Mathematica数学实验——基本代数式运算

合集下载

Mathematica中初等代数与线性代数使用

Mathematica中初等代数与线性代数使用


U[[i,j]]

矩阵U的第i行、第j列元素
U[[i]]、U[[i,All]


U的第i行n个元素
U的第j列元素 由行{i1,i2,…ip}和列{j1,j2,…jq}组成的子矩阵
U[[All,j]]


U[[{i1,i2,…ip]},{j1,j2,…jq}]]

U[[Range[{i0,i1}],[Range[{j0,j1}]]

A的全部(准确解、数值解)的特征向量

Eigensystem[A] Eigensystem[N[A]]

A的所有(准确解、数值解)的特征值和特征向量
06年建模B题
z = Import["f:\\z1.txt", "Table"]; s0 = s1 = s2 = s3 = s4 = 0; n0 = n1 = n2 = n3 = n4 = 0; For[i = 1, i <= Length[z], i++, If[z[[i, 2]] == 0 || z[[i, 2]] == 1, s0 = s0 + z[[i, 3]]; n0++]; If[z[[i, 2]] >= 2 && z[[i, 2]] <= 6, s1 = s1 + z[[i, 3]]; n1++]; If[z[[i, 2]] >= 7 && z[[i, 2]] <= 13, s2 = s2 + z[[i, 3]]; n2++]; If[z[[i, 2]] >= 14 && z[[i, 2]] <= 32, s3 = s3 + z[[i, 3]]; n3++]; If[z[[i, 2]] >= 33 && z[[i, 2]] <= 45, s4 = s4 + z[[i, 3]]; n4++]; ] t = {{0, s0*1./n0}, {4, s1*1./n1}, {8, s2/n2}, {24, s3/n3}, {40, s4/n4}}

Mathematica软件的使用

Mathematica软件的使用


例:Table[Prime[i],{i,1,10,1}] 得:{2,3,5,7,11,13,17,19,23,29} 当步长为1时,可省略步长 当步长和初值为1 时,可省略初值和步长 特别:{n}表示重复n次

循环描述: {循环变量,初值,终值,步长}


格式2:Range[初值,终值,步长] 功能:生成值为{初值,初值+步长,…,终值}的数值表
操作
组合 表元素
增加 表元素
Insert[t,fmt,n] Append [t,fmt] AppendTo [t,fmt]
提取 表元素
Join[t1,t2,…]、Union[t1,t2,…] Intersection[t1,t2,…] Complement[un,t1,t2,…] Sort[t]、Reverse[t] Flatten[t]、Partition[t,n]
数值表达式运算的结果


精确数和浮点数(带小数点的数,近似数) 依据表达式中数的表现形式确定结果的形式
N[表达式] 和 N[表达式,n]
以n位精度的实数形式表示表达式

数的输出形式

表达式//N
以实数形式输出表达式的值 (有效位数取6位)
ScientificForm[表达式]
科学记数法
(2)变量

(4) 自定义函数
格式1: f[x_ ]=表达式
立即定义
格式2: f[x_ ]:=表达式
延时定义
函数定义中的自变量,读作空白
注: 格式1与格式2的区别在于何时求表达式的值。 体会下列两例:


g[x_]=Random[]和h[x_]:=Random[]

第3章 Mathematica的基本运算

第3章 Mathematica的基本运算

第3章 Mathematica的基本运算3.1 多项式的表示形式可认为多项式是表达式的一种特殊的形式,所以多项式的运算与表达式的运算基本一样,表达式中的各种输出形式也可用于多项式的输出。

Mathematica提供一组按不同形式表示代数式的函数。

1.下面是一些例子(1).对x^8-1 进行分解Factor[x^8-1](2).展开多项式(1+x)^5Expand[(1+x)^5](3).展开多项式(1+x+3y)^4Expand[(1+x+3y)^4](4).化简(2+x)^4(1+x)^4(3+x)^3Simplify[(2+x)^4(1+x)^4(3+x)^3]2.多项式的代数运算多项式的运算有加、减、乘、除运算:+,-,*,/ 下面通过例子说明。

(1).多项式的加运算a2+3a+2与a+1相加(后面例子中也使用这两个多项式运算p1=a^2+3 a+2;p2=a+1;p1+p2(2).多项式相减p1-p2(3).多项式相乘p1*p2(4).多项式相除p1/p2(5).另外使用Cancel函数可以约去公因式Cancel[p1/p2]两个多项式相除,总能写成一个多项式和一个有理式相加Mathematic中提供两个函数PolynomialQuotient和PolynomialRemainder分别返商式和余式。

例如:PolynomialQuotient[x^2,1+2 x,x]PolynomialRemainder[x^2,1+2 x,x]3.2 方程及其根的表示因为Mathematica把方程看作逻辑语句。

在数学方程式表示为形如“x2-2x+1=0”的形式。

在Mathematica中“=”用作赋值语句,这样在Mathematica中用“==”表示逻辑等号,则方程应表示为“x^2-2x+1==0” 。

方程的解同原方程一样被看作是逻辑语句。

例如用Roots求方程x^2-3x+2的根显示为Roots[x^2-3 x+2==0,x]这种表示形式说明x取1或2均可。

mathematica代入数值进行运算

mathematica代入数值进行运算

mathematica代入数值进行运算以mathematica代入数值进行运算Mathematica是一种非常强大的数学软件,它可以进行各种数值计算和符号计算。

在这篇文章中,我们将介绍如何使用Mathematica 进行数值代入和运算。

我们需要定义一些变量和函数。

假设我们想计算一个函数f(x)在给定数值x处的值。

我们可以使用Mathematica的函数定义语法来定义这个函数,如下所示:f[x_] := x^2 + 3这里,我们定义了一个函数f(x),其表达式是x的平方加上3。

接下来,我们可以使用Mathematica的代入符号“:=”来为变量x赋值。

例如,我们可以将x的值赋为2,然后计算f(x)的值,如下所示:x = 2f[x]运行以上代码,Mathematica会输出结果5,这是因为当x等于2时,f(x)的值为2的平方加上3,即5。

除了代入单个数值,我们还可以使用Mathematica的List数据结构进行向量化计算。

例如,我们可以定义一个包含多个数值的向量x,然后计算f(x)的值。

具体代码如下:x = {1, 2, 3}f[x]运行以上代码,Mathematica会输出一个向量{4, 7, 12},这是因为当x分别等于1、2和3时,f(x)的值分别为4、7和12。

在进行数值代入和运算时,我们还可以使用Mathematica的各种数学函数和操作符。

例如,我们可以使用Mathematica的内置函数Sin计算正弦函数在给定数值处的值。

具体代码如下:x = Pi/2Sin[x]运行以上代码,Mathematica会输出结果1,这是因为正弦函数在π/2处的值等于1。

除了单个数值的代入和运算,我们还可以使用Mathematica的内置函数Table进行多个数值的代入和运算。

例如,我们可以使用Table函数计算函数f(x)在一系列数值处的值。

具体代码如下:x = Table[i, {i, 1, 10}]f[x]运行以上代码,Mathematica会输出一个向量{4, 7, 12, 19, 28, 39,52, 67, 84, 103},这是因为当x分别等于1到10时,f(x)的值分别为4、7、12、19、28、39、52、67、84和103。

Mathematica用法II

Mathematica用法II

b^^xxxxx BaseForm[x,b]
输入一个 b 进制数 (2<=b<=36) 把十进制数x转化为b进制数显示出来
2、变量与变量赋值 在Mathematica中,给变量赋值常用“=”表示,
我们既可以给变量赋数字值,也可以给变量赋符号值。 例如让x赋值5,而y赋值a。
则在以后的运算中,当需要调用x或y的表达式时, Mathematica将用所赋的值替代它们,例如:
In[1]:= f=2*x+y
(* 符号表达式 *)
In[2]:= g[x_,y_]:=2*x+y (* 函数 *)
In[3]:= f[2,3]
(* 结果是什么? *)
In[4]:= g[2,3]
(* 这个结果又是什么? *)
out[3]= (2 x+y)[2,3]
out[4]= 7
?f 常用来查看f的含义,例如: Clear[f,g,h,x,y]; ?f
求表达式的共轭量
Abs[expr]
求表达式的绝对值
Arg[expr]
求表达式的幅角
下面看一些复数运算 函数的例子。求复数5+6i 的实部,63+75i的绝对值 和7-45i的共轭量。
使用Conjugate做符号 运算时会出现问题,比如 求x+iy的共轭量就无能为 力,这是因为我们并不知 道x和y是不是复变量。
说明 展开多项式poly 对多项式poly作因式分解 提取数字公因子 多项式poly中x的最高次数
Coefficient[poly,expr] 多项式poly中项expr的系数
Poly[[n]]或Part[poly,n] 多项式poly的第n项
请看下面的例子。

Get清风50Mathematica线性代数运算命令与例题

Get清风50Mathematica线性代数运算命令与例题

50Mathematica线性代数运算命令与例题第五章 线性代数运算命令与例题线性代数中常用的工具是矩阵(向量)和行列式。

用这些工具可以表示工程技术,经济工作中一些需要用假设干个数量从整体上反映其数量关系的问题。

用这些工具可以简明凝练而准确地把所要研究的问题描述出来,以提高研究的效率。

在线性代数课程中我们看到了用这些工具研究齐次和非齐次线性方程组解的理论和解的结构,矩阵的对角化,二次型化标准形等问题的有力,便捷.数学上矩阵是这样定义的:由n m 个数排成m 行n 列的数表mnm m n n a a a a a a a a a 212222111211称为m 行n 列矩阵,特别,当m=1时就是线性代数中的向量。

记作:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=mn m m n n a a a a a a a a a A 212222111211两个n m ⨯矩阵称为同型矩阵。

线性代数中的运算对象是向量和矩阵,因此首先介绍向量和矩阵的输入。

输入一个矩阵命令形式1:Table[f[i,j],{i ,m},{j ,n}] 功能: 输入n m ⨯矩阵,其中f 是关于i 和j 的函数,给出[i , j]项的值.命令形式2:直接用表的形式来输入功能:用于矩阵元素表达式规律不易找到的矩阵的输入。

注意:1.Mathematica 是采用一个二重表的形式来表示矩阵的,即用{{…},{…},…,{…}} 其中表中的每个表元素都是等长的一维表,第一个表元素是矩阵的第一行,第二个表元素是矩阵的第二行,一般,第n 个表元素是矩阵的第n行。

要看通常的矩阵形式可以用命令:MatrixForm[%]2. 对应上述命令形式,输入一个向量的命令为 Table[f[j],{j,n}]或直接输入一个一维表{a1,a2,…,an},这里a1,a2,…,an 是数或字母。

例题例 1.输入矩阵A=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---4138163912145856120312、向量b={1,4,7,-3}。

用Mathematica做线性代数Ⅱ线性代数高级运算

用Mathematica做线性代数Ⅱ线性代数高级运算

万方数据
-7 - 1
科 技 论 坛
中国 科技信息20 年第2 期 05 3
EH O O 丫 WO MA IN . 5 e 0 CI SI C AND TC N L G ! R TO Dc20 H A E E N CN
E P发展的昨天、今天和明天 R
刘蕾 东北财经大学
1 EP 展的昨 天 、R发
了1 一

刁 5 12 0 0
, 一18 5 一6 ,. 一9 0 0 1 {9 。 {3 )?
20
注2利用这里的算法不难设计利用正交变 : 换 化二次性为标准型的算法。
四 、总 结

we
、 、

作为一个高校的教育工作者,笔者常常在思 考,在科技高速发展,经济生活极为活跃,高 等教育发展及其迅猛的时代,我们应该如何施行 ( 下转 第 81页)
+ 2 x= 0 + 2 x= 0
=0
2 、求向量组的秩及其极大无关组
例如, 量组a (,,,, ,a 求向 1 11 21 = 2 )’ 2 = (,,,,1 , 3 (,,, 13 , 4 (,, 021 一 )‘a 203一 , 5 = )’a =11 0 ,1 的 , -)’ 一个极 4 大无关组 第一步 输人, 按行输人后再转置 A { ,2 , , , , -}2 , - , , , , 1 { 21 ,1 {0 ,1 1 1 ={ 1 2 10 ,5 , , 3 3 { 1, 1 ,,1 ; r so [] , 4一 1 A Ta psA 0 1 n e = 第二步 利用行初等变换。
摘 要:本文探讨了用Mtmta 性代数解题的算法,主要给出了 a eac于线 h i 利用Mt mta a eac进行矩阵初等变 h i 换的算法在求矩阵和向量组的枚,解线性方程组以 及求解矩阵特征值和特征向量中的应用, 进而彰显解题过程, 有利于提高学生的学习兴趣。 关键词: ahm t a M te ai ;算法;学习兴趣。 c 《 线性代数》是工科院校一门必修课,其重 要性从近几年来它在考研中所占的比重而不言而 喻。在 《 线性代数》的学习中,学生往往认为 线性代数概念太抽象,而相应的算法又显得太繁 琐。即使是对概念和算法有了比较清楚的认识, 但是一旦动手做题时就会出 现计算错误, 导致信 心不足,从而影响下面的学习,伤害学生的学习 积极性。作者认为, 可以利用Ma e ai 软 t m ta h c 件包,将学生从繁琐的数字运算中解脱出来,而 将注意力集中在基本概念和基本算法的学习上, 从而增加学习兴趣, 激发学习热情, 进而引导学 显然, 此矩阵的秩为3 。根据矩阵的秩等于 矩阵行向量组的秩,也等于矩阵列向量组的秩, 所以原向量组 ( 列向量组)的秩为3 。那么, 其极大无关组应该由3 个向量组成。此3 个向量 的选取方法为: 在这个阶梯形矩阵的每个平台上

