解三角形学习课件PPT
合集下载
26.4 解直角三角形的应用 - 第1课时仰角、俯角、方位角问题课件(共23张PPT)
解:如图,α = 30° , β= 60°,AD=120. ∵ , ∴BD=AD·tanα=120×tan30︒, =120× =40 . CD=AD·tanβ=120×tan60︒, =120× =120 . ∴BC=BD+CD=40 +120 =160 ≈277(m).答:这栋楼高约为277m.
例1 如图,小明在距旗杆4.5 m的点D处,仰视旗杆顶端A,仰角(∠AOC)为50°;俯视旗杆底部B,俯角(∠BOC)为18°.求旗杆的高.(结果精确到0.1 m)
例题示范
知识点2 方向角方位角:由正南或正北方向线与目标方向线构成的锐角叫做方位角.如下图中的目标方向OA,OB,OC,OD的方向角分别表示________60°,________45°(或__________),_________80°及_________30°.
拓展提升
1.热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的水平距离为120 m,这栋楼有多高(结果取整数)?
分析:如图,α=30°,β=60°.在Rt△ABD中,α =30°,AD=120,所以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.
第二十六章 解直角三角形
26.4 解直角三角形的应用
第1课时 仰角、俯角、方位角问题
学习目标
学习重难点
重点
难点
1.巩固解直角三角形有关知识,了解仰角、俯角、方向角的概念.2.运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.
回顾复习
例1 如图,小明在距旗杆4.5 m的点D处,仰视旗杆顶端A,仰角(∠AOC)为50°;俯视旗杆底部B,俯角(∠BOC)为18°.求旗杆的高.(结果精确到0.1 m)
例题示范
知识点2 方向角方位角:由正南或正北方向线与目标方向线构成的锐角叫做方位角.如下图中的目标方向OA,OB,OC,OD的方向角分别表示________60°,________45°(或__________),_________80°及_________30°.
拓展提升
1.热气球的探测器显示,从热气球看一栋楼顶部的仰角为30°,看这栋楼底部的俯角为60°,热气球与楼的水平距离为120 m,这栋楼有多高(结果取整数)?
分析:如图,α=30°,β=60°.在Rt△ABD中,α =30°,AD=120,所以利用解直角三角形的知识求出BD;类似地可以求出CD,进而求出BC.
第二十六章 解直角三角形
26.4 解直角三角形的应用
第1课时 仰角、俯角、方位角问题
学习目标
学习重难点
重点
难点
1.巩固解直角三角形有关知识,了解仰角、俯角、方向角的概念.2.运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
运用解直角三角形知识解决与仰角、俯角和方位角有关的实际问题.
将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题.
回顾复习
解三角形PPT演示课件
04 三角形在实际问 题中的应用
测量问题中的三角形解法
角度测量
通过测量三角形的两个角,利用 三角形内角和为180度的性质,可
以求出第三个角的大小。
距离测量
在无法直接测量两点间距离的情况 下,可以通过构造三角形,利用已 知边长和角度,通过三角函数求解 未知距离。
高程测量
在测量地形高度时,可以通过构造 三角形并测量相关角度和距离,利 用三角函数求解未知高程。
物理学中的三角形解法
01 02
力的合成与分解
在物理学中,力是矢量,可以通过构造三角形来表示力的合成与分解。 例如,已知两个分力的大小和方向,可以构造三角形求解合力的大小和 方向。
运动学问题
在解决匀变速直线运动等问题时,可以通过构造速度、加速度和时间等 物理量的三角形关系,利用三角函数求解未知量。
03
解等腰三角形的方法
通过已知的两边和夹角,利用余弦定 理或正弦定理求解第三边和其余两个 角。
等边三角形的解法
等边三角形的定义和性质
01
三边长度都相等的三角形,三个内角均为60度。
解等边三角形的方法
02
通过已知的一边长度,利用三角函数或特殊角度的三角函数值
求解其余两边和三个角。
典型例题解析
03
展示一道等边三角形的求解问题,并详细解析解题步骤和思路
几何图形中的三角形解法
01
02
03
