空间中的平行关系PPT教学课件

合集下载

高中数学必修二《空间中的平行关系》课件

高中数学必修二《空间中的平行关系》课件
∴BC⊥平面A1AD. ∴A1D⊥BC,∵BC∥B1C1,∴A1D⊥B1C1. 证法二:如右图所示, ∵三棱柱ABC—A1B1C1为正三棱柱, ∴ A1C = A1B.∵ 点 D 是 等 腰 △ A1CB 的 底 边 BC 的 中 点 ,
∴A1D⊥BC.∵BC∥B1C1, ∴A1D⊥B1C1.
(2)直线A1B∥平面ADC1.以下给出证明: 证法一:如右图,设A1C交AC1于F,则F为A1C的中点.∵D
时,计算α和β的度数.
解答:(1)证法一:如右图①,过点M作MH⊥AB于H, 则MH∥BC,且不难知Rt△AMH∽Rt△ABC. ∴.连结HN,又∵AM=FN,且AC=BF, ∴. ∴HN∥AF,即HN∥BE,∴平面MHN∥平面BEC. ∴MN∥平面BEC.
证法二:如右图②连结AN,并延长与BE相交于G,连结CG.∵AF∥BG, ∴△ANF∽△GNB,∴. ∵FN=AM,AC=BF,∴. ∴, 则MN∥CG.由于MN是平面BGC外的一条直线, ∴MN∥平面BGC,即MN∥平面BEC.
平面平行的判定定理,是利用了线面平行来推证的,即需要找到或证出两条相 交直线平行于另一平面.这是判定两平面平行的主要方法.还可以通过一些 垂直关系来判定.Z````xxk
【例2】正方形ABCD和正方形ABEF所在平面互相垂直,M、N分别是对角线 AC和BF上的点,且AM=FN. (1)求证:MN∥平面BEC; (2)设正方形的边长为a,AM=FN=b,求MN的长; (3)若α和β分别表示直线MN和AC及MN和BF所成的锐角,当线段MN的长度最短
平行. 8.性质:如果两个平面平行,那么其中一个平面内的平行于直另线一个平面.
1.若P是平面α外一点,则下列命题正确的是( ) A.过P只能作一条直线与平面α相交 B.过P可作无数条直线与平面α垂直 C.过P只能作一条直线与平面α平行 D.过P可作无数条直线与平面α平行 答案:Dzx``xk

高一数学课件必修2《空间中的平行关系》

高一数学课件必修2《空间中的平行关系》

D A
D A
C B
C B
学以至用
例1:已知:空间四边形ABCD中,E、F分别是 AB、AD的中点.
求证:EF∥平面BCD.
A
ELeabharlann FD BC
直线和平面平行的性质:
如果一条直线和一个平面平行,经过这条直线的 平面和这个平面相交,那么这条直线就和两个平面 的交线平行。
l∥ ,l , m, l ∥ m

实例感受
A
B
A
B
直线与平面平行判定定理
平面外一条直线与此平面内的一条直线平行,则 该直线与此平面平行.
a
a
b
b
a //
b// a
证明直线与平面平行,三个条件必须具备,才能 得到线面平行的结论.
线线平行
线面平行
随堂练习
1.如图,长方体 ABCD ABCD中, 与AB平行的平面是 平面 ABCD 平面 CCD;D
1.2.2空间中的平行关系(1)
直线与平面有几种位置关系? 三种: 线在面内 线面相交 线面平行
线面位置关系
关系 内容
直线在平面内
直线与平面相交 直线与平面平行
特征
有无数个
公共点
a 图形表示
有且只有一个 没有公共点 公共点
a
a
A


符号表示
a
a ∩=A
a ∥
怎样判定直线与平面平行
a
例2:AB∥平面 ,AC∥BD,且AC,BD与 分别
交于点C,D 求证:EF∥平面BCD.
A
B
C
D
例3:已知:长方体ABCD-A1B1C1D1,求证:A1C1 // 平面B1AC

