腿共112条。
龟、鹤各有几只?4、摩托车赛场有三轮摩托车和两轮摩托车共39辆,两种车共有96只车轮,求三轮车和两轮车各有几辆?5、全班54人,共租了11条船,每条船都坐满了。
大船坐6人,小船坐4人,大小船各租了几条?6、有5元的和10元的人民币共14张,共100元。
问5元币和10元币各多少张?7、小老大买了5角和8角的邮票共15张,用去9元钱,问这两种邮票各买了多少张?8、王老师为学校买篮球和足球共8个,用了312元。
篮球和足球各买了多少个?9、★一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了112次,平均每天运14次。
这几天中有几天是雨天?10、学校气象小组做一项实验,晴天时每天可以记录实验数据20次,雨天时每天只能记录12次,同学们一连记录了112次,平均每天记录14次。
你知道这几天中有几天为晴天吗?(06外国语)11、松鼠妈妈采松果,晴天每天可以采20个,雨天只能采10个。
它一连几天采了120个松果,平均每天采12个。
这几天中有几个晴天?12、鸡与兔共有80只,鸡的脚比兔的脚多52只。
鸡兔各有多少只?13、鸡兔同笼,兔的只数是鸡的3倍,共有脚280只。
鸡、兔各有多少只?14、每张餐桌有六条腿,每张餐椅有4条腿,餐厅里餐桌和餐椅共有324张,共有腿1368条。
问餐厅里餐桌和餐椅各有多少张?(07年山大附中)15、实验小学有90个人参加数学竞赛,平均得分是73分,其中男生平均70分,女生平均80分。
男生比女生多几人?鸡兔同笼问题(二)例题:实验小学举行数学竞赛,答对一题加10分,答错一题扣6分。
(1)2号选手共抢答8题,最后得分64分。
鸡兔同笼问题精选
鸡兔同笼问题鸡兔同笼问题(1)基础级1.鸡兔同笼,鸡兔共35个头,94条腿,问鸡、兔各多少只?2.鸡兔同笼,头共20个,腿共62只,求鸡与兔各有多少只?3.在一个停车场上,停了汽车和摩托车一共32辆。
其中汽车有4个轮子,摩托车有3个轮子,这些车一共有108个轮子。
求汽车和摩托车各有多少辆?4.小华买了2元和5元纪念邮票一共34张,用去98元钱。
求小华买了2元和5元的纪念邮票各多少张?5.全班46人去划船,共乘12只船,其中大船每只坐5人,小船每只坐3人,求大船和小船各有多少只?6.张大妈养鸡兔共200只,鸡兔足数共560只,求鸡兔各有多少只?7.小刚买回8角邮票和4角邮票共100张,共付出68元,问,小刚买回这两种邮票个多少张?各付出多少元?8.在一个停车场内,汽车、摩托车共停了48辆,其中每辆汽车有4个轮子,每辆摩托车有3个轮子,这些车共有172个轮子,停车场内有汽车、摩托车各多少辆?9.体育老师买了运动服上衣和裤子共21件,共用了439元,其中上衣每件24元,裤子每件19元,问老师买上衣和裤子各多少件?10、实验小学举行数学竞赛,每做对一题得 9 分,做错一题倒扣 3 分,实验小学举行数学竞赛,道题,小旺做错了几道题?共有 12 道题,小旺得了 84 分,小旺做错了几道题?11. 小丽买回 0.8 元一本和 0.4 元一本的练习本共 50 本,付出人民币 32 元。
0.8 元一本的练习本有多少本?元一本的练习本有多少本?12. 有 46 个同学们做碰碰车,共乘 12 辆车。
其中大车每个做 5 人,个同学们做碰碰车,辆车。
大车、小车各几辆?小车每个做 3 人。
大车、小车各几辆?13. 鸡兔同在一个笼子里,小辉数了一下,共有 35 个头,90 只脚,鸡兔同在一个笼子里,小辉数了一下,个头,只脚,问:鸡、兔各多少只?兔各多少只?14.王大妈养了鸡和兔,王大妈养的鸡和 5 王大妈养了鸡和兔,数头有 16 个,数脚有 44 只,王大妈养的鸡和兔各有多少只?兔各有多少只?15.在一个停车场上, 8 在一个停车场上,停了汽车和摩托车一共 32 辆。
鸡兔同笼应用题及答案
小学应用题(鸡兔同笼问题)【含义】这是古典的算术问题。
已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。
已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
