红薯直链淀粉的分离纯化和检测

红薯直链淀粉的分离纯化和检测
红薯直链淀粉的分离纯化和检测

酵母蔗糖酶的提取工艺

酵母蔗糖酶的提取工艺 摘要 蔗糖酶是一种水解酶, 广泛存在于动物、植物、微生物等各种生物体内。它可以不可逆的催化蔗糖水解为D-葡萄糖和D-果糖,为微生物的生长提供碳源和能源。 采用甲苯自溶法、冻融法、SDS抽提法3种方法从酵母中提取蔗糖酶[1],冻融法和SDS 抽提法的提取效率远高于传统的甲苯自溶法。其中冻融法的效率最高(纯化倍数比活力与总活力),加之其操作简便,更适合于酵母蔗糖酶大规模的制备提取。 比较了乙醇分级沉淀、硫酸铵分级沉淀对于冻融法得到的粗提物的沉淀效果,结果表明:50%(w/w)乙醇分级沉淀效果较好(比活力与总活力),乙醇分级沉淀所得蔗糖酶经DEAE-Sepharose 离子交换层析纯化后,制得高纯度的酵母蔗糖酶(比活力与总活力)。纯化倍数为16.14倍,比活性为947.805U/mg,回收率为51.6%。 蔗糖酶的酶促动力学性质表明,蔗糖酶的最适PH值为4.5,最适温度为50℃,酶的特征米氏常数Km值为13.8mmol/L,最大反应速度Vmax为5.98ug/min。 关键词:酵母;蔗糖酶;提取;纯化 Study on Purification of Invertase from Yeast Abstract Sucrase is widespread in prokaryotes and eukaryotes .Sucrase catalyzes the irreversible hydrolysis of sucrose into glucose and fructose.the mainfroms of carbon and energy supplies in microorganism growth and development. This paper used three methods to extract invertase from yeast,which included in this manuscript, three different extraction method breaking cells by adding methylbenzene,frost grinding,and adding SDS for extracting invertase from yeast were investigated.Then the purified invertase was obtained by precipitatation with 50% ethyl alcohol、sequential ammonium sulpate precipitation and DEAE-Sepharose lon-exchange chromatography.The purified sucrase was characterized by SDS-PAGE.The results showed all three methods had both advantages and disadvantages.The invertase extracted by adding SDS and frost grinding had much more total activity than that of extracted by adding methylbenzene.A highest total invertase activity was found in the forst grinding,and it was a convent and economical method for commercial production of invertase from yeast. The results of our study were followed: 1、Purification of invertase from yeast The specific activity was 947.805U/mg,purification fold was 32.28.The activity recovery of sucrase was 51.6%. 2、Properties of sucrase The kinetic characters of the enzyme have been studied.The optimum PH and optimum temperature for the enzyme are PH4.5 and 50℃.Km is 21mmol/Land Vmax is 6.57ug/min. Key words : yeast;invertase;extraction;purification 第一部分文献综述

碱性蛋白酶的分离纯化与性质初探

碱性蛋白酶的分离纯化与性质初探 一、综述本课题国内外研究动态,说明选题的依据和意义: 1.国内外研究现状 碱性蛋白酶(Alkaline protease)广泛存在于微生物中,最早发现在猪的胰脏中,1913年Rhom首先将胰蛋白酶作为洗涤浸泡剂使用。1945年瑞士的Dr.Jagg 等发现了微生物碱性蛋白酶,使其成为洗涤剂的主要添加剂之一。碱性蛋白酶在丝绸、制革工业、饲料工业、动物食品加工中也有广泛用途。由于市场的需求,高产、高效、耐高温、耐高碱的四高型碱性蛋白酶成为国内外当前研究的热点之一[1]。 研究结果发现,海洋酶具有作用pH 范围宽,最适pH 和反应温度适中,随反应温度的降低酶活性下降缓慢等特点。海洋酶所具有的独特性质,引起学术界高度重视,日、美等国就此展开了深入的研究。迄今为止,由海洋微生物生产海洋酶的专利已达20 余项。海洋微生物酶的研究正逐渐成为发达国家开发新型酶制剂的重要途径[2,3]。 相比之下,国内在海洋碱性蛋白酶研究方面差距较大。综合多篇文献分析,目前针对海洋细菌产生的碱性蛋白酶,分离提纯的方法大致多采用饱和硫酸铵分级盐析和层级技术。首先是从发酵液取上清制备粗酶液(此酶为一种外分泌蛋白,无需通过溶菌酶溶解或超声波破碎细胞来制备粗酶液),通过超速离心沉淀,饱和硫酸铵分级盐析,透析,凝胶层析或离子交换层析来分离提纯该菌所产生的碱性蛋白酶。其中一些已经对酶的性质、序列等进行了研究[4-7]。 2.选题依据及意义 此毕业设计的课题为《碱性蛋白酶的分离纯化及性质初探》,主要是对海洋细菌进行培养及分离提纯方案的改进,并对其性质进行初步探究。大致是将各种相关参数和实验数据建立正交关系得到最佳培养条件,并对其产生的碱性蛋白酶进行分离提纯,同时得出最佳分离提纯方案。最后对碱性蛋白酶的性质进行初步研究。本设计针对目前研究较少的产碱性蛋白酶的海洋微生物新菌株,研发新型高效的碱性蛋白酶,这对满足人类生活、生产与技术开发的需求至关重要。这种积极采用微生物代替化学法的探究,有利于开发现代生物新产品的工业化生产技术研究,有利于加快现代生物领域产业的发展。 二、研究的基本内容,拟解决的主要问题 1.海水中碱性蛋白酶高产菌株的筛选;