高中数学1.2.2《空间中的平行关系》课件人教B版数学必修2

高中数学1.2.2《空间中的平行关系》课件人教B版数学必修2

如图:空间四边形ABCD中,AC、BD是 它的对角线
空间四边形的常见画法经常用一个平面衬 托,如下图中的两种空间四边形ABCD和 ABOC.
6. 异面直线所成的角:已知两条异面直 线a、b,经过空间任意一点O作直线a’//a, b’//b,由于a’、b’所成的角的大小与点O 的选择无关,我们就把a’与b’所成的锐角 或直角叫做异面直线所成的角.
b a′ ? OP a
b′ a′ θ O
若两条异面直线所成角为90°,则称 它们互相垂直。 异面直线a与b垂直也记作a⊥b
异面直线所成角θ的取值范围:(0,90]
空间两条直线的位置关系有三种:
位置关系
共面情况
公共点个数
相交直线 在同一平面内 有且只有一个
平行直线 在同一平面内
没有
异面直线 不在任何一平面内 没 有
所以四边形EFGH是平行四边形。
A
E
H
B
D
F
G
C
例2.如图:在长方体ABCD-A1B1C1D1
中,已知E,F分别是AB , BC 的中点,
求证:EF∥A1C1.
证明:连结AC.
D1
C1
在△ABC中, E, F分别A1
B1
是AB, BC 的中点.
所以 EF ∥ AC
D
A
E
C F B
又因为 AA1∥BB1 且 AA1 = BB1 BB1∥CC1 且 BB1 = CC1
公理4反映了两条直线的位置关系. 公理4主要用来证明两条直线平行,它是 证明两直线平行的重要依据.
4. 等角定理:
如果一个角的两边和另一个角的两边分 别平行并且方向相同,那么这两个角相等.
已知:如图所示,∠BAC和 ∠B1A1C1的边AB//A1B1, AC//A1C1,且射线AB与A1B1 同向,射线AC与A1C1同向, 求证:∠BAC=∠B1A1C1.

1.2.2《空间中的平行关系》课件1

1.2.2《空间中的平行关系》课件1

如果一个角的两边与另一个角的两边 分别对应平行,并且方向相同, 分别对应平行,并且方向相同,那么这 两个角相等。 两个角相等。
等角定理: 等角定理:如果一个角的两边与另一个 角的两边分别对应平行,并且方向相同, 角的两边分别对应平行,并且方向相同,那 么这两个角相等。 么这两个角相等。
C1 B1 A1
已知E、 、 、 分别是空间四边形四条 例3.已知 、F、G、H分别是空间四边形四条 已知 的中点, 边AB、BC、CD、DA的中点, 、 、 、 的中点 求证: 是平行四边形. 求证:EFGH是平行四边形 是平行四边形
练习1:在空间四边形 练习 :在空间四边形ABCD中,E、 中 、 F、G、H分别是棱 分别是棱AB ,BC,CD,DA的 、 、 分别是棱 , 的 中点,若对角线AC与 相等 求证: 相等, 中点,若对角线 与BD相等,求证: 四边形EFGH是菱形。 是菱形。 四边形 是菱形
A
E
H
B F C G
D
练习2 是空间四边形, 练习2:已知四边形ABCD是空间四边形,E、H分别 的中点, 是边AB、AD的中点, F,G 分别是边CB,CD上的点,且 上的点,
CF CG 2 = = , CB CD 3 求证: 求证:四边形EFGH是梯形
c
β
b a

b a c
一条直线的两直线平行, 一条直线的两直线平行,在空间中此 结论仍成立吗? 结论仍成立吗?
问题1:在同一平面内, 问题 ? :在同一平面内,平行于同
问题:把一张长方形的纸对折几次, 问题:把一张长方形的纸对折几次, 打开,观察折痕, 打开,观察折痕,这些折痕之间有什么 关系? 关系?
已 : BAC 和∠B AC1的 AB // A B, 知 ∠ 边 1 1 1 1 AC // AC1, 且方 并 向相 。 同 1 求 : ABC = ∠A B C1 证 ∠ 1 1