?【数量关系】第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)?【解题思路和方法】解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。
如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。
这类问题也叫置换问题。
通过先假设,再置换,使问题得到解决。
长毛兔子芦花鸡,鸡兔圈在一笼里。
数数头有三十五,脚数共有九十四。
请你仔细算一算,多少兔子多少鸡假设35只全为兔,则鸡数=(4×35-94)÷(4-2)=23(只)兔数=35-23=12(只)也可以先假设35只全为鸡,则兔数=(94-2×35)÷(4-2)=12(只)鸡数=35-12=23(只)?2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩此题实际上是改头换面的“鸡兔同笼”问题。
“每亩菠菜施肥(1÷2)千克”与“每只鸡有两个脚”相对应,“每亩白菜施肥(3÷5)千克”与“每只兔有4只脚”相对应,“16亩”与“鸡兔总数”相对应,“9千克”与“鸡兔总脚数”相对应。
假设16亩全都是菠菜,则有白菜亩数=(9-1÷2×16)÷(3÷5-1÷2)=10(亩)?李老师用69元给学校买作业本和日记本共45本,作业本每本?3 .20元,日记本每本元。
小学数学鸡兔同笼问题解题思路和方法公式例题附答案
鸡兔同笼问题【含义】这是古典的算术问题。
已知笼子里鸡、兔共有多少只和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。
已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。
【数量关系】第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全都是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全都是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)【解题思路和方法】解答此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。
如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。
这类问题也叫置换问题。
通过先假设,再置换,使问题得到解决。
例1:长毛兔子芦花鸡,鸡兔圈在一笼里。
数数头有三十五,脚数共有九十四。
请你仔细算一算,多少兔子多少鸡?解:假设35只全为兔,则鸡数=(4×35-94)÷(4-2)=23(只)兔数=35-23=12(只)也可以先假设35只全为鸡,则兔数=(94-2×35)÷(4-2)=12(只)鸡数=35-12=23(只)答:有鸡23只,有兔12只。
例2:2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?解:此题实际上是改头换面的“鸡兔同笼”问题。
“每亩菠菜施肥(1÷2)千克”与“每只鸡有两个脚”相对应,“每亩白菜施肥(3÷5)千克”与“每只兔有4只脚”相对应,“16亩”与“鸡兔总数”相对应,“9千克”与“鸡兔总脚数”相对应。
假设16亩全都是菠菜,则有白菜亩数=(9-1÷2×16)÷(3÷5-1÷2)=10(亩)答:白菜地有10亩。
四年级数学专题《鸡兔同笼》题目及答案(2)
鸡兔同笼(2)姓名:___________用假设法。
解题思路是:先假设它们全是鸡,于是根据鸡、兔的总数,就可以先算出在假设条件下共有几只脚,再与原来的脚数相比较,看看差多少,从差中求出兔的数量。
也可以先假设全是兔,由差求鸡的数量,再求另一个数量是多少。
用假设法解答鸡兔同笼问题的基本数量关系为:兔数=(总脚数一每只鸡脚数×鸡兔总数)÷鸡兔脚数差鸡数=(每只兔脚数×鸡兔总数一总脚数)÷鸡兔脚数差1、育才小学举行数学竞赛,试题共12道,每做对一题得10分,每做错一题倒扣5分。