高粱中直链淀粉和支链淀粉检测方法研究报告教材

高粱中直链淀粉和支链淀粉检测方法研究报告 【简述】淀粉是一种天然高分子化合物,按照结构可分为直链淀粉和支链淀粉两种。自然淀粉中支链淀粉比例较高,一般约占总淀粉的70%以上,糯高粱中支链淀粉含量尤其高,直链淀粉含量很低,且不同品种、生长时期的高粱其支链淀粉和直链淀粉含量也有差异。直链淀粉是D-葡萄糖基以a-(1,4)糖苷键连接的多糖链,具有抗润胀性,水溶性较差,不溶于脂肪;支链淀粉又称胶淀粉,分子相对较大,难溶于水。高粱是我公司主要的酿酒原料,高粱中直链淀粉和支链淀粉的含量对白酒的出酒率和白酒品质都有重要的影响,因此建立高粱中直链淀粉和支链淀粉的检测方法,对酿酒生产与白酒品质的提升均具有重要的指导意义。 根据公司年度计划的要求,检测中心以国家标准GB 7648-87《水稻、玉米、谷子粒直链淀粉测定法》为基础建立高粱中直链淀粉和支链淀粉的检测方法。 1 实验原理 淀粉与碘形成碘-淀粉复合物,并具有特殊的颜色反应,支链淀粉与碘生成棕红色复合物,直链淀粉与碘生成深蓝色复合物。在淀粉总量不变的条件下,直链淀粉和支链淀粉的物质波峰处对应的两个波长λ1和λ2,样品在这两个波长下均有吸收。由于吸光度值具有叠加性,测定样品在某一波长下的吸光度值时其结果为直链淀粉和支链淀粉在该波长下吸光度值的总和。由直链淀粉和支链淀粉的性质可知这两种物质与碘反应时互不干扰,故可根据直链淀粉和支链淀粉显色反应后在不同波长下的吸光度值进而将样品中单一组分的吸光度值计算出来,再从建立的回归曲线方程得到相应的含量。 2 仪器与试剂: 2.1试剂 实验中所用试剂均为分析纯,水为GB/T 6682 规定的三级水。 2.1.1 氢氧化钠溶液:1moL/L。 2.1.2盐酸(1+1)。 2.1.3 95%乙醇(分析纯)。 2.1.4 碘贮备溶液:称取2g碘和20g碘化钾用蒸馏水溶解至100mL。 2.1.5 碘试剂:取10mL碘贮备液稀释至100mL。 2.1.6 马铃薯直链淀粉标准品:纯度为97.0%,由黑龙江省农业科学院农产品研究所提供。

从土壤中分离产淀粉酶的芽孢杆菌实验方案解析

土壤中产淀粉酶芽胞杆菌的筛选及其淀粉酶活力的测定设计性实验方案 一、综述: 淀粉酶是淀粉降解酶。它们广泛存在于微生物、植物和动物体中。它们将淀粉及相关的聚合物分解为带有具体淀粉分解酶特征的产品。淀粉酶广泛存在于动植物和微生物中,是最早用于工业生产并且迄今仍是用途最广、产量最大的酶制剂产品之一。淀粉酶种类繁多,特点各异,可应用于造纸、印染、酿造、果汁和食品加工、医药、洗涤剂、工业副产品及废料的处理、青贮饲料及微生态制剂]等多种领域。在酿造发酵工业如酒精生产、啤酒制造、发酵原料液化及糖化工艺过程中均有重要价值,如添加淀粉酶分布非常广泛,是人们经常研 【】究的一种酶。从纺织工业到废水处理,这些酶都有不同规模的应用1。 常见产淀粉酶的主要为芽孢杆菌属。其中的常见产淀粉酶的芽孢杆菌菌种有:地衣芽 【】【】孢杆菌、枯草芽孢杆菌、蜡样芽孢杆菌和纳豆芽孢杆菌2、凝结芽孢3。由于芽孢杆菌属 是一类好氧或兼性厌氧、产生抗逆性内生抱子的杆状细菌,许多为腐生菌,主要分布于土壤【】和植物体表面及水体中4。所以此次实验从土壤中分离产淀粉酶的芽孢杆菌。 二、实验目的要求 1.了解生物分离提纯的原理和方法技术 2.掌握从土壤中筛选产淀粉酶菌株的原理和方法 3.掌握微生物摇瓶培养方法及淀粉酶活力测定的原理和方法 4.培养学生的综合应用微生物实验方法的能力 5.培养学生自行设计实验流程、综合分析问题解决问题和判断实验结果的能力。 三、实验原理 自然界中,土壤是微生物生活最适宜的环境。土壤具有微生物进行生长繁殖和生命活动中所需的各种条件。 土壤中微生物的数量因土壤类型、季节、土层深度与层次等不同而异。一般地说,在土壤表面,由于日光照射及干燥等因素的影响,微生物不易生存,离地表10 cm~30 cm的 【】土层中菌数最多,随土层加深,菌的数量减少5。 从混杂微生物群体中获得只含有某一种或某一株微生物的过程称为微生物分离与纯化。平板分离法普遍用于微生物的分离与纯化。其基本原理是选择适合与待分离微生物的生长条件,如营养成分、酸碱度、温度和氧等要求,或加入某种抑制剂造成只利于该微生物生长,而抑制其他微生物生长的环境,从而淘汰一些不需要的微生物。

离子交换层析分离纯化蔗糖酶

实验报告 课程名称:生物化学实验(甲) 指导老师: 成绩:__________________ 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、实验材料与试剂(必填) 四、实验器材与仪器(必填) 五、操作方法和实验步骤(必填) 六、实验数据记录和处理 七、实验结果与分析(必填) 八、讨论、心得 离子交换柱层析分离纯化蔗糖酶 一、实验目的和要求: 1、学习离子交换层析的基本原理; 2、学习离子交换层析分离蛋白质的基本方法和技术; 3、学习蔗糖酶活性检测的基本原理和方法。 二、实验内容和原理: 1、离子交换层析(Ion Exchange Chromatography 简称为IEC ) 离子交换层析是常用的层析方法之一。它是以离子交换剂为固定相,根据流动相中的组分离子与交换剂上的平衡离子进行可逆交换时的结合力大小的差别而进行分离的一种层析方法。离子交换剂与流动相中离子或离子化合物的反应主要以离子交换方式进行,或者借助离子交换剂上电荷基团对溶液中离子或离子化合物的吸附作用进行。这些过程都是可逆的。在某一pH 值的溶液中,不同的蛋白质所带的电荷存在差异,因而与离子交换剂的亲和力就有区别。当洗脱液的pH 改变或者盐的离子强度逐渐提高时,使某一种蛋白质的电荷被中和,与离子交换剂的亲和力降低,不同的蛋白质按所带电荷的强弱逐一被洗脱下来,达到分离的目的。 离子交换剂是由基质、电荷基团(或功能基团)和反离子构成。 基质————电荷基团————反离子 专业: 姓名: 学号: 日期: 地点: 装 订 线 溶液中的离子或离子化合物