《空间图形平行关系》课件

《空间图形平行关系》课件

电子产品的设计
在电子产品设计中,空间图形平 行关系的应用也十分重要。例如 ,在电路板的设计中,平行关系 的运用可以确保电子元件的精确 安装和信号传输的稳定性。
物理学中的应用
力学研究
在物理学中,空间图形平行关系在力学研究中具有重要意义。例如,在研究物 体的运动规律时,平行关系的运用可以帮助我们更好地理解力和运动的关系, 探究物体运动的规律和原理。
平行直线的传递性
如果两条直线都与第三条直线平行,那么这两条直线也互相平行。
01
空间图形平行关系 的实际应用
建筑学中的应用
建筑设计中的空间布局
空间图形平行关系在建筑设计中有着广泛的应用,如建筑物的平面布局、立面设计和室内装饰等。通过合理运用平行 关系,可以创造出舒适、美观和功能合理的建筑空间。
建筑结构的稳定性
电磁学研究
在电磁学研究中,空间图形平行关系的应用也十分广泛。例如,在研究电磁波 的传播和辐射时,平行关系的运用有助于我们更好地理解电磁场的分布和变化 规律。
01
空间图形平行关系 的习题与解析
基础习题
总结词
考察基础概念和性质的理解
详细描述
包括判断两条直线是否平行、判断平面是否平行等基础题目,旨在帮助学生掌握 空间图形平行关系的基本概念和性质。
02
平行平面之间的角度不变
两个平行平面被一个垂线所截,所形成的同位角是相等的。
03
平行平面的传递性
如果两个平面都与第三个平面平行,那么这两个平面也互相平行。
平行直线的性质定理
平行直线具有相同的方向
两条平行直线具有相同的方向,即它们都是沿着同一方向无限延伸的。
平行直线之间的距离是固定的
两条平行直线之间的距离是固定的,不受其他图形的影响。

空间中的平行关系PPT教学课件

空间中的平行关系PPT教学课件

2.631020 J
v12
3RT1 M mol
3 8.311273 28 103
1064
m s1
t2
3 2
k
T2
3 1.381023 273 5.651021J 2
v22
3RT2 M mol
38.31 273 28 10 3
493
m s1
t3
3 2
kT3
2.55 10 21
RT
mN mNA
kNA T
NkT
理想气体物态方程:
P nkT
标准状态下的分子数密度:
洛喜密脱数: no 2.69 1025 (m 3 )
例3.1;3.2(p107-108)
§4 气体动理论压强公式
4.1 压强的成因 压强:气体作用于容器壁单位面积上的垂直作用力 分子数密度 31019 个分子/cm3 = 3千亿个亿;
物质的微观结构 + 统计方法 ------称为统计力学 其初级理论称为气体分子运动论(气体动理论) 优点:揭示了热现象的微观本质。 缺点:可靠性、普遍性差。
宏观法与微观法相辅相成。
气体动理论 §1 分子运动的基本概念
一.热力学系统 热力学研究的对象----热力学系统. 热力学系统以外的物体称为外界。 孤立系统:系统和外界完全隔绝的系统
所以DD1E1E是平行四边形。 在△ADE和△A1D1E1中. AD=A1D1, AE=A1E1,DE=D1E1, 于是△ADE≌△A1D1E1, 所以∠BAC=∠B1A1C1.
5. 空间四边形的有关概念:
(1)顺次连结不共面的四点A、B、C、D 所构成的图形,叫做空间四边形; (2)四个点中的各个点叫做空间四边形 的顶点; (3)所连结的相邻顶点间的线段叫做空 间四边形的边; (4)连结不相邻的顶点的线段叫做空间 四边形的对角线。

空间中的平行关系PPT教学课件

空间中的平行关系PPT教学课件

D1
C1
利用相似三角形对应边成比例A1 及平行线分线段成比例的性质
PBM∽ AA1 M
PM MA
PB AA1
M D
B1
P N C
PBN ∽CC1N
PN NC
PB CC1
A
B
PM PN CC1 AA1 AC // MN
MA NC MN 面ABCD
MN // 面ABCD
AC 面ABCD
证明2:
(1)文字语言:如果一条直线和一个平
面平行,经过这条直线的平面和这个平
面相交,那么这条直线就和交线平行.
a
(2)图形语言:
b
a//α
(3) 符号语言: a β
α∩β=b
a//b
已知:l //α,l β,α∩β=m,
求证:l //m.
l
证明:因为l //α,所以
m
l与α没有公共点,
又因为m在α内,所以l与m也没有公共点.
3.与直线AD平行的平面是______.
4.
长方体ABCD-A1B1C1D1中,点P BB(1 异于B、B1)
PA BA1 M , PC BC1 N ,
求证:MN // 平面ABCD
D1
C1
问题的关键是证明MN//AC,
A1
B1
在⊿PAC中,证明 PM:MA=PN:NC.
P
M
N
D
C
A
B
证法1
问题探讨:
前面已经学过苯不溶于水,乙醇极 易溶于水,那么同时具有苯环和羟 基的苯酚的溶解性又如何呢?
实验探究一: 苯酚的溶解性
注意:应配置约1520ml苯酚溶液以供后 面的实验使用。
实验条件

