19.2.1正比例函数(第2课时)公开课
人教版八年级数学下册第十九章《 正比例函数(2)》公开课课件
新课引入 展示目标 研读课文 归纳小结 强化训练
第十九章 一次函数 19.2.1 正比例函数
第七课时 正比例函数2
一、新课引入
用描点法画函数图象有哪几个步骤?
①确定两个函数自变量的取值范围. ②列表 ③画图象
二、学习目标
1 会用描点法画正比例函数图象 2 理解并掌握正比例函数的性质
结论 因为两点确定一条直线,所以经过原点与
点( 1,k )(k是常数,k≠0)的直线,即是正比
例函数 y kx (k≠0)的图象.
用你认为最简单的方法画出下列函数的图象:
(1)y 3 x
2
; (2) y3x
解:列表:
x
0
1
y(1)
0 1.5
y(2)
0 -3
描点并连线:
y 3x 2
y 3x
三、研读课文
Thank you!
三、研读课文
认真阅读课本第87至89页的内容,完 成下面练习并体验知识点的形成过程.
三、研读课文
例1 画出下列正比例函数的图象:
正知
(1) y1 2x
y2
1 3
x
解:①确定两个函数自变量的取值范围
比识
②列表:
例点 函一 数 的
… -3 -2 -1 0 1 2 3 …
6
… -6 -4 -2 0 2 4 6
四、归纳小结
1⑴⑵数2、、在把y最正平这k简比k面两x单例(直点k画函≠角 连0正数)坐成的比y标一图例系条象k函x只_.直数_(选_线图k_取≠_象0两,)这的点的条方:性(直法0,质线:0:就)与是点正(比1例,函); ⑴限⑵限当,当,k函k函><数数00yy时时随随,,自 自正正变变比比量量例例xx的的函函增增数数大大yy而而kkx_x_增减经经____大少过过____第 第_____.一二.____、、第第__三四____象象
初中数学 人教版八年级数学下册19.2.1 正比例函数 课件
y=3x
x
1 23
2.画函数 y = 3 x 的图象
2
解:选取两点(0,0) , (1, 3 )
y
2
4
过这两点画直线,
3
2
就是函数y= 3 x 的图象
2
1
x
-2 -1 0 1 2 3 4
-1
-2
-3 -4
y=
3 2
x
-5
1. 正比例函数y=(m-1)x的图象经过一、三象限, 则m的取值范围是( B ) A. m=1 B. m>1 C. m<1 D. m≥1
y
y=2x
5
4
3
2
1
-5 -4 -3 -2 -1 0 1 2 3 4 5
x
-1
-2
-3
-4
-5
y 2x
观察
y y=2x
45
3 2 1
-5 -4 -3 -2 -1 0 1 2 3 4 5
x
-1
-2
-3
-4
-5
y 2x
比较上面两个函数的图象的相同点与不同点,考虑 两个函数的变化规律.
结论:两图象都是经过原点的 直线 ,函数 y 2x
5
知识点一:正比例函数的定义
新知探究
(1)京沪高铁列车全程运行时间约需 1 318÷300≈4.4 (h).
(2)京沪高铁列车的行程y是运行时间t的函数,函数解析 式为y=300t(0≤t≤4.4) (3)京沪高铁列车从北京南站出发2.5 h的行程,是当t=2. 5时函数 y=300t的值,即
y=300×2.5=750 (km). 这时列车尚未到达距始发站1 100 km的南京南站.
16
课件4:19.2.1正比例函数(2)
则m的取值范围是( B)
A. m 1 B. m 1
2. 函数 y 5x , y 2 x ,
C.
y
m
x,
1
y
D.1
m 1
x 中,
7
y随x的增大而增大的是 y 5x , y x
,
y随x的增大而减小的是 y 2x ,
y 1 x 7
.
3.已知正比例函数 y kx (k 2 2) 的图像,
例1:用“两点法”画出函数y 3x 和 y 3x
的图像,并回答下列问题。
图像
(1)函数 y 3x的图像过点(0, 0 )和
( 2 ,6),且 y 随x 的增大而 增大 ;
(2)函数 y 3x 的图像过第__二__、__四____象限,
且 y随 x的增大而 减小 。
练习:
1.正比例函数 y (m 1)x 的图象经过一、三象限,
第 十 九 章
一
次 函
数
y 随 x 的增大而减小,求 k 的值。 解:由正比例函数的定义可知:k 2 2 0, k 2
又y 随 x 的增大而减小,故 k<0 所以 k 2 4. 已知正比例函数 y (m 1) x|m|的图象过第
二、四象限,求m的值。 解:由正比例函数的定义可知: | m | 1, m 1
又图像过第二、四象限,故 m 1 0, m 1 所以 m 1
画出正比例函数 y 2x和 y 2x 的图像
画图
解析式
y kx(k 0)
k 0
k 0
图像
图像恒过原点
(0, 0)
性质
⑴图像过一、三象限
⑵ y随 x的增大而
增大(上升趋势)
⑴图像过二、四象限
19.2.1正比例函数(第二课时)
y
y
y
y
0x
0x
0x
0x
A
B
C
D
6、正比例函数y=(m-1)x的图象经过一、
三象限,那么m的取值范围是〔B 〕
A、m=1 B、m>1 C、m<1 D、m≥1
7、如果 y(1m)xm23 是正比例函数,且y 随x的增大而减小,那么m= 2 。
8、直线y=(k2+3)x经过一、三 象限,y随x 的增大而 增大 。
k>0
k<0
两图象都是经过原点的_直__线___ 函数y= 2x的图象:从左向右 上升 ,经过第 一、三 象限,
随着x的增大y 增大 ; 函数y=-2x的图象:从左向右 下降 ,经过第 二、四 象限,
随着x的增大y 减小 。
〔3〕怎样画正比例函数的图象最简单?为什么?
由于两点确定一条直线,且正比例函数 的图像是一条经过原点的直线。画正比 例函数图象时我们只需描点(0,0)和点 (1,k),连线即可.