三角形面积计算
通过已知三角形的底和高 ,或者通过海伦公式等方 法,可以计算三角形的面 积。
三角形边长求解
在已知三角形部分边长和 角度的情况下,可以利用 正弦定理、余弦定理等方 法求解未知边长。
三角形形状判断
通过已知三角形的边长或 角度,可以判断三角形的 形状,如等边、等腰、直 角等。
解三角形ppt课件
解三角形中的最值问题
01
总结词
02
详细描述
03
示例
利用三角形性质和函数性 质,解决三角形中的最值 问题。
在解三角形问题中,常常 会遇到需要求最值的问题 。这类问题通常涉及到三 角形的边长、角度等性质 ,需要利用三角形的基本 性质和函数的基本性质进 行推理和求解。
在三角形ABC中,已知a 、b、c分别为角A、B、C 所对的边,且a = 2, b = 3, C = 60度。求三角形 ABC的面积的最大值。
航海定位问题
经验积累
解决航海定位问题需要丰富的经验积累,因 为在实际航行中会遇到各种复杂的情况。只 有通过不断实践和经验积累,才能熟练掌握 解三角形的方法,提高定位精度和航行安全
性。
建筑结构设计问题
结构设计基础
建筑结构设计问题是建筑学中的基础问题之一,涉及 到建筑物的稳定性和安全性。解三角形的方法可以用 来确定建筑物的结构形式和受力情况,保证建筑物的 质量和安全性。
测量距离问题
实践性强
解决测量距离问题需要很强的实践能力,需要具备一定的测 量和计算能力。同时,还需要对实际环境有足够的了解,能 够根据实际情况选择合适的解三角形方法。
航海定位问题
重要应用
航海定位问题在航海学中非常重要,因为准确的定位是保 证航行安全的前提。解三角形的方法可以用来确定船只的 位置和航向,保证航行路线的准确性。
解三角形ppt课件
contents
目录
• 引言 • 三角形的基本性质 • 解三角形的方法 • 实际应用案例 • 解三角形的进阶技巧 • 总结与展望
01
引言
三角形的定义与性质
三角形是由三条边和三个角构成的二 维图形。
三角形的边和角之间存在一定的关系 ,如两边之和大于第三边、内角和为 180度等。
解直角三角形完整版PPT课件
余弦或正切函数计算得出。
已知一边和一角求另一边
02
在直角三角形中,已知一边长和一个锐角大小可以求出另一边
长,通过正弦、余弦或正切函数计算得出。
解直角三角形的实际应用
03
例如测量建筑物高度、计算航海距离等。
三角函数在实际问题中应用
测量问题
在测量问题中,可以利用三角函数计算高度、距离等未知量。例如,利用正切函数可以计算 山的高度或者河的宽度。
直角三角形重要定理
勾股定理
如上所述,勾股定理描述了直角三角 形三边之间的数量关系。
射影定理
相似三角形判定定理
若两个直角三角形的对应角相等,则 这两个直角三角形相似。根据此定理, 可以推导出一些重要的直角三角形性 质和定理。
射影定理涉及直角三角形中斜边上的 高与斜边及两直角边之间的数量关系。
02
三角函数在解直角三角形中应用
• 性质:正弦、余弦函数值域为[-1,1],正切函数值域为R;正弦、余弦函 数在第一象限为正,第二象限正弦为正、余弦为负,第三象限正弦、余 弦都为负,第四象限余弦为正、正弦为负;正切函数在第一、三象限为 正,第二、四象限为负。
利用三角函数求边长和角度
已知两边求角度
01
在直角三角形中,已知两边长可以求出锐角的大小,通过正弦、
注意单位换算和精确度
在求解过程中,要注意单位换算和精确度的控制,避免因单位或精 度问题导致答案错误。
拓展延伸:非直角三角形解法简介
锐角三角形和钝角三角形的解法
对于非直角三角形,可以通过作高线或利用三角函数等方法将其转化为直角三角形进行 求解。
三角形的边角关系和面积公式
了解三角形的边角关系和面积公式,有助于更好地理解和解决非直角三角形问题。
中职数学6.4解三角形课件
容易看出,利用正弦定理可以解决下列两类问题: (1) 已知三角形的两边和其中一边所对的角,求其他两角和另一条边; (2) 已知三角形的两个角和任意一边,求其他两边和另一个角.
6.4.2 正弦定理
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
例3 在ΔABC中, ∠B=45°,∠C=15°,a=5,求b. 解
6.4 解三角形
6.4 解三角形
ΔABC中,常用∠A、∠B、∠C 表示 三个角,用 a、b、c分别表示这三个角的 对边.根据已知条件求三角形的边和角的 过程称为解三角形.
在生产实践和科学研究中,经常会遇到解三角形的 问题.余弦定理和正弦定理反映了任意三角形中边和 角之间的数量关系,是解三角形的重要工具.