第十章 Mathematica 数学实验

第十章 Mathematica 数学实验

第十章Mathematica数学实验在学习了一系列的数学知识以后,如果我们能学会如何用计算机处理各类数学问题,则无疑使我们的数学应用能力有一个质的飞跃.用计算机处理各类数学问题,必须要有理想的数学软件. 在众多的数学软件中,Mathematica 以它的功能强大、应用面广、易学易用等优点得到了各国科研人员和工程技术人员的高度认同.Mathematica是由美国科学家Stephen Wolfram主持的一个科研小组开发的. 它的语法规则简单,操作语言与人们的日常语言非常相近. 在功能方面,除数值计算外,强大的符号运算功能和制图功能使得它一直享有盛名。

由于Mathematica能给出问题的解析符号解,从而使得用户能用该软件方便地处理微积分、微分方程、线性代数和规划优化等各类问题. 现在,Mathematica软件已在工程、科研、教学等各个领域被广泛使用。

在大学生的数学建模活动中,Mathematica也是非常得力的工具.本章将通过与本书配套的22个精编的数学实验问题,介绍Mathematica的各种基本命令以及相应的需要注意问题。

对于每个实验问题,书中都列出了供参考的求解命令及其计算结果.初学Mathematica,建议不妨先将本书中的各个问题的求解命令一一模仿输入,看看能否在计算机上顺利通过,能否得到正确的计算结果;遇有问题时再查阅本书中的“实验须知”及“说明”栏等处的文字,或直接向指导老师请教. 及早开展人机对话是迅速掌握Mathematica的捷径。

预期学会本章基本内容只需4至6学时.Mathematica系统从1.2版开始,经过多次升级换代,目前最新的版本为5.1版本. 各种版本都未见有中文版本。

本书将依照Mathematica英文5.1 版介绍Mathematica的语句.这些语句绝大多数也适用于Mathematica较为早期的版本.§10-1Mathematica实验一基本运算、函数与作图一实验内容四则运算、基本初等函数的求值、代数式的化简、函数的作图.二实验目的能熟练地使用Mathematica进行四则运算;并能熟练地对初等函数进行求值计算和作图操作;会用“Simplify”语句对函数或代数式进行化简;了解分段函数的定义和作图命令;了解三维作图的命令.三实验须知1.Mathematica的启动:在Windows环境下,点击“开始—程序—Mathematica 5.1—Mathematica 5.1”,即可启动Mathematica,此时计算机的屏幕将出现如图10-1的窗口。

数学实验一用Mathematica进行行列式的运算

数学实验一用Mathematica进行行列式的运算

数学实验一:用Mathematica 进行行列式的运算实例1(P 16)【例1.6】计算行列式2121989910220111241112---=D 输入:A={{2,1,1,1},{4,2,1,-1},{201,102,-99,98},{1,2,1,-2}}; Det[A] 输出:-1800以上操作及计算结果在计算机显示屏上的显示内容见图1-3.图 1-3实例2(P 37)【例1.8】 计算n 阶行列式121212nn n n x m x x x x m x D x x x m--=-.输入:D1=x1-mC2={{x1-m,x2},{x1,x2-m}}; D2=Det[C2]C3={{x1-m,x2,x3},{x1,x2-m,x3},{x1,x2,x3-m}}; D3=Det[C3]C4={{x1-m,x2,x3,x4},{x1,x2-m,x3,x4},{x1,x2,x3-m,x4},{x1,x2,x3,x4-m}};D4=Det[C4] 输出:-m+x1m 2-mx1-mx2-m 3+m 2x1+m 2x2+m 2x3m 4-m 3x1-m 3x2-m 3x3-m 3x4以上操作及计算结果在计算机显示屏上的显示内容见图1- 4.图 1-4通过观察1、2、3、4阶行列式的输出表达式,总结规律得出n 阶行列式的值为(-1)n -1(∑=mi i x 1-m )注:1. 在数学实验一至七的各实例中出现的命令,其具体含义详见第九章.2. 输入完成后,要同时按“Shift + Enter”键才能有输出内容.数学实验二:用Mathematica 进行矩阵的运算实例1 (P35)【例2.4】设矩阵111320101320-⎡⎤⎡⎤⎢⎥==⎢⎥⎢⎥--⎣⎦⎢⎥-⎣⎦A B 计算AB 与BA 输入:A={{1,3,2},{0,-1,-3}}; B={{1,-1},{0,1},{-2,0}}; C1=A.B ;MatrixForm[C1] C2=B.A ; MatrixForm[C2] 输出:⎪⎪⎭⎫ ⎝⎛--1623 ⎪⎪⎪⎭⎫ ⎝⎛-----462310541以上操作及计算结果在计算机显示屏上的显示内容见图2-3.图 2-3实例2 (P34)【例2.3】已知矩阵123103214032A -⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,432153011250B -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦求3A-2B 输入:A={{-1,2,3,1},{0,3,-2,1},{4,0,3,2}}; B={{4,3,2,-1},{ 5,-3,0,1},{1,2,-5,0}}; C1=3A-2B;MatrixForm[C1] 输出:⎪⎪⎪⎭⎫ ⎝⎛----61941016151055011 以上操作及计算结果在计算机显示屏上的显示内容见图2-4.图 2-4实例3 (P44)【例2.9】设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=343122321A ,求其逆矩阵A -1. 输入:A={{1,2,3},{2,2,1},{3,4,3}}; Inverse[A]//MatrixForm输出:13235322111-⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥-⎣⎦ 以上操作及计算结果在计算机显示屏上的显示内容见图2-5图 2-5实例4 (P52)【例2.12】 求下列矩阵A 的秩.12104246251294732721--⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦A 输入:A={{1,-2,1,0,-4},{2,4,6,2,5},{-1,2,9,4,7},{3,2,7,2,1}};5 –Length [ NullSpace[A] ] (注:“5”是矩阵A 的列数) 输出:3以上操作及计算结果在计算机显示屏上的显示内容见图2-6图 2-6实例5 (P40)【习题2-1-4】计算矩阵的幂71101⎡⎤⎢⎥⎣⎦输入:A={{1,1},{0,1}}; B=MatrixPower[A ,7]MatrixForm[B] 输出:{{1,7},{0,1}}⎪⎪⎭⎫ ⎝⎛1071 以上操作及计算结果在计算机显示屏上的显示内容见图2-7图 2-7数学实验三:用Mathematica 求向量组的最大无关组实例1(P 96)【例3.11】 求向量组α1=(1,-1,2,3)T ,α2=(0,2,5,8)T ,α3=(2,2,0,-1)T ,α4=(-1,7,-1,-2)T 的秩及一个最大无关组,并把不属于最大无关组的列向量用最大无关组线性表示.输入:A={{1,0,2,-1},{-1,2,2,7},{2,5,0,-1},{3,8,-1,-2}}; MatrixForm[RowReduce[A]] 输出:⎪⎪⎪⎪⎪⎭⎫⎝⎛-0000110010103001 以上操作及计算结果在计算机显示屏上的显示内容见图3-13.图 3-13已知向量组的秩为3,a 1,a 2,a 3是已知向量组的一个最大无关组,且a 4= -3a 1+a 2+a 3数学实验四:用Mathematica 求解下列问题实例1(P 111)【例4.2】在R 3中,将基α1121⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦,α2131-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,α3410⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦化成标准正交基.输入:a1={1,2,-1};a2={-1,3,1}; a3={4,-1,0}; b1=a1; b2=a2-(a2.b1/b1.b1)*b1;b3=a3-(a3.b1/b1.b1)*b1-(a3.b2/b2.b2)*b2;}3c ,2c ,1c {;3b *)3b .3b /1(3c ;2b *)2b .2b /1(2c ;1b *)1b .1b /1(1c ===输出:}}21,0,21{},31,31,31{},61,32,61{{-- 以上操作及计算结果在计算机显示屏上的显示内容见图4-26.图 4-26实例2 (P 125)【例4.17】方程组⎪⎩⎪⎨⎧⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛---=22222222a y a x y x a z 表示怎样的曲线?以a 取1为例,先写出已知曲线的参数方程如下:⎪⎪⎪⎩⎪⎪⎪⎨⎧+-==+=2112221t cos x intS y Cost x 输入:ParametricPlot3D[{(1+Cos[t])/2,Sin[t]/2,2]t [Cos 1-},{t,0,2Pi}] 输出:以上操作及计算结果在计算机显示屏上的显示内容见图4-27.图4-27数学实验五:用Mathematica 求解线性方程组实例1 (P149)【例5.6】 求方程组123123412430263202640x x x x x x x x x x ++=⎧⎪++-=⎨⎪---=⎩ 的基础解系与通解.输入:M={{1,3,1,0},{2,6,3,-2},{-2,-6,0,-4}}; NullSpace[m] 输出:{{-2,0,2,1},{-3,1,0,0}}以上操作及计算结果在计算机显示屏上的显示内容见图5-1图 5-1一个基础解系: ξ1={-2,0,2,1}T , ξ2={-3,1,0,0}T , 原方程的通解为:x=k 1ξ1+k 2ξ2 , k 1, k 2为任意常数.实例2 (P150)【例5.7】【例5.7】求非齐次线性方程组的通解:1234123123412342439262272411x x x x x x x x x x x x x x x +-+=⎧⎪++=⎪⎨++-=⎪⎪+++=⎩ 输入:A={{2,4,-1,3},{1,2,1,0},{1,2,2,-1},{2,4,1,1}}; b={9,6,7,11};u=NullSpace[A]v=LinearSolve[A,b]输出:{{-1,0,1,1},{-2,1,0,0}}{5,0,1,0}以上操作及计算结果在计算机显示屏上的显示内容见图5-2图 5-2原方程组的通解为:x=k{-1,0,1,1}T+k2{-2,1,0,0}T+{5,0,1,0}T,其中 k1,k2为任1意常数.数学实验六:用Mathematica进行特征值的运算实例1 (P167)【例6.3】求矩阵211020413A-⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦的特征值和特征向量输入:A={{-2,1,1},{0,2,0},{-4,1,3}};Eigenvalues[A]Eigenvectors[A]输出:{-1,2,2}{{1,0,1},{1,0,4},{1,4,0}}以上操作及计算结果在计算机显示屏上的显示内容见图6-1图 6-1从输出的结果可以看出,矩阵有三个特征值:-1、2、2,对应有三个特征向量{1,0,1},{1,0,4},{1,4,0}.实例2 (P177)【例6.9】设A=400031013⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦, 求一个正交矩阵P,使1-P AP=Λ为对角阵输入:A={{4,0,0},{0,3,1},{0,1,3}}; B=Eigenvalues[A]c=Eigenvectors[A]]]3[[c ]]2[[c ]].2[[c /]]2[[c ]]1[[c ]].1[[c /]]1[[c 输出:{2,4,4} {{0,-1,1},{0,1,1},{1,0,0}}}0,0,1{}21,21,0{}21,21,0{-以上操作及计算结果在计算机显示屏上的显示内容见图6-2.图 6-2由上面的输出结果,正交矩阵P可取为: ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=0212102121100P 相对应的Λ为:⎪⎪⎪⎭⎫ ⎝⎛=Λ400040002数学实验七:用Mathematica 进行二次型的运算实例1 (P196)【例7.4】用正交变换法将二次型f =323121232221444x x x x x x x x x +++++化成标准形,并求正交变换矩阵.输入:A={{1,2,2},{2,1,2},{2,2,1}}; B=Eigenvalues[A] c= Eigenvectors[A];]]3[[c ]].3[[c /]]3[[c 1c .1c /1c ]];1[[c *]])1[[c ]].1[[c /]]1[[c ]].2[[c (]]2[[c 1c ]]1[[c ]].1[[c /]]1[[c -= 输出:{-1,-1,5}}31,31,31{}61,32,61{}21,0,21{---以上操作及计算结果在计算机显示屏上的显示内容见图7-1图 7-1由上面的输出结果,正交变换矩阵P可取为:⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=31612131320316121P ,相对应的Λ为: ⎪⎪⎪⎭⎫⎝⎛--=500010001Λ作正交变换x =Py ,则2322215500010001y y y y y y )AP P (y Ax x f T T T T +--=⎪⎪⎪⎭⎫⎝⎛--===成为标准形.实例2 (P205)【例7.7】判定二次型xz xy z y x f 44465222++---=的正定性. 输入:A={{-5,2,2},{2,-6,0},{2,0,-4}};Eigenvalues[A] a11=-5Det[{{-5,2}{2,-6}}]Det[A] 输出:{-8,-5,-2} -5 26 -80以上操作及计算结果在计算机显示屏上的显示内容见图7-2图 7-2因为奇数阶顺序主子式为负,而偶数阶顺序主子式为正,所以已知二次型为负定二次型.。