张平最终得了90分,他做对了多少道?做错了多少道?做错的题数:(10×12-90)÷(10+5)=2(道)做对的题数:12-2=10(道)2、四年级举行数学竞赛,共有10道题。
每做对一题得7分,做错一题倒扣3分。
李华同学共得50分。
他做对了几道题?10-(7×10-50)÷(7+3)=8(道)3、某校举行数学竞赛,共有20道选择题,评分标准是每做对1题得5分,做错1题倒扣2分,没做得0分。
小红得了73分,则小红有几题没做?小红做错和没做而扣除的分数为20×5-73=27(分),做错1题扣5+2=7(分),不做1题扣5+0=5(分),因为27=1×7+4×5,所以,小红做错了1题,有4 题没做。
4、红星小学举行安全知识竞赛,一共20道题,答对一题得5分,答错一题扣3分,没有回答得0分。
小明做完了全部题目,得到76分,他答对了多少道题?做错的题数:(20×5-76)÷(5+3)=3(道)做对的题数:20-3=17(道)5、有若干只鸡和兔被关在同一个笼子里,它们共有100个头,320只脚,那么请问鸡、兔各有多少只?假设100只都是鸡,则有脚100×2=200(只)。
比实际的脚少320-200=120(只)。
小学数学鸡兔同笼应用题练习题
小学数学鸡兔同笼应用题练习题问题一:在一个笼子里,鸡和兔子共有35只,脚共有96只。
请问鸡和兔子各有多少只?解答:设鸡的数量为x,兔子的数量为y。
根据题目可得以下两个方程:1. x + y = 35 (1)2. 2x + 4y = 96 (2)解方程组(1)和(2)可得:x = 23y = 12所以,鸡有23只,兔子有12只。
问题二:在一个笼子里,鸡和兔子共有64只,脚共有188只。
请问鸡和兔子各有多少只?解答:设鸡的数量为x,兔子的数量为y。
根据题目可得以下两个方程:1. x + y = 64 (3)2. 2x + 4y = 188 (4)解方程组(3)和(4)可得:x = 36y = 28所以,鸡有36只,兔子有28只。
问题三:在一个笼子里,鸡和兔子共有46只,脚共有116只。
请问鸡和兔子各有多少只?解答:设鸡的数量为x,兔子的数量为y。
根据题目可得以下两个方程:1. x + y = 46 (5)2. 2x + 4y = 116 (6)解方程组(5)和(6)可得:x = 32y = 14所以,鸡有32只,兔子有14只。
通过以上三个例子,我们可以发现解鸡兔同笼的应用题时,可以采用方程组的方法进行求解。
首先根据题意列出方程式,然后解方程组,得出鸡和兔子的数量。
注意事项:1. 注意理解题目中给出的条件,其中包含了鸡和兔子的总数量和脚的总数量。
2. 根据题目条件列出方程组,并通过求解方程组得出鸡和兔子的具体数量。
3. 在解题过程中,需要对方程组的解进行验证,确保解满足题目所给的条件。
4. 在解题时可以利用计算器进行计算,确保结果的准确性和高效性。
通过解题练习,我们可以增加对鸡兔同笼应用题的理解和掌握,提高数学推理和解决问题的能力。
希望以上练习对你有帮助!。
小学四年级数学下册鸡兔同笼问题详解
小学四年级数学下册鸡兔同笼问题详解解法一:假设40个头都是鸡,那么应有足2×40=80(只),比实际少100-80=20(只)。
这是把兔看作鸡的缘故。
而把一只兔看成一只鸡,足数就会少4-2=2(只)。
因此兔有20÷2=10(只),鸡有40-10=30(只)。
解法二:假设40个头都是兔,那么应有足4×40=160(只),比实际多160-100=60(只)。
这是把鸡看作兔的缘故。
而把一只鸡看成一只兔,足数就会多4-2=2(只)。
因此鸡有60÷2=30(只),兔有40-30=10(只)。
解法三:假设100只足都是鸡足,那么应有头100÷2=50(个),比实际多50-40=10(个)。
把兔足看作鸡足,兔的只数(头数)就会扩大4÷2倍,即兔的只数增加(4÷2-1)倍。
因此兔有10÷(4÷2-1)=10(只),鸡有40-10=30(只)。
解法四:假设100只足都是兔足,那么应有头100÷4=25(个),比实际少40-25=15(个)。
把鸡足看作兔足,鸡的只数(头数)就会缩小4÷2倍,即鸡的只数减少1-1÷(2÷4)=1/2。