② y=-2x
画函数图步骤:
1、列表; 2、描点; 3、连线。
…
…
画出函数y=2x的图象
解: 1.列表:
xy
2.描点:
…
…
-3 -6 -2 -4 -1 -2 00 12 24 36
3.连线:
y 2x
试 请你画出y=-2x的图象
一
y 2x
试
〔2〕比较两个函数图象的相同点与不同
点:
y 2x
y 2x
k_≠ _0 x的指数是_1_ k与x是_乘_积_关系 ④正比例函数解析式y=kx是一个_单_项式。 〔3〕用待定系数法求正比例函数的解析式步骤 是?一设二代三求四写 〔4〕描点法画函数的图像步骤:列表、描点、连线
19.2.1 第2课时 正比例函数的图象与性质
19.2.1 正比例函数第2课时正比例函数的图象与性质课题第2课时正比例函数的图象与性质授课人教学目标知识技能会画正比例函数的图象;理解正比例函数的图象及性质.数学思考能根据正比例函数的图象和解析式y=kx(k≠0)理解k>0和k<0时函数的图象特征与增减性.问题解决通过观察图象,归纳总结概括出正比例函数性质的活动,发展数学感知、数学表征、数学概括能力.情感态度体会数形结合的思想,发展几何直观,体验数学的应用价值.教学重点用数形结合的思想方法,通过画图观察,概括正比例函数的图象特征及性质.教学难点正比例函数的图象特征及性质.授课类型新授课课时教具多媒体:PPT课件、电子白板教学活动教学步骤师生活动设计意图回顾1.什么是正比例函数?请你写出两个具体的正比例函数.2.描点法画函数图象的一般步骤是:列表、描点、连线.3.下列函数中,y是x的正比例函数的是①④.(填序号)①y=-5x;②y=4x;③y=3x2+5;④y=x2;⑤y=-23x-1.温故知新,为抓住本节重点、突破难点做知识储备.活动一: 创设情境导入新课【课堂引入】请用描点法画出下列函数的图象,观察图象你能发现什么?(1)①y=x;②y=-x.(2)①y=4x;②y=-4x.[师生活动]教师讲清要求,巡视指导.学生可分小组进行合作探究,教师展示学生成果.直接引入,简洁明了,重点突出.活动二: 实践探究交流新知【探究1】用描点法画出正比例函数y=2x的图象.练习:在同一直角坐标系中用描点法画出正比例函数y=13x的图象.图19-2-5思考:对于一般的正比例函数y=kx,当k>0时,它的图象形状是怎样的?位置呢?在k>0的情况下,图象是左低右高还是左高右低?当自变量的值增大时,对应的函数值是增大还是减小?【探究2】当k<0时,正比例函数的图象特征及性质又怎样呢?请各小组画出函数y=-3x和y=-1.5x的图象,小组间进行合作研究.[师生活动]让学生在完成上述练习的基础上总结归纳出正比例函数解析式与图象特征之间的规律:让学生观察、分析、讨论、对比图象的异同,发现函数图象的性质.在多个实例的基础上,归纳得到正比例函数图象的性质,潜移默化地对学生渗透概括、归纳、比较、分析等数学思想方法.活动二: 实践探究交流新知正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线.当k>0时,图象经过第一、三象限,从左向右上升,即随着x的增大y也增大;当k<0时,图象经过第二、四象限,从左向右下降,即随着x的增大y反而减小.正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx.【探究3】正比例函数的图象是一条经过坐标原点的直线,我们知道,两点确定一条直线,现在,你知道画正比例函数图象的简便方法了吗?[师生活动]教师引导学生用简便方法画正比例函数的图象.用你认为最简单的方法画出下列函数的图象:(1)y=32x;(2)y=-3x.图19-2-6[师生活动]学生合作探究交流得出结论:画正比例函数的图象时,只需除原点外再确定一个点,即找出一组满足函数解析式的对应数值即可,如(1,k),因为两点可以确定一条直线.例在同一直角坐标系中,画出下列函数的图象,并对它们进行比较.(1)y=12x;(2)y=-12x.教师引导学生用简便方法画正比例函数的图象,并利用此例让学生巩固正比例函数的图象与性质.活动二: 实践探究交流新知解:画图象如图19-2-7.图19-2-7[师生活动]比较两个函数图象可以看出:两个图象都是经过坐标原点的直线.函数y=12x的图象从左向右上升,经过第一、三象限,即随着x的增大y也增大;函数y=-12x的图象从左向右下降,经过第二、四象限,即随着x的增大y反而减小.活动三: 开放训练体现应用【应用举例】例1当k>0时,正比例函数y=kx的图象大致是(A)图19-2-8变式已知正比例函数y=(3k-1)x,y随着x的增大而增大,则k的取值范围是(D)A.k<0B.k>0C.k<13D.k>13[师生活动]以学生独立思考解答为主,教师引导学生关注两道题目分别是由正比例函数的系数推断图象特征和由正比例函数的性质推断系数特征,从两个不同的角度了解正比例函数的图象与性质.例2汽车由天津驶往相距120千米的北京,s(千米)表示汽车离开天津的距离,t(时)表示汽车行驶的时间,s与t之间的关系如图19-2-9所示.(1)汽车用几小时可到达北京?速度是多少?(2)汽车行驶1小时,离开天津有多远?(3)当汽车距北京20千米时,汽车出发了多长时间?1.运用正比例函数的图象与性质解决简单问题,及时巩固所学知识,了解根据正比例函数的图象与性质解题可以“正用”,也可以“逆用”,并体会数形结合思想的具体应用.活动三: 开放 训练 体现 应用图19-2-9解法一:用图象解答.(1)从图上可以看出汽车用4个小时可到达北京. 速度=1204=30(千米/时).(2)汽车行驶1小时离开天津约30千米.(3)当汽车距北京20千米时,汽车出发了约3.3小时.解法二:用解析式解答.(1)由图象可知:s 与t 是正比例关系, 设s=kt ,当t=4时,s=120, 即120=k×4,k=30, ∴s=30t.(1)汽车4小时可达到北京,速度为30千米/时. (2)当t=1时,s=30×1=30,即离开天津30千米.(3)当s=100时,100=30t ,t=103,即汽车出发了103小时.以上两种方法比较,用图象法解题直观,用解析式法解题准确,各有优点. 2.结合实际问题情境,强化对正比例函数图象的认识,进一步理解不同的函数表示方法在解题中的应用及其相互联系与转化.【拓展提升】例3 已知函数y=x ,y=-2x ,y=12x ,y=3x. (1)在同一坐标系内画出函数的图象. (2)探索发现:观察这些函数的图象可以发现,随着|k|的增大,直线与y 轴的位置关系有何变化? (3)灵活运用:已知正比例函数y 1=k 1x ,y 2=k 2x 在同一坐标系中的图象如图1.知识的综合与拓展,提高学生的应考能力.活动三: 开放训练体现应用19-2-10所示,则k1与k2的大小关系为.解:(1)如图19-2-11.图19-2-10(2)观察这些函数的图象可以发现,随着|k|的增大,直线与y轴的夹角越来越小.(3)由(2)的规律可知,k1>k2.图19-2-11图19-2-12变式观察图19-2-12的图象比较大小:(1)k1<k2; (2)k3<k4;(3)比较k1,k2,k3,k4的大小,并用不等号连接.[答案:k1<k2<k3<k4]2.进一步使学生巩固正比例函数的性质,使学生体验数形结合思想的运用过程.活动四: 课堂总结反思【当堂训练】1.正比例函数y=-3x的大致图象是(C)A B C D图19-2-132.正比例函数y=-2x的图象是过点(0,0)和(1,-2)的一条直线.3.若正比例函数的图象经过点(-2,6),则其函数解析式为y=-3x.1.当堂检测,及时反馈学习效果,进一步使学生巩固正比例函数的性质.活动四: 课堂总结反思4.已知正比例函数y=kx(k≠0),点(2,-3)在该函数的图象上,则y随x的增大而减小(填“增大”或“减小”).5.已知正比例函数y=(m-2)x(m是常数)的图象经过第二、四象限,则m的取值范围是m<2.6.已知某种小汽车的耗油量是每100 km耗油15升,所使用的汽油今日涨价到5元/升.(1)写出汽车行驶途中所耗油费y(元)与行驶路程x(km)之间的函数解析式;(2)在平面直角坐标系内描出函数的大致图象;(3)计算该汽车行驶220 km所需油费是多少.小结与作业:小结:(1)本节课我们研究了什么,得到了哪些成果?(2)正比例函数的图象及性质是怎样的?我们是如何进行研究的?(3)在正比例函数的研究过程中,你感受最深的是什么?作业:教材第98页习题19.2第1,2题.2.在练习设计上,遵循由浅入深、循序渐进的原则,使学生解决问题的能力得到进一步提升.3.学生小结能发挥学生的主体作用,逐步提高学生的语言表达能力和自我获取知识的能力.【知识网络】利用框架图回顾本节课的知识,使学生更容易形成知识网络.【教学反思】①[授课流程反思]在新课导入过程中,教师一定要让学生亲自动手实践运用描点法画出函数的图象,感悟函数图象的相同点与不同点,以利于学生加深对正比例函数的图象及性质的理解.②[讲授效果反思]本节课通过实例使学生了解了正比例函数的图象的特征,并掌握了图象特征与解析式的联系规律,经过思考、尝试,使学生知道了正比例函数图象的简单画法,为以后学习一次函数奠定了基础.回顾反思,找出差距与不足,形成知识及教学体系,更进一步提升教师教学的能力.活动四: 课堂总结反思③[师生互动反思]教学活动中教师要给学生提供充分的时间与空间,让其进行自主探索和与同伴交流,经历、体验数学活动的整个过程.④[习题反思]好题题号错题题号【学习目标】1、理解正比例函数的概念及其图象的特征2、能够画出正比例函数的图象3、能够利用正比例函数解决简单的数学问题【重点】正比例函数的图象和性质【难点】正比例函数的图象及性质【课前准备】1、什么叫正比例函数?________________ _ 。
19.2.1正比例函数(第2课时)
· 八年级(下)
19.2.1 正比例函数
第2课时
1.什么是正比例函数?请举几个实例。
一般地,形如 y=kx(k是常数, k≠0)的函数,叫做正比例函数 , 其中k叫做比例系数.