阳离子交换剂基质—+ 《==可逆交换==》+ 阴离子交换剂基质+ —《==可逆交换==》— 由于蔗糖酶的pI偏酸性,所以在pH7.3 缓冲液环境中,粗分离纯化样品蔗糖酶带负电荷,因此我们用阴离子交换剂可以先与蔗糖酶样品可逆交换吸附,然后通过用盐离子强度逐渐提高的洗脱液,使蔗糖酶和其他杂蛋白质的电荷被中和,与离子交换剂的亲和力降低,把不同的蛋白质按所带电荷的强弱逐一被洗脱下来,从而达到分离蔗糖酶的目的。 2、酶活力检测(定性检测) 蔗糖酶(β-D-呋喃型果糖苷-果糖水解酶EC 3.2.1.26),是一种水解酶。它能催化非还原性双糖(蔗糖)的1,2-糖苷键裂解,将蔗糖水解为等量的葡萄糖和果糖(还原糖)。因此,每水解1mol蔗糖,就能生成2mol还原糖。还原糖的测定有多种方法,如采用3.5-二硝基水杨酸法,其原理是 3.5-二硝基水杨酸与还原糖共热被还原成棕红色的氨基化合物,在一定范围内还原糖的量和反应液的颜色深度成正比。 本实验在离子交换层析分离纯化的过程中,对分离纯化样品采用 3.5-二硝基水杨酸法来初步判定样品中还原糖含量的多少,由此来确定并收集蔗糖酶纯化样品。 三、实验材料与试剂:

实验六十淀粉酶产生菌株的筛选

实验六十淀粉酶产生菌株的筛选 实验项目性质:设计性 所涉及的知识点:无菌技术、富集培养、纯种分离、淀粉酶性质、酶活测定 计划学时:8学时 一、实验目的 1.掌握从环境中采集样品并从中分离纯化某种微生物的完整操作步骤。 2.巩固以前所学的微生物学实验技术。 3.掌握产酶微生物筛选的方法。 二、实验原理 α-淀粉酶是一种液化型淀粉酶,它的产生菌芽孢杆菌,广泛分布于自然界,尤其是在含有淀粉类物质的土壤等样品中。从自然界筛选菌种的具体做法,大致可以分成以下四个步骤:采样、增殖培养、纯种分离和性能测定。 1、采样:即采集含菌的样品 采集含菌样品前应调查研究一下自己打算筛选的微生物在哪些地方分布最多,然后才可着手做各项具体工作。在土壤中几乎各种微生物都可以找到,因而土壤可说是微生物的大本营。在土壤中,数量最多的当推细菌,其次是放线菌,第三霉菌,酵母菌最少。除土壤以外,其他各类物体上都有相应的占优势生长的微生物。例如枯枝、烂叶、腐土和朽木中纤维素分解菌较多,厨房土壤、面粉加工厂和菜园土壤中淀粉的分解菌较多,果实、蜜饯表面酵母菌较多;蔬菜牛奶中乳酸菌较多,油田、炼油厂附近的土壤中石油分解菌较多等。 2、增殖培养(又称丰富培养) 增殖培养就是在所采集的土壤等含菌样品中加入某些物质,并创造一些有利于待分离微生物生长的其他条件,使能分解利用这类物质的微生物大量繁殖,从而便于我们从其中分离到这类微生物。因此,增殖培养事实上是选择性培养基的一种实际应用。 3、纯种分离 在生产实践中,一般都应用纯种微生物进行生产。通过上述的增殖培养只能说我们要分离的微生物从数量上的劣势转变为优势,从而提高了筛选的效率,但是要得到纯种微生物就必须进行纯种分离。纯种分离的方法很多,主要有:平板划线分离法、稀释分离法、单孢子或单细胞分离法、菌丝尖端切割法等。 4、性能测定 分离得到纯种这只是选种工作的第一步。所分得的纯种是否具有生产上所要求的性能,还必须要进行性能测定后才能决定取舍。性能测定的方法分初筛和复筛两种。 初筛一般在培养皿上根据选择性培养基的原理进行。例如要测定淀粉酶的活力可以把斜面上各个菌株一一点种在含有淀粉的培养基表面,经过培养后测定透明圈与菌落直径的比值大小来衡量淀粉酶活力的高低。 复筛是在初筛的基础上做比较精细的测定。一般是将微生物培养在三角瓶中作摇瓶培养,然后对培养液进行分析测定。在摇瓶培养中,微生物得到充分的空气,在培养液中分布均匀,因此和发酵罐的条件比较接近,这样,测得的结果更具有实际的意义。 三、实验用品 1.器材 (1)小铁铲和无菌纸或袋。

蔗糖酶的分离提纯讲解

蔗糖酶的分离提纯 【实验目的】 1.了解蔗糖酶分离提纯的方法。 2.掌握离心技术、电泳技术、层析技术、膜分离技术和分光光度法。 【实验原理】 蔗糖酶[Ec 3.2.1.26]习惯命名β--D--Fructofuranosidase 系统命名:β--D —Fructofuranosideffructonydrolase 。 蔗糖酶是一种水解酶,能使蔗糖水解为果糖和葡萄糖。它所催化的反应是: H OH OH H 蔗糖 + H OH OH H 葡萄糖 果糖 蔗糖酶的分布相当广,在微生物、植物及动物中都有它的存在。在微生物中,酵母中的含量很丰富。在研究中用的最多的是面包酵母和啤酒酵母。 研究表明采用菌体自溶法破碎酵母细胞,采用乙醇分级和DEAE--纤维素柱层析两步分离提纯步骤,就可制备纯度较高的蔗糖酶制剂,而且收率也较好。从酵母中制备蔗糖酶,材料来源十分方便,而且以自己提纯的酶制剂进行蔗糖酶的性质、动力学研究也十分方便。 【实验材料、仪器和试剂】 1.实验材料和试剂 (1)0.2%葡萄糖标准液;(2)3,5-二硝基水杨酸试剂;(3)新鲜啤酒酵母; (4)甲苯;(5)乙酸钠;(6)稀乙酸溶液;(7)95%乙醇;(8)DEAE--纤维素;(9)0.5mol /L NaOH ;(10)0.5mol /L HCl ;(11)0.005mol /L ,pH6.0的磷酸钠缓冲液;(12)含O.15mol /L NaCl 的O.005mol /L ,pH6.0的磷酸钠缓冲液; CH 2OH H OH H H OH CH 20H

