5.第五章:大数定律与中心极限定理(章节练习)

5.第五章:大数定律与中心极限定理(章节练习)
5.第五章:大数定律与中心极限定理(章节练习)

第五章练习题

1.一复杂的系统由100个相互独立起作用的部件所组成,在整个运行期间每个部件损坏的概率为0.10,为了使整个系统起作用,至少必须有85个部件正常工作,求整个系统起作用的概率.

2.一复杂的系统由n个相互独立起作用的部件所组成,每个部件的可靠性为0.90,且必须至少有80%的部件工作才能使整个系统正常工作,问n至少为多大时才能使系统的可靠性不低于0.95?

3.对敌人的防御地段用炮火进行100次射击,每次射击的炮弹命中数的数学期望为2,均方差为1.5,求当射击100次时有180颗到220颗炮弹命中目标的概率的近似值.

(已知Φ(1.33)=0.9082, Φ(1.5)=0.9332, Φ(2)=0.9772).

4.某种电子元件使用寿命服从λ=0.1(单位

(小时)的指数分布.一个元件损坏后,第二个接着使用.求100个这类元件总计使用时间超过900小时的概率.

5.设某车间有200台同型机床,工作时每台车床60%的时间在开动, 每台开动时耗电1千瓦.问应供给该车间多少千瓦电力才能有0.999的把握保证正常生产?

6.用切比雪夫不等式确定,当掷一均匀铜币时,需投多少次,才能保证正面出现的频率在0.4与0.6之间的概率不小于90%?并用正态逼近计算同一问题。

7.某公司有200名员工参加一种资格证书考试,按往年经验,该考试通过率为0.8.试用中心极限定理计算这200名员工至少有150人通过考试的概率.

8.欲测量两地之间的距离,限于测量工具,将其分成1200段进行测量.设每段测量误差(单位:千米)相互独立,且均服从区间

(-0.5,0.5)上的均匀分布,试求总距离测量误差的绝对值不超过20千米的概率.(用中心极限定理)

9.某宿舍有学生900人,每人在傍晚大约有10%的时间要占用一个水龙头,设每人需用

水龙头与否是相互独立的,问该宿舍至少需要安装多少水龙头,才能以95%以上的概率保证用水需要.

(已知Φ(1.645) = 0.95, Φ(1.28) = 0.90, Φ(1.96)=0.975).

10.已知一本书有500页,每一页的印刷错误的个数服从泊松分布P(0.2).各页有没有错误是相互独立的,求这本书的错误个数多于88个的概率.

11.某保险公司多年的统计资料表明,在索赔户中被盗索赔户占20%,以X表示在随意抽查的100个索赔户中因被盗向保险公司索赔的户数.

求被盗索赔户不小于14户且不多于30户的

中心极限定理及其应用论文

青岛农业大学本科生课程论文 题目:中心极限定理及其应用姓名: 学院: 专业: 班级: 学号: 指导教师: 2012 年06 月27 日

青岛农业大学课程论文任务书 论文题目中心极限定理及其应用 要求完成时间 2012年 07 月 02 日 论文内容(需明确列出研究的问题):研究中心极限定理的目的就是为了更深入的了解中心极限定理,更好的了解中心极限定理的作用,更好地使用它解决现实生活中的问题。 资料、数据、技术水平等方面的要求论文要符合一般学术论文的写作规范,具备学术性、科学性和一定的创造性。文字要流畅、语言要准确、论点要清楚、论据要准确、论证要完整、严密,有独立的观点和见解。内容要理论联系实际,计算数据要求准确,涉及到他人的观点、统计数据或计算公式等要标明出处,结论要写的概括简短。参考文献的书写按论文中引用的先后顺序连续编码。 指导教师签名:年月日

中心极限定理及其应用 信息与计算科学专业(学生姓名) 指导教师(老师姓名) 摘要:中心极限定理在概率论与数理统计中占有重要地位,本文阐述了中心极限定理的内容并简单介绍了它在实际中的应用。 关键词:中心极限定理;正态分布;随机变量

Central limit theorem and its application Student majoring in Information and Computing Science Specialty (学生英文名) Tutor (老师英文名) Abstract:The central limit theorem in probability theory and mathematical statistics plays an important role,this paper expounds the content of the central limit theorem and briefly introduces its application in practice. Key words: Central limit theorem Normal distribution Random variable