Mathematica基础数学实验

Mathematica基础数学实验

2. 求解非线性规划的命令(5.0以上版本): NMaximize[f,{x1,x2,…}](也称无约束极值) NMinimize[f,{x1,x2,…}] (也称无约束极值) NMaximize[{f,约束条件},{x1,x2,…}] NMinimize[{f,约束条件},{x1,x2,…}] 几个可选项: WorkingPrecision: 内部计算使用的有效数字位数(默认16位); AccuracyGoal: 计算结果的绝对精度(默认); PrecisionGoal: 计算结果的相对精度(默认WorkingPrecision的一半); MaxIterations: 最大迭代次数(默认100).
由于这个问题仅有两个变量, 其求解方法可以采 用图解法, 并由此引出线性规划的一般求解方法—单 纯形(Dantzig)方法和Mathematica程序. 对于进一步讨论的问题为: 1)考察将原料数量改为61kg后的最优值, 是否比原 问题的最优值高出投资额(0.8万元); 即原料数量改变1 个单位时, 目标函数(总利润)的变化量, 它度量了这种 资源的价值, 经济学上称为影子价格. 2)是将目标函数 z =10x1+9x2改为 z =11x1+9x2, 这 样一来, 最优解是否有变化; 这个问题是对LP目标函数 数据的灵敏度分析. 3)附加了解的整数性质, 成为整数(线性)规划 (Integer Programming, 简记为IP)问题.
用xij表示第 i年初( i=1, 2,· · · , 5)项目 j( j=1, 2, 3, 4分 别代表A,B,C,D)的投资额, 列表确定需要求解的 xij. 因项目D每年 项目 A B C D 初可以投资且年末 能收回本金, 所以 年份 x11 x14 1 每年初应把全部资 x21 x23 x24 2 x31 x32 x34 3 金投出去, 由此可 x41 x44 4 得约束条件: x 5

Mathematica数学实验——基本代数式运算

Mathematica数学实验——基本代数式运算

教师指导实验2实验名称:基本代数式运算一、问题:代数式的展开、分解、化简等运算。

二、实验目的:学会使用Simplify,FullSimplify 对代数式进行化简;用Collect,Factor 对代数式进行合并同类项和因式分解;能对分式进行约分、通分和分解;能用不同的函数对代数式进行展开。

三、预备知识:本实验所用的Mathematica 命令提示。

1、Simplify[expr] 化简表达式expr ,FullSimplify[expr] 更广义的化简表达式expr[2、Collect[expr,x] 将表达式expr 中的x 的同次幂合并,Factor[expr]分解expr[3、Cancel[expr] 将分式expr 约分,Together[expr] 将分式expr 通分,Apart[expr] 将分式expr 分解为最简分式和;4、Expand[expr] 展开表达式expr ,ExpandAll[expr] 将表达式expr 彻底展开,ExpandNumerator[expr] 只展开分式expr 的分子, ExpandDinominator[expr] 只展开分式expr 的分母。

四、实验的内容和要求:1、用函数Simplify[expr] 和FullSimplify[expr] 化简22sin 2sin cos cos x x x x ++,并 观察化简的结果;2、依次使用Collect[expr,x] 和Factor[expr],将42232223322x a x x a x a x ---+-合并为x 的同类项,并于以因式分解;3、对分式22224341x x x x x x x -+-+--进行约分,通分及展开为最简分式和; 4、用4个不同的代数式展开函数展开32()()a b c d +-,比较展开结果的不同。

五、操作提示1、用函数Simplify[expr] 和FullSimplify[expr] 化简22sin 2sin cos cos x x x x ++ In[1]:= Simplify [ Sin[ x ]^2 + 2 Sin[ x ] Cos[ x ] + Cos[ x ]^2 ] Out[1]= (Sin[x] + Cos[x])2In[2]:= FullSimplify [ Sin[ x ]^2 + 2 Sin[ x ] Cos[ x ] + Cos[ x ]^2 ] Out[2]= 1 + Sin[2 x]2、依次使用Collect[expr,x] 和Factor[expr],将42232223322x a x x a x a x ---+-合并为x 的同类项,并于以因式分解;In[3]:= Collect [x 4 – 3 a 2 – 3 x 2 – 2 x 3 + a 2 x 2 – 2 a 2 x , x ] Out[3]= - 3 a 2 -2 a 2 x + (- 3 + a 2 ) x 2 – 2 x 3 + x 4In[4]:= Collect [x4 – 3 a2 – 3 x2 – 2 x3 + a2 x2 – 2 a2 x , a ] Out[4]= – 3 x2 – 2 x3 + x4 + a2 ( -3 – 2 x + x2)In[5]:= Factor [x4 – 3 a2 – 3 x2 – 2 x3 + a2 x2 – 2 a2 x ] Out[5]= (- 3 + x ) (1 + x ) ( a2 + x2 )3、对分式22224341x x x xx x x-+-+--进行约分,通分及展开为最简分式和;In[6]:= r =2222x-4x x+3x-4+x-x x-1; Cancel [ r ]Out[6]= -4+x4+x+-1+x1+xIn[7]:= Together [ r ]Out[7]=22(-4+x) (-1+x)(1+x)In[8]:= Apart [ r ]Out[8]= 2-33+-1+x1+x4、用4个不同的代数式展开函数展开32 () () a b c d +-In[9]:= p = ( a + b ) ^ 3 / ( c – d ) ^ 2 ; Expand [ p ]Out[9]=32232222 a3a b3ab b+++(c-d)(c-d)(c-d)(c-d)In[10]:= ExpandAll [ p ]Out[10]=3223 22222222 a3a b3ab b+++c-2cd+d c-2cd+d c-2cd+d c-2cd+dIn[11]:= ExpandNumerator [ p ]Out[11]=+32232a3a b+3ab+b(c-d)In[12]:= ExpandDenominator [ p ]Out[12]=322 (a+b)c-2cd+d学生练习实验2实验名称:基本代数式运算一、问题:代数式的展开、分解、化简等运算 二、实验目的:学会使用Simplify,FullSimplify 对代数式进行化简;用Collect,Factor 对代数式进行合并同类项和因式分解;能对分式进行约分、通分和分解;能用不同的函数对代数式进行展开。

30Mathematica基本代数运算l

30Mathematica基本代数运算l

第三章初等代数运算命令与例题3.1多项式运算多项式是我们最熟悉的简单表达式,n 次一元多项式的一般形式为:P n(x) =a 0 +a1x+ a2x 2 +…+a n x n在Mathematica 中, 有关表达式的任何运算都可以应用到多项式中,特别,多项式的加减乘除四则运算只要用Mathematica 中的加减乘除号来连接两个多项式即可, 如:数学形式Mathematica 输入形式多项式相加(3+x 2) + (1-2x5 ) (3+x^2)+(1-2*x^5)多项式相减(3+x 2) - (1-2x5 ) (3+x^2)-(1-2*x^5)多项式相乘(3+x 2)(1-2x5 ) (3+x^2)*(1-2*x^5)多项式相除(3+x 2) ÷ (1-2x5 ) (3+x^2)/(1-2*x^5)上述多项式的运算只有多项式的加减可以计算外,多项式的乘除实际上不进行真正的运算,而只是以乘积或有理分式的形式表出,要想真正产生运算需用Mathematica 提供的多项式展开命令。

Mathematica 提供还提供了多项式因式分解,提取多项式幂次和系数等处理多项式的一些函数,下面列举其中的常用函数及功能:Mathematica 函数形式功能1) Expand[多项式] 把多项式按升幂展开2) Factor[多项式] 对多项式进行因式分解3) Collect[多项式,x] 把多项式按x的同次幂合并形式展开4) Simplify[多项式] 把多项式写成项数最小的形式5) Exponent[多项式, x] 取出多项式中x的最高幂数6) Coefficient[多项式,form] 取出多项式中form的系数7) Part[多项式, n] 取出多项式的第n项8) Length[多项式] 给出多项式的项数9) PolynomialQuotient[p,q, x] 计算p÷q的商,这里p,q是关于x的多项式10) PolynomialRemainder[p,q, x] 计算p÷q的余式,这里p,q是关于x的多项式11) PolynomialGCD[p,q, …] 求多项式p,q,…的最大公因子12) PolynomialGCD[p,q, …] 求多项式p,q,…的最小公倍数注:函数中的多项式可以是多元多项式,通常可以把多项式存放在一个变量中(用赋值语句),这样该变量就代表存入的多项式,使处理多项式更简单。