(13)5%蔗糖;(14)测定蛋白质浓度试剂;(15)聚丙烯酰胺凝胶电泳试剂2.仪器 (1)恒温水浴;(2)烧杯、量筒、移液管、容量瓶、玻棒;(3)冰盐浴; (4)离心机;(5)721型分光光度计;(6)柱层析装置;(7)天平;(8)pH计; (9)滴管、试管和血糖管;(10)秒表 【方法】 一、葡萄糖浓度标准曲线的制作 1.取10支血糖管,按下表加入0.2%葡萄糖溶液、水及3,5一二硝基水杨 上述试剂混匀后,在沸水浴中加热5min,取出立即冷却,以蒸馏水稀释至25mL,摇匀,于540nm测光密度。 2.以葡萄糖含量(mg)为横坐标,以光密度值为纵坐标绘制标准曲线。 二、蔗糖酶的分离提纯 1.蔗糖酶粗品的制备 (1)自溶 称取10克干酵母,放在200mL的烧杯中,加30mL蒸馏水搅成糊状,再加入 1.5克乙酸钠。然后在35℃水浴中搅拌30min,此时会观察到菌体自溶的现象。 (2)提取及粗酶的制备 往上述自溶液中加60mL蒸馏水,将烧杯用表面皿或玻璃纸盖好,于35℃保温过夜。第二天,将自溶液于4500r/min离心20min。取出离心管,小心将上清液倒入烧杯中,弃沉淀。得到的上清液就是无细胞抽提液,即粗酶液(E1)。 量出粗酶液体积,记录。取2mL作为待测活力和蛋白浓度的样品(4℃保存)。2.乙醇分级 将粗酶液用稀醋酸调pH至4.5。 (1)32%乙醇饱和度 按下面的公式算出使粗酶液的乙醇浓度达32%时所需乙醇体积。

酶的分离纯化方法介绍

酶的分离纯化方法介绍 酶的分离纯化一般包括三个基本步骤:即抽提、纯化、结晶或制剂。首先将所需的酶从原料中引入溶液,此时不可避免地夹带着一些杂质,然后再将此酶从溶液中选择性地分离出来,或者从此溶液中选择性地除去杂质,然后制成纯化的酶。 关键词:酶抽提纯化结晶制剂细胞破碎cell disruption 盐析亲和沉淀有机溶剂沉淀 生物细胞产生的酶有两类: 一类由细胞内产生后分泌到细胞外进行作用的酶,称为细胞外酶。这类酶大都是水解酶,如酶法生产葡萄糖所用的两种淀粉酶,就是由枯草杆菌和根酶发酵过程中分泌的。这类酶一般含量较高,容易得到; 另一类酶在细胞内产生后并不分泌到细胞外,而在细胞内起催化作用,称为细胞内酶,如柠檬酸、肌苷酸、味精的发酵生产所进行的一系列化学反应,就是在多种酶催化下在细胞内进行的,在类酶在细胞内往往与细胞结构结合,有一定的分布区域,催化的反应具有一定的顺序性,使许多反应能有条不紊地进行。酶的来源多为生物细胞。生物细胞内产生的总的酶量虽然是很高的,但每一种酶的含量却很低,如胰脏中期消化作用的水解酶种类很多,但各种酶的含量却差别很大。 因此,在提取某一种酶时,首先应当根据需要,选择含此酶最丰富的材料,如胰脏是提取胰蛋白酶、胰凝乳蛋白酶、淀粉酶和脂酶的好材料。由于从动物内脏或植物果实中提取酶制剂受到原料的限制,如不能综合利用,成本又很大。目前工业上大多采用培养微生物的方法来获得大量的酶制剂。从微生物中来生产酶制剂的优点有很多,既不受气候地理条件限制,而且动植物体内酶大都可以在微生物中找到,微生物繁殖快,产酶量又丰富,还可以通过选育菌种来提高产量,用廉价原料可以大量生产。 由于在生物组织中,除了我们所需要的某一种酶之外,往往还有许多其它酶和一般蛋白质以及其他杂质,因此为制取某酶制剂时,必须经过分纯化的手续。 酶是具有催化活性的蛋白质,蛋白质很容易变性,所以在酶的提纯过程中应避免用强酸强碱,保持在较低的温度下操作。在提纯的过程中通过测定酶的催化活性可以比较容易跟踪酶在分离提纯过程中的去向。酶的催化活性又可以作为选择分离纯化方法和操作条件的指标,在整个酶的分离纯化过程中的每一步骤,始终要测定酶的总活力和比活力,这样才能知道经过某一步骤回收到多少酶,纯度提高了多少,从而决定着一步骤的取舍。 酶的分离纯化一般包括三个基本步骤:即抽提、纯化、结晶或制剂。首先将所需的酶从原料中引入溶液,此时不可避免地夹带着一些杂质,然后再将此酶从溶液中选择性地分离出来,或者从此溶液中选择性地除去杂质,然后制成纯化的酶制剂。下面就酶的分离纯化的常用方法作一综合介绍: 一、预处理及固液分离技术 1.细胞破碎(cell disruption) 高压均质器法:此法可用于破碎酵母菌、大肠菌、假单胞菌、杆菌甚至黑曲霉菌。将细胞悬浮液在高压下通入一个孔径可调的排放孔中,菌体从高压环境转到低压环境,细胞就容易破碎。菌悬液一次通过均质器的细胞破碎率在12%-67%。细胞破碎率与细胞的种类有关。