2.画函数图象的一般步骤是什么? 描点法:① 列表 ② 描点 ③ 连线
用描点法画正比例函数 y =2x 的图象 练习 在同一坐标系中用描点法画出正比例函数 1 y y = x 的图象. y=2x 3
y =k2 x y =k1 x
5. 函数y=-3x的图象过第二、四 象限,经过点
(0, 0 )与点(1,-3 ),y随x的增大而 减小 .
一、三 象限,经过点 6. 函数y= 3 x 的图象过第 2 3 (0, 0 )与点(1, 2 ),y随x的增大而 增大 .
7. 正比例函数y=(m-1)x的图象经过一、 三象限, 则m的取值范围( B )
O
A
x
O C
练习
练习3 对于正比例函数y =kx,当x 增 大时,y 随x 的增大而增大,则k的取值范 围 ( C ). A.k<0 B.k≤0 C.k>0 D.k≥0
练习
练习4 比较大小: (1)k1 < k2;(2)k3 < k4; (3)比较k1, k2, k3, k4大小,并用不等号连接. y y =k4 x 4 k1<k2 <k3 <k4 y =k3 x 2 -4 -2 O -2 -4 2 4 x
观察
5 4 3 2 1 -5 -4 -3 -2 -1 0 1 -2 -3 -4 -5
y
y=2x
1 2 3 4 5
x
y 2 x
比较上面两个函数的图象的相同点与不同点, 考虑两个函数的变化规律.
结论:两图象都是经过原点的 直线 ,函数 y 2 x
人教版八下数学19.2.1 课时2正比例函数的图像和性质教案+学案
人教版八年级下册数学第19章一次函数19.2一次函数19.2.1正比例函数课时2正比例函数的图像和性质教案【教学目标】知识与技能目标1.能够画出正比例函数的图象.2.根据正比例函数的解析式y=kx(k是常数,k≠0)和图象探索并理解其性质.3.根据两点确定一条直线,可以利用两点(两点法)画正比例函数的图象.过程与方法目标在用描点法画正比例函数图象过程中发现正比例函数性质.情感、态度与价值观目标学生在探究合作中交流,体验知识的形成过程,感知数形结合思想.【教学重点】正比例函数图象的画法和性质的理解.【教学难点】利用正比例函数图象与性质灵活解题.【教学准备】教师准备教学中出示的例题;学生准备坐标纸、学习用具.【教学过程设计】一、情境导入导入一:当今网络已经越来越普及,可以用电脑上网,手机上网等,我们班级有位同学经常上网,他的打字速度非常快,达到每分钟可以输入两百个汉字,真是高手!如果他输入的汉字个数用y(单位:百个)来表示,那么y与输入时间x(单位:分钟)的函数关系式是什么?这个函数是我们前面学习的正比例函数吗?用描点法,你能画出这个函数的图象吗?[设计意图]以学生身边感兴趣的问题导入新课,能更好地激发学生学习的积极性.导入二:1.在下列函数中,哪些是正比例函数?并指出正比例系数分别是多少?①y=x,②y=3x2,③y=2x,④y=2x-4,⑤y=,⑥y=-x ,⑦y=-2x.2.画函数图象需要经历哪些步骤?3.你能依据这些步骤画出以上正比例函数的图象吗?[设计意图]通过设计一组正比例函数,引导学生利用上一节知识,即函数的图象的画法来画正比例函数的图象,体会数形结合思想的应用.二、新知构建1.画正比例函数的图象[过渡语]你能用描点法画正比例函数的图象吗?思路一画出下列正比例函数的图象,并进行比较,寻找两个函数图象的相同点与不同点,考虑两个函数的变化规律.(1)y=2x;(2)y=-2x.学生通过列表、描点、连线,在坐标纸上画出所给函数的图象.教师根据学生画出的图象进行有针对性的讲解.解:(1)列表:函数y=2x中自变量x可以是任意实数.列表表示几组对应值:x-3 -2 -1 0 1 2 3y-6 -4 -2 0 2 4 6描点,连线,画出图象,如图所示:(2)列表:y=-2x的自变量取值范围可以是全体实数,列表表示几组对应值:x-3 -2 -1 0 1 2 3y 6 4 2 0 -2 -4 -6描点,连线,画出图象,如图所示.练习:在同一坐标系中,画出下列函数的图象,并对它们进行比较.(1)y=x;(2)y=-x.[设计意图]利用描点法正确地画出两个函数图象,让学生体会数形结合思想.思路二1.正比例函数的图象问题画出下列正比例函数的图象:①y=2x;②y=-2x;③y=x;④y=-x.学生通过列表、描点、连线,在坐标纸上画出所给函数的图象,并观察规律.教师引导学生画图,注意函数图象的三个关键步骤:列表、描点、连线,边巡视边指出学生画图中出现的问题,最后展示正确图象(如图所示),让学生进行对比修改.[设计意图]通过活动,了解正比例函数图象特点及函数变化规律,让学生自己动手、动口、动脑,经历发现规律的整个过程,从而提高各方面能力及学习兴趣.2.正比例函数的性质思路一提问:观察上面的图象,发现函数图象有什么特点?师生共同归纳函数y=2x和y=-2x的图象特点.两个函数图象的共同点:都是经过原点的直线.不同点:函数y=2x的图象从左向右呈上升状态,经过第一、三象限,即随着x的增大y也增大.函数y=-2x的图象从左向右呈下降状态,经过第二、四象限,即随x 增大y反而减小.学生根据自己所画的图象,以小组形式类似地归纳y=x和y=-x的图象特点:比较两个函数图象可以看出:两个函数图象都是经过原点的直线.函数y=x的图象从左向右上升,经过第一、三象限,即随x的增大y也增大;函数y=-x的图象从左向右下降,经过第二、四象限,即随x的增大y反而减小.总结归纳正比例函数解析式与图象特征之间的规律:正比例函数y=kx.(1)图象:正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线.(2)性质:当k>0时,图象经过第一、三象限,y随x的增大而增大;当k<0时,图象经过第二、四象限,y随x的增大而减小.提问:画正比例函数的图象时,怎样画最简单?为什么?正比例函数y=kx(k是常数,k≠0)的图象是经过原点的一条直线,由于两点确定一条直线,因此画正比例函数图象时我们只需描点(0,0),点(1,k),两点连线即可.说明:正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx.[设计意图]利用描点法正确地画出两个函数图象,在教师的引导下完成函数变化规律的探究过程,并能准确地表达出,从而加深对规律的理解与认识.思路二问题:观察所画的四个函数图象,填写你发现的规律:①四个函数图象都是经过的直线.②函数y= 2x的图象经过第象限,从左向右(呈什么趋势),即y 随x的增大而;③函数y=-2x的图象经过第象限,从左向右,即y随x的增大而;④函数y=x的图象经过第象限,从左向右,即y随x的增大而;⑤函数y=-x的图象经过第象限,从左向右,即y随x的增大而.学生观察图象并回答,教师纠正学生回答中不正确的地方,并适当点拨讲解:①原点;②一、三;上升;增大;③二、四;下降;减小;④一、三;上升;增大;⑤二、四;下降;减小.师生共同归纳总结:正比例函数y=kx(k≠0)的性质:(1)图象是经过原点的一条直线.(2)当k>0时,图象经过第一、三象限,从左向右上升,y随x的增大而增大(递增).(3)当k<0时,图象经过第二、四象限,从左向右下降,y随x的增大而减小(递减).思考:画正比例函数的图象时,怎样画最简单?