6.4.1 三角形面积公式
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
用ΔABC表示所建花圃,其中, b=4, c=6. 以ΔABC的顶点A为坐标原点, 建立如图所示的平面直角坐标系.于是, 点A的坐标为(0,0),点B的坐标为(c,0).
设点C的坐标为(x0,y0),过点C作AB边上的高CD,则CD⊥AB, 且 =CD.
6.4.1 三角形面积公式
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
由三角函数的定义,可以得到
同理可得, 因此,
6.4.1 三角形面积公式
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
这就是说,三角形的面积等于它的任意两 边及其夹角的正弦乘积的一半.
6.4.1 三角形面积公式
6.4.3
余弦定理
6.4.3 余弦定理
情境导入 探索新知 典型例题 巩固练习 归纳总结 布置作业
在6.4.1的“情境与问题” 中,园林工人在修建花圃的过 程中,需在墙角的对面建造一道 篱笆墙,问所建篱笆墙的长度 为多少(不考虑其他因素)?
解直角三角形的应用(19张ppt)课件
选择合适的解法
根据实际情况选择合适的解法,如近似计算、 精确计算等。
注意单位统一
在实际应用中,要注意单位统一,避免计算 错误。
考虑多解情况
在某些情况下,解直角三角形可能存在多个 解,需要全面考虑。
06
练习与巩固
基础练习题
总结词
掌握基本概念和公式
直角三角形中的角度和边长关系
理解直角三角形中锐角、直角和钝角之间 的关系,以及边长与角度之间的勾股定理 。
利用三角函数定义求解
总结词
通过已知角度和邻边长度,求对边或 斜边长度。
详细描述
根据三角函数定义,已知一个锐角和它 所对的边,可以通过三角函数求出其他 两边。例如,已知∠A=30°和a=1,可 以通过三角函数sin(30°)求出对边b。
利用勾股定理求解
总结词
通过已知两边的长度,求第三边长度。
详细描述
向。
确定建筑物的角度
在建筑设计中,通过解直角三角形, 可以确定建筑物的角度和方向。
确定建筑物的长度
在建筑设计中,通过解直角三角形, 可以确定建筑物的长度和方向。
物理问题中的运用
确定物体的运动轨迹
在物理问题中,通过解直角三角形,可以确定物体的运动轨 迹和方向。
确定物体的受力情况
在物理问题中,通过解直角三角形,可以确定物体的受力情 况和方向。
04
实际应用案例
测高问题
01
02
03
测量山的高度
通过测量山脚和山顶的仰 角,利用解直角三角形的 知识,可以计算出山的高 度。
测量楼的高度
利用解直角三角形的知识, 通过测量楼底和楼顶的仰 角,可以计算出楼的高度。
测量树的高度
通过测量树底部和树顶部 的仰角,利用解直角三角 形的知识,可以计算出树 的高度。
解三角形课件.ppt.ppt
第十讲 解三角形
△ABC中:
(1)A+B+C=
(2)A B C C
2
2 22
(3)A B a b sin A sin B
C
b
a
B
A
c
正弦定理:
a b c 2R sin A sin B sin C
a 2R sin A b 2R sin B
c 2R sin C
cos AcosC sin Asin C cos B 1 2sin2 B cos AcosC sin AsinC cos B 1 2sin AsinC
cos AcosC sin AsinC cos B 1
cos(A C) cos B 1 1
例9、如果△ABC内接于半径为的圆,且 2R(sin 2 A sin 2 C) ( 2a b) sin B, 求△ABC的面积的最大值。
∴
AB ,
2
即 A B0
2
2
∴ sin A sin( B)即 sin A cos B
2
同理 sin B cosC ,sin C cos A
∴ sin A sin B sin C cosA cosB cosC
例2、在△ ABC中,若b 2a sin B
则 A 等于( )
.
∴ AC BC
2( 6 2)(sin A sin B) 4( 6 2)sin A B cos A B
2
2
AB
B
4cos 2 4, (AC BC)max 4
C
A
例4、在△ABC中,若 a cos A bcosB c cosC,
则△ABC的形状是什么?
解: acos A bcos B ccosC,sin Acos A sin Bcos B sinC cosC
△ABC中:
(1)A+B+C=
(2)A B C C
2
2 22
(3)A B a b sin A sin B
C
b
a
B
A
c
正弦定理:
a b c 2R sin A sin B sin C
a 2R sin A b 2R sin B
c 2R sin C
cos AcosC sin Asin C cos B 1 2sin2 B cos AcosC sin AsinC cos B 1 2sin AsinC
cos AcosC sin AsinC cos B 1
cos(A C) cos B 1 1
例9、如果△ABC内接于半径为的圆,且 2R(sin 2 A sin 2 C) ( 2a b) sin B, 求△ABC的面积的最大值。
∴
AB ,
2
即 A B0
2
2
∴ sin A sin( B)即 sin A cos B
2
同理 sin B cosC ,sin C cos A
∴ sin A sin B sin C cosA cosB cosC
例2、在△ ABC中,若b 2a sin B
则 A 等于( )
.