蔗糖酶的提取分离

蔗糖酶的发酵生产及酶学性质研究 摘要:本实验酵母中蔗糖酶进行分离纯化并对酶学性质进行了初步的研究。结果表明:酵母蔗糖酶的最适pH为5.0, 最适温度为45℃。 关键词:蔗糖酶、酶学性质 1前言 蔗糖酶(Sucrase, EC3.2.1.26) 又称转化酶(Invertase)。可作用于β-1,2糖苷键,将蔗糖水解为D-葡萄糖和D-果糖。由于果糖甜度高,可用以转化蔗糖,增加甜味,制造人造蜂蜜,防止高浓度糖浆中的蔗糖析出,制造含果糖和巧克力的软心糖,还可为果葡糖浆的工业化生产提供新的方法。 本实验对酶的动力学性质分析, 是酶学研究的重要方面。本研究通过一系列实验对酵母蔗糖酶的动力学性质如最适温度、最适pH、酶的固定化等进行了初步研究,更好的了解了没得性质。 2材料与方法 2.1 材料与设备 2.1.1 实验材料 酵母、活性干酵母、壳聚糖 2.1.2 试剂及配制方法 葡萄糖、蔗糖、豆芽汁浸汁、Na 2HPO 4 、KH 2 PO 4 、MgSO 4 、NaCl、NaOH、Na 2 CO 3 、盐 酸、氨水、琼脂、酒精均为国产分析纯。 95%乙醇溶液、DEAE-Sepharose Fast Flow、1 mol/L醋酸溶液、0.05 mol/L Tris-HCl缓冲液(pH值7.3)0.05 mol/L Tris-HCl缓冲液(内含0.5 mol/L NaCl溶液,pH值7.3) 葡萄糖标准液配制(1mg/ml):预先将分析纯葡萄糖置80℃烘箱内约12小时。准确称取500mg葡萄糖于烧杯中,用蒸馏水溶解后,移至500ml容量瓶中,定容,摇匀(冰箱中4℃保存期约一星期)。 1% 3,5-二硝基水杨酸(DNS)试剂:酒石酸钾钠100 g溶于400 mL蒸馏水,加热中依次加入NaOH 5 g,3,5-二硝基水杨酸5 g,苯酚1 g,亚硫酸钠0.25 g,搅拌至溶。冷却后定容至500 mL,储于棕色瓶室温保存。 10%蔗糖溶液:10g蔗糖溶解于蒸馏水中,定容至100ml 0.1 mol/L pH 7.8 Tris-HCl缓冲液

151104大米中直链淀粉和支链淀粉的检测分光光度法

大米中直链淀粉和支链淀粉的检测分光光度法 企业标准(拟定稿) 倪天瑞2015年11月04日 1. 适用范围 大米中直链淀粉和支链淀粉含量的测定,不适用于熟制大米的检测; 2. 规范性引用文件 NY/T 2639-2014稻米直链淀粉的测定分光光度法 GB/T 15683-2008大米直链淀粉含量的测定 3. 原理 大米中淀粉与碘形成显色复合物,在波长620 nm处测定显色物的吸光度值,其吸光度与直链淀粉含量成正比; 大米中淀粉分为直链淀粉和支链淀粉,直链淀粉含量之外数值即为支链淀粉含量。 4. 试剂 使用试剂为分析纯试剂,水为三级水 4.1氢氧化钠溶液(1 mol/L):称取4 g氢氧化钠,溶于100 mL水中; 4.2乙酸溶液(1 mol/L):量取 5.78 mL冰乙酸,用水定容至100 mL ; 4.3碘液:0.2 g碘、2 g碘化钾,用水定容至100 mL; 4.4乙醇溶液(95%) 4.5空白校正液:氢氧化钠溶液(0.09 mol/L),量取4.5 mL 1 mol/L氢氧化钠溶液,定容至50 mL; 4.6直链淀粉标准品,购于上海将来试剂公司; 4.7支链淀粉标准品,购于上海将来试剂公司; 5. 仪器 分光光度计 分析天平,感量土 0.0001 g 水浴锅 烧杯 研钵 筛子(80 目) 6. 分析步骤 6.1样品处理:将样品混匀,称取约10 g,粉碎后,过80目筛子; 6.2前处理:准确称取样品50± 0.2 mg,置于50 mL容量瓶中,加入0.5 mL 95%乙醇溶液,冲洗容器壁上的粉末,再加入 4.5 mL氢氧化钠溶液,摇匀,沸水浴10 min,取出,冷却至室温,定容至50 mL。该溶液即为待测液。 6.3标准溶液: 6.3.1直链淀粉标准溶液(1 mg/mL) 称取50± 0.2 mg直链淀粉标准品,置于50 mL容量瓶中,加入0.5 mL 95%乙醇溶液,冲洗容器壁上的粉末,再加入4.5 mL氢氧化钠溶液,摇匀,沸水浴10 min,取出,冷却至室温,定容至50 mL。 6.3.2支链淀粉标准溶液(1 mg/mL) 称取50±0.2 mg支链淀粉标准品,制备方法同上

木瓜蛋白酶的提取

木瓜蛋白酶的提取、分离纯化及其生物学研究综述及实验方法 13生物技术第二大组第二小组 组员:王玓玥(组长)、王子贺、王思瑶、王宇涛、王守鑫、谭国栋一、研究背景: 在经济飞速发展的今天,人们的生活水平已远远不只在于吃饱穿暖,食品的安全和营养问题受到人们越来越多的关注,绿色健康的生活也成为大家共同的追求,木瓜蛋白酶以它自身耐热及特殊结构等特点被广泛的用于食品行业,如何分离纯化得到高纯度低成本的木瓜蛋白酶则是人们现在研究的重点,本小组便也以此为研究主题展开实验。 二、木瓜蛋白酶基本介绍:木瓜蛋白酶,又称木瓜酶,是一 种蛋白水解酶。木瓜蛋白酶是番木瓜中含有的一种低特异性蛋白水解酶,广泛地存在于番木瓜的根、茎、叶和果实内,其中在未成熟的乳汁中含量最丰富。木瓜蛋白酶的活性中心含半胱氨酸,属于巯基蛋白酶,它具有酶活高、热稳定性好、天然卫生安全等特点,这种蛋白水解酶,分子量为23406,由一种单肽链组成,含有212个氨基酸残基。至少有三个氨基酸残基存在于酶的活性中心部位,他们分别是Cys25、His159和Asp158,当Cys25被氧化剂氧化或与金属离子结合时,酶的活力被抑制,而还原剂半胱氨酸(或亚硫酸盐)或EDTA能恢复酶的活力木瓜蛋白酶是一种在酸性、中性、碱性环境下均能分解蛋白质的蛋白酶。它的外观