中心极限定理的创立与发展

中心极限定理的创立与发展 -----杨静邓明立 概率论极限理论是概率论的重要组成部分,是概率论的其他分支和数理统计的重要基础。的概率现象是由于无数的随机因素共同作用的结果---这些因素每一个都起到一点作用,但都没有起到很大的甚至决定性的作用。而极限定理告诉我们,这类多随机因素作用的现象必然会收敛于某个正态分布的概率模型。因此,该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 现实中有许多随机变量都具有上述特点,比如,大炮的射程受到多种因素影响:炮身结构,炮弹外形,炮弹几炮弹内炸药质量,瞄准的误差,风速,风向的干扰,大炮的使用年限等等,其中每种因素的微小差异对总的影响作用都不大,并且可以看作是互相独立的、互相不影响的。每种因素都会引起一个微小的误差,而炮弹落点的误差就是这许多随机误差的总和所影响的。由此看出,研究随机变量和的极限对于搞清楚随机现象的本质有着极其的重要价值。 在生产和生活中,有许多随机变量的取值呈现出“中间多,两头少,左右对称”的特点。例如,一般来说我国北方男性身高在170厘米左右的居多,而高于180厘米和低于160厘米的较少。或者在生产条件不变的情况下产品的抗压强度、长度、等许多随机变量指标也都存在这样类似的情况。这样的随机变量所服从的分布就是所谓的“正态分布”。许多随机变量服从正态分布。 极限理论中的中心极限定理曾是概率论的中心课题。中心极限定理有很多形式。凡是关于随机变量的数目无限增多时,其和的分布函数在一定的条件下收敛于正态分布函数的任何论断,都称为中心极限定理。 “中心极限定理”这一名称的来源有两种说法。波利亚认为这个定理十分重要,在概率论中具有中心地位,所以他加上了“中心”这一名称,于1920年引入这一术语。另一种说法是,现代法国概率论学派认为极限定理描述了分布函数中心的情况,而不是尾部的情况。 历史上有不少数学家对中心极限定理的研究做出了贡献。中心极限定理的发展主要分为三个阶段。 创立阶段:1733-----1853年 人们通常认为,法国数学家隶莫弗在1733年首次证明了,二项发布近似正态分布。然而,当时正态发布的概念,隶莫弗并不知道自己本质上证明了“中心极限定理”。

中心极限定理及其应用

中心极限定理及其应用 [摘要] 在中心极限定理的基础上,通过实例介绍它的应用。 [关键词] 中心极限定理随机变量应用 中心极限定理是棣莫佛在18世纪首先提出的,至今其内容已经非常丰富。它不仅是概率论中的重要内容,而且还是数理统计中大样本统计推断的理论基础。一种随机现象可能会受到许多不确定因素的影响,如果这些彼此之间没有什么依存关系,且谁也没有特别突出的影响,那么,这些影响的“累积效应”将会使现象近似地服从正态分布。中心极限定理在很一般的情况下证明了,无论随机变量服从什么分布,个随机变量的和当时的极限分布是正态分布。因此,它不仅提供了计算独立随机变量之和的近似概率的简单方法,而且有助于解释在现实中为什么很多数量指标都服从或近似服从正态分布这一事实。在中心极限定理的教学中,通过列举一些用中心极限定理解决问题的实例,能使学生较深地理解中心极限定理的理论与实用价值。 一、两个常用的中心极限定理 根据不同的假设条件,有多个中心极限定理。这里只介绍两个常用的中心极限定理。 定理1 列维—林德伯格(Levy-Lindeberg)定理(独立同分布的中心极限定理) 设随机变量相互独立,服从同一分布,且具有数学期望和方差.则随机变量 的分布函数Fn(x)对于任意x满足 (5.7) 从定理1的结论可知,当n充分大时,有 或者说,当n充分大时,有 如果用表示相互独立的各随机因素。假定它们都服从相同的分布(不论服从什么分布),且都有有限的期望与方差(每个因素的影响有一定限度)。则(5.8)式说明,作为总和这个随机变量,当n充分大时,便近似地服从正态分布。 定理2(棣莫佛-拉普拉斯(De Moivre Laplace)定理) 设随机变量X服从参数为n,p (0<p<1)的二项分布,即,则

中心极限定理与大数定理的关系

渤海大学学士学位论文 题目: 中心极限定理与大数定理的关系 系别: 渤海大学 专业: 数学系 班级: 2002级1班 姓名:于丹 指导教师:金铁英 完成日期:2006年5月19日 中心极限定理与大数定理的关系 于丹 (渤海大学数学系辽宁锦州 121000 中国) 摘要:中心极限定理是概率与数理统计的一个重要分支,大数定理和中心极限定理都是讨论的随机变量序列的极限问题,它们是概率论中比较深入的理论结果。 本篇论文从研究大数定理开始,然后由大数定理以及收敛性引出了中心极限定理,最后通过对定理在实际应用中的举例和定理的一些反例的研究使我们弄清中心极限定理的内涵与外延,进一步弄清了大数定理与中心极限定理之间的关系。 关键词:大数定理中心极限定理收敛性 The relation of the central limit theorem and large numbers law Yu Dan (Department of Mathematics Bohai University Liaoning jinzhou 121000 China) Abstract:The Central limit theorem is an important branch of probability and mathematical statistic. The large numbers law and the central limit theorem is limit question of random variable sequence .They are the quite thorough theory result in the theory of probability. This paper commences from large numbers law,then the central limit theorem is cited by large numbers law and convergence.Eventually,we can understand connotation and extension of the central limit theorem by its examples and relationship between large numbers law and the central limit theorem . Key words:large numbers law ; the central limit theorem ; convergence. 引言