因此鸡有15÷1/2=30(只),兔有40-30=10(只)。
0 2 任意假设解法五:假设40个头中,鸡有12个(0至40中的任意整数),则兔有40-12=28(个),那么它们一共有足2×12+4×28=136(只),比实际多136-100=36(只)。
这说明有一部分鸡看作兔了,而把一只鸡看成一只兔,足数就会多4-2=2(只),因此把鸡看成兔的只数是36÷2=18(只)。
那么鸡实际有12+18=30(只),兔实际有28-18=10(只)。
解法六:假设100只足中,有鸡足80只(0至100中的任意整数,最好是2的倍数),则兔足有100-80=20(只),那么它们一共有头80÷2+20÷4=45(个),比实际多45-40=5(个)。
第九讲较复杂的鸡兔同笼问题(二)
第九讲 较复杂的鸡兔同笼问题(二)【经典回顾】1、实验小学四年级举行数学竞赛,一共出了10道题,答对一题得10分,答错一题倒扣5分。
张华把10道题全部做完,结果得了70分。
他答对了几道题?【解析】10-(10×10-70)÷(10+5)=8(道)2、鸡和兔共100只,鸡的脚数比兔的脚数少28.鸡有 只,兔有 只.【解析】100×4=400,(400-28)÷(4+2)=62,100-62=38【答】鸡有62只,兔有38只.3、鸡、兔共有100只脚,若鸡数和兔数互换,则共有脚86只,问鸡、兔各有多少只?【解析】(100+86)÷6 =31(只)31×4 =124(只)124-100 = 24(只)24÷(4-2)=12(只)(100-12×2)÷4 = 19(只)多个对象的“鸡兔同笼”【趣题引路】有16位教授,有人带1个研究生,有人带2个研究生,也有人带3个研究生,他们共带了27个研究生,其中带1个研究生的教授人数与带2个和3个研究生的教授总数一样多,问带2个研究生的教授有几人?【解析】16÷2=8(人)27-8=19(个)(3×8-19)÷(3-2)=5(人)【例 1】 有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,两对翅膀;蝉6条腿,一对翅膀),求蜻蜓有多少只?【解析】 这是在鸡兔同笼基础上发展变化的问题.观察数字特点,蜻蜓、蝉都是6条腿,只有蜘蛛8条腿.因此,可先从腿数入手,求出蜘蛛的只数.我们假设三种动物都是6条腿,则总腿数为618108⨯=(条),所差11810810-=(条),必然是由于少算了蜘蛛的腿数而造成的.所以,应有(118108)(86)5-÷-=(只)蜘蛛.这样剩下的18513-=(只)便是蜻蜓和蝉的只数.再从翅膀数入手,假设13只都是蝉,则总翅膀数11313⨯=(对),比实际数少 20137-=(对),这是由于蜻蜓有两对翅膀,而我们只按一对翅膀计算所差,这样蜻蜓只数可求7(21)7÷-=(只).【例 2】 (希望杯培训题)在一次考试中有选择题、填空题和解答题三类题共22道.选择题和填空题每题4分,解答题每题10分.这次考试总分是100分,其中选择题和解答题的分值比填空题多4分,这次考试有多少道选择题?多少道填空题?多少道解答题?【解析】 选择题和填空题的分值一样,可以归为一类。
(小学奥数)鸡兔同笼问题(二)
1. 熟悉雞兔同籠的“砍足法”和“假設法”.2. 利用雞兔同籠的方法解決一些實際問題,需要把多個對象進行恰當組合以轉化成兩個對象.一、雞兔同籠 這個問題,是我國古代著名趣題之一.大約在1500年前,《孫子算經》中就記載了這個有趣的問題.書中是這樣敘述的:“今有雞兔同籠,上有三十五頭,下有九十四足,問雞兔各幾何?這四句話的意思是:有若干只雞兔同在一個籠子裏,從上面數,有35個頭;從下麵數,有94只腳.求籠中各有幾只雞和兔?你會解答這個問題嗎?你想知道《孫子算經》中是如何解答這個問題的嗎?二、解雞兔同籠的基本步驟解答思路是這樣的:假如砍去每只雞、每只兔一半的腳,則每只雞就變成了“獨腳雞”,每只兔就變成了“雙腳兔”.這樣,雞和兔的腳的總數就由94只變成了47只;如果籠子裏有一只兔子,則腳的總數就比頭的總數多1.因此,腳的總只數47與總頭數35的差,就是兔子的只數,即473512-=(只).