高考 空间中的平行关系 课件(共52张PPT)

高考 空间中的平行关系 课件(共52张PPT)
栏目 导引
第八章
立体几何
【名师点评】
利用线面平行的性质定
理证明线线平行,关键是找出过已知直
线的平面与已知平面的交线.
栏目 导引
第八章
立体几何
考点4
平面与平面平行的性质
平面与平面平行的判定与性质,同直线
与平面平行的判定与性质一样,体现了
转化与化归的思想. 性质过程的转化实施,关键是作辅助平 面,通过作辅助平面得到交线,就可把面 面平行化为线面平行并进而化为线线平
定定理即可证明.
栏目 导引
第八章
立体几何
【证明】 △ABC 中,E、F 分别为 AB、AC 的中点, ∴EF∥BC. 又∵EF⃘ 平面 BCGH,BC⊂平面 BCGH, ∴EF∥平面 BCGH. 又∵G、F 分别为 A1C1、AC 的中点, ∴A1G FC. ∴四边形 A1FCG 为平行四边形. ∴A1F∥GC.
α∥c ③ ⇒α∥β β∥c α∥c ⑤ ⇒α∥a a∥c α∥γ ④ ⇒α∥β β∥γ a∥γ ⑥ ⇒α∥ α∥γ
栏目 导引
第八章
立体几何
其中正确的命题是( A.①②③ B.①④⑤ C.①④
)
D.①④⑤⑥
答案:C
栏目 导引
第八章
立体几何
4.正 方体 ABCD- A1B1C1D1 中,E是 DD1 的中点,则BD1与平面ACE的位置关系为 __________.
栏目 导引
第八章
立体几何
又 A1F⊄平面 BCGH,CG⊂平面 BCGH, ∴A1F∥平面 BCGH. 又∵A1F∩EF=F, ∴平面 A1EF∥平面 BCGH.
栏目 导引
第八章
立体几何
【名师点评】