中心极限定理的内涵和应用

中心极限定理的内涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节内容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的内涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ-= ∑=1 则对任意实数y ,有 {}?∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ??????=)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。 于是,特征函数)(t ?有展开式 )(2 11)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??????+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 22?22t e - 而22 t e -正是N(0,1)分布的特征函数,定理得证。

中心极限定理的发展

中心极限定理的创立和发展 1141010113 万帅 关键词:中心极限定理,创立,严格证明,新的发展,三阶段。 引言:这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 中心极限定理,是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量近似服从正态分布的条件。该定理为人们用正态分布来描述和解决大量的概率问题提供了坚实的理论基础。 “中心极限定理”这一名称的来源有两种说法。波利亚认为这个定理十分重要,在概率论中具有中心地位,所以他加上了“中心”这一名称,于1920年引入这一术语。另一种说法是,现代法国概率论学派认为极限定理描述了分布函数中心的情况,而不是尾部的情况。 历史上有不少数学家对中心极限定理的研究做出了贡献。中心极限定理的发展主要分为三个阶段。 创立阶段:1733-----1853年 人们通常认为,法国数学家隶莫弗在1733年首次证明了,二项发布近似正态分布。然而,当时正态发布的概念,隶莫弗并不知道自己本质上证明了“中心极限定理” 法国数学家拉普拉斯写了很多论文,想推广棣莫弗的工作。他意识到需要一种新的数学技巧,并在1785年成功地发明了这个技巧:特征函数的简单形式和反演公式。拉普拉斯把他的两个主要研究方向结合起来得到了这个方法-----母函数和积分的监禁展开。通过把母函数中的t换成it e ,就得到了特征函数。然而,直到1810年他才发表了特征函数与反演公示的一般理论,并证明了中心极限定理。他之所以推迟到1810年,有一种解释是,从1786年开始,他就专注于《天体力学》的写作,这本书1805年才完成。1810年,拉普拉斯证明了中心极限定理,先是服从均匀发布的连续随机变量的情形,接着是服从任意分布的随机变量。拉普拉斯的证明显然对独立有界的随机变量和成立,证明过程使用了现在所谓的特征函数,或傅里叶变换,即itXEe(t为实数)。在1812年,他先后考虑了对称的、离散的均匀分布,对称的连续分布,任意分布情形。最后,拉普拉斯在他的名著《概率的分析理论》中对任意的p证明了如下中心极限定理:【1】 泊松完善和推广了拉普拉斯关于中心极限定理的证明。在所有考虑的情况里,都假设随机变量是独立的。泊松证明了服从相同分布的随机变量的情况,还推广到服从不同分布的随机变量的情况。1824年,泊松证明了连续随机变量的中心极限定理,并给出了三个反例,其中包括服从柯西分布的随机变量和,这时中心极限定理不成立。受当时传统的影响,泊松没有明确阐明中心极限定理成立的条件。但是,从他的证明和例子中,可以看到,他假设每个变量的方差都是有界的,且不等于零。其他数学家也做了这方面工作,比如贝塞尔和柯西。拉普拉斯等人给出证明的前提假设是,和的分布是有限的,因此所有的矩都存在。他们把结果推广到无限情形,但没有给出证明,并隐含假定了矩的存在。以现在的观点来看,只要沿着拉普拉斯的方向继续下去,法国数学家们是可以给出中心极限定理的严格证明的,比如柯西,他知道特征函数和稳定率。 从当时环境来看,大约1870年代,概率学家还处于心理上的劣势,苦于自己的研究领

大数定律与中心极限定理及其应用

重庆三峡学院毕业设计(论文)大数定律与中心极限定理及其应用 分院数学与统计学院 专业数学与应用数学(师范) 班级 10数本1班 学号201006034109 姓名张永东 指导教师陈飞翔 (讲师) 2014年5月10日

目录 摘要.................................................................................................................................................. I ABSTRACT. ..................................................................................................................................II 1大数定律的应用 .. (3) 1.1引言 (3) 1.2预备知识 (3) 1.2.1相关定义 (3) 1.2.2切比雪夫不等式及其应用 (4) 1.3几类重要的大数定律的应用 (4) 1.3.1切比雪夫大数定律及其在测绘方面的应用 (4) 1.3.2伯努利大数定律及其在重复事件方面的应用 (6) 1.3.3辛钦大数定律及其在数学分析方面的应用 (6) 1.4大数定律的意义 (8) 2 中心极限定理的应用 (8) 2.1前言 (8) 2.2几类重要的中心极限定理的应用 (9) 2.2.1林德伯格定理及其在保险方面的应用 (9) 2.2.2列维定理及其在极限求解方面的应用 (10) 2.2.3棣莫弗-拉普拉斯定理及其在实际生活方面的应用 (11) 2.2.4 李雅普诺夫中心极限定理及其在具体分布方面的应用 (14) 3 大数定律和中心极限定理的比较应用 (15) 3.1大数定律和中心极限定理的比较应用 (15) 结论 (16) 致谢 (17) 参考文献 (18)