顯然,雞的只數就是351223-=(只)了.這一思路新穎而奇特,其“砍足法”也令古今中外數學家讚歎不已.除此之外,“雞兔同籠”問題的經典思路“假設法”.假設法順口溜:雞兔同籠很奧妙,用假設法能做到,假設裏面全是雞,算出共有幾只腳,和腳總數做比較,做差除二兔找到.解雞兔同籠問題的基本關係式是:如果假設全是兔,那麼則有:數=(每只兔子腳數×雞兔總數-實際腳數)÷(每只兔子腳數-每只雞的腳數)兔數=雞兔總數-雞數如果假設全是雞,那麼就有:兔數=(實際腳數-每只雞腳數×雞兔總數)÷(每只兔子腳數-每只雞的腳數)雞數=雞兔總數-兔數知識精講教學目標6-1-9.雞兔同籠問題(二)當頭數一樣時,腳的關係:兔子是雞的2倍當腳數一樣時,頭的關係:雞是兔子的2倍在學習的過程中,注重假設法的運用,滲透假設法的重要性,在以後的專題中,如工程,行程,方程等專題中也都會接觸到假設法例題精講兩個量的“雞兔同籠”問題——變例【例 1】某次數學競賽,共有20道題,每道題做對得5分,沒做或做錯都要扣2分,小聰得了79分,他做對了多少道題?【考點】雞兔同籠問題【難度】3星【題型】解答【關鍵字】假設思想方法【解析】做錯(52079 ) (52)3-=(道).⨯-÷+=(道),因此,做對的20317【答案】17道【巩固】數學競賽共有20道題,規定做對一道得5分,做錯或不做倒扣3分,趙天在這次數學競賽中得了60分,他做對了幾道題?【考點】雞兔同籠問題【難度】3星【題型】解答【關鍵字】假設思想方法【解析】假設他將所有題全部做對了,則可得100分,實際上只得了60分,比假設少了40分,做錯一題要少得8分,少得的40分中,有多少個8分,就是他做錯的題的數量,則知他做對了15道.【答案】15道【巩固】東湖路小學三年級舉行數學競賽,共20道試題.做對一題得5分,沒有做一題或做錯一題都要倒扣2分.劉鋼得了86分,問他做對了幾道題?【考點】雞兔同籠問題【難度】3星【題型】解答【關鍵字】假設思想方法【解析】這道題也類似於“雞兔同籠”問題.假設劉鋼20道題全對,可得分520100⨯=(分),但他實際上只得86分,少了1008614-=(分),因此他沒做或做錯了一些題.由於做對一道題得5分,沒做或做錯一道題倒扣2分,所以沒做或做錯一道題比做對一道題要少527+=(分).14分中含有多少個7,就是劉鋼沒做或做錯多少道題.所以,劉鋼沒做或做錯題為1472÷=(道),做對題為20218-=(道).【答案】18道【巩固】某次數學競賽,試題共有10道,每做對一題得6分,每做錯一題倒扣2分。
小学数学“鸡兔同笼”问题解答
小学数学鸡兔同笼问题解答①已知总头数和总脚数,求鸡、兔各多少:方法一:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
方法二:(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如:“有鸡、兔共40只,它们共有脚112只,鸡、兔各是多少只?”方法一(112-2×40)÷(4-2)=16(只)……………………………………………………兔;40-16=24(只)……………………………………………………………………………鸡。
方法二(4×36-100)÷(4-2)=22(只)……………………………………………………鸡;36-22=14(只)……………………………………………………………………………兔。
(答题略)②已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式方法一:(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数方法二:(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
(例题略)③已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
方法一:(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