Mathematica 基本运算

Mathematica 基本运算

Mathematica 基本运算a+b+c 加a-b 减a b c 或a*b*c 乘a/b 除-a 负号a^b 次方Mathematica 数字的形式256 整数2.56 实数11/35 分数2+6I 复数常用的数学常数Pi 圆周率,π=3.141592654…E 尤拉常数,e=2.71828182…Degree 角度转换弧度的常数,Pi/180I 虚数,其值为√-1Infinity 无限大指定之前计算结果的方法% 前一个运算结果%% 前二个运算结果%%…%(n个%) 前n个运算结果%n 或Out[n] 前n个运算结果复数的运算指令a+bI 复数Conjugate[a+bI] 共轭复数Re[z], Im[z] 复数z的实数/虚数部分Abs[z] 复数z的大小或模数(Modulus)Arg[z] 复数z的幅角(Argument)Mathematica 输出的控制指令expr1; expr2; expr3 做数个运算,但只印出最後一个运算的结果expr1; expr2; expr3; 做数个运算,但都不印出结果expr; 做运算,但不印出结果常用数学函数Sin[x],Cos[x],Tan[x],Cot[x],Sec[x],Csc[x] 三角函数,其引数的单位为弪度Sinh[x],Cosh[x],Tanh[x],… 双曲函数ArcSin[x],ArcCos[x],ArcTan[x] 反三角函数ArcCot[x],ArcSec[x],ArcCsc[x]ArcSinh[x],ArcCosh[x],ArcTanh[x],… 反双曲函数Sqrt[x] 根号Exp[x] 指数Log[x] 自然对数Log[a,x] 以a为底的对数Abs[x] 绝对值Round[x] 最接近x的整数Floor[x] 小於或等於x的最大整数Ceiling[x] 大於或等於x的最小整数Mod[a,b] a/b所得的馀数n! 阶乘Random[] 0至1之间的乱数Max[a,b,c,...],Min[a,b,c,…] a,b,c,…的极大/极小值数之设定x=a 将变数x的值设为ax=y=b 将变数x和y的值均设为bx=. 或Clear[x] 除去变数x所存的值变数使用的一些法则xy 中间没有空格,视为变数xyx y x乘上y3x 3乘上xx3 变数x3x^2y 为x^2 y次方运算子比乘法的运算子有较高的处理顺序四个常用处理代数的指令Expand[expr] 将expr展开Factor[expr] 将expr因式分解Simplify[expr] 将expr化简成精简的式子FullSimplify[expr] Mathematica 会尝试更多的化简公式,将expr化成更精简的式子多项式/分式转换的函数ExpandAll[expr] 把算是全部展开Together[expr] 将expr各项通分在并成一项Apart[expr] 把分式拆开成数项分式的和Apart[expr,var] 视var以外的变数为常数,将expr拆成数项的和Cancel[expr] 把分子和分母共同的因子消去分母/分子的运算Denominator[expr] 取出expr的分母Numerator[expr] 取出expr的分子ExpandDenominator[expr] 展开expr的分母ExpandNumerator[expr] 展开expr的分子多项式的另二种转换函数Collect[expr,x] 将expr表示成x的多项式,如Collect[expr,{x,y,…}] 将expr分别表示成x,y,…的多项式FactorTerms[expr] 将expr的数值因子提出,如4x+2=2(2x+1)FactorTerms[expr,x] 将expr中把所有不包含x项的因子提出FactorTerms[expr,{x,y,…}] 将expr中把所有不包含{x,y,...}项的因子提出三角函数、双曲函数和指数的运算TrigExpand[expr] 将三角函数展开TrigFactor[expr] 将三角函数所组成的数学式因式分解TrigReduce[expr] 将相乘或次方的三角函数化成一次方的基本三角函数之组合ExpToTrig[expr] 将指数函数化成三角函数或双曲函数TrigToExp[expr] 将三角函数或双曲函数化成指数函数复数、次方乘积之展开ComplexExpand[expr] 假设所有的变数都是实数来对expr展开ComplexExpand[expr,{x,y,…}] 假设x,y,..等变数均为复数来对expr展开PowerExpand[expr] 将多项式项次、系数与最高次方之取得Coefficient[expr,form] 於expr中form的系数Exponent[expr,form] 於expr中form的最高次方Part[expr,n] 或expr[[n]] 在expr项中第n个项代换运算子expr/.x->value 将expr里所有的x均代换成valueexpr/.{x->value1,y->value2,…} 执行数个不同变数的代换expr/.{{x->value1},{x->value2},…} 将expr代入不同的x值expr//.{x->value1,y->value2,…} 重复代换到expr不再改变为止求解方程式的根Solve[lhs==rhs,x] 解方程式lhs==rhs,求xNsolve[lhs==rhs,x] 解方程式lhs==rhs的数值解Solve[{lhs1==rhs1,lhs2==rhs2,…},{x,y,…}]解联立方程式,求x,y,…NSolve[{lhs1==rhs1,lhs2==rhs2,…},{x,y,…}] 解联立方程式的数值解FindRoot[lhs==rhs,{x,x0}] 由初始点x0求lhs==rhs的根Mathematica 的四种括号(term) 圆括号,括号内的term先计算f[x] 方括号,内放函数的引数{x,y,z} 大括号或串列括号,内放串列的元素p[[i ]] 或Part[p,i] 双方括号,p的第i项元素p[[i,j]] 或Part[p,i,j] p的第i项第j个元素缩短Mathematica输出的指令expr//Short 显示一行的计算结果Short[expr,n] 显示n行的计算结果Command; 执行command,但不列出结果查询Mathematica的物件?Command 查询Command的语法及说明??Command 查询Command的语法和属性及选择项?Aaaa* 查询所有开头为Aaaa的物件函数的定义、查询与清除f[x_]= expr 立即定义函数f[x]f[x_]:= expr 延迟定义函数f[x]f[x_,y_,…] 函数f有两个以上的引数?f 查询函数f的定义Clear[f] 或f=. 清除f的定义Remove[f] 将f自系统中清除掉含有预设值的Patterna_+b_. b的预设值为0,即若b从缺,则b以0代替x_ y_ y的预设值为1x_^y_ y的预设值为1条件式的自订函数lhs:=rhs/;condition 当condition成立时,lhs才会定义成rhsIf指令If[test,then,else] 若test为真,则回应then,否则回应elseIf[test,then,else,unknow] 同上,若test无法判定真或假时,则回应unknow 极限Limit[expr,x->c] 当x趋近c时,求expr的极限Limit[expr,x->c,Direction->1]Limit[expr,x->c,Direction->-1]微分D[f,x] 函数f对x作微分D[f,x1,x2,…] 函数f对x1,x2,…作微分D[f,{x,n}] 函数f对x微分n次D[f,x,NonConstants->{y,z,…}] 函数f对x作微分,将y,z,…视为x的函数全微分Dt[f] 全微分dfDt[f,x] 全微分Dt[f,x1,x2,…] 全微分Dt[f,x,Constants->{c1,c2,…}] 全微分,视c1,c2,…为常数不定积分Integrate[f,x] 不定积分∫f dx定积分Integrate[f,{x,xmin,xmax}] 定积分Integrate[f,{x,xmin,xmax},{y,ymin,ymax}] 定积分数列之和与积Sum[f,{i,imin,imax}] 求和Sum[f,{i,imin,imax,di}] 求数列和,引数i以di递增Sum[f,{i,imin,imax},{j,jmin,jmax}]Product[f,{i,imin,imax}] 求积Product[f,{i,imin,imax,di}] 求数列之积,引数i以di递增Product[f,{i,imin,imax},{j,jmin,jmax}]函数之泰勒展开式Series[expr,{x,x0,n}] 对expr於x0点作泰勒级数展开至(x-x0)n项Series[expr,{x,x0,m},{y,y0,n}] 对x0和y0展开关系运算子a==b 等於a>b 大於a>=b 大於等於a<b 小於a<=b 小於等於a!=b 不等於逻辑运算子!p notp||q||… orp&&q&&… andXor[p,q,…] exclusive orLogicalExpand[expr] 将逻辑表示式展开基本二维绘图指令Plot[f,{x,xmin,xmax}]画出f在xmin到xmax之间的图形Plot[{f1,f2,…},{x,xmin,xmax}]同时画出数个函数图形Plot[f,{x,xmin,xmax},option->value]指定特殊的绘图选项,画出函数f的图形Plot[]几种常用选项的指令选项预设值说明AspectRatio 1/GoldenRatio 图形高和宽之比例,高/宽Axes True 是否把坐标轴画出AxesLabel Automatic 为坐标轴贴上标记,若设定为AxesLabel->{"ylabel"},则为y轴之标记。

MATHEMATICA基本数学函数及应用

MATHEMATICA基本数学函数及应用

MATHEMATICA基本数学函数及应用MATHEMATICA第一讲1 数的运算算例378/123N[378/123,6] (*取小数点后6位的近似值*)Pi^2E^(-1)100!N[Pi,100]N[I^(-I)]2 常用数学函数Sqrt[ ]平方根, Exp[ ]指数函数, Log[ ] 对数函数,Sin[ ] 正弦函数, Cos[ ] 余弦函数,T an[ ] 正切函数, Cot[ ] 余切函数,Sec[ ] 正割函数, Csc[ ] 余割函数,ArcSin[ ] 反正弦函数, ArcCos[ ] 反余弦函数,ArcT an[ ] 反正切函数, ArcCot[ ] 反余切函数, ArcSec[ ] 反正割函数, ArcCsc[ ] 反余割函数,Sinh[ ] 双曲正弦, Cosh[ ] 双曲余弦,T anh[ ] 双曲正切, Coth[ ] 双曲余切,Sech[ ] 双曲正割, Csch[ ] 双曲余割,ArcSinh[ ]反双曲正弦, ArcCosh[ ]反双曲余弦,ArcT anh[ ]反双曲正切, ...算例Sin[N[Sqrt[3],50]]3 其它函数! 阶乘Mod[n,m] n取模m的结,Quoti ent[n,m] n除以m的商的整数部分GCD[n,m]LCM[n,m] n和m的最大公约数和最小公约数Round[ ] 距离近似数x最近的整数Floor[ ] 不大于x的最大整数算例100!Quoti ent[10,3]GCD[105,30]Round[-1.234]Floor[-1.234]4 变量的赋值与替换算例f1=x^2+3 x+1 (*将表达式赋给变量f1*)f1/.x->3 (*求f1当x=3时的值f1(3)*)f1/.x->x+1 (*在f1中用x+1替换x得到f1(x+1)*) f1=. (*取消变量f1的定义*)f1/.x->3 (*此时已经得不到所想的结果f1(3)*)5 多项式计算Expand[p] (* 多项式展开*)Factor[p] (*多项式因式分解*)算例p1=x^3-6x^2+11x-6p2=(x-1)*(x-2)*(x-3)Factor[p1]Expand[p2]MATHEMATICA第二讲一元函数的图形一命令语句Plot[表达式,{变量,下限,上限},可选项]Plot[{表达式,表达式,...