大数定理和中心极限定理

大数定理 概率论历史上第一个极限定理属于伯努利,后人称之为“大数定律”。概率论中讨论随机变量序列的算术平均值向常数收敛的定律。概率论与数理统计学的基本定律之一,又称弱大数理论。 发展历史 1733年,德莫佛—拉普拉斯在分布的极限定理方面走出了根本性的一步,证明了二项分布的极限分布是正态分布。拉普拉斯改进了他的证明并把二项分布推广为更一般的分布。1900年,李雅普诺夫进一步推广了他们的结论,并创立了特征函数法。这类分布极限问题是当时概率论研究的中心问题,卜里耶为之命名“中心极限定理”。20世纪初,主要探讨使中心极限定理成立的最广泛的条件,二三十年代的林德贝尔格条件和费勒条件是独立随机变量序列情形下的显著进展。伯努利是第一个研究这一问题的数学家,他于1713年首先提出后人称之为“大数定律”的极限定理。 表现形式 大数定律有若干个表现形式。这里仅介绍高等数学概率论要求的常用的三个重要定律:?切比雪夫大数定理 设 是一列两两不相关的随机变量,他们分别存在期望 和方差 。若存在常数C使得: 则对任意小的正数ε,满足公式一: 将该公式应用于抽样调查,就会有如下结论:随着样本容量n的增加,样本平均数将接近于总体平均数。从而为统计推断中依据样本平均数估计总体平均数提供了理论依据。 ?伯努利大数定律 设μ是n次独立试验中事件A发生的次数,且事件A在每次试验中发生的概率为P,则对任意正数ε,有公式二: 该定律是切比雪夫大数定律的特例,其含义是,当n足够大时,事件A出现的频率将几乎接近于其发生的概率,即频率的稳定性。 在抽样调查中,用样本成数去估计总体成数,其理论依据即在于此。 ?辛钦大数定律

中心极限定理的内涵和应用

中心极限定理的涵和应用 在概率论与数理统计中,中心极限定理是非常重要的一节容,而且是概率论与数理统计之间承前启后的一个重要纽带。中心极限定理是概率论中讨论随机变量和的分布以正态分布为极限的一组定理。这组定理是数理统计学和误差分析的理论基础,指出了大量随机变量之和近似服从于正态分布的条件。故为了深化同学们的理解并掌握其重要性,本组组员共同努力,课外深入学习,详细地介绍了中心极限定理的涵及其在生活实践中的应用。 一、独立同分布下的中心极限定理及其应用 在对中心极限定理的研究中,我们不妨由浅入深地来学习,为此我们先来研究一下在独立同分布条件下的中心极限定理,即如下的定理1: 定理l (林德伯格-勒维中心极限定理)设{}n X 是独立同分布的随机变量序列,且0)(,)(2>==σμi i X Var X E 存在,若记 n n X Y n i i n σμ-= ∑=1 则对任意实数y ,有 {}?∞--∞→=Φ=≤y t n n t y y Y P .d e π21)(lim 22 (1) 证明:为证明(1)式,只须证}{n Y 的分布函数列弱收敛于标准正态分布。由定理可知:只须证}{n Y 的特征函数列收敛于标准正态分布的特征函数。为此,设μ-n X 的特征函数为)(t ?,则n Y 的特征函数为 n Y n t t n ??????=)()(σ?? 又因为E(μ-n X )=0,Var(μ-n X )=2σ,所以有()0?'=0,2)0(σ?-=''。于是,特征函数)(t ?有展开式 )(2 11)(2)0()0()0()(22222t o t t o t t +-=+''+'+=σ???? 从而有 =??????+-=+∞→+∞→n n Y n n t o n t t n )(21lim )(lim 22?22t e - 而22 t e -正是N(0,1)分布的特征函数,定理得证。