方法二:(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。
(例题略)。
小学生奥数鸡兔同笼的题目及答案新
小学生奥数鸡兔同笼的题目及答案1.学校生奥数鸡兔同笼的题目及答案篇一1、(其次鸡兔同笼问题)鸡兔共有100只,鸡的脚比兔的脚多80只,问鸡与兔各多少只?解:假设100只全都是鸡,则有兔数=(2×100-80)÷(4+2)=20(只)鸡数=100-20=80(只)答:有鸡80只,有兔20只。
2、有100个馍100个和尚吃,大和尚一人吃3个馍,小和尚3人吃1个馍,问大小和尚各多少人?解:假设全为大和尚,则共吃馍(3×100)个,比实际多吃(3×100-100)个,这是由于把小和尚也算成了大和尚,因此我们在保证和尚总数100不变的状况下,以“小”换“大”,一个小和尚换掉一个大和尚可削减馍(3-1/3)个。
因此,共有小和尚(3×100-100)÷(3-1/3)=75(人)共有大和尚100-75=25(人)答:共有大和尚25人,有小和尚75人。
2.学校生奥数鸡兔同笼的题目及答案篇二1、长毛兔子芦花鸡,鸡兔圈在一笼里。
数数头有三十五,脚数共有九十四。
请你认真算一算,多少兔子多少鸡?解:假设35只全为兔,则鸡数=(4×35-94)÷(4-2)=23(只)兔数=35-23=12(只)也可以先假设35只全为鸡,则兔数=(94-2×35)÷(4-2)=12(只)鸡数=35-12=23(只)答:有鸡23只,有兔12只。
2、2亩菠菜要施肥1千克,5亩白菜要施肥3千克,两种菜共16亩,施肥9千克,求白菜有多少亩?解:此题实际上是改头换面的“鸡兔同笼”问题。
“每亩菠菜施肥(1÷2)千克”与“每只鸡有两个脚”相对应,“每亩白菜施肥(3÷5)千克”与“每只兔有4只脚”相对应,“16亩”与“鸡兔总数”相对应,“9千克”与“鸡兔总脚数”相对应。
假设16亩全都是菠菜,则有白菜亩数=(9-1÷2×16)÷(3÷5-1÷2)=10(亩)答:白菜地有10亩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鸡兔同笼问题五种基本公式和例题讲解【鸡兔问题公式】(1)已知总头数和总脚数,求鸡、兔各多少:(总脚数-每只鸡的脚数×总头数)÷(每只兔的脚数-每只鸡的脚数)=兔数;总头数-兔数=鸡数。
或者是(每只兔脚数×总头数-总脚数)÷(每只兔脚数-每只鸡脚数)=鸡数;总头数-鸡数=兔数。
例如,“有鸡、兔共36只,它们共有脚100只,鸡、兔各是多少只?”解一(100-2×36)÷(4-2)=14(只)………兔;36-14=22(只)……………………………鸡。
解二(4×36-100)÷(4-2)=22(只)………鸡;36-22=14(只)…………………………兔。
(答略)(2)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时,可用公式(每只鸡脚数×总头数-脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数或(每只兔脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只免的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(3)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时,可用公式。
(每只鸡的脚数×总头数+鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=兔数;总头数-兔数=鸡数。
或(每只兔的脚数×总头数-鸡兔脚数之差)÷(每只鸡的脚数+每只兔的脚数)=鸡数;总头数-鸡数=兔数。
(例略)(4)得失问题(鸡兔问题的推广题)的解法,可以用下面的公式:(1只合格品得分数×产品总数-实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
或者是总产品数-(每只不合格品扣分数×总产品数+实得总分数)÷(每只合格品得分数+每只不合格品扣分数)=不合格品数。