},{变量,下限,上限},可选项]二可选参数项第一类参数1. PlotRange->{y1,y2} 指定作图纵座标范围为(y1,y2)默认值为Atuomatic或指定All执行算例Plot[T an[x],{x,-2Pi,2Pi}]Plot[T an[x],{x,-2Pi,2Pi},PlotRange->{-10,10}]Plot[Exp[-x^2]*Sin[6x],{x,-2,2},PlotRange->{-0.5,0.5}]Plot[Exp[-x^2]*Sin[6x],{x,-2,2},PlotRange->All]2.AspectRatio->Automatic 按实际比例作图默认值为Atuomatic=0.618:1执行算例Plot[Sqrt[1-x^2],{x,-1.5,1.5}]Plot[Sqrt[1-x^2],{x,-1.5,1.5}, AspectRatio->Automatic] 3. Axes->Automatic 画坐标轴自动确定位置Axes->None 不画坐标轴Axes->{x0,y0} 指定坐标原点在(x0,y0)处执行算例Plot[Cos[x],{x,-2Pi,2Pi}]Plot[Cos[x],{x,-2Pi,2Pi},Axes->None]Plot[Cos[x],{x,-2Pi,2Pi},Axes->{1,2}]4 AxesLabel->None 不说明坐标轴的标记AxesLabel->{x,y} 指定横轴为x纵轴为yAxesLabel->{u,v} 指定横轴为u纵轴为v执行算例Plot[Sin[x]/x,{x,-10,10},AxesLabel->None]Plot[Sin[x]/x,{x,-10,10},AxesLabel->{x,y}]Plot[Sin[x]/x,{x,-10,10},AxesLabel->{时间T,电流I}]5. Ticks->{i,j} 规定坐标轴上的刻度位置Ticks->{t1,t2,t3,...}执行算例Plot[{ArcSin[x],ArcCos[x]},{x,-1,1},PlotStyle->{{RGBColor[0,1,1],Thickness[0.01]}, {RGBColor[1,0,1],Dashing[{0.05,0.05}]}}]第二类参数1.DisplayFunction->Identity 只生成图形现在不显示执行算例Plot[{Sin[T an[x]]-T an[Sin[x]]},{x,1,2},DisplayFunction->Identity]Plot[{Sin[T an[x]]-T an[Sin[x]]},{x,-2,2}]2. PlotPoints->50 指定计算函数值的取点数为50执行算例Plot[{Sin[T an[x]]-T an[Sin[x]]},{x,-2,2},PlotPoints->50]3. MaxBend 说明曲线的折线在相邻两段之间的最大折角执行算例4. PlotDivision 说明取点的限度执行算例5.PlotStyle->Thickness[t] 描述线宽PlotStyle->GrayLevel[i] 描述灰度PlotStyle->RGBColor[r,g,b] 描述颜色PlotStyle->Dashing[{d1,d2,...}] 描述虚线的画法PlotStyle->PointSize[0.03] 描述点的大小执行算例Plot[{Sin[x],Sin[2x],Sin[3x]},{x,0,2Pi},PlotStyle->{RGBColor[1,0,0],RGBColor[0,1,0],RGBColor[0,0,1]}]Plot[Sin[1/x],{x,-1,1}]Plot[Sqrt[1+x^2],{x,-6,6},PlotStyle->Dashing[{0.02,0.01}]] Plot[Sin[Cos[Sin[x]]],{x,-Pi,Pi}]Plot[(T an[Sin[x]]-Sin[T an[x]])/x^2,{x,-5,5}]Plot[{E^x,ArcT an[x],E^ArcT an[x]},{x,-5,5},PlotPoints->100] 三图形的重新显示,组合,存储和输出Show[t] 重新显示Show[t1,t2,...,tn] 将几个图形合在一起执行算例f1=Plot[x,{x,0.1,2},PlotRange->{0,2}]f2=Plot[1/x,{x,0.1,2},PlotRange->{0,3}]f3=ParametricPlot[{2,t},{t,0,2}]Show[f1,f2,f3]Display["filename",图形]保存图形到文件中存为Postsceipt格式Hardcopy[图形] 将图形送去打印四二维参数图形ParametricPlot[{x(t),y(t)},{t,下限,上限},可选项]执行算例ParametricPlot[{Sin[t],Cos[t]},{t,0,2*Pi},AspectRatio->Automatic]ParametricPlot[{Sin[2*t],Cos[3*t]},{t,0,2*Pi},AspectRatio->Automatic]y1=ParametricPlot[{Cos[t]^3,Sin[t]^3},{t,0,2*Pi}, AspectRatio->Automatic]y2=ParametricPlot[{Cos[t],Sin[t]},{t,0,2*Pi},AspectRatio->Automatic] Show[y1,y2]z1=ParametricPlot[{t-Sin[t],1-Cos[t]},{t,0,2*Pi}, AspectRatio->Automatic]五极坐标图形执行算例r[t_]:=(3Cos[t]^2-1)/2ParametricPlot[{r[t] Cos[t],r[t] Sin[t]},{t,0,2Pi}, AspectRatio->Automatic]r[t_]:=2(1-Cos[t])ParametricPlot[{r[t] Cos[t],r[t] Sin[t]},{t,0,2Pi}, AspectRatio->Automatic]r[t_]:=2Sin[3t]ParametricPlot[{r[t] Cos[t],r[t] Sin[t]},{t,0,2Pi}, AspectRatio->Automatic]r[t_]:=Cos[2*t]ParametricPlot[{r[t] Cos[t],r[t] Sin[t]},{t,0,2Pi}, AspectRatio->Automatic]r[t_]:=0.5*tParametricPlot[{r[t] Cos[t],r[t] Sin[t]},{t,0,2Pi}, AspectRatio->Automatic]r[t_]:=Exp[t/3]ParametricPlot[{r[t] Cos[t],r[t] Sin[t]},{t,0,2Pi}, AspectRatio->Automatic]r[t_]:=Cos[8*t]ParametricPlot[{r[t] Cos[t],r[t] Sin[t]},{t,0,2Pi}, AspectRatio->Automatic]介绍:Hue六动画制作<<="">Animate[图形,{自变量,下限,上限}],{参变量,下限,上限,步长}]执行算例<<graphics\animatio.m< p="">Animate[Plot[Sin[x+t*Pi],{x,0,10Pi}],{t,0,5/3,1/3}]T able[k, 100]MATHEMATICA第三讲三维作图一命令语句Plot3D[函数表达式,,,{变量,上限,下限},{可选项}]Plot3D[{函数表达式,着色表达式},{变量,上限,下限},{变量,上限,下限},{可选项}]二可选参数项1 PlotRange,说明要求的图形显示范围2 PlotLabel,说明图的名称标注3 AspectRatio,说明整个图的高度比4 Boxed:说明是否给图形加一个立体框5 BoxRation:说明图形立体框在三个方向的长度比6 ViewPoints:在将三维图形投射到平面上时使用的观察点.7 Mesh:说明在曲线上是否画网格8 HiddenSurface:曲面被挡住的部分是否隐掉9 Shading:在曲面上是否涂阴影10 lightScources:设置照明光源11 Lighting:说明是否打开已经设置的光源12 AmbienLight:漫射光设置.默认值是黑色,用GrayLevel[0]表示13 ClipFill:作出的图形中被切掉的那些部分用什么方法填充14 Axes:说明是否画坐标轴以及把坐标轴中心放在什么地方15 Ticks:规定坐标轴上刻度的位置执行算例1 默认情形Plot3D[x^2+y^2,{x,-1,1},{y,-1,1}]2 适当选取X,Y,Z轴的比例关系Plot3D[x^2+y^2,{x,-1,1},{y,-1,1},BoxRatios->{1,1,1.5}]3 不加阴影的情形Plot3D[x^2+y^2,{x,-1,1},{y,-1,1},BoxRatios->{1,1,1.5},Shading->False]4 不打开照明的情形Plot3D[x^2+y^2,{x,-1,1},{y,-1,1},BoxRatios->{1,1,1.5},Lighting->False]5 不设网格的情形Plot3D[x^2+y^2,{x,-1,1},{y,-1,1},BoxRatios->{1,1,1.5},Boxed->False,Axes->False,Mesh->False]-SurfaceGraphics-6 用参数方式图形更合乎实际情形ParametricPlot3D[{函数表达式},{变量,上限,下限},{可选项}]ParametricPlot3D[{v Sin[u],v Cos[u],v^2},{v,0,1},{u,0,2Pi}, BoxRatios->{1,1,1}] ParametricPlot3D[{u,u^2,t},{u,-1,1},{t,0,1}, PlotPoints->25,Lighting->True, ViewPoint->{2,-1,1}]7 视点的选择Plot3D[Cos[Sqrt[x^2+y^2]],{x,-10,10},{y,-10,10},PlotPoints->25,Lighting->True, ViewPoint->{1,1,2}]Plot3D[Cos[Sqrt[x^2+y^2]],{x,-10,10},{y,-10,10},PlotPoints->25,Lighting->True, ViewPoint->{0,0,1}]Plot3D[Cos[Sqrt[x^2+y^2]],{x,-10,10},{y,-10,10},PlotPoints->25,Lighting->True, ViewPoint->{0,1,2}]ParametricPlot3D[{u^2,u,v}, {v,0,2},{u,-2,2},BoxRatios->{1,1,0.6},ViewPoint->{1,3,1},Shading->True]8 将多个曲面放在一张图上Z1=Plot3D[x*y,{x,0,1},{y,0,1}]Z2=ParametricPlot3D[{u,u,t},{u,0,1},{t,0,1},PlotPoints->25,Lighting->True]Z3=ParametricPlot3D[{1,u,t},{u,-1,1},{t,0,1},PlotPoints->25,Lighting->True]Show[Z1,Z2,Z3,BoxRatios->{1,1,1},ViewPoint->{1,1,1},Shading->False]9 动画制作<<graphics\animatio.m< p="">Animate[ParametricPlot3D[{u,u^2,t},{u,-1,1},{t,0,1},PlotPoints->25,Lighting->True,ViewPoint->{Cos[2*Pi*t],Sin[2*Pi*t],1}],{t,0,1,1/6}]波纹面动画演示注意:此演示需要较大内存,耐心等待。