第五章大数定律及中心极限定理

第五章 大数定律及中心极限定理 第一节引言、第二节大数定律 一、教学目的要求 1.了解大数定律及中心极限定理的提出和发展历史。 2.掌握引理:切贝雪夫不等式。 3.掌握常用的切贝雪夫大数定律、贝努里大数定理、辛钦大数定律的适用条件及定律内容,会解答有关问题。 二、教学方法 讲授法:讲授大数定律、中心极限定理的概念。 演绎法:推导切贝雪夫不等式、定理1,2,3及例题 三、重点难点 重点:掌握切贝雪夫不等式及握常用的大数定律。 难点:大数定律应用具体应用。 四、课时安排:2课时 五、教具准备:多媒体。 六、教学步骤: (一)明确目标:通过问题引入本次课的教学,明确大数定律、中心极限定理的概念,掌握贝雪夫不等式的推导及应用,定理1及2的证明,了解定理3的条件及应用。 (二)教学过程及教学内容: 1问题引入:大数定律及中心极限定理的提出和发展历史 2.内容: (1)定义5.2.1 设ΛΛ,,,,21n X X X 是随机变量序列,记 )(1 21n n X X X n Y +++= Λ, 若存在一个常数序列ΛΛ,,,,21n a a a ,使得对任意正数ε,有 {}1lim =<-∞ →εn n n a Y P 则称随机变量序列{}n X 服从大数定律(Law of Great Numbers )。 (2)定义5.2.2 设ΛΛ,,,,21n X X X 是随机变量序列,a 是一个常数,若对任意正数ε,有 {}1lim =<-∞ →εa X P n n 则称随机变量序列{}n X 依概率收敛(Convergence In Probability)于常数a ,记为:a X P n ?→?。 (3)推论:可以证明:若a X P n ?→? ,b Y P n ?→?,),(y x g 在点),(b a 连续,则有:

AWGN信道仿真数据量研究

2006年4月第29卷第2期北京邮电大学学报 Journal of Beijing U niv ersity of Posts and T elecommunications Apr.2006Vo l.29N o.2 文章编号:1007 5321(2006)02 0110 04 AWGN 信道仿真数据量研究 梁 栋, 林家儒 (北京邮电大学信息工程学院,北京100876) 摘要:研究了蒙特卡罗仿真原理和仿真结果置信度;结合A WGN (加性白高斯噪声)信道特点,甄选出3个合适的参量,即误码个数、置信概率和仿真结果最大相对误差;提出了A WGN 信道下仿真数据量选取的一般性结论,即误码个数正比于置信区间上分位点的平方、反比于最大相对误差的平方.仿真结果验证了所提结论在AWG N 信道各种信噪比下均有效;同时对于无线通信或移动通信的时变多径衰落信道,如采用OF DM (正交频分复用)、分集、均衡、交织等技术,能将信道改造为AWG N 信道,该结论依然有效.关 键 词:加性白高斯噪声;蒙特卡罗仿真;仿真数据量;置信概率中图分类号:T P391 9 文献标识码:A Investigation on Simulation Number in AWGN Channel LIANG Dong, LIN Jia ru (S chool of Information Engineering,Beijing University of Posts and Telecommunicati ons,Beijing 100876,China) Abstract :Investigations on principle of Monte Carlo simulation was made w hen considering characteri stics of AWGN (additive w hite Gaussian noise)channel and the affects of three suitable parameters:error number,confidence probability and max relative error of simulation result.And common conclu sion w as reached:error number would present direct ratio to square of confidence upper limit,on the other hand,inverse ratio to square of max relative error.The result of computer simulation demon strates that the conclusion is effective under conditions of AWGN channel.U nder conditions of fading multipath channel,if some techniques such as OFDM (orthogonal frequency division m ultiplex ing),diversity,equalization,and interleaving w ere used to turn channel into AWGN channel,the conclusion w ill be also effective. Key words :additive w hite Gaussian noise;Monte Carlo simulation;simulation number;confidence probability 收稿日期:2005 03 30 基金项目:国家 863计划 项目(2001AA123016);国家自然科学基金项目(60372099)作者简介:梁 栋(1981!),男,博士生,E mail:ldumufeng@https://www.360docs.net/doc/8212167155.html,. 为检测通信系统的通信能力,通常需要通过蒙特卡罗仿真分析设计的通信系统是否达到预想的效果.然而在通信仿真中,针对不同的信道环境,仿真数据量应该如何选取是一个既复杂又实际的问题,仿真量选取不够,仿真结果的可信度低,与真实结果的偏差大;仿真量选取过大,将浪费大量时间和物力.然而遗憾的是,在不同信道环境下如何合理地选取仿真量,至今没有全面完善的回答.本文针对 通信中最常见的AWGN 信道应该如何选择仿真数据量进行了理论分析和仿真,获得了既简洁又具一般性的结论. 1 蒙特卡罗仿真原理及仿真结果置信 度分析 对于随机变量X ,设E (X )=u <+?,D(X )= 2<+?,取X 的M 个独立同分布的样本