为什么?正比例函数y=kx(k是常数,k≠0)的图象是经过原点的一条直线,由于两点确定一条直线,因此画正比例函数图象时我们只需描点(0,0),点(1,k),两点连线即可.说明:正是由于正比例函数y=kx(k是常数,k≠0)的图象是一条直线,我们可以称它为直线y=kx.[设计意图]引导学生正确画图、积极探索、总结规律、准确表述.[知识拓展](1)正比例函数y=kx可以说成y与x成正比例,要求函数关系式,只需通过x,y的一组对应值求出k,从而确定关系式.(2)正比例函数的图象是过原点的直线,当k>0时,直线从左到右呈上升趋势,经过第一、三象限;当k<0时,直线从左到右呈下降趋势,经过第二、四象限.画正比例函数的图象时,只需要选取除原点外的一点,再过原点和选取点画直线即可,选取的点一般为点(1,k).(3)正比例函数的性质可以逆用.如当正比例函数y=kx(k≠0)中y随x的增大而增大时,k>0,反之,k<0;若正比例函数的图象过第一、三象限,则k>0等.3.例题讲解例1(补充)(1)已知一个正比例函数的图象经过点(-1,3),则这个正比例函数的表达式是.(2)函数y=5x-b2+9的图象经过原点,则b=.(3)直线y=(2k-3)x经过第二、四象限,则k的取值范围是.〔解析〕(1)设正比例函数的解析式为y=kx,把点(-1,3)代入解析式求出k的值即可;(2)把原点坐标(0,0)代入函数解析式列方程进行求解;(3)根据正比例函数性质列不等式进行求解.解:(1)设正比例函数的解析式为y=kx,∵正比例函数的图象经过点(-1,3),∴-k=3,∴k=-3,∴这个正比例函数的表达式是y=-3x.(2)∵函数y=5x-b2+9的图象经过原点(0,0),∴-b2+9=0,∴b2=9,∴b=±3.(3)∵直线y=(2k-3)x经过第二、四象限,∴2k-3<0,∴k<.故k的取值范围是k<.[设计意图]通过设计一组填空题,让学生根据正比例函数的解析式和性质列方程或不等式求字母的取值或取值范围.例2(补充)已知点(2,-4)在正比例函数y=kx的图象上.(1)求k的值;(2)若点(-1,m)在函数y=kx的图象上,试求出m的值;(3)若A,y1,B(-2,y2),C(1,y3)都在此函数图象上,试比较y1,y2,y3的大小关系.〔解析〕(1) 把点(2,-4)代入y=kx中列方程进行求解;(2)把点(-1,m)代入(1)中函数解析式列方程进行求解;(3)根据正比例函数性质进行求解.解:(1)∵点(2,-4)在正比例函数y=kx的图象上,∴2k=-4, ∴k=-2.(2)由k=-2可得y=-2x,∵点(-1,m)在函数y=-2x的图象上,∴m=-2×(-1)=2.(3)y=-2x,∵k=-2<0,∴y随x的增大而减小,∵A,y1,B(-2,y2),C(1,y3)都在函数y=-2x的图象上,-2<<1,∴y3<y1<y2.[设计意图]通过设计正比例函数的简单应用,让学生根据正比例函数的解析式和性质进行求解,及时复习正比例函数的性质.例3(教材例1)画出下列正比例函数的图象:(1)y=2x, y=x;(2)y=-1.5x, y=-4x.〔解析〕根据正比例函数的图象是一条直线,两点确定一条直线来作图.解:(1)列表,得:x0 1y=2x0 2y=x0描点,连线,即为函数y=2x, y=x的图象(如下图).(2)列表,得:x0 1y=-1.5x0 -1.5y=-4x0 -4描点,连线,即为函数y=-1.5x, y=-4x的图象(如下图).[设计意图]通过设计正比例函数图象的简单画图,让学生知道利用两点确定一条直线来作图,体验数形结合思想的应用.三、教学小结师生一起总结正比例函数的图象和性质:(1)正比例函数的图象是经过坐标原点的一条直线.(2)作y=kx的图象时,应先选取两点,通常选点(0,0)与点(1,k);然后在坐标平面内描点(0,0)与点(1,k);最后过点(0,0)与点(1,k)画一条直线.(3)当k>0时,直线y=kx经过第一、三象限,从左向右上升,即:随着x的增大y也增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降,即:随着x的增大y反而减小..【板书设计】19.2一次函数19.2.1正比例函数课时2正比例函数的图像和性质1.画正比例函数的图象2.正比例函数的性质3.例题讲解例1 例2 例3【课堂检测】1.下列函数解析式中,不是正比例函数的是()A.xy=-2B.y+8x=0C.3x=4yD.y=-x解析:根据正比例函数的定义:一般地,两个变量x,y之间的解析式可以表示成形如y=kx(k为常数,且k≠0)的形式,那么y就叫做x的正比例函数.不是正比例函数的是A.故选A.2.函数y=(1-k)x中,如果y随着x增大而减小,那么常数k的取值范围是()A.k<1B.k>1C.k≤1D.k≥1解析:∵函数y=(1-k)x中,y随着x的增大而减小,∴1-k<0,解得k>1.故选B.3.我国是一个严重缺水的国家,大家应倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05 mL.小红同学在洗手后,没有把水龙头拧紧,当小红离开x h后水龙头滴了y mL水.则y关于x的函数解析式为.解析:因为水龙头每秒会滴下2滴水,每滴水约0.05 mL,所以当小红离开x h后水龙头的滴水量y=3600×2×0.05x=360x.故填y=360x.4.直线y=x经过(0,),(,2),且过第象限,y随x的增大而.解析:由y=x可知当y=2时,x=3,故直线y=x经过(0,0),(3,2).由k=>0可知直线y=x 过第一、三象限,y随x的增大而增大.答案:03一、三增大5.已知函数y=(k+3)x|k|-4是正比例函数,且y随x的增大而减小,那么k=. 解析:∵函数y=(k+3)x|k|-4是正比例函数,且y随x的增大而减小,∴∴k=-5.故填-5.6.已知某种小汽车的耗油量是每100 km耗油15升.所使用的93汽油今日涨价到5元/升.(1)写出汽车行驶途中所耗油费y(元)与行程x(km)之间的函数关系式;(2)在平面直角坐标系内描出大致的函数图象;(3)计算娄底到长沙220 km所需油费是多少?解:(1)y=5×x=0.75x.(2)列表,得:x0 1y=0.75x0 0.75描点,连线,得到函数y=0.75x的图象(如下图).(3)当x=220时,y=0.75×220=165(元).【教学反思】成功之处:在本节课通过实际问题的引入,激发学生的学习兴趣,再通过设计一组问题,让学生观察、对比、归纳出正比例函数定义,通过例题来巩固新知识,利用一组由浅入深、由易到难的题,逐题递进,落实本节课的教学重点.在教学形式上采用学生口述、互评等多种方法,激发学生思维,营造良好的课堂气氛.不足之处:由于课堂的容量较大,学生思考问题的时间显得相对不足,学困生就显得很吃力.再教设计:教学设计时可以进行分层设计,一组基础题让学困生完成,另一组难的让基础好的学生完成..人教版八年级下册数学第19章平行四边形19.2一次函数19.2.1正比例函数课时2正比例函数的图像和性质学案【学习目标】1.理解正比例函数的图象的特点,会利用两点(法)画正比例函数的图象.2.掌握正比例函数的性质.3.