为白色至浅黄色的粉末,微有吸湿性;木瓜蛋白酶溶于水和甘油,水溶液为无色或淡黄色,有时呈乳白色;几乎不溶于乙醇、氯仿和乙醚等有机溶剂。木瓜蛋白酶是一种含巯基(-SH)肽链内切酶,具有蛋白酶和酯酶 的活性,有较广泛的特异性,对动植物蛋白、多肽、酯、酰胺等有较强的水解能力,但几乎不能分解蛋白胨。木瓜蛋白酶的最适合PH值6~7(一般3~9.5皆可),在中性或偏酸性时亦有作用,等电点(pI)为8.75;木瓜蛋白酶的最适合温度55~65℃(一般10~85℃皆可),耐热性强,在90℃时也不会完全失活;受氧化剂抑制,还原性物质激活。。另外六个半胱氨酸残基形成了三对二硫键,且都不在活性部位。纯木瓜蛋白酶制品可含有:(1)木瓜蛋白酶,分子量21000,约占可溶性蛋白质的10%;(2)木瓜凝乳蛋白酶,分子量26000,约占可溶性蛋白质的45%;(3)

分离产淀粉酶的芽孢杆菌要点

微生物学设计性实验报告 项目组长_学号__成员专业_生物科学班级__实验项目名称_土壤中微生物的分离及分类_指导教师及职称___开课学期至学年__学期上课时间 从环境中分离产淀粉酶的芽孢杆菌 一、摘要 本文通过对土壤中细菌杀灭营养体芽孢萌发,并用由淀粉充当碳源的选择培养基培养分离,纯培养后通过镜检最后得到能产胞外淀粉酶的芽孢杆菌。 二、实验目的及要求 1、通过本实验的学习,使学生学习掌握从环境中分离产淀粉酶菌株以及菌株初步鉴定的方法; 2、巩固微生物分离纯化、细菌生理生化鉴定、染色观察等实验技能,对所学习过的微生物学实验方法进行综合技能训练; 3、培养学生综合利用微生物学、生物化学等相关知识,自行设计、实施并判断实验结果的能力。 4、要求学生根据所学知识自主设计实验方案,在实验方案通过审核后组织实施,最终要求获得产淀粉酶的菌株并对其进行初步的鉴定。 三、实验仪器设备 主要仪器:超净工作台、生化培养箱、电热干燥箱、高压蒸汽灭菌锅、水浴锅、显微镜、培养接种器具等 主要制剂:富集培养基、选择性培养基、5%的番红水溶液、卢戈氏碘液 四、实验方案设计 (一)实验原理 1、土壤中含有各种微生物,其中产胞外淀粉酶的芽孢杆菌含量在不同土壤中含量也不同,生物在适宜的的环境下生存得好,所以在淀粉厂附近的土壤中,能利用淀粉的微生物含量较高。 2、芽孢是菌体生长到一定阶段形成的一种抗逆性很强的休眠体结构,芽孢最主要的特点就是抗性强,对高温、紫外线、干燥、电离辐射和很多有毒的化学物质都有很强的抗性。它帮助菌体度过不良环境,在适宜的条件下可以重新转变成为营养态细胞。 3、在只用淀粉充当碳源的选择培养基中,只有能产保外淀粉酶利用淀粉的的菌体能成为优势菌种。在淀粉选择培养基中,产胞外淀粉酶的菌种可以得到富集及分离。 4、菌体可经简单染色后在显微镜下被判断出是否为杆菌

胃蛋白酶提取的分离纯化

胃蛋白酶提取法中分离纯化技术的研究进展 摘要:本文就胃蛋白酶的生物提取法,对其在生产过程中的分离、纯化技术展开综述。其中,分离技术主要介绍了:盐析法、有机溶剂沉淀法、底物亲和法、透析法。纯化技术主要介绍了:凝胶过滤法、透析离子交换法。综合比较各分离纯化方法的特点,得到最优的分离纯化方法有机溶剂与盐析共沉淀法、膜分离技术、等电点沉淀法与底物亲和法。 关键词:胃蛋白酶分离纯化应用 .生物提取法生产胃蛋白酶 1.1 工艺路线 (自溶、过滤)(脱脂、去杂质) 猪胃黏膜→自溶液→上清液 (浓缩、干燥) →胃蛋白酶成品 工艺过程 (1)原材料的选择和预处理:胃蛋白酶原主要存在于胃粘膜基底部,采集原料时剥取的粘膜直径大小与收率有关。一般取直径10cm、深2-3mm的胃基底部粘膜最适宜,每头猪胃平均剥取粘膜100g左右。(2)自溶、过滤:在夹套锅内预先加水100升及盐酸升,加热至50度时,在搅拌下加入200千克猪胃黏膜,快速搅拌使酸度均匀,保持45—48度,消化3-4小时,得自溶液。用纱布过滤除去未消化的组织尿蛋白,收集滤液。(3)脱脂、去杂质:将滤液降温至30℃以下,加入15-20%氯仿或乙醚,搅匀后转入沉淀脱脂器内,静置24-48小时,使杂质沉淀,分出弃去,得脱脂酶液。(4)浓缩、干燥:取清酶液,在40℃以下减压浓缩至原体积的1/4左右,再将浓缩液真空干燥。球磨过80-100目筛,即得胃蛋白酶粉。 2胃蛋白酶的分离技术 有机溶剂法