高中必修高一数学PPT课件空间中的平行关系共25页

高中必修高一数学PPT课件空间中的平行关系共25页
高中必修高一数学PPT课件空间中的 平行关系
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 Байду номын сангаас7、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯
END
40、人类法律,事物有规律,这是不 容忽视 的。— —爱献 生
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、一壶水开了,水变成了水蒸气。 2、温度降到0℃以下,液体的水变成了固体的冰块。 3、气体被压缩,产生压强。 4、物体被加热,物体的温度升高。
热现象
热学的研究方法:
1.宏观法. 最基本的实验规律逻辑推理(运用数学) ------称为热力学。
优点:可靠、普遍。 缺点:未揭示微观本质。 2.微观法.
证明:对于∠BAC和∠B1A1C1在同一个平 面内的情形,在初中几何中已经证明, 下面证明两个角不在同一平面内的情形。 分别在∠BAC的两边和 ∠B1A1C1的两边上截取线 段AD=A1D1和AE=A1E1.
因为,AD/ /A1D1 所以 AA1D1D 是平行四边形,
所以 AA1 / /DD1
同理可得 AA1 / /EE1
如图:空间四边形ABCD中,AC、BD是 它的对角线
空间四边形的常见画法经常用一个平面衬 托,如下图中的两种空间四边形ABCD和 ABOC.
6. 异面直线所成的角:已知两条异面直 线a、b,经过空间任意一点O作直线a’//a, b’//b,由于a’、b’所成的角的大小与点O 的选择无关,我们就把a’与b’所成的锐角 或直角叫做异面直线所成的角.
A.空间四边形 B.菱形
C.正方形
D.梯形
5. 设AA1是正方体的一条棱,这个正方 体中与AA1 平行的棱共有__3 _条.
6. 如果OA∥O1A1, OB∥O1B1 ,那么
∠AOB与∠A1O1B1
(C)
A.相等
B.互补
C.相等或互补 D.以上答案都不对
7.如图,已知 AA1, BB1, CC1 ,不共面
物质的微观结构 + 统计方法 ------称为统计力学 其初级理论称为气体分子运动论(气体动理论) 优点:揭示了热现象的微观本质。 缺点:可靠性、普遍性差。
宏观法与微观法相辅相成。
气体动理论 §1 分子运动的基本概念
一.热力学系统 热力学研究的对象----热力学系统. 热力学系统以外的物体称为外界。 孤立系统:系统和外界完全隔绝的系统
D1
C1
E1
A1
B1
D E A
C B
练习 题
(1) 下列结论正确的是( D )
A.若两个角相等,则这两个角的两边分别 平行
B.空间四边形的四个顶点可以在一个平面 内
C.空间四边形的两条对角线可以相交 D.空间四边形的两条对角线不相交
(2) 下面三个命题, 其中正确的个数是( D )
①三条相互平行的直线必共面;
所以 AA1∥CC1 且 AA1∥CC1
即四边形AA1C1C是平行四D边1 形
所以AC∥A1C1
A1
从而 EF∥A1C1.
D
A
E
C1
B1
C F B
例3. 如图,已知E,E1分别是正方体ABCD-
A1B1C1D1的棱AD, A1D1的中点.
求证:∠C1E1B1 = ∠CEB.
分析:设法证明E1C1∥EC, E1B1∥EB.
所以DD1E1E是平行四边形。 在△ADE和△A1D1E1中. AD=A1D1, AE=A1E1,DE=D1E1, 于是△ADE≌△A1D1E1, 所以∠BAC=∠B1A1C1.
5. 空间四边形的有关概念:
(1)顺次连结不共面的四点A、B、C、D 所构成的图形,叫做空间四边形; (2)四个点中的各个点叫做空间四边形 的顶点; (3)所连结的相邻顶点间的线段叫做空 间四边形的边; (4)连结不相邻的顶点的线段叫做空间 四边形的对角线。
所以四边形EFGH是平行四边形。
A
E
H
B
D
F
G
C
例2.如图:在长方体ABCD-A1B1C1D1
中,已知E,F分别是AB , BC 的中点,
求证:EF∥A1C1.
证明:连结AC.
D1
C1
在△ABC中, E, F分别A1
B1
是AB, BC 的中点.
所以 EF ∥ AC
D
A
E
C F B
又因为 AA1∥BB1 且 AA1 = BB1 BB1∥CC1 且 BB1 = CC1
公理4反映了两条直线的位置关系. 公理4主要用来证明两条直线平行,它是 证明两直线平行的重要依据.
4. 等角定理:
如果一个角的两边和另一个角的两边分 别平行并且方向相同,那么这两个角相等.
已知:如图所示,∠BAC和 ∠B1A1C1的边AB//A1B1, AC//A1C1,且射线AB与A1B1 同向,射线AC与A1C1同向, 求证:∠BAC=∠B1A1C1.
例1.已知:如图,空间四边形ABCD中,
E,F,G,H分别是边AB,BC,CD,
DA的中点,求证:四边形EFGH是平行
四边形。 证明:在△ABD中,因 为E,H分别是AB,
A
E
H
AD的中点,所以
B
D
EH//BD,EH=
1 2
BD,
F
G
C
同理,FG//BD,FG=
1 2
BD,
所以EH//FG,EH直线 1. 平行直线的定义:同一平面内不相交的 两条直线叫做平行线.
2. 平行公理:过直线外一点有且只有一条 直线和这条直线平行. 3. 公理4:平行于同一直线的两条直线互相 平行,此性质又叫做空间平行线的传递性.
公理4的符号表述为:
a//c,b//c a//b.
b a′ ? OP a
b′ a′ θ O
若两条异面直线所成角为90°,则称 它们互相垂直。 异面直线a与b垂直也记作a⊥b
异面直线所成角θ的取值范围:(0,90]
空间两条直线的位置关系有三种:
位置关系
共面情况
公共点个数
相交直线 在同一平面内 有且只有一个
平行直线 在同一平面内
没有
异面直线 不在任何一平面内 没 有
②两组对边分别相等的四边形是平行四边形;
③若四边形有一组对角都是直角,则这个四 边形是圆的内接四边形
A. 1个
B. 2个
C. 3个
D. 一个也不正确
(3).空间两个角α、β, α与β的两边对应平行,
且α=600, 则β等( ) D
A. 60°
B. 120°
C. 30°
D. 60°或120°
(4)若空间四边形的对角线相等,则以它的四 条边的中点为顶点的四边形是( B )
且AA1∥BB1, BB1∥CC1 ,AA1=BB1, BB1=
CC1.
求证:△ABC ≌ △A1B1C1.
A1
A
B1 C1
B C
D1 A1
D
A
E
C1
B1
C F B
热物理学
热学是研究与热现象有关的规律的科学。 热现象是物质中大量分子无规则运动的集体表现。 大量分子的无规则运动称为热运动。
常见的一些现象:
相关文档
最新文档