能结合正比例函数的图象和性质解答有关问题.【学习重点】正比例函数的图象和性质.【学习难点】利用正比例函数的图象和性质解答有关问题.【自主学习】一、知识链接1.已知正比例函数y=3x,当x=0时,y= ;当x=1时,y= .2.画函数图象的步骤有:、、.二、新知预习1.画出下列正比例函数的图象:(1)y=2x,13y x=;(2)y=-1.5x,y=-4x.2.函数y=2x,13y x=的图象的共同特点是__________________________;函数y=2x,13y x=的图象的共同特点是____________________________.3.自主归纳:(1)函数y=kx (k是常数,k≠0)的图象是一条经过的;(2)k>0时,函数y=kx (k是常数,k≠0)的图象经过第象限;k<0时,函数y=kx (k是常数,k≠0)的图象经过第象限;(3)k>0时,函数值y随自变量x 的增大而;k<0时,函数值y随自变量x 的增大而.三、自学自测1.函数y=-3x的图象是经过点(0,__)和(1,___)的一条______,图象经过第___、____象限,从左到右呈_____趋势,即y随x的增大而______.2.在平面直角坐标系中,正比例函数y =kx(k<0)的图象的大致位置只可能是().四、我在自学过程中产生的疑惑【构建新知】一、新知梳理知识点1:正比例函数的图象问题1:正比例函数的图象什么?画正比例函数的图象只需要确定几个点?【典例探究】例1用你认为最简单的方法画出下列函数的图象:(1)-3y x=;(2)3.2 y x =方法总结:画正比例函数图象时我们只需描点(0,0)和点(1,k),连线即可. 例2已知正比例函数y=(k+1)x.(1)若函数图象经过第一、三象限,则k的取值范围是________. (2)若函数图象经过点(2,4),则k_____.知识点2:正比例函数的性质问题2:在函数y=x,y=3x,12y x=-和-4y x=中,随着x的增大,y的值分别如何变化?要点归纳:在正比例函数y=kx中:当k>0时,y的值随着x值的增大而________;当k<0时,y的值随着x值的增大而________.例3已知正比例函数y=mx的图象经过点(m,4),且y的值随着x值的增大三、归纳总结正比例函数y=kx(k≠0)图象正比例函数的图象是一条过原点的直线.k>0 k<0图象是自左向右上升的,经过第一、三象限图象是自左向右下降的,经过第二、四象限|k|越大,图象越陡(即越靠近y轴)性质y随x的增大而增大y随x的增大而减小【学习检测】1.下列图象哪个可能是函数y=-x的图象()2.正比例函数y=2x的图象所过的象限是()A.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限A(解析:∵正比例函数y=2x中,k=2>0,∴正比例函数y=2x的图象经过第一、三象限.)3.对于正比例函数y =(k-2)x,当x 增大时,y 随x 的增大而增大,则k的取值范围()A.k<2B.k≤2 C.k>2D.k≥24.已知正比例函数y=(k-1)的图象经过第二、四象限,则k的值是()A.±3B.±2C.2D.-2D(解析:由正比例函数y=(k-1)的图象经过第二、四象限,可得故k=-2.)5.正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m等于()A.2B.-2C.4D.-4B(解析:∵正比例函数y =mx 的图象经过点A (m ,4),∴m 2=4,∴m =±2.又∵y 的值随x 值的增大而减小,∴m <0,∴m =-2.故选B .)6.函数y=-7x 的图象经过第_________象限,经过点_______与点_______,y 随x 的增大而_______.7.已知正比例函数y =kx (k ≠0),点(2,-3)在函数图象上,则y 随x 的增大而 .(填增大或减小)减小(解析:∵点(2,-3)在正比例函数y =kx (k ≠0)的图象上,∴2k =-3,解得k =-,∴正比例函数解析式是y =-x ,∵k =-<0,∴y 随x 的增大而减小.)8.点(x 1,y 1)与点(x 2,y 2)是正比例函数y =x 的图象上两点,且x 1<x 2,则y 1 y 2.(填“>”“=”或“<”号)<(解析:由k =>0可知y 随x 的增大而增大,故当x 1<x 2时,y 1<y 2.故填<.) 9.已知正比例函数y=(2m+4)x.(1)当m_______,函数图象经过第一、三象限; (2)当m_______,y 随x 的增大而减小; (3)当m_______,函数图象经过点(2,10).10.如图分别是函数x k y 1=,x k y 2=,x k y 3=,x k y 4=的图象. (1)k 1 k 2,k 3 k 4(填“>”或“<”或“=”); (2)用不等号将k 1, k2, k 3, k 4及0依次连接起来.11.已知函数y =(|a |-3)x 2+2ax +a +3是关于x 的正比例函数,求正比例函数的解析式,并画出函数图象.解:∵函数y =(|a |-3)x 2+2ax +a +3是关于x 的正比例函数,∴|a |-3=0,∴a =±3,当a =3时,y=6x+6(舍);当a=-3时,y=-6x.∴正比例函数的解析式为y=-6x.列表,得:x0 -1y0 6描点,连线即可得到函数y=-6x的图象,如图所示.12.已知y与x成正比例,且当x=-2时y=-4.(1)写出y与x的函数关系式;(2)用两点法画出函数图象;(3)设点(a,-2)在这个函数图象上,求a的值;(4)如果x的取值范围是0≤x≤5,求y的取值范围.解:(1)设y与x的函数关系式为y=kx,∵当x=-2时y=-4,∴-2k=-4,∴k=2,∴y与x的函数关系式为y=2x.(2)列表,得:x0 1y=2x0 2描点,连线得到函数y=2x的图象,如图所示.(3)∵点(a,-2)在这个函数图象上,∴2a=-2,∴a=-1.(4)如果x的取值范围是0≤x≤5,那么y的取值范围为0≤y≤10.13.正比例函数y=2x的图象如图所示,点A的坐标为(2,0),函数y=2x的图象上是否存在一点P,使△OAP的面积为4,如果存在,求出点P的坐标,如果不存在,请说明理由.解:存在.理由如下:因为点A的坐标为(2,0),所以OA=2,设点P的坐标为(n,m),因为△OAP的面积为4,所以×OA×|m|=4,即×2×|m|=4,所以m=±4,当m=4时,把x=n, y=m=4代入y=2x,得4=2n,所以n=2,此时点P的坐标为(2,4),当m=-4时,把x=n, y=m=-4代入y=2x,得-4=2n,所以n=-2,此时点P的坐标为(-2,-4).综上所述,点P的坐标为(2,4)或(-2,-4).。
19.2.1 正比例函数 (第2课时) 课件
B.(-1,-2)
C.(2,-1) D.(1,-2)
4.已知函数y=kx的函数值随x的增大而增大,则函数的图象
经过( B ) A.第一、二象限
B.第一、三象限
C.第二、三象限
D.第二、四象限
5.用你认为最简单的方法画出下列函数的图象:
(1)y=-������x; (2)y=6x.
������
解:图象略.