-中心极限定理在保险业务中的应用讲解学习

-中心极限定理在保险业务中的应用

中心极限定理在保险业务中的应用 学生姓名:许红红指导教师:赵连阔 一、引言 保险是以合同的形式来确定双方经济关系,以投保人缴纳保险费所建立起来的保险基金,对保险合同规定范围内的意外所造成的损失,进行经济补偿或给付的一种经济形式。保险费是根据数理统计原理进行制定,对未来发生的成本进行预测和估算,将预期赔偿金额作为纯保险费来收取的。为避免和减少未来风险因素带来的经济损失,保险公司采取一些方法保证自己的偿付能力。 在实际生活中有诸如交通事故发生率、人口死亡率等许多随机因素影响着保险的预期利润和偿付能力,这些随机因素是相互独立的,且每一个因素的影响在总结果中所起到的作用都是很小的随机变量。这些随机变量都通常近似服从正态分布。这种现象就是中心极限定理产生的客观背景条件。 二、中心极限定理 结合上文中心极限定理的产生的客观背景,我们给出中心极限定理的具体内容。我们把描述或验证大量随机变量和的极限是正态分布的那些定理通称为中心极限定理。但其中最常见、最基本且应用最广泛的是两个定理德莫弗—拉普拉斯中心极限定理(二项分布的正态近似)和林德贝格—勒维中心极限定理(独立同分布下的中心极限定理)。

(一)德莫弗——拉普拉斯定理 设n 重伯努利试验(将事件A 重复进行n 次)中,事件A 在每次试验中出现的概率为 ()01p p <<,记n μ为n 次试验中事件A 出现的次数,且记* n Y =,其中1.q p =- 则对任意实数y ,有 {}()2 *2lim . t y n n P Y y dt y -→+∞≤==Φ? 这个定理可以说是二项分布的近似正态分布,当n 充分大时,可以利用该定理来计算二项分布的概率。 即(),A B n p :,其中1q p =-,则当n 很大时,有 ()P a X b ≤≤≈-. (二)林德贝格——勒维中心极限定理 设{}n X 是独立同分布的随机变量序列,且()()2,0i i E X Var X μσ==>记 * n Y 则对任意实数y ,有 *lim () n n P Y y ?→+∞≤=22 ()t y y e dt --∞=. 此定理也可称为独立同分布中心极限定理且应用十分广泛,它只假设{}n X 独立同分布、方差存在,且是随便变量的序列,不管原来的分布是什么,只要n 充分大,就可以用正态分布去逼近。于是有:

中心极限定理及其意义

题目:中心极限定理及意义 课程名称:概率论与数理统计 专业班级: 成员组成: 联系方式: 2012年5月25日 摘要: 本文从随机变量序列的各种收敛与他们的关系谈起,通过对概率经典定理——中心极限定理在独立同分布和不同分布两种条件下的结论做了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。经过对中心极限定理的讨论,给出了独立随机变量之和的分布用正态分布来表示的理论依据。同样中心极限定理的内容也从独立分布与独立不同分布两个角度来研究。同时通过很多相关的正反例题,进行说明这些定理所给出的条件是否是充要条件;签掉在实际问题中灵活的应用和辨别是否服从我们给出的定理条件。最后了解一些简单简便的中心极限定理在数理统计、管理决策、仅是计算以及保险业务等方面的应用,来进一步的阐明了中心极限定理分支学课中的中重要作用和应用价值。

关键词: 随机变量,独立随机变量,特征函数,中心极限定理 引言: 在客观实际中有许多随机变量,他们是由大量的相互独立的随机因数的综合 影响所形成的,而其中每一个别因数在总的影响中所起的作用都是渺小的,这种随机变量往往近似地服从正态分布,这种现象就是中心极限定理的客观背景。 中心极限定理自提出至今,其内容已经非常丰富。在概率论中,把研究在什么条件下,大量独立随机变量和的分布以正态分布为极限的这一类定理称为中心极限定理。但其中最常见、最基本的两个定理是德莫佛-拉普拉斯中心极限定理和林德贝格-勒维中心极限定理。 一、三个重要的中心极限定理 1.独立同分布的中心极限定理 设随机变量??????,,,,21n X X X 相互独立,服从统一分布,具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k σμ,则随机变量之和 ∑=n k k X 1 的标准化变量, σ μ n n X X D X E X Y n k k n k k n k k n k k n -=?? ? ????? ??-=∑∑∑∑====1 111 的分布函数)(x F n 对于任意x 满足, ()x dt e x n n X P x F t x n k k n n n Φ==????????? ?? ??? ≤-=-∞-=∞→∞→?∑2/1221lim )(lim πσμ 2.李雅普诺夫定理 设随机变量??????,,,,21n X X X 相互独立,它们具有数学期望和方差 ()()) ,2,1(0,2???=>==k X D X E k k k k σμ,