Mathematica4.0使用方法(数学实验课讲义)

Mathematica4.0使用方法(数学实验课讲义)

Mathematica4.0使用方法数学实验课教材首钢工学院Mathematica数学实验Mathematica 是一个交互式的计算系统.这里说的交互是指:在使用Mathematica 系统的时候,计算是在使用者(用户)和Mathematica 互相交换、转递信息数据的过程中完成的.用户通过输入设备(一般指计算机键盘)给系统发出计算的指令(命令),Mathematica 完成给定的计算工作后把计算结果告诉用户(一般通过计算机显示器).Mathematica 是一个集成化的计算机软件系统.它的主要功能包括三个方面:符号演算、数值计算和图形绘制.例如,它可以完成多项式的各种计算(四则运算、展开、因式分解);可以求多项式方程、有理式方程和超越方程的精确解和近似解;做数值的或一般表达式的向量和矩阵的各种计算;求一般函数表达式的极限、导函数、积分、幂级数展开,求解微分方程等等.根据教学大纲的要求及学校的课时安排(共12课时,内含2课时考试),我们将Mathematica数学软件的学习缩编成下面的四个实验,以期在短时间内使同学们掌握该软件的基本使用方法,学会用它解决高等数学中的一些常见问题.目录第一篇微积分 (1)实验一……………………………………………………实验二……………………………………………………实验三……………………………………………………实验四……………………………………………………第二篇线性代数……………………………………………………实验一……………………………………………………实验二……………………………………………………第三篇概率统计……………………………………………………第四篇复数与积分变换……………………………………………附录Mathematiac一部分函数及意义……………………第一篇微积分实验一一、实验目的1.学习在Windows下Mathematica 4.0软件的启动与退出,并熟悉其界面;2.建立文件与保存文件;3.学习用基本运算符号和模板进行加、减、乘、除、乘方、开方等常用的算术运算;4.学习表示计算结果的近似结果;5.会用符号或模板进行常见函数的输入及多项式的变换;6.会给变量赋值.二、内容与步骤1.Mathematica 4.0的启动与退出启动计算机,屏幕上显示Windows界面,单击“开始”进入主菜单,将鼠标移向“程序”,找到包含Mathematica 4.0的程序组,单击可执行程序Mathematica 4.0就进入了该系统,此时系统已进入交互状态,在等待用户输入命令.当软件使用完毕后,需要退出Mathematica系统时,只须单击工作窗口右上方的“File”菜单中选用命令“Exit”,或者按“Alt+F4”键均可退出系统,回到操作系统状态.例如:输入2+3后,按Enter+Shift组合键或右边小键盘上的Enter键运行,屏幕上就显示出In[1]:=2+3Out[1]=5其中In[1]:= 表示第一个输入,Out[1] = 表示第一个输出,它们是在运行后由系统自动显示的,用户不必输入.注意:若直接按左边的Enter键,只是在输入的组合命令中起换行的作用.2.建立文件与保存文件在工作窗口做好的某些内容,如果想要保留以供今后多次使用,通常是建立一个文件,将做好的内容保存在文件中.单击File/ Save as,在文件名N一栏内键入一个文件名,然后左击保存S.3.算术运算与模板的使用a):输入基本运算符号加+减-乘*(或用一个空格表示相乘)除/幂乘yx^优先运算:用圆括号,并可重复多次使用.b):模板的调出与运用方法一:在Mathematica 3.0以上版本的输入中,可以使用工具按钮输入各种运算,其步骤如下:①单击菜单栏中的文件File选项;②在下拉菜单中选择调色板Palettes选项;③在下一级菜单中单击基本计算BasicaCalculations选项,将会另外出现一个工具窗口;④在其窗口中单击计算与数值Arithmetic and Numbers选项前的符号“”,使其符号变成“▽”,将出现加、减、乘、除、乘方、开方等工具按钮;⑤单击需要的按钮,在原Notebook窗口中将会出现相应输入格式,将光标移到标有“□”的位置上,输入数值或表达式,就可以完成输入格式.方法二:在第③步,在下一级菜单中单击基本计算BasicInput 选项,出现一个常用的含有多种运算的模板(加、减可以直接从键盘输入+、-号) 4. 近似与精确 a ) 命令输入:N[表达式,n] 精确到n 位有效数字;N[表达式] 近似值按计算机默认的数位(6位)处理; [表达式]// N 同上;% 表示最近一次计算机运行后的输出结果;注意:1)当输出结果是610以下的数字,近似值按计算机默认的6位有效数字处理;610及610以上的近似值计算机按科学计数法处理.2)N[表达式,n] 表示精确到n 位有效数字(注:当n=1~16时,结果都按计算机默认的6位处理). b) 模板调出:与上述算术运算模板调出的方法一相同. 例1 1)输入: N310,结果显示:0.0141592653589792)输入:N ,结果显示: 3.1(按计算机默认的6位处理) 3)输入:N %, 表示对当前结果取18位有效数字近似 4)输入:4566000.66777777777777结果显示:4.5665.Mathematica中的常数、数学函数与常见的多项式变换a)直接从键盘输入(在英文状态下)Mathematica的常数:Pi 表示πE 表示eDegree (π/180)表示度I 表示虚数iInfinity 表示无穷大∞Mathematica中常用的数学函数:幂函数Sqrt[x] (求平方根) ;指数函数Exp[x] (以e为底的指数函数);对数函数Log[x] (以e为底的对数函数);Log[a,x] (以a为底的对数函数);三角函数Sin[x],Cos[x],Tan[x],Cot[x],Sec[x],Csc[x];反三角函数ArcSin[x],ArcCos [x],……;双曲函数Sinh[x],Cosh[x],Tanh[x],Coth[x],……;反双曲函数ArcSinh[x],…….Mathematica中常见的多项式变换:Factor[表达式] 将表达式分解因式Expand[表达式] 将表达式展开成多项式和的形式Simplify[表达式] 将表达式化简成最简形式Apart[表达式] 将表达式分解为部分分式之和函数表达式的运算规则有:1).它们都以大写字母开头,后面用小写字母.当函数名可以分成几段时,每一个段的头一个字母用大写,后面的字母用小写.例如,ArcSin[x].2).函数的名字是一个字符串,其中不能有空格.3).函数的自变量表用方括号括起来,不能用圆括号.4).多元函数的自变量之间用逗号分隔.b)模板介绍在Mathematica3.0以上版本的输入中,可以使用工具按钮输入各种函数,其步骤如下:①击菜单栏中的文件File选项;②在下拉菜单中选择调色板Palettes选项;③在下一级菜单中单击基本计算BasicaCalculations选项,将会另外出现一个工具窗口;在其窗口中单击三角与指数函数Trigonometric and Exponential Finctions选项前的符号“”,使其符号变成“▽”并列出子选项的清单;在此清单中单击三角Trigonometric选项前的符号“”,使其符号变成“▽”,将会出现一些三角函数和反三角函数工具按钮;单击需要的按钮,在原Notebook窗口中将会出现相应三角函数或反三角函数输入格式,将光标移到标有“□”的位置上,输入数值或表达式,就可以完成输入格式;在此清单中单击指数与对数Exponential and Logarithmic选项前的符号“”,使其符号变成“▽”,将会出现一些指数与对数函数工具按钮;单击需要的按钮,在原Notebook窗口中将会出现相应指数或对数函数输入格式,将光标移到标有“□”的位置上,输入数值或表达式,就可以完成输入格式;在此清单中单击双曲函数Hyperbolic选项前的符号“”,使其符号变成“▽”,将会出现一些双曲函数和反双曲函数工具按钮;单击需要的按钮,在原Notebook窗口中将会出现相应双曲函数和反双曲函数输入格式,将光标移到标有“□”的位置上,输入数值或表达式,就可以完成输入格式. 在其窗口中单击计算与数值Algebra 选项前的符号“”,使其符号变成“▽”,将出现Polynomial Manipulation ,Simplifyication 等工具按钮进行相关选择即可完成多项式的变换; 例2In[13]:=Log[2,3.256] Out[13]:=1.7031 例3:已知1 ,1232221-=-+=x p x x p ,计算2121 ,p p p p ⨯+,21p p ÷并将2121 ,p p p p ⨯+的结果分解因式、展开多项式,将21p p ÷的结果分解为部分分式 输入:p1 3x^22 结果显示: 12xp2 x^1P122x p11x212xp1Factor p11x1x21Expand p1p212x 4x 22x3Apart p 136. 变量赋值:命令格式:x= a 将值a 赋给变量xu=v=a 将值a 赋给变量u 、v (给多个变量赋值)f[x]/. x->a 变量x 赋值为a (求函数f[x]在x=a 时的值) u := 延迟赋值,按Shift+Enter 键没有结果输出,待给变量赋值运行后才有结果u= 直接赋值,按Shift+Enter 键后有结果输出 u=. 清除变量u 的值Clear[x] 清除变量x 的值,多用作清除函数注意:应随时将以后不再使用的变量的值清除掉,以免影响后面某些计算结果的正确性.习题一1. 计算1)62456log 3e -+并保留15位有效数字.2) sin(30)+tan(6π)并精确到小数点后7位.3)7lg 21arctan 1arcsin ++2. 给变量赋值并计算1) 若x=6,y=e,z=x+3y ,计算3z-5y 2+6(x-7)52)x=3,y=5π,计算(lgx )⨯arcos(2y)- 9并保留18位有效数字.3.设p1=2x-1, p2=3x-7, 求 p1×p2, 并展开它,再分解因式,最后将 1/(p1×p2)分解为部分分式. 练习过程及答案N 34Log 2,566,316.8.1.0z x 3y . x 6,y3z 5y 26 x 75. x 6,y ,z 665 23 69.000000000000000000.33490675722196522x 1 3x 12x 73Expandy9.实 验 二一、实验目的1、学习使用自定义函数,会求函数值;2、学习用绘图语句作函数图形;3、学习用解方程的语句解方程、方程组;4、会建立表,进行表的基本运算. 二、内容与步骤 1、自定义函数:一般函数: f[x_]= 表达式 定义的规则x 可以被替代 f[x_]:= 表达式 延迟赋值 f[x_]=. 清除f[x_]的定义Clear[f] 清除所有以f 为函数名的函数定义 分段函数:Which[条件1,表达式1,条件2,表达式2,…条件n ,表达式n]Which 语句是表示分段函数的常用语句. 例1:定义函数:x x x x f cos )(2++=,并求f (2)的值输入命令:显示输出: 4.9输入显示结果注意:f[2.]表示求自变量为2时函数的近似值;f[2]表示为精确值..10.例2:定义函数....0()0.. 0....0x x g x x x x >⎧⎪==⎨⎪-<⎩并求:)0(),3(),1(g g g -的值 输入命令g x_: Which x 0,x,x 0,0,x0,(将分段函数自定义成一个函数)显示结果 1 输入显示结果 3 输入显示结果 0注意:中括号内的等号要输成双等号 2.作图:1)基本作图命令格式(a )只规定自变量范围的作图命令:Plot[f(x),{x,x1,x2}](b) 不仅规定自变量范围,还规定因变量范围的作图命令Plot[f(x),{x,x1,x2},PlotRange->{y1,y2}](c) 不仅规定自变量范围,还可以加标注(函数名称,坐标轴) Plot[f(x),{x,x1,x2},PlotLabel->“表达式 ”,AxesLabel ->{“x ”,“y ”}11.2)观察函数图形的叠加情况设)...(),(21x f y x f y==,若在一个坐标系里观察这几个函数图像命令格式为:Plot[{ )(),(21x f x f },{x,x1,x2}]注意:不要将“ )(),(21x f x f ”写成“ )(),(21x f y x f y ==”例3:做出y=sinx 在[-4π4π]之间的图像Plot S in x , x ,4Pi,4例4:做出y=tanx 在[0,4π],y ∈[-5,5]之间的图像PlotT an x , x ,0,4 ,PlotRange 5,.12.例5:做出y=sinx,sin2x,sin3x 在[0,2π]内的标出坐标轴的且用三种不同颜色标示的图像.3) 分段函数的作图先利用条件语句Which 自定义分段函数,然后用Plot 语句画出分段函数的图形格式步骤:首先输入 f [x _]:= Which[条件1,表达式1,条件2,表达式2,…条件n ,表达式n]再输入 Plot[f(x),{x,x1,x2}] 例6 作出....0()0.. 0....0x x g x x x x >⎧⎪==⎨⎪-<⎩的图像g x _ : Which x 0,x,x 0,0,x0, Plot g x , x ,2,13 .4)参数方程作图使用 ParametricPlot 函数可以画参数形式的图形,格式如下: ParametricPlot[{x(t),y(t)},{t ,a ,b},可选项]ParametricPlot[{{x1(t),y1(t),{x2(t),y2(t)},...},{t ,a ,b},可选项]例7 画出圆的参数方程的⎩⎨⎧==ty tx sin cos ,0<t <2π曲线图形解 In[5]:=ParametricPlot[{Sin[t],Cos[t]},{t ,0,2Pi},AspectRatio ->Automatic] Out[5]:=AspectRatio :指定作图的纵横比例.系统默认值约0.618:1.可以为 AspectRatio 指定任何一个其他数值.如果希望系统按实际情况作图即纵横比例为1:1,则需要将这个可选项设置为Automatic . 5)二元函数的图像命令格式:首先定义二元函数: z[x_,y_]:=表达式 然后作图Plot3D[z[x,y],{x,x1,x2},{y,y1,y2}].14.例8 做出222y x z +=的图像输入: 输出:上述命令大多可以通过模板调出 ① 左击菜单栏中的文件File 选项; ②在下拉菜单中选择调色板Palettes 选项;③在下一级菜单中单击基本计算BasicaCalculations 选项,将会另外出现一个工具窗口;④ 在其窗口中单击图形Graphics 选项前的符号“”,使其符号变成“▽”并列出子选项的清单进行选择3.解方程: 1)解方程命令格式:Solve[f(x)= =0,x] 2) 解方程组命令格式:Solve[{f (x)= =0,g (y)= =0,…},{x,y,…}]15.上述命令可以通过模板调出 ①左击菜单栏中的文件File 选项; ②在下拉菜单中选择调色板Palettes 选项;③在下一级菜单中单击基本计算BasicaCalculations 选项,将会另外出现一个工具窗口;④在其窗口中单击图形Algebra 选项前的符号“”,使其符号变成“▽”并列出Solving Equations 选项的清单进行选择 例9 求方程063523=++-x x x 的根. 解: 输入Solve x 35x 23x 60 输出:例10 求方程组⎩⎨⎧=+=-ny x m y x 2的根 解: 输入Solvex 2y m,x y n , x ,输出:例11求解方程b x x =++-11 解: 输入输出:4.表的操作 1)表的生成.16.一维表:{a,b,c…}二维表(表中表):{{一维表1},{一维表2},{一维表n}…} 如:一维表{1,2,3},二维表{{1,2},{5,2},{6}}2)表中元素的提取一维表b 的第i 个元素: b[[i]] 或Part[[b,i]] 二维表b 的第i 个分表:b[[i]] 或Part[[b,i]] 二维表b 的第i 个分表中的第j 个元素: b[[i,j]] 如:b={{1,2},{5,2},{6}} b[[2]]-----显示 {5,2} b[[2,1]]----- -显示53)表的运算设b1,b2表示结构完全相同的两个表,表b1,b2的和、差、积、商等于对应元素的相应运算(分母不为零)b1={{1,2},{5,2},{6}},b2={{3,1},{0,2},{2}} b1+ b2={{4,3},{5,4},{8}}习题21. 解方程组⎪⎩⎪⎨⎧=+=342y x x y 2.f(x)=2x 2+5x-8, 求f (1) f (3)f( 2)作出图像3.作出⎪⎪⎩⎪⎪⎨⎧>-≤≤-<=2 (22)0........20................sin )(32x x x x x x x x f 的图像,并求f(0.3)17.4.作出y=cosx,cos2x,cos3x 在[0,2π],标出坐标轴并带有三种不同颜色的图像 答案:Solvey 2 4x,x y 3 , x ,yx 1,y 2 , x 9,y 6f x _2x^25x 85x 2fPlot f x , x ,5,5Graphicsg 0.0.79895Plot g x , x ,5,5GraphicsPlot C os x ,Cos 2x ,Cos 3x , x ,0,2Pi ,AxesLabel "x","y" PlotStyle R GBColor 1,0,1 ,RGBColor 0,1,0 ,RGBColor 0,0,1GraphicsSurfaceGraphics实 验 三一、 实验目的1.学习用软件计算极限,判断函数的连续性;2.学习用软件计算一元函数的导数、多元函数的偏导数;3.学习用软件计算隐函数、参数式函数的导数及函数的微分、全微分; 4.