例3.在水管放水的过程中,放水的时 间x(分)与流出的水量y(立方米)是 两个变量,已知水管每分钟流出的水量 是0.2立方米,放水的过程持续10分钟, 写出y与x之间的函数解析式,并指出函 数的自变量取值范围,再画出函数的图 像
能力提高:
想一想:
点燃蜡烛,蜡烛长度按照与时间成正比变短,长 为21厘米的蜡烛,已知点燃6分钟后,蜡烛变短3.6 厘米,设蜡烛点燃x分钟后变短y厘米,求
(3)如果函数 y= - ax 的图像经过
一、三象限,那么y = ax 的图像经
过 二、四象限
.
(4)已知ab 0 , 则函数 y b x
a
的图像经过哪些象限?
二、四象限
3.下列图像哪个可能是函数y=-8x
的图像( B )
A
B
C
D
y 3x
y x
y 1 x 3
y
y 3x yx
6.如图,三个正比例函数的图象对应的解析式分别是:① y=ax, ②y=bx, ③y=cx, 则a,b,c的大小关系是
(C ) A.a>b>c
B.c>b>a
C.b>a>c
D.b>c>a
7.对于函数 y=k2x(k 是常数,k≠0)的图象,下列说法中不正
人教版八年级数学下册第十九章《19.2.1正比例函数》公开课课件
数形结合思想
相信自己 是最棒的吆!
1、下列函数中,是正比例函数的是
( B)
A、y 3
x
B、y 4x
C、y 3x 9 D、y=2x2
2、在下列图像中,表示函数y=-kx (k<0)的图像是( A )
y
y
y
y
0x
0x
0x
0x
A
B
C
D
3、正比例函数y=(m-1)x的图象 经过一、三象限,则m的取值 范围是( B ) A、m=1 B、m>1 C、m<1 D、m≥1
致亲爱的同学们:
天空的幸福是穿一身蓝 森林的幸福是披一身绿 老师的幸福 是因为认识了你们 愿你们
努力进取!
19.2.1一次函数
19.2.1正比例函数
目
标 导 航
1、感悟正比例函数的 图象及画法。 2、掌握正比例函数的
性质。
1、下列函数中哪些是正比例函数?
(1)y =2x 是 (2)y=x2+1 不是
函数y=-8x的图像经过( C )
A、第一、二象限 B、第一、三象限 C、第二、四象限 D、第三、四象限
当k>0时直线y=kx经过三,一象限,
x增大时,y的值也增大; 即y随x的增大而增大
当k<0时,直线y=kx经过二,四象限,
x增大时,y的值反而减小。即y随x的增大而减小
y y = 2x
y = 2x
此时的函数解析式为
注意: 1、使自变量的指数为1 2、系数不为0
(y=-4x )
3、常数项为零
1、若 y =5)xm23是正比例函数,
则m= 。 3、若 y(k2)xk24是正比例函数,
则 k =(
),
人教版八年级下册 19.2.1 正比例函数 公开课一等奖优秀课件
T 2t
探究 (1)以上对应关系都是函数关系吗?其变量和常量分别是什么? (1)L= 2πr 进一步指出谁是自变量,谁是函数? (2)m=7.8V
(3)h= 0.5n (4)T= -2t
(2)认真观察自变量和常量运用什么运算符号连接起来的?这 些常量可以取哪些值? 乘号、不为0的常数 (3)这4个函数表达式与问题1的函数表达式 y=300t有何共同特 征?请你用语言加以描述.
解: 1)满足正比例函数,而且图像经过点(5,4),将该点带入正比例函数,解得k值, k=0.8,所以满足题意的正比例函数是y=0.8x。 2)当x=8时,y=8*0.8=6.4
问题2:若y关于x-3成正比例函数,当x=4时,y=-4.试求出y与x的函数
关系式.
解:根据题意,题干满足的正比例函数为y=k(x-3 ) ( k ≠ 0 ),该函数 经过点(4,-4)带入方程的k=-3/4,所以正比例函数为y=-3/4(x-3)
难点: 正比例函数图象性质特点的掌握
问题
2011年开始运营的京沪高速铁路全长1318km.设列 车平均速度为300km/h.考虑以下问题:
1)乘京沪高速列车,从始发站北京南站到终点站海虹 桥站,约需要多少小时(结果保留小数点后一位)? t=s/v=1318/300≈4.4(h) 2)京沪高铁列车的行程y(单位:km)与运行时间t (单位:h)之间有何数量关系? t y 0 0 1 300 2 600 3 900 4 1200 4.4 1318
函数y=( 1/3 )x
x
…
…
-3
-2
-2
-2/3
-1
-1/3
0
0
11/32Fra bibliotek2/3
人教八下数学课件-19.2.1正比例函数
巩固练习 2.已知正比例函数y=(k+5)x. (1)若函数图象经过第二、四象限,则k的取值范围是_k_<_-_5___. 解析:因为函数图象经过第二、四象限,所以k+5<0,解得k<-5. (2)若函数图象经过点(3,-9),则k__=_-8__.
解析:将坐标(3,-9)带入函数解析式中,得-9=(k+5)·3, 解得k=-8.
y=-4x y=-1.5x 看图发现:这两个函数图象都是经过原点和第 二、四 象限 的直线.
探究新知
y=kx (k是常数,k≠0)的图象是一 条经过原点的直线
y=kx(k≠0)
经过的象限
k>0
第一、三象限
k<0
第二、四象限
提示:函数y=kx 的图象我们也称作直线y=kx
巩固练习
1.用你认为最简单的方法画出下列函数的图象:
解:(1)函数y=2x中自变量x可为任意实数.
①列表如下: x … -2 -1 0 1 2 … y … -4 -2 0 2 4 …
探究新知
②描点; ③连线.
同样可以画出
函数
的图
象.
y=2x
y1x 3
看图发现:这两个图象都是经过原点的 直线 . 而且都经过第 一、三 象限;
探究新知 解:(2)函数y=-1.5x,y=-4x的图象如下:
(3)从北京南站出发2.5小时后,是否已过了距始发站1100千米 的南京南站?
探究新知
(1)乘京沪高速列车,从始发站北京南站到终点 站海虹桥站,约需要多少小时(结果保留小数
探究新知
(2)京沪高铁列车的行程y(单位:千米)与 运解行:时y间=30t0(t(单0≤位t≤4:.4)时)之间有何数量关系?
19.2.1正比例函数图像及性质(第二课时)
.
(4)已知ab ,0则函数
哪些象限?
y的图b 像x 经过
a
二、四象限
3.下列图像哪个可能是函数y=-8x
的图像( B)
AB C D
y 3x
y x
y 1 x 3
y
1
01
y 3x yx
y1x 3
x
补充性质:
当 |k| 越大时,图像越靠近y轴 当 |k| 相等时,图像关于坐标轴对称
结论
正比例函数图象经过点(0,0)和点(1,k)
y y= kx (k>0)
y
y= kx
k
(k<0)
01
x
01
x
k
在同一坐标系内画下列正比例函数的图像
3
yx
当k>0
时,它的图
1
y 1x
像 经过第
一、三象
o1
3
3x
限
在同一坐标系内画下列正比例函数的图像:
y一随、x的三增象大而限增大
(2) y 2x y一随、x的三增象大而限增大
(3) y
2 x y二随、x的四增象大而限减小
3
y 4
y 3x
3
yx
2 1
y
1 3
x
y 4
3
2
1
-4 -3 -2 -1
O1 2 3 4
-1
x
-2
-3
-4
-4 -3 -2 -1 O 1
-1
-2
-3
-4
234
2、已知正比例函数y=(1+2m)x, 若y随x的增大而减小,则m的取 值范围是什么?