可用于胃蛋白酶的初步提取浓缩。通常使用的有机溶剂有甲醇、乙醇、丙酮、异丙酮,其沉淀蛋白质的能力为:丙酮>异丙酮>乙醇>甲醇。当然此顺序也不是一成不变的,因为还要受温度、pH、离子强度等因素的影响。丙酮沉淀能力最好,但挥发损失多,价格较昂贵,所以工业上常采用乙醇作为沉淀剂。 2.2盐析法 盐析法是酶制剂工业中常用方法之一,硫酸镁、硫酸铵、硫酸钠是常用的盐析剂,其中用的最多的是硫酸铵。美国专利(2,701,228)改进后,用锌盐沉淀胃酶。当母液含醇(或酮)在50%--55%、pH在—时几乎全部胃酶可以用醋酸锌沉淀,沉淀物为胃酶的锌盐,然后用金属螯合剂除去锌盐,得15000—16000倍活力的酶,收集率为%%。此法较上述有机溶剂沉淀所得的胃酶活力和得率都高。 底物亲和法 底物亲和法是利用酶(胃蛋白酶)与其底物(酪蛋白)的亲和性,从胃粘膜中提取得到胃蛋白酶。使底物和酶在的乳酸缓冲液中充分结合,然后调pH至4(底物的等电点)沉淀底物和酶的结合物,随后让沉淀物再溶解于乳酸缓冲液中,添加低浓度的SDS将底物和酶分离,得到酶—SDS复合物,再进一步分离纯化。陈躬瑞(2001)成功的应用此法对蛇胃蛋白酶进行了实验室分离,得率大约为30%。与传统的分离方法比较,此法具有简单高效的优点,为后续的纯化工艺避免了昂贵的活化试剂和配基的使用,同时具有较高的特异性。【2】 透析法 胃蛋白酶的分离过程中还经常用到透析法。该法是利用蛋白质大分子对半透膜的不可透过性而与小分子物质及盐分开的。由于透析主要是扩散过程,如果袋内外的盐浓度相等,扩散就会停止,因此要经常换溶剂,一般一天换2—3次。如在冷处透析,则溶剂也要预先冷却,避免样品变性。透析时的盐是否除净,可用化学试剂或电导仪来检测。【1】 3胃蛋白酶的纯化技术 凝胶过滤法

参考教案-蔗糖酶的提取纯化与鉴定分析

参考教案:酵母蔗糖酶的提取纯化与鉴定 蔗糖酶(E.C.3.2.1.26)( —D—呋喃果糖苷果糖水解酶),能催化非还原性双糖(蔗糖)的1,2-糖苷键裂解,释放出等量的果糖和葡萄糖。不仅能催化蔗糖水解生成葡萄糖和果糖,也能催化棉子糖水解,生成密二糖和果糖。 由于果糖甜度高 ,约为蔗糖1.36~1.60倍 ,在工业上具有较高的经济价值。可用以转化蔗糖,增加甜味,制造人造蜂蜜,防止高浓度糖浆中的蔗糖析出,制造含果糖和巧克力的 软心糖,还可为果葡糖浆的工业化生产提供新的方法。 蔗糖酶以两种形式存在于酵母细胞膜的外侧和内侧,在细胞膜外细胞壁中的称之为外蔗糖酶,其活力占蔗糖酶活力的大部分,是含有50% 糖成分的糖蛋白。在细胞膜内侧细胞质中的称之为内蔗糖酶,含有少量的糖。两种酶的蛋白质部分均为双亚基,二聚体,两种形式的酶的氨基酸组成不同,外酶每个亚基比内酶多两个氨基酸,Ser和Met,它们的分子量也不同,外酶约为27万(或22万,与酵母的来源有关),内酶约为13.5万。尽管这两种酶在组成上有较大的差别,但其底物专一性和动力学性质仍十分相似,因此,本实验未区分内酶与外酶,而且由于内酶含量很少,极难提取,本实验提取纯化的主要是外酶。 每摩尔蔗糖水解产生两摩尔还原糖,蔗糖的裂解速率可以通过NeLson法测定还原糖的产生数量来测定。一个酶活力单位规定为在标准分析条件下每分钟催化底物转化的数量。比活力单位为每毫克蛋白含有酶活力单位。 (本实验以酵母为原料) 一、教学目的 通过酵母菌扩大培养及蔗糖酶的提取纯化与鉴定使学生学会生物大分子(酶)制备方案设计和开展实践研究的方法,体验从复杂细胞混合物体系中提取纯化酶的基本原理、 过程和方法。 本实验为学生提供一个较全面的科学研究实践机会,整个实验过程学生独立完成,虽然操作难度较大,所需要的实间较长(64学时),但每一步单元操作的原理清晰,技术成熟,实验结果明显,能给学生较多的设计空间和动手机会,有利于培养学生的学习兴趣和从事科学研究的能力。 二、教学内容

从直链淀粉与支链淀粉看优质大米与普通大米的区别

我国的大米,无认是在生产上还是在消费上,都是世界上第一的大国,我国有着几千年的大米历史和文化,有60%以上的人口大米为主食。 大米淀粉是由葡萄糖组成的多糖高分子化合物,其中含有以分支结构为主的支键淀粉和以线性结构为主的直链淀粉。大量研究表明,两类淀粉的含量、分子量、空间结构及其相互关系是影响大米品质优劣的重要因素。它直接影响着大米在蒸煮过程中水分的吸收和体积扩张,以及米饭的粘稠与松散性。 碘蓝值实验是表示淀粉结合碘能力的一个指标,碘蓝值高,说明与碘结合力强。支链淀粉分支多,不与碘结合,碘染呈紫色,与热水作用膨胀成糊状。直链淀粉分支少,易于碘结合成深蓝色,能溶于水而不成糊状,所以说直链淀粉含量直接影响着米饭的韧性口感。 直链淀粉含量高,米细比较细长,韧性口感较低,弹性低,产于南方的籼稻就是高直链淀粉

含量的品种。反之,直链淀粉含量低,支链淀粉含量高,煮熟后的粘性也比较高,米饭韧性口感高,弹性高,产于北方的粳稻就是低直链淀粉含量的品种,口感较好。 中国北方水稻栽培专家许哲鹤先生是这样区别普通大米与优质大米的: 一是药物和污染残留,只要检测为阳性就不能确定为优质米。 二是蛋白质含量。以7%为限,小于7%即是优质米,口味就好,并且越低越好;大于7%口味就差,越高越差。 三是直链淀粉含量,以20%为限,越小,米饭的柔韧度、弹性越好,越高则越差。 根据国内外前沿农业科学研究分析,水稻的蛋白质积累和淀粉的积累排列方式,除了人为的施肥因素外,与其灌浆期的温度有着直接关系。在这个时期,只有满足平均气温在23至25度、昼夜温差大于10度的条件,蛋白质和直链淀粉的含量才能保证最低。