学习用软件计算微分方程的解; 5.导数的简单应用. 二、 内容与步骤 1. 极限、连续:1)求一元函数的极限的命令格式是:Limit[f[x],x ->x 0] 表示求函数x →x 0 的极限;Limit[f[x],x ->x 0,Direction ->1] 表示求函数x →x 0-的极限(左极限); Limit[f[x],x ->x 0,Direction ->-1] 表示求函数x →x 0+的极限(右极限).2)若x 趋于无穷,即 x → ∞,则格式为Limit[f[x],x → ∞] x 趋于负无穷或正无穷格式为:Limit[f[x],x → - ∞] , Limit[f[x],x → + ∞]3)注:->∞ 也可由File → Palettes → BasicInput 中的符号输入 例1 求下列函数的极限:(1)443lim 24---→x x x x输入: Limit[4 ,4432→---x x x x ]输出:5 (2)xxx 3arctan lim+∞→输入:Limit[ArcTan[x]3x,x→+∞]输出:0 (3)x x x 2)4751(lim -+∞→ 输入:Limit[x x 2)4751(-+,x→∞] 输出:例2 求 x x e --→133lim 及x x e +-→133lim输入:Limit[,x→3,Direction→1]Limit[,x→3,Direction→-1] (e 为BasicInput 符号栏中的 )输出:0 输出:∞还有一些函数没有极限,此时系统会进行相应的处理,返回一些特殊的结果.例3 求当x →0时,y =sinx1的极限. 解:输入:Limit[Sin[1/x],x→0]输出:Interval[{-1,1}]上面这个例子表示当x →0时,函数sin x1在-1与1之间无穷震荡,所以没有确定的极限.例4 判定函数⎪⎩⎪⎨⎧≤+>=02302sin )(x x x xxx f 在 x=0点是否连续.解:输入:Limit[Sin[2x]x,x →0,Direction→-1] 右极限 输出:2输入: Limit[3x +2, x →0, Direction→1]] 左极限 输出:2输入:3x+2/.x→0 计算函数值 输出:2∴ 函数在x =0这一点连续. 2. 导数、偏导数1)一阶导数)(x f '的命令格式为: D[f ,x] (f 为函数表达式,x 为自变量) 2)n 阶导数)()(x f n 的命令格式为: D[f,{x,n}] (n 为导数的阶数) 3)用BasicInput 工具栏输入: (函数表达式变量∂ 此时的函数表达式可以是一元或多元函数,变量可有一个或多个,使用灵活.如输入: x x 3(求一元函数x 3对x 的一阶导数) 输出:8x输入: x,x x 3(求一元函数x 3对x 的二阶导数) 输出:输入: x x 3y 4x (求二元函数x 3y 4对x 的一阶偏导数)输出:3x 2y 8输入: y x 3y 4x (求二元函数x 3y 4对y 的一阶偏导数)输出:x 38输入: x,x x 3y 4x (求二元函数x 3y 4对x 的二阶偏导数)输出:6x y输入:x,y x 3y 4x (求二元函数x 3y 4先对x 后对y 的二阶偏导数)输出:3x 21输入: y,y x 3y 4x(求二元函数x 3y 4对y 的二阶偏导数)输出:例1 求下列显函数的导数:(1)3532x x y += (2)x e x y 2= (3)12ln +=x x y 解:(1)输入: D[2 x 5+3 x 3,x]输出: 9x 2+10x 4(2)输入:x x输出:2 xx(3)输入:x Log x2x输出:例2 求函数22ln ),(y x y x f +=的偏导数x f ∂∂,y f∂∂,y x f ∂∂∂2解: 输入:输出:x输入: 输出:x输入:输出:例3 求函数5-202Q Q R =,当Q=15和Q=20时的()20)15(R R ''及 解:求函数在一点x 0处的导数值,只需在输入表达式后面再继续输入“/.x→x 0”即可.方法一:输入:D[Q ,5Q -Q 202]/.Q →15 输出:14 (即 (15)14R '=)输入:D[Q ,5Q -Q 202]/.Q →20 输出:12. (即 (20)12R '=)方法二:(函数表达式)变量∂/.x->a输入:输出:输入:输出:12例4 求函数f (x )=sin ax cos bx 的一阶导数dx df ,并求ba x dxdf+=1.解: 输入:x S in a x Cos b x.x a输出:例5 求下列函数的高阶导数:(1)5x y = 求:y ''' (2)x xe y 3= 求:y '' (3)xx xy cos sin sin += 求:y ''解:(1)输入:D[x ^5,{x ,3}]输出:60x 2(2)输入:D[x Exp[3 x],{x ,2}]输出:6 3x9输入:Simplify[D[Sin[x]/(Sin[x]+Cos[x]),{x,2}]] 输出:Cos[x]-Sin[x]Cos[x]+Sin[x]-22()()3. ㈠求隐函数的导数由方程F (x , y )=0 确定的函数)(x f y =,称为隐函数.方法:1)自定义一个导函数G[x_]对F (x ,y )求导,但必须将变量y 输入成y[x],即y 是x 的函数.2)用Solve 函数将y [x]'解出即可.即先求导再解方程.例6 求由方程12222=+by a x 所确定的隐函数的导数.解:方法一输入:D[2222x y[x]+a b-1,x ](先自定义一个导函数G[x],这里表达式中的y 应写成y[x])输出:22b [x]2y[x]y'a 2x + 输入:Solve[G[x]==0,y'[x]](用解方程Solve 命令,从导函数的方程G[x ]=0 中解出y'[x],这里方程必须使用双等号“==” )输出:{{y'[x] → -y[x]a xb 22}}方法二:利用工具栏与解方程语句:输入:输出:例7 已知方程0=-y xe xy 确定一个y 是x 的函数)(x f ,求 )(x f '. 解: 输入:Solve x xx y xy x0,y'输出:例8.设函数满足方程sin x x y ye +=0,求 ()y x '. 解:输入:Solve x x Sin y xy xx 0,y'输出:㈡ 求函数的微分、全微分求函数的微分dy ,其形式为Dt[f(x)].输出的表达式中所含的Dt[x],这里可以视为dx .求函数f (x, y )的全微分dz , 其形式为 Dt[f[x ,y]] 例9 求y =sin2x 的微分dy . 解: 输入:Dt[Sin[2x]]输出:2 Cos[2 x] Dt[x]例10 求函数x e x x y 23ln +=的微分dy . 解: 输入:Dt[x ∧ 3 Log[x]+Exp[2 x]]输出:2 e 2 x Dt[x]+x 2Dt[x]+3x 2Dt[x]Log[x] 再化简一下输入:Simplify[%]输出:Dt[x](2 e 2 x +x 2+3x 2 Log[x]) 即 dx x x x e dy x )ln 32(222++= 例11 求函数u xy z =23的全微分. 解: 输入:Dt[x y^2 z^3]输出:y 2 z 3 Dt[x] + 2 x y z 3 Dt[y] + 3 x y 2 z 2 Dt[z] ㈢ 参数式函数的求导形如 ⎩⎨⎧==)()(t x t y ψϕ 的函数为参数式函数,其导数 t t x x y y ''='. 其输入方式为:例12.设 ⎪⎩⎪⎨⎧==ta y ta x 33sin cos ,求 dx dy解: 输入: 输出:Ta例13.求椭圆⎩⎨⎧==tb y t a x sin cos 在 4π=t 处的导数解: 输入:输出:4.用 Mathematica 解微分方程其格式为: DSolve[微分方程,y[x],x] 注意要将y 输入成y[x] 例14 解微分方程 ()()y x y x '+=1解: 输入:DSolve[y'[x]+y[x]==1,y[x],x]输出:{{y[x]->1+xE C[1]}} 例15 求微分方程(x 2+y 2)dx -xydy =0的通解.解: 输入:DSolve[(x^2+y[x]^2)Dt[x]-x y[x] Dt[y[x]]==0,y[x],x]输出:{{y[x]->-Sqrt[x 2 (C[1]+2 Log[x])]},y[x]-> Sqrt[x 2 (C[1]+2 Log[x])]}}例16 求微分方程 ()x y xy '''+=212满足初始条件10==x y ,3'0==x y 的特解. 解: 输入:DSolve[{(x^2+1)y''[x]==2x y'[x], y[0]==1, y'[0]==3}, y[x],x]输出:{{y[x]-> 1+3 x +x 3}}5.导数的简单应用 (1)求函数的单调区间例17 求函数123+-=x x y 的单调区间解:函数的单调区间需要用到一阶导函数的图像、一阶导函数为零的驻点.输入:f x _ : x 32(建立函数) Plotf x ,f' x, x ,3,3 ,PlotStyle G rayLevel 0.01 ,Dashing0.01(画函数与导函数图像,其中虚线为导函数图像)输出:输入:Solve f ' x(求函数的驻点) 输出:观察图像,两个驻点将定义域分成三个区间,可看出函数在 ),32,(--∞),32(+∞内为增函数,在)32,32(-内为减函数.(2)求函数的极值例18 求函数21xxy +=的极值 解: 输入:g x _ : 1 Plotg x ,g' x, x ,3,3 ,PlotStyle G rayLevel 0.01 ,Dashing0.01输出:输入:Solve g ' x输出: x 1 , x(从图中可看出两驻点分别是极小值点和极大值点)输入: g输出:2(3)求极值的近似值 例19 求函数)2(cos 25)2(sin 222xx x y +=位于),0(π内的极值的近似值. 解:输入:Plot f x , x ,0,输出:观察图形,函数约在x=0.8、x=2.3处有极大值,在x=1.6处有极小值,可用命令FindMinimum 直接求极值的近似值,其格式为:FindMinimum[f[x],{x ,x 0}],求以x 0为初始点的局部极小值.FindMinimum 只可求极小值的近似值,欲求极大值的近似值,须将函数换成相反函数.输入: FindMinimum f x , x ,1 输出:1.94461, x 1.623即同时得到极小值1.94461和极小值点1.62391 输入:FindMinimum f x , x ,0输出: 3.73233,x 0.8641输入: FindMinimum f x , x ,2输出:2.95708,x 2.244即函数-y 的两个极小值和两个极小值点,从而得到函数y 的两个极大值和极大值点.(4)最大、最小值的应用例20 要制造一个容积为2,上端为半球形,下端为圆柱的粮仓,问:当圆柱的高和底半径为何值时,粮仓的表面积最小? 解: 设粮仓的表面积为S ,圆柱的高为h>0, 底半径为r>0.由题意,粮仓的容积2=323421 r h r ππ⋅+,则 )31 1(2 322223r r r r h -=-=πππ ∴粮仓的表面积S=⋅r 2π)31 1(22r r -π+324 42122r r r ππ+=⋅. 输入: FindMinimum[4/r+2πr 2/3,{r,10}] 输出:{6.09295,{r →0.984745}}.(5)微分方程的应用例21 一质量为m 千克的物体从高处下落,所受空气阻力与速度成正比,设物体开始下落时(t=0)的速度为零,求物体下落速度与时间的函数关系v (t). 解:设物体所受空气阻力为f ,由题得 kv f =(k 为比例系数),下落时所受重力为mg ,根据牛顿第二定律有 v m ma kv mg f mg '==-=- 输入:DSolvem v' t m g k v t ,v 0 0 ,v t输出: 输入:Simplif输出:习题3 (每小题中括号内为该题答案)1. 求导数:(1)tan )2xy =[(2)1124=y (3)sin cos cos x y y y -+=220 求 .y '(4)cos()sin ,y xy x =223求 .y ' 326s i n [3x ]c o s [3x ]+y s i n [x y ][]2ycos[xy]-xy sin[xy](5),6x e y x ⋅= 求 )1()5(y [4051e] (6)x y z cos = , 求 y x z z '' , [y Si ,Co](7)xy e z =,求 y x z z '' , [,](8)求 y e z x cos sin = 的二阶偏导数 [SinxCos x2Cos ySin xCos y Si,SinxCos x Si,Sin xCo] (9) 求函数 ⎪⎩⎪⎨⎧==-tt ey tex 的导数[(10)求函数 ⎩⎨⎧-=-=)cos 1()sin (t a y t t a x 的导数[2.求微分及全微分:(1)674335+-+=x x x y [7Dt x 12x 2Dt x 15x 4D] (2)32cot(ln )=x y ex[(3)xxx y ++=1sin ln [(4)y e z x sin = [ xCos y Dt yxDt x Si] (5))cos(y x x z += [Cos x y Dt x x Dt x Dt ySinx] 3.解微分方程 (1)求微分方程yxdx dy -=的通解. [(2)求微分方程0)1(22=++dy x dx xy 的通解.[(3)求微分方程x yx y dx dy tan +=的通解. [{y xx ArcSin x}] (4)求微分方程x x x y dxdysin 2cot =-的通解.[y x x 2Sin x C 1 Sin] (5)求微分方程42x y y x =+'满足初始条件61)1(=y 的特解. [ y x]4.求下列极限 (1)1lim1-+→x xx [∞](2)11lim31++-→x x x [31 ] (3)121lim +-∞→⎪⎭⎫⎝⎛+x x x x [ 2e ](4)判断函数 ⎪⎩⎪⎨⎧>≤-=0,0,1)(2x x x x x f 在 0=x 处是否连续? [ 不连续 ]实 验 四一、 实验目的1、 学习用软件计算不定积分;2、 学习用软件计算定积分、二重积分和广义积分;3、 定积分的简单应用,求平面面积和旋转体体积. 二、 内容与步骤 1.不定积分输入格式: BasicInput 符号栏中的符号注意:输出结果均不带积分常数. 例1 求下列不定积分 ⎰dx x5解:输入:x输出:6x 62. 定积分输入格式: BasicInput 符号栏中的符号例2 求下列定积分 ⎰-212 1dx x x解:输入:输出:3 例3 计算广义积分⎰+∞∞-+dx x 211解:输入:输出:例4 计算由抛物线2x y =和直线x y =所围成的平面图形的面积及该图形绕x 轴旋转一周所得的旋转体体积(表示出必要的步骤)解:(1)求交点输入:Solvey x,y x^2 , x ,输出: y 0,x 0 , y 1,x(2)作图 输入:Plotx ,x^2 , x ,2,输出:GraphClea Clea(3)定积分求面积输入:1 x x^2输出:6(4)定积分求体积输入:1x 2x输出:13.二重积分用Mathematica 计算二重积分的命令格式是:输入方法:先输入一元定积分符号,在中间积分变量的位置再输入一次定积分符号,作为累次积分的第一次积分.括号内为第一次积分,括号外为第二次积分. 例5 计算⎰⎰+1212x xxydy dx解: 输入:012xx 21x y输出:121 例6 计算⎰⎰+=Ddxdy y x I )(22, 其中D 由2 ,21,===y x y x y 围成解:①画平面区域图输入:输出:② Y - 型区域输入: 02y2yx 2y 2输出:3习题4(每小题中括号内为该题答案)求下列积分:(1)⎰-dx x x x)11(2[x+x](2)⎰+dx xsin 11[x 2Sin[]2x x Cos[]+Sin[]22] (3)⎰+dx x x 3)cos (sin [1(-9Cos[x]-Cos[3x]+9Sin[x]-Sin[3x])6](4)2ln(sin )sin x dx x⎰[ -x-Cot[x]-Cot[x] Log[Sin[x]]] (5)⎰xdx x arctan 2 [(6)21sin 1cos x xdx x++⎰ [(7)⎰--1145dx xx [6](8)⎰∞--02dx xex [](9)[2](10) 计算由曲线282yx =-和x 轴所围成的平面图形的面积及该图形绕x 轴旋转一周所得的旋转体体积(表示出必要的步骤)[3,(11)计算由曲线21yx =-和22y x =+所围成的平面图形的面积及该图形绕x 轴旋转一周所得的旋转体体积(表示出必要的步骤) 过程: Solvey x 21,y 2x 2 , x ,y 0,x 1 , y 8,xPlotx 21,2x 2 , x ,2,Graph132x 2 x 213132x 2 ^2 x 21 ^2(12)计算二重积分3y Ded σ-⎰⎰,其中D 由20,1,x y y x ===围成过程:①画平面区域图② Y - 型区域1y 2 y3第二篇 线性代数实验 一一、实验目的6.掌握Mathmatica 中矩阵的输入方法; 7.学习用Mathmatica 软件计算行列式;8.学习用Mathmatica 软件进行矩阵的基本运算; 9.学习用Mathmatica 求逆矩阵及矩阵的秩.二、内容与步骤1.Mathmatica 中矩阵的输入方法 (1)按表的格式输入: (一般方法)}}{},{},{{1212222111211mn ,m ,m n ,,n ,,a a a a a a a a a A ,生成m 行n 列的矩阵(2)菜单输入:(适用于大矩阵) a)打开主菜单Input 项;b)单击Create Table/Matrix 项,输入行数及列数,填数即可。