大数定律及中心极限定理 应用题

大数定律与中心极限定理 应用题 1. 设各零件质量都是随机变量,且独立同分布,其数学期望为0.5kg ,标准差 为0.1kg, 问(1)5000只零件的总质量超过2510kg 的概率是多少?(2)如果用一辆载重汽车运输这5000只零件,至少载重量是多少才能使不超重的概率大于0.975? 解 设第i 只零件重为i X ,500,...,2,1=i ,则5.0=i EX ,21.0=i DX 设 ∑==500 1i i X X ,则X 是这些零件的总重量 250050005.0=?=EX ,5050001.02=?=DX 由中心极限定理 )1,0(~50 2500N X a - (1))2510(≥X P =)50 25002510502500(-≥-X P )2(10Φ-≈=9213.01-=0.0787 (2) 设 汽车载重量为a 吨 )(a X P ≤=)502500502500(-≤-a X P 95.0)50 2500(0≥-Φ≈a 查表得 64.150 2500≥-a 计算得 59.2511≥a 因此汽车载重量不能低于2512公斤 2. 有一批建筑房屋用的木柱,其中80%的长度不小于3m ,先从这批木柱中随 机的取100根,求其中至少有30根短于3m 的概率? 解 设X 是长度小于3m 的木柱根数,则)2.0,100(~b X 由中心极限定理 )16,20(~N X a )30(≥X P =)16 20301620(-≥-X P )5.2(10Φ-≈=9938.01-=0.0062 3. 一个食品店有三种蛋糕出售,由于售出哪一种蛋糕是随机的,因而售出一种 蛋糕的价格是随机变量,它取1元,1.2元,1.5元的概率分别为0.3,0.2,0.5.若售出300只蛋糕,(1)求收入至少400元的概率 (2)售价为1.2元蛋糕售出多于60只的概率。

大数定理与中心极限定理的关系及应用

本科生毕业论文(设计) 题目大数定律与中心极限定理的 关系及应用 姓名学号 院系数学科学学院 专业数学与应用数学 指导教师职称 2013年4 月16 日 曲阜师范大学教务处制

目录 摘要 (3) 关键词 (3) Abstract (3) Key words (3) 引言 (3) 1 大数定律与中心极限定理的关系 (4) 1.1预备知识 (4) 1.1.1大数定律 (4) 1.1.2中心极限定理 (5) 1.2大数定律与中心极限定理的关系 (6) 1.2.1服从大数定律不服从中心极限定理的例子 (7) 1.2.2服从中心极限定理不服从大数定律的例子 (8) 1.2.3大数定律与中心极限定理均不服从的例子 (9) 2 大数定律与中心极限定理在实际生活中的应用 (10) 2.1 在误差分析中的应用 (10) 2.2 在数学分析中的应用 (11) 2.3 在近似计算中的应用 (13) 2.4 在保险业中的应用 (14) 2.5 在企业管理方面的应用 (15) 结论 (16) 致谢 (16) 参考文献 (17)

大数定律与中心极限定理的 关系及应用 摘要:本文通过对大数定律与中心极限定理在独立同分布和不同分布两种情况下的结论作了比较系统的阐述,揭示了随机现象最根本的性质——平均结果的稳定性。经过对中心极限定理的讨论,给出了独立随机变量之和的分布可以用正态分布来表示理论依据。另外,叙述了大数定律与中心极限定理之间的关系,同时通过举出很多相关的反例说明二者的关系。最后给出了一些简便的大数定律与中心极限定理在误差分析、数学分析、近似计算、保险业及企业管理等几个方面的应用,来进一步地阐明了大数定律与中心极限定理在各分支学科中的重要作用和应用价值。 关键词:大数定律中心极限定理随机变量应用 Relationship and Applications between the Law of Large Number and Central Limit Theorem Student majoring in mathematics and applied mathematics Bai Yanfei Tutor Liu Li Abstract: Based on the law of large numbers and central limit theorem in the independent distribution with the different distribution of both cases, it makes more systematic exposition, and reveals the phenomenon of the random nature of the most fundamental an average of the results of the Stability. Through the central limit theorem discussion, it gives out the random variables and the distribution of the normal distribution. At the same time, it demonstrates the relationship between the two aspects through lots of anti-related examples. Finally, it gives out several aspects of applications of a number of simple law of large numbers and the central limit theorem in error analysis, mathematical analysis, the approximate calculation, the insurance industry and business management to further clarify the law of large numbers and the central limit theorem in all branches of the important role and value. Key words: Laws of large number; Central-limit theorem; Random variables; Applications 引言概率论与数理统计是研究随机现象的统计规律的一门学科,而随机现象的统计规律性只有在相同条件下进行大量重复试验或观察才呈现出来。在随机事件的大量重复出现中,往往呈现几乎必然的规律,这个规律就是大数定律。大数定律是概率论中一个非常重要的课题,而且是概率论与数理统计之间一个承前启后的重要纽带。大数定律阐明了大量随机现象平均结果具有稳定性,证明了在大样本条件下,样本平均值可以看作总体平均值,它是“算数平均值法则”的基本理论,通俗地说,这个定理就是在试验不变的条件下,重复试验多次,随机事件的频率以概率为稳定值。在现实生活中经常可以见到这一类型的数学模型,比如,我们向上抛一枚硬币,硬币落下后哪一面朝上本来是偶然的,但当我们向上抛硬币的次数足够多时,达到上万次甚至几十万几百万次之后,我们会发现,硬币向上的次数约占总次数的二分之一,偶然中包含着必然。 而中心极限定理是概率论中讨论随机变量序列部分和的分布渐近于正态分