3. 若正比例函数图像又y=(3k-6)x的图像经过点
19.2.1《正比例函数+》+课件++2023--2024学年人教版八年级数学下册+
(3)每个练习本的厚度为 2cm,一些练习本摞在一 起的总厚度h(单位:cm) 随练习本的本数n的变化 而变化。
(4)冷冻一个0℃的物体, 使它每分钟下降2℃,物
体 温度T(单位:℃)随冷
冻 时间t(单位:min)的变 化而变化。
04教学过程---概念探究
函数解析式 l =2πr m =7.8V
观察出h = 2n T = -2t
解:h = 0.5n .
(4)冷冻一个0℃的物体,使它每分下降 2℃,物体的温度T(单位:℃)随冷冻时 间t(单位:分)的变化而变化.
解:T = -2t .
认真观察以上出现的四个函数解析式,分别说出
哪些是常量、自变量和函数.
函数解析式 常量 自变量 函数
这些函数有什 么共同点?
(1)l=2πr
2π
步骤
方法
假设、带入、求解 待定系数法
04教学过程---巩固拓展
一 1.下列函数关系中,属于正比例函数关系的是(
)
、
A.圆的面积S与它的半径r
解
析
B.行驶速度不变时,行驶路程s与时间t
式 的
C.正方形的面积S与边长a
概
D.工作总量(看作“1” )一定,工作效率w与工
念
作时间 t
04教学过程---巩固拓展
2 (4) y 2 ; 二、解析x式的特点
(1)若y=(m-1)x是正比例函数,m取值范围是
;
(2)当n 时,y=2xn是正比例函数;
(3)当k 时,y=3x+k是正比例函数.
04教学过程---概念运用
三、解析式的求法
若正比例函数的自变量x等于-4时,函数y的值等于2。 (1)求正比例函数的解析式;(2)求当x=6时函数y的值.
人教版八年级下册19.2.1正比例函数第2课时正比例函数的图象和性质课件
∴ y与∵x之当间x=函8时数,关y系=6式是∴:7yk==676 (∴x-1k ) 76
当x=4时,y=
6 7
×(4-1)= 18
7
当x=-3时,y=
6 7
×(-3-1)=
24 7
的图象?
y=-2x
y
2
y1x 2
5
4 -2小却更陡,说明
3 2 1
是k的绝对值越大, 函数图像越陡!
-5 -4 -3 -2 -1 0 1 2 3 4 5
x
-1
-2
-3
-4
-5
练一练
1. 正比例函数y=(m-1)x的图象经过一、三象限, 则m的取值范围是( B ) A. m=1 B. m>1 C. m<1 D. m≥1
当k >0时,直线y=kx经过第一、三象限,从左向右上升, 即随着x的增大y也增大;
当k <0时,直线y=kx经过第二、四象限,从左向右下降, 即随着x的增大y反而减小. 我们称它为直线y=kx.
随堂练习 画出正比例函数 y 2x , y 1 x
的图象?
y
2
这两个正比例函 比较上面两个函数的图象的相同点与不同点,考虑
的图象从左向右下降,经过第二、四象限.
么影响? ∴ y与x之间函数关系式是:y= (x-1)
当k>0时,图象(除原点外)在一,三象限, 就是函数y= x 的图象
2 1
K代表一次函数的斜率即倾斜程度,k的值越大函数图像越陡!
则m的取值范围是( )
-5 -4 x增大时,y的值也增大;
-3 -2 -1 0
x
-1
-2
-3
-4
-5
y 2x
y y=2x
最新人教版初中八年级下册数学【第十九章一次函数 19.2.1 正比例函数】教学课件
回答
按道理来说,只要落在函数图象上的任意两点都能确定这条直线.但是为了便捷,我们一般选用原点 (0,0),另一个点可以选择在坐标系中容易标记的.
y1x 3
x …0 3… y …0 1…
y 6
5
4
3
y1x
2
3
1
–4 –3 –2 –1 O –1 –2 –3 –4 –5 –6
1 2 3 4 5x
回答
自变量的取值范围一旦不是全体实数,那函数图象就不是整一条直线,我们就要根据自变量的取值范 围来确定函数图象了.
解:(1)因为函数图象经过一、三象限;
y
所以3a-6>0
解得 a>2
Ox
1.已知正比例函数y=(3a-6)x. (2)当a为何值时,该函数图象经过点(2,6);
解:(2) 函数图象经过点(2,6) 即当x=2时,y=6, 因此6=2(3a-6) 解得a=3
1.已知正比例函数y=(3a-6)x.
(3)图象上有两点(1,y1),(-2,y2),且y1<y2 ,求a的取值范围.
方法一:图象法
y
从图象观察可得,
y2
y随x的增大而减小
所以3a-6<0
1
-2
O
y1
解得 a<2
方法二:代数法 点(1,y1),(-2,y2)在函数图象上 所以y1=3a-6,y2=-2(3a-6)
x
又因为y1<y2 所以3a-6<-2(3a-6)
解得 a<2
2.一个长方体的长为2cm,宽为1.5cm,高为xcm, 体积为ycm3. (1)求体积y与高x之间的函数关系式; (2)写出自变量x的取值范围; (3)画出函数的图象.
人教版数学八年级下册19.2.1 正比例函数 (2)(共19张PPT)
-2
2
-3 -4
1
x
-5
-3 -2 -1 0 1 2 3 -1
x 01
-2
y 0 -3
-3
-4
四、试一试:
1.正比例 函数 y=-4x的图像是经过( 0,0)和 (1,-4)两点的一条直线, y随x的—增—大—而—减小。 2. 正比例函数y=(m-1)x的图象经过一、三象限,则 m的取值范围是 ( B )
人教版 八年级数学下册
19.2.1 正比例函数(2)
辽宁省盘锦市盘山县太平学校 孙玉莲
19.2.1 正比例函数(2)
y
o
x
学习目标:
1.会画正比例函数的图象; 2.能根据正比例函数的图象和表达式
y =kx(k≠0)理解k>0和k<0时,函 数的图象特征与增减性;
3.利用正比例函数图像和性质解决相关问 题
A.m=1 B.m>1 C.m<1 D.m≥1 3.下列函数(1)y=5x,(2)y=-3x,(3)y=1/2x,(4)y=-1/3x中, y随x的增大而减小的是—(—2) —(4)—
五、 比一比
1.函数y=-7x的图象在第 二、四 象限内,经过点(0, 0 ) 与点(1,-7 ),y随x的增大而 减少 .
D.m≥1
5、直线y=(k2+3)x经过一、三象限,y随x的减
小而 减小 。
六、我能行
1.正比例函数y=kx(k为常数,k<0)的图象依次经 过第__二_、__四___象限,函数值随自变量的增大而 ___减__小____.
2.若x、y是变量,且函数y=(k+1)xk2是正比例函 数,则k=_____1____.
一般地,形如 y=kx(k是常数,k≠0) 的函数,叫做正比例函数。
19.2.1正比例函数公开课课件
y
0 1
x
0
k
1
x
正比例函数 y kx ( k 0 )的图象是经 过原点(0,0)和点(1, k )的一条直线. 当 k 0 时, 直线 y kx 经过第一、三象限; 当 k 0 时,直线 y kx 经过第二、四象限.
y
k
y kx ( k 0)
y kx ( k 0)
y
5 4 3
y=2x
2 1 观察两个图象
-3 -2 -1 0 -1 -2 -3 -4 1 2 3
共同点:都是经过原点的直线 不同点:函数 y = 2x的图象经过第 上升 ,即 一、三 象限;从左向右_____ _______ 而增大 . 随y着x的增大_________ 二、四 象限; 函数y= -2x的图象经过第_______ 下降 从左向右_____ ,即y随着x的增大 而减小 . _________
丢人
自己的路,自己选择!