例如,“灯泡厂生产灯泡的工人,按得分的多少给工资。
每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。
某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”解一(4×1000-3525)÷(4+15)=475÷19=25(个)解二1000-(15×1000+3525)÷(4+15)=1000-18525÷19=1000-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费××元,破损者不仅不给运费,还需要赔成本××元……。
它的解法显然可套用上述公式。
)(5)鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),可用下面的公式:〔(两次总脚数之和)÷(每只鸡兔脚数和)+(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=鸡数;〔(两次总脚数之和)÷(每只鸡兔脚数之和)-(两次总脚数之差)÷(每只鸡兔脚数之差)〕÷2=兔数。
例如,“有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。
鸡兔各是多少只?”解〔(52+44)÷(4+2)+(52-44)÷(4-2)〕÷2=20÷2=10(只)……………………………鸡〔(52+44)÷(4+2)-(52-44)÷(4-2)〕÷2=12÷2=6(只)…………………………兔(答略)鸡兔同笼问题练习1、鸡兔同笼,共有头100个,足316只,求鸡兔各有多少只?2、小明花4元钱买贺年卡和明信片,共14张,贺年卡每张3角5分,明信片每张2角5分。
问:买了几张贺年卡,几张明信片?3、鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只。
鸡兔各几只?4、100个馒头100个和尚吃,大和尚每人吃3个,小和尚每3人吃一个。
大、小和尚各有多少人?5、30枚硬币,由2分和5分组成,共值9角9分。
两种硬币各多少枚?6、有2角、5角和1元的人民币20张,共计12元,三种票子各多少张?7、班主任老师带五年级二班50名学生去栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽两棵,总共栽树120棵。
有几名男生?几名女生?8、100名师生绿化校园,老师每人栽3棵树,学生每两人栽1棵树,总共栽树100棵,求老师和学生各栽树多少棵?9、80本语文书和100本数学书总价相等。
已知每本语文书比每本数学书贵5分,语文书和数学书的单价各是多少?10、搬运100只玻璃瓶,规定搬一只得搬运费3分,但打破一只要赔5分。
运完后共得运费2.60元,搬运中打破了几只玻璃瓶?11、一个运输队包运10000只瓶子,每100只可得运费1元5角,如损坏一只不但不给运费,还要赔偿2角。
这个队共得运费146元5角6分,损坏了几只瓶子?12、某小学举行一次数学竞赛,共15道题,每做对一题得8分,每做错一题倒扣4分,小明共得72分,他做对了多少道题?13、清风小学三名同学去参加数学竞赛,共10道题,答对一题得10分,答错一题扣3分。
这3名同学都回答了所有的题。
成绩分别是87分、74分和9分。
他们一共答对了多少题?14、鸡、兔同笼,兔比鸡少15只,脚数共有282只,问:鸡、兔各几只?15、鸡、兔同笼,兔比鸡多15只,脚数共有228只,问:鸡、兔各几只?16、一只螃蟹有10只脚;一只蜻蜓有6只脚,两对翅膀;一只螳螂有6只脚,一对翅膀。
现有螃蟹、晴蜓、螳螂共37只,合计有脚250只,翅膀52对。
求螃蟹、晴蜓、螳螂各有多少只?17、由甲、乙两个工程队修一段长2136米的公路,先由甲队以每天30米的速度修了若干天,然后再由乙队接着修,每天修42米,两队共用60天修完这段路。