中心极限定理实验仿真

中心极限定理的仿真实验 目的:模拟投掷一枚骰子出现的点数的试验,重复进行104次,统计出现的点数和,并将数据标准化处理后,画出频率直方图,通过观察比较验证数据的正态性。 所用的软件:Microsoft EXCEL 步骤如下: 1 打开excel软件,在A2格子中输入=INT(6*RAND())+1,按回车就会产生一个1-6中的某一个随机整数,并且出现1-6中每一个整数的概率是相同的。 2鼠标点击A2格子,并移动到格子的右下角,出现”+”后往下拖动鼠标直到出现A501时停下来,这样就得到了500个随机数据,都是在1-6中随机取值的。(当然你越往下拖,产生的随机整数越多,试验效果越好) 3 在第二列重复第1步和第2步,第三列,第四列……直到CZ列都和第二列同样操作,这样产生了104列随机数据。 4 在DB列分别求出每行数据的和,用的函数是“SUM”,接着依次求出500行数据的和。 5 复制DB列到DC列,注意值复制数值。 6 对DC列数据进行排序, 7对DC列数据进行标准化处理,即每个数据减去平均值再除以标准差(均值函数为average,样本方差函数为var)

8处理后的数据放在DE列。根据最大值和最小值,把数据分到20个区间,这里数据范围从-2.7到2.7,故每个区间长度为0.27,这样得到(-2.7,-2.43],……,(2.43,2.7)共20个区间(也可以分15个区间,这时区间长度为0.36)。 9统计每个区间里的数据个数,用函数countif(区域,条件),详见EXCEL文件。 10 画出频率直方图,大家可以看到,投掷104次骰子后出现的点数和数据标准化后出现标准正态分布的特征。 请大家按照以上方法,产生200列数据,每列1000个数据,按照以上步骤做好中心极限定理的仿真实验。按个步骤写出实验过程,并将计算结果或图标截图后放在每个步骤后面,完整一份实验报告。

8第八章 系统仿真结果分析

第八章 系统仿真结果分析 采用统计方法来估计系统的性能,利用统计分析方法要求样本数据具有统计独立性,但实际上在很多情况下这个条件并不能满足。 解决这一难题的途径无非两条:一是对样本序列进行处理,使之尽量满足统计独立性条件;二是在经典统计方法的基础上进行修正使之适合于处理相关的样本序列。 终态仿真是指仿真实验在某个持续事件段上运行。 稳态仿真则是通过系统的仿真实验,希望的得到一些系统性能测度指标在系统达到稳态时的估计值。 有必要采用方差减小技术,即在相同的仿真运行次数下获得较小方差的仿真输出结果。 §8.1终态仿真的结果分析 8.1.1 重复运行法 所谓重复运行方法是指选用不同的独立随机数序列,采用相同的参数、初始条件以及用相同的采样次数n 对系统重复进行仿真运行。 对于一终态仿真的系统,由于每次运行是相互独立的,因此可以认为每次仿真运行结果()n i X i ,,2,1???=是独立同分布的随机变量,是服从正态分布的随机变量。随机变X 量的期望值E (X )地估计值μ为: n n S t X n j n j n /)(2 1 1,11 2 ∑ =--±= α μ (8.1)

其中, ()[]()1/)(2 1 2--= ∑=n X n X n S n j j (8.2) ∑ == n j j n X X 1 1 (8.3) α为置信水平。 根据中心极限定理,若产生的样本点X j 越多,即仿真运行的次数越多,则X j 越接近于正态分布,因此在终态仿真中使用仿真方法运行的重复次数n 不能选取得太小。 8.1.2序贯程序法 在终态仿真结果分析得重复运行法中,通过规定次数得仿真 可以得到随机变量取值的置信区间,置信区间的长度与仿真次数的平方根成反比。显然,若要缩小置信区间的长度就必然增加仿真次数n 。这样就产生了另一个方面的问题,即在一定的精度要求下,规定仿真结果的置信区间,无法确定能够达到精度要求的仿真次数。这样就可以对置信区间的长度进行控制,避免得出不适用的结论。 一般说来,在同样精度要求下,采用序贯程序法得出的仿真重复运行次数比利用解析法得到的次数要少。 由式(8.1)可知,样本X 的100(1-α)%置信区间的半长为: () X t n σβα?=-2 /,1 (8.4) 式中 ()n S X /= σ (8.5) S 为样本的标准差,n 为重复运行次数。设给定一准确的临界值ε,即限定置信区间的长度为[]εε+-X X ,,并给定精度(1-α)。为了达到此精度要求,需要取足够大的仿真运行次数n ,使之满足:

相关文档
最新文档