直链淀粉和支链淀粉

。 直链淀粉和支链淀粉配比与糊化温度的关系 作者石家源指导教师闫怀义 (忻州师范学院化学系0701班 034000) 摘要为了研究直链淀粉和支链淀粉配比与糊化温度的关系,以玉米淀粉为原料,采用正丁醇沉降法和温水浸出法提取出直链淀粉和支链淀粉,并比较了两种方法提取出产品的纯度,然后用分光光度法测定了不同配比的直、支链淀粉的糊化温度。结果表明:正丁醇沉降法过于复杂,且所需时间过长;温水浸出法操作简单,节省时间;正丁醇沉降法分离出的支链淀粉纯度比温水浸出法的高,但是相差不多;由温水浸出法分离出的直链淀粉纯度比正丁醇沉降法的高;所以在工业生产中完全可以用温水浸出法代替丁醇沉降法;用温水浸出法提取出的直链淀粉的糊化温度为80℃;支链淀粉的糊化温度为55℃。即直链淀粉含量越多,糊化温度越高;支链淀粉含量越多,糊化温度越低。 关键词直链淀粉;支链淀粉;提取;配比;糊化温度 引言 直链淀粉和支链淀粉是淀粉的两大组成成分,由于二者的分子结构、分子聚集状态不同,从而使得不同来源的淀粉有各自的用途。研究表明,淀粉中直链淀粉和支链淀粉的比例和含量对淀粉产品的加工、物化特性、糊化温度等有着直接的影响[1]。因此,对于不同比例直、支链淀粉的淀粉的研究具有重要的意义。 在淀粉的悬浊液中,淀粉微晶束溶融的过程叫做淀粉的糊化,即:水分子进入淀粉微晶束结构,拆散分子间的缔合状态。淀粉不溶于冷水,难被酶解,没有消化性。但淀粉糊化后形成的胶体糊,能被酶解、消化。糊化完全的淀粉可以100%被消化;干燥的糊化淀粉食品可以长期保藏且不变质;作为施胶剂或浆料,糊化后的淀粉才能成糊以供涂抹。因此,淀粉应用的前提是淀粉的糊化。糊化是淀粉的一大特性,评价糊化的基础是:粘度、结晶性、糊化温度、糊化度、润涨度、溶解度等。糊化温度是指淀粉发生糊化时的温度,通常用糊化开始和完成的温度来表示淀粉糊化温度的范围。糊化的方法有间接加热法、直接加热法、超高压糊化法及化学糊化法等。研究糊化温度一般采用差示扫描量热分析、定量差示热分析、分光光度法、激光光散射法以及核磁共振分析等方法[2]。 [ 洪雁用正丁醇沉降法提取了直链淀粉纯品,并通过蓝值、凝胶色谱、高效液相色谱法等方法对其纯度进行了鉴定。本文以玉米淀粉为原料分别用正丁醇沉降

-淀粉酶的提取要点

α-淀粉酶的提取、分离及测定 (生化试验小组-2005.4) 试验全程安排: 试验一、色谱分离淀粉酶 1.1 试剂及设备 离子交换树脂 -20℃冰箱 样品管(5-10ml试管) 1.5ml离心管 紫外分光光度计 α-淀粉酶样品 秒表 胶头吸管(进样用) 平衡缓冲液(pH8.0,0.01M磷酸盐缓冲液) 洗脱缓冲液(平衡缓冲液+0.1M,0.3M,0.5M,1.0M的氯化钠) 试剂瓶 1.2 离子交换色谱原理与方法 色谱(chromatography)是一种分离的技术,随着现代化学技术的发展应运而生。20世纪初在俄国的波兰植物化学家茨维特(Twseet)首先将植物提取物放入装有碳酸钙的玻璃管中,植物提取液由于在碳酸钙中的流速不同分布不同因此在玻璃管中呈现出不同的颜色,这样就可以对各种不同的植物提取液进行有效的成分分离。到1907年茨维特的论文用俄文公开发表,他把这种方法命名为chromatography, 即中文的色谱,这就是现代色谱这一名词的来源。

但由于茨维特当时没有知名度,而且能看懂俄文的人也不多,加之很快爆发了第一次世界大战,茨维特的分离方法一直被束之高阁。20世纪20年代,许多植物化学家开始采用色谱方法对植物提取物进行分离,色谱方法才被广泛地应用。自20世纪40年代以来以Martin为首的化学家建立了一整套色谱的基础理论使色谱分析方法从传统的经验方法总结归纳为一种理论方法,马丁等人还建立了气相色谱仪器使色谱技术从分离方法转化为分析方法。20世纪50年代以后由于战后重建和经济发展的需要,化学工业特别是石油化工得到广泛的发展,亟需建立快速方便有效的石化成分分析。而石化成分十分复杂,结构十分相似,且多数成分熔点又比较低,气相色谱正好吻合石化成分分析的要求,效果十分明显、有效。同样,石化工业的发展也使色谱技术特别是气相色谱得到广泛的应用。气相色谱的仪器也不断得到改进和完善,气相色谱逐渐成为一种工业分析必不可少的手段和工具。 20世纪80年代以后我国也大规模采用气相色谱和高效液相色谱。随着环境科学的发展,不仅需要对大量有机物质进行分离和检测,而且也要求对大量无机离子进行分离和分析。1975年美国Dow化学公司的H.Small等人首先提出了离子交换分离抑制电导检测分析思维 即提出了离子色谱这一概念离子。色谱概念一经提出便立即被商品化产业化由Dow公司组建的Dionex公司最早生产离子色谱并申请了专利。我国从20世纪80年代开始引进离子色谱仪器,在我国八五、九五科技攻关项目中均列有离子色谱国产化的项目,对其进行了重点技术攻关。 色谱的分类 色谱的分类有多种,主要按两相的状态及应用领域的不同可分为两大类 1. 按应用领域不同分类制备色谱半制备色谱 2. 以流动相和固定相的状态分类气相色谱、气固色谱、气液色谱、液相色谱、液固 色谱、液液色谱、超临界色谱、毛细管电泳 离子交换色谱 离子色谱分离主要是应用离子交换的原理,采用低交换容量的离子交换树脂来分离离子。它在离子色谱中应用最广泛,其主要填料类型为有机离子交换树脂,以苯乙烯二乙烯苯共聚体为骨架在苯环上引入磺酸基形成强酸型阳离子交换树脂,引入叔胺基而成季胺型强碱性阴离子交换树脂,此交换树脂具有大孔或薄壳型或多孔表面层型的物理结构以便于快速达到交换平衡。离子交换树脂耐酸碱,可在任何pH范围内使用,易再生处理,使用寿命长。缺点是机械强度差,易溶胀,易受有机物污染。 离子色谱基本流程图如下图所示:

相关文档
最新文档