问:两队各修了多少天?18、买单价为2元、3元、5元的图片65张,共花去240元,已知单价5元的图片张数是2元张数的2倍,三种图片各买了多少张?19、公猴、母猴和小猴共38只,每天共摘桃子266个,已知一只公猴每天摘桃10个,一只母猴每天摘桃8个,一只小猴每天摘桃5个,又知公猴比母猴少4只,问:小猴有几只?20、传说九头鸟有九头一尾,九尾鸟有九尾一头.现有头580个,有尾900条,问两种鸟各有多少只?答案:1、鸡兔同笼,共有头100个,足316只,求鸡兔各有多少只?兔:316÷2-100=58 鸡:100-58=422、小明花4元钱买贺年卡和明信片,共14张,贺年卡每张3角5分,明信片每张2角5分。
问:买了几张贺年卡,几张明信片?3角5分:(4-0.25×14)÷(0.35-0.25)=5 2角5分:14-5=93、鸡、兔共有脚100只,若将鸡换成兔,兔换成鸡,则共有脚92只。
鸡兔各几只?(100-92÷2)=4 鸡:(100-4×4)÷(2+4)=14 兔:14+4=184、100个馒头100个和尚吃,大和尚每人吃3个,小和尚每3人吃一个。
大、小和尚各有多少人?大和尚:100÷(3+1)=25 小和尚:25×3=755、30枚硬币,由2分和5分组成,共值9角9分。
两种硬币各多少枚?5分:(99-2×30)÷(5-2)=13 2分:30-13=176、有2角、5角和1元的人民币20张,共计12元,三种票子各多少张?2角的是5的倍数。
2角5张。
20-5=15张12-0.2×5=11元5角:(1×15-11)÷(1-0.5)=8 1元:15-8=77、班主任老师带五年级二班50名学生去栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽两棵,总共栽树120棵。
有几名男生?几名女生?120-5=115 女生:(50×3-115)÷(3-2)=35 男生:50-35=158、100名师生绿化校园,老师每人栽3棵树,学生每两人栽1棵树,总共栽树100棵,求老师和学生各栽树多少棵?(2×100-100)÷(3-1/2)=80名学生:80÷2=40棵老师: 100-40=60棵9、80本语文书和100本数学书总价相等。
已知每本语文书比每本数学书贵5分,语文书和数学书的单价各是多少?数学书:0.05×80÷(100-80)=0.2 语文书:0.2+0.05=0.25反比例方法: 语文书和数学书的单价比是: 100:80=5:4 5÷(5-4)×5=25分25-5=20分10、搬运100只玻璃瓶,规定搬一只得搬运费3分,但打破一只要赔5分。
运完后共得运费2.60元,搬运中打破了几只玻璃瓶?(3×100-260)÷(3+5)=511、一个运输队包运10000只瓶子,每100只可得运费1元5角,如损坏一只不但不给运费,还要赔偿2角。
这个队共得运费146元5角6分,损坏了几只瓶子?1.5÷100=0.015 (10000×0.015-146.56)÷(0.015+0.2)=1612、某小学举行一次数学竞赛,共15道题,每做对一题得8分,每做错一题倒扣4分,小明共得72分,他做对了多少道题?15-(8×15-72)÷(8+4)=1113、清风小学三名同学去参加数学竞赛,共10道题,答对一题得10分,答错一题扣3分。
这3名同学都回答了所有的题。
成绩分别是87分、74分和9分。
他们一共答对了多少题?10×3-[10×10×3-(87+74+9)]÷(10+3)=2014、鸡、兔同笼,兔比鸡少15只,脚数共有282只,问:鸡、兔各几只?兔:(282-15×2)÷(2+4)=42 鸡:42+15=5715、鸡、兔同笼,兔比鸡多15只,脚数共有228只,问:鸡、兔各几只?鸡:(228-15×4)÷(2+4)=28 兔:28+15=4316、一只螃蟹有10只脚;一只蜻蜓有6只脚,两对翅膀;一只螳螂有6只脚,一对翅膀。
现有螃蟹、晴蜓、螳螂共37只,合计有脚250只,翅膀52对。
求螃蟹、晴蜓、螳螂各有多少只?螃蟹:(250-37×6)÷(10-6)=7 37-7=30蜻蜓:(52-30×1)÷(2-1)=22 螳螂:30-22=817、由甲、乙两个工程队修一段长2136米的公路,先由甲队以每天30米的速度修了若干天,然后再由乙队接着修,每天修42米,两队共用60天修完这段路。