数学实验mathmatics基础知识

数学实验mathmatics基础知识

数学实验-----1. Mathematica基础Mathematica自1988年由美国的Wolfram Research公司首次推出,是一个功能强大的常用数学软件, 不但可以解决数学中的数值计算问题, 还可以解决符号演算问题, 并且能够方便地绘出各种函数图形。

常用数学软件之比较,Matlab Mathematica MathCAD Maple1. Mathematica基本使用(1)在工作区(软件打开初始时,左侧的窗口,上方有untitled-1*)输入命令,按Shift+Enter 组合键执行命令;如输入“2+3”,按Shift+Enter执行后,窗口显示In[1]:= 2 + 3Out[1]= 5其中“In[1]:=,Out[1]=”为系统自动添加(不必管),In[1]括号内数字1表示第1次输入。

如果不想显示此次输入的结果,只要在所输入命令的后面再加上一个分号便可。

(2)软件打开初始时,右侧有一个运算符号面板,可以更方便命令输入,如级数,积分,数学符号等。

(3)除可以用直接键盘输入的方法进行输入外, 还可以用打开的方式从磁盘中调入一个已经存在的文件来进行操作。

2. Mathematica的基本语法特征(1)Mathematica中区分大、小写,如Name、name、NAME等是不同的变量名或函数名。

(2)系统所提供的功能大部分以系统函数的形式给出,内部函数一般写全称,而且一定是以大写英文字母开头,如Sin[2]等。

(3)乘法即可以用*,又可以用空格表示,如2 3=2*3=6 ,x y,2 Sin[x]等;乘幂可以用“^”表示,如x^0.5,Tan[x]^y。

(4)自定义的变量可以取几乎任意的名称,长度不限,但不可以数字开头。

(5)当赋予变量任何一个值,除非明显地改变该值或使用Clear[变量名]或“变量名=.”取消该值为止,否则它将始终保持原值不变。

(6)一定要注意四种括号的用法:()圆括号表示运算项的结合顺序,如(x+(y^x+1/(2x)));[]方括号表示函数,如Log[x], BesselJ[x,1];{}大括号表示一个“表”(一组数字、任意表达式、函数等的集合),如{2x,Sin[12 Pi],{1+A,y*x}};[[]]双方括号表示“表”或“表达式”的下标,如a[[2,3]]、{1,2,3}[[1]]=1。

mathematica 符号运算

mathematica 符号运算

Mathematica是一款强大的数学软件,主要用于符号运算、数值计算、数据可视化等。

以下是一些基本的Mathematica符号运算操作:1. **基本操作**:* 定义变量:例如,`a = 5`* 代数运算:例如,`2 + 3` 返回 `5`,`2 - 3` 返回 `-1`,`2 * 3` 返回 `6`,`2 / 3` 返回 `2/3`* 幂运算:例如,`a^2` 返回 `25`2. **函数操作**:* 内置函数:例如,`Sin[x]`、`Cos[x]`、`Sqrt[x]` 等。

* 自定义函数:例如,`f[x_] := x^2 + 3x + 2`3. **代数方程求解**:* 一元方程:例如,`Solve[x^2 - 4 = 0, x]` 返回 `{x: -2, x: 2}`* 二元方程组:例如,`Solve[{x + y == 3, x - y == 1}, {x, y}]` 返回 `{x: 2, y: 1}`4. **微积分运算**:* 求导数:例如,`D[f[x], x]` 对于函数 `f[x] = x^2` 返回`2x`* 求积分:例如,`Integrate[f[x], x]` 对于函数 `f[x] = x^2` 返回 `x^3/3`5. **极限和连续性**:* 求极限:例如,`Limit[f[x], x -> a]` 对于函数 `f[x] = x^2` 当 `x -> a` 时返回 `a^2`(注意,这仅在 `a = -∞, +∞, 或 a 是某函数的可去间断点时才有意义)6. **级数和序列**:* 级数求和:例如,对于级数 `1 + 1/2 + 1/3 + ...`,使用`Sum[1/n, {n, 1, Infinity}]` 可得结果为`π^2/6`。

7. **符号表达式的简化**:* 化简表达式:例如,使用 `Simplify[expr]` 可以化简符号表达式。

Mathematic简单教程

Mathematic简单教程

Mathematic简单教程§1 初等代数1.有理式的运算1.多项式的展开(常用命令见表1.1)In[1]:= f=Expand[(x+y+3)^2]Out[1]:= 9+6x+x^2+6y+2xy+y^2In[2]:= Factor[f]Out[2]:= (3+x+y)^2In[3]:= Exponent[f,x]Out[3]:= 2In[4]:= Coefficient[f,x]Out[4]:= 6+2y2.有理式的运算(常用命令见表1.2)In[5]:= Factor[(x^3+2x+1)/(x^3+x^2+x+1)]Out[5]:= (1+2x+x^3)/(1+x)(1+x^2)In[6]:= Apart[%]In[6]:= 1-1/(1+x)+1/(1+x^2)3.多项式的代数运算(常用命令见表1.3)In[7]:=PolynomialQuotient[1+x^2,x+1,x]Out[7]:=-1+xIn[8]: =PolynomialGCD[x^2+2X+1,x^3+1,x^5+1]Out[8]:=1+x1.2 方程求解In[1]:=Solve[a*x+b==0,x]Out[1]={{x->-b/a}}In[2]:=Reduce[a*x+b==0,x]Out[2]= b==0&&a==0\\a≠0&&x==-b/aIn[3]: = FindRoot[Sin[x]==0,{x,3}]Out[3]= {x->3.14159}In[4]:= FindRoot[Sin[x]==0,{x,{6,6.5}}]Out[4]= {x->6.28319}In[5]:= FindRoot[{2^x+y^2==4,x^2+Sin[y]==1},{x,0},{y,0}]2微积分In[1]: = Limit[Sin[x]/x,x->0]Out[1]=1In[2]:=DI[Sin[n*x],x]Out[2]=nCos[nx]微积分的常用命令如表1.5所示,下面是一些例子。

Mathematic教程

Mathematic教程

(2)求微分:dy=f(x)dx
命令形式:Dt[f]
功能: 对函数f(x)求微分df
例 求y=sinx2的微分dy.
In[20]:=Dt[Sin[x^2]]
Out[20]=2xCos[x2]Dt[x]
3、求不定积分与定积分
(1)求不定积分 命令形式:Integrate[f, x] 1 dx 例 计算 2 2 sin xcos x In[21]:=Integrate[1/(Sin[x]^2 Cos[x]^2),x] Out[21]=-Cot[x]+Tan[x] (2)计算定积分 命令形式1: Integrate[f[x],{x,xmin,xmax}] 功能:计算定积分 xmin,xmax表示积分下限和上限。 命令形式2: NIntegrate[f[x],{x,xmin,xmax}] 功能: 计算定积分的数值积分,xmin,xmax必须 是数字,不能是字母。
7、初等代数运算
(1)多项式运算与因式分解 Expand[多项式] 将多项式按升幂展开 Factor[多项式] 将多项式进行因式分解 Simplify[多项式] 将多项式化为最简形式 Collect[多项式,x] 将多项式按x的同次幂合并形式展开
例1 设q=(1+2x-y)2,将q展开. In[6]:=q=Expand[(1+2*x-y)^2] Out[6]=1+4x+4x2-2y-4xy+y2 例2 将多项式120-46x-19x2+4x3+x4分解因式. In[7]:=Factor[120-46*x-19*x^2+4*x^3+x^4] Out[7]=(-3+x)(-2+x)(4+x)(5+x)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教师指导实验2
实验名称:基本代数式运算
一、问题:代数式的展开、分解、化简等运算。

二、实验目的:
学会使用Simplify,FullSimplify 对代数式进行化简;用Collect,Factor 对代数式进行合并同类项和因式分解;能对分式进行约分、通分和分解;能用不同的函数对代数式进行展开。

三、预备知识:本实验所用的Mathematica 命令提示。

1、Simplify[expr] 化简表达式expr ,FullSimplify[expr] 更广义的化简表达式expr[
2、Collect[expr,x] 将表达式expr 中的x 的同次幂合并,Factor[expr]分解expr[
3、Cancel[expr] 将分式expr 约分,Together[expr] 将分式expr 通分,Apart[expr] 将分
式expr 分解为最简分式和;
4、Expand[expr] 展开表达式expr ,ExpandAll[expr] 将表达式expr 彻底展开,
ExpandNumerator[expr] 只展开分式expr 的分子, ExpandDinominator[expr] 只展开分式expr 的分母。

四、实验的内容和要求:
1、用函数Simplify[expr] 和FullSimplify[expr] 化简2
2
sin 2sin cos cos x x x x ++,并 观察化简的结果;
2、依次使用Collect[expr,x] 和Factor[expr],将4223222
3
322x a x x a x a x ---+-合并
为x 的同类项,并于以因式分解;
3、对分式2222
434
1
x x x x x x x -+-+--进行约分,通分及展开为最简分式和; 4、用4个不同的代数式展开函数展开3
2
()()a b c d +-,比较展开结果的不同。

五、操作提示
1、用函数Simplify[expr] 和FullSimplify[expr] 化简2
2
sin 2sin cos cos x x x x ++ In[1]:= Simplify [ Sin[ x ]^2 + 2 Sin[ x ] Cos[ x ] + Cos[ x ]^2 ] Out[1]= (Sin[x] + Cos[x])2
In[2]:= FullSimplify [ Sin[ x ]^2 + 2 Sin[ x ] Cos[ x ] + Cos[ x ]^2 ] Out[2]= 1 + Sin[2 x]
2、依次使用Collect[expr,x] 和Factor[expr],将4223222
3
322x a x x a x a x ---+-合并
为x 的同类项,并于以因式分解;
In[3]:= Collect [x 4 – 3 a 2 – 3 x 2 – 2 x 3 + a 2 x 2 – 2 a 2 x , x ] Out[3]= - 3 a 2 -2 a 2 x + (- 3 + a 2 ) x 2 – 2 x 3 + x 4
In[4]:= Collect [x4 – 3 a2 – 3 x2 – 2 x3 + a2 x2 – 2 a2 x , a ] Out[4]= – 3 x2 – 2 x3 + x4 + a2 ( -3 – 2 x + x2)
In[5]:= Factor [x4 – 3 a2 – 3 x2 – 2 x3 + a2 x2 – 2 a2 x ] Out[5]= (- 3 + x ) (1 + x ) ( a2 + x2 )
3、对分式
22
22
434
1
x x x x
x x x
-+-
+
--
进行约分,通分及展开为最简分式和;
In[6]:= r =
22
22
x-4x x+3x-4
+
x-x x-1
; Cancel [ r ]
Out[6]= -4+x4+x
+
-1+x1+x
In[7]:= Together [ r ]
Out[7]=
2
2(-4+x) (-1+x)(1+x)
In[8]:= Apart [ r ]
Out[8]= 2-
33
+
-1+x1+x
4、用4个不同的代数式展开函数展开
3
2 () () a b c d +
-
In[9]:= p = ( a + b ) ^ 3 / ( c – d ) ^ 2 ; Expand [ p ]
Out[9]=
3223
2222 a3a b3ab b
+++
(c-d)(c-d)(c-d)(c-d)
In[10]:= ExpandAll [ p ]
Out[10]=
3223 22222222 a3a b3ab b
+++
c-2cd+d c-2cd+d c-2cd+d c-2cd+d
In[11]:= ExpandNumerator [ p ]
Out[11]=
+
3223
2
a3a b+3ab+b
(c-d)
In[12]:= ExpandDenominator [ p ]
Out[12]=
3
22 (a+b)
c-2cd+d
学生练习实验2
实验名称:基本代数式运算
一、问题:代数式的展开、分解、化简等运算 二、实验目的:
学会使用Simplify,FullSimplify 对代数式进行化简;用Collect,Factor 对代数式进行合并同类项和因式分解;能对分式进行约分、通分和分解;能用不同的函数对代数式进行展开。

三、实验的内容和要求:
1、化简3
3sin 4sin x x -
2、将222()()()4x y z y z x z x y xyz +++++-展开,合并,因式分解;
3、将222
2143
11
x x x x x x +++++-+约分、通分、分解成最简分式的和。

四、问题解答:
1、化简3
3sin 4sin x x -
In[1]:= Simplify [ 3 Sin [ x ] – Sin [ x ]^3 ] Out[1]= Sin [ 3 x ]
In[2]:= TrigExpand [ Sin[ 3 x ]]
Out[2]= 3 Cos [ x ]2 Sin [ x ] – Sin [ x ]3
2、将222()()()4x y z y z x z x y xyz +++++-展开,合并,因式分解; In[3]:= m = x ( y + z ) 2 + y ( z + x ) 2 + z ( x + y ) 2 – 4 x y z ; Expand [ m ] Out[3]= x 2 y + x y 2 + x 2 z + 2 x y z + y 2 z + x z 2 + y z 2 In[4]:= Collect [ % ,x ]
Out[4]= y 2 z + y z 2 + x 2 ( y + z ) + x ( y 2 +2 y z + z 2 )
(注:在Mathematica 中%表示上一个输出结果)
In[5]:= Factor [ m ]
Out[5]= ( x + y ) ( x + z ) ( y + z )
3、将222
2143
11
x x x x x x +++++-+约分、通分、分解成最简分式的和。

In[6]:= n =222x +2x +1x +4x +3
+x -1x +1; Cancel [ r ]
Out[6]= 1+x 3+x +
-1+x
In[7]:= Together [ n ]
Out[7]= 2
-2+3x +x -1+x
In[8]:= Apart [ n ]
Out[8]=
2
4++x
-1+x。

相关文档
最新文档