孩子,我要求你读书用功, 不是因为我要你跟别人比成 绩,而是因为,我希望你将来 会拥有选择的权利,选择有意 义、有时间的工作,而不是被 迫谋生.当你的工作在你心中 有意义,你就有成就感.当你 的工作给你时间,不剥夺你的 生活,你就有尊严.成就感和 尊严,给你快乐.——龙应台
y 2x
(2)
y 2 x
y
5 4
y=2x
一、列表
3
x
… -2 -1 0 1 2 … -4 -2 0 2 2 4
2 1
-3 -2 -1 0 -1 -2 -3 -4 1 2 3
y=2x …
…
x
y=-2x … 4
二、描点
0 -2 -4 …
y= -2x
人教版八年级数学下册19.2.1正比例函数正比例函数的图象和性质课件
学习难点:会运用正比例函数的性质
练习 在同一坐标系中用描点法画 3、在k>0 的情况下,图象是左低右高还是左高右低?当自变量x的值增大时,对应的函数值y怎样变化?
3、在k>0 的情况下,图象是左低右高还是左高右低?当自变量x的值增大时,对应的函数值y怎样变化?
下列图像哪个可能是函数y=-8x的图像( )
19.2.1正比例函数(第2课时)
正比例函数的图象和性质
• 学习目标:会画正比例函数的图象,知道 和运用正比例函数的性质.
• 学习重点:正比例函数的图象和性质 • 学习难点:会运用正比例函数的性质
和运1用正.什比例函么数的是性质正. 比例函数?请你写出两个具体的正比
一般地,形如 y=kx(k为常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数
我们把正比例函数y=kx的图象叫做直线y=kx;
例函数. 学习重点:正比例函数的图象和性质
1正比例函数(第2课时)
3、在k>0 的情况下,图象是左低右高还是左高右低?当自变量x的值增大时,对应的函数值y怎样变化?
一般地,形如 y=kx(k为常数,k≠0)的函 观察图像,思考以下问题:
下列图像哪个可能是函数y=-8x的图像( )
3.正比例函数研究过程中,你感受最深的是什么?
的增大而增大,则k的取值范围 ( ).
A.k<0
B.k≤0
C.k>0
D.k≥0
3.下列图像哪个可能是函数y=-8x的图像( )
A
B
C
D
1.本节课,我们研究了什么,得到了哪些成果? 2.正比例函数的图象及性质怎样?
1)正比例函数y=kx的图象是一条经过原点的直线;我们把正 比例函数y=kx的图象叫做直线y=kx; 2)当k>0时,它的图象从左向右上升,经过第一、三象限,y 随x的增大而增大; 3) 当k<0时,它的图象从左向右下降,经过第二、四象限,y 随x的增大而减小
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x 0
x y 0 0
1 6 5 4 3 2 1 O
y/元
(3)当
x 220 时,
娄底到长沙220公里所需油费是.
1 2 3 4 5 6 7 8
x/km
课堂小结
(1)本节课,我们研究了什么,得到了哪些成果? (2)正比例函数的图象及性质怎样? (3)我们是怎样进行研究的? (4)正比例函数研究过程中,你感受最深的是什么?
-2 -3 -4 -5 x y
y 1.5x的图象. 解: 1. 列表
… … -2 3 -1 1.5 0 0 1 2 … … -1.5 -3
2. 描点
1 2 3 4 5
x 3. 连线
y 1.5x
思考1 在k < 0 的情况下,图 象从左向右看,是上升还是下降? 思考2 对应地,当自变量的值 增大时,对应的函数值是随着增大 还是减小?
19.2.1 正比例函数
第2课时
1.什么是正比例函数?请举几个实例。
一般地,形如 y=kx(k是常数, k≠0)的函数,叫做正比例函数 , 其中k叫做比例系数.
2.画函数图象的一般步骤是什么? 描点法:① 列表 ② 描点 ③ 连线
用描点法画正比例函数 y =2x 的图象 练习 在同一坐标系中用描点法画出正比例函数 1 y y = x 的图象. y=2x 3
解:1. 列表
x … -2 y … -4 -1 0 1 2 … -2 0 2 4 …
5 4 3 2
1
2. 描点 3. 连线
1 y= x 3
x
1 2 3
-3 -2 -1 0 -1 -2 -3 -4
思考 对一般正比例函数y =kx,当 k>0时,它的图象形状是什么?位置 怎样?
思考1 在k>0 的情况下,图象从左向右看, 是上升还是下降? y y = 4x y = 2x y =x
O
A
x
O C
练习
练习3 对于正比例函数y =kx,当x 增大时 y 随x 的增大而增大,则k的取值范围 ( C ). A.k<0 B.k≤0 C.k>0 D.k≥0
练习
练习4 比较大小: (1)k1 < k2;(2)k3 < k4; (3)比较k1, k2, k3, k4大小,并用不等号连接. y y =k4 x 4 k1<k2 <k3 <k4 y =k3 x 2 -4 -2 O -2 -4 2 4 x
பைடு நூலகம்
y
k
y=kx(k>0)
y
y=kx (k<0)
0 1
x
0
k
1
x
正比例函数y= kx (k≠0) 的图象是经 过原点(0,0)和点(1,k)的一条直线。
练习
练习1 用你认为最简单的方法画出下列函数的图 象: 3 (1)y = x ; (2) y =-3x. 2
练习
练习2 在平面直角坐标系中,正比例函数y =kx( k<0)的图象的大致位置只可能是( A ). y y x O B y y x O D x
6 4
2
-5 O -2 5
1 y= x 3 1 y= x 10 x
思考2 对应地,当自变量的值增大时,对应的函数 值是随着增大还是减小? y y = 4x y = 2x y =x
6 4
2
-5 O -2 5
1 y= x 3 1 y= x 10 x
画出正比例函数
y
5 4 3 2 1 -5 -4 -3 -2 -1 0 -1
观察
5 4 3 2 1 -5 -4 -3 -2 -1 0 1 -2 -3 -4 -5
y
y=2x
1 2 3 4 5
x
y 2 x
比较上面两个函数的图象的相同点与不同点, 考虑两个函数的变化规律.
结论:两图象都是经过原点的 直线 ,函数 y 2 x
的图象从左向右上升_,经过第一三象限;函数 y 2 x 的图象从左向右下降,经过第二四象限.
y =k2 x y =k1 x
5. 函数y=-3x的图象过第 二、四 象限, 经过点 (0, 0 )与点(1, -3 ), y随x的增大而 减小 .
6. 函数y=
3 2
x的图象过第 一、三 象限,经过点
3 2
(0, 0 )与点(1,
),y随x的增大而 增大
.
7. 正比例函数y=(m-1)x的图象 经过一、三象限, 则m的取值范围( B )
A. m=1
B. m>1 C. m<1
D. m≥1
8. 正比例函数y=(3-k) x,如果随着x 的增大y反而减小,则k的取值范围 k>3 是 __ ____.
已知某种小汽车的耗油量是每100km耗油15 升. (1)写出汽车行驶途中所耗油 y(升)与行 程 x(km)之间的函数关系式; (2)在平面直角坐标系内描出大致的函数关 系图; (3)计算娄底到长沙220 km所需油量是多少?
正比例函数图象的特征及性质
一般地,正比例函数y=kx(k是常数,k≠0)的 图象: ⑴是一条经过原点的直线; ⑵当k >0时, 直线y=kx经过第一、三象限,从 左向右上升,即随着x的增大y也增大;
⑶当k <0时, 直线y=kx经过第二、四象限,从 左向右下降,即随着x的增大y反而减小.
既然正比例函数的图像是一条直线,那么 至少几个点可以画这条直线?怎样画最简单?