∴ AC BC
2( 6 2)(sin A sin B) 4( 6 2)sin A B cos A B
2
2
AB
B
4cos 2 4, (AC BC)max 4
C
A
例4、在△ABC中,若 a cos A bcosB c cosC,
则△ABC的形状是什么?
解: acos A bcos B ccosC,sin Acos A sin Bcos B sinC cosC
沪科版数学九年级上册23.2第1课时解直角三角形 课件(共19张PPT)
D
C
拓展提升
1.如图,在△ABC中,∠A=30︒,∠B=45︒,AC=2 ,求AB的长.解:作CD⊥AB于D,∠A=30°, ∴AD=AC, 在Rt△BCD中,∠B=45°,
2.已知,如图,在△ABC中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12, .求: (1)线段DC的长; (2)tan∠EDC的值.解:(1)∵AD是边BC上的高,AD=12,
∠A的对边
斜边斜边
∠B的邻边
斜边
∠A的对边
∠A的邻边
∠B的对边
∠B的邻边
同学们再见!
授课老师:
时间:2024年9月1日
事实上,在直角三角形的六个元素中,除直角外,如果再知道两个元素(其中至少有一个是边),这个三角形就可以确定下来,这样就可以由已知的两个元素求出其余的三个元素.
探索新知
例1 如图,在Rt△ABC中,∠C=90°,∠B=42°6',c=287.4,解这个直角三角形(精确到0.1).解:∵cosB= ,∴a=c cosB=287.4×0.7420≈213.3 . ∵sinB= ,∴b=c sinB=287.4×0.6704≈192.7 . ∠A=90º-∠B=90º-42º6′=47º54′ .
(2)∵E是斜边AC的中点, ∴DE=EC, ∴∠EDC=∠C, 在Rt∆ADC中, ∴
归纳小结
在解直角三角形的过程中,一般要用到下面一些关系:(1)三边之间的关系 (勾股定理)(2)两锐角之间的关系∠A+∠B=90°.(3)边角之间的关系sinA= , sinB= , cosA= , cosB= ,tanA= , tanB= .
归纳
根据以上探究,解直角三角形有哪些类型?试填写下表
C
拓展提升
1.如图,在△ABC中,∠A=30︒,∠B=45︒,AC=2 ,求AB的长.解:作CD⊥AB于D,∠A=30°, ∴AD=AC, 在Rt△BCD中,∠B=45°,
2.已知,如图,在△ABC中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12, .求: (1)线段DC的长; (2)tan∠EDC的值.解:(1)∵AD是边BC上的高,AD=12,
∠A的对边
斜边斜边
∠B的邻边
斜边
∠A的对边
∠A的邻边
∠B的对边
∠B的邻边
同学们再见!
授课老师:
时间:2024年9月1日
事实上,在直角三角形的六个元素中,除直角外,如果再知道两个元素(其中至少有一个是边),这个三角形就可以确定下来,这样就可以由已知的两个元素求出其余的三个元素.
探索新知
例1 如图,在Rt△ABC中,∠C=90°,∠B=42°6',c=287.4,解这个直角三角形(精确到0.1).解:∵cosB= ,∴a=c cosB=287.4×0.7420≈213.3 . ∵sinB= ,∴b=c sinB=287.4×0.6704≈192.7 . ∠A=90º-∠B=90º-42º6′=47º54′ .
(2)∵E是斜边AC的中点, ∴DE=EC, ∴∠EDC=∠C, 在Rt∆ADC中, ∴
归纳小结
在解直角三角形的过程中,一般要用到下面一些关系:(1)三边之间的关系 (勾股定理)(2)两锐角之间的关系∠A+∠B=90°.(3)边角之间的关系sinA= , sinB= , cosA= , cosB= ,tanA= , tanB= .
归纳
根据以上探究,解直角三角形有哪些类型?试填写下表
解三角形PPT教学课件
数值积分法
采用数值积分方法对定积分进行近 似计算,并讨论积分误差。
04
数值稳定性和精度保持策略
避免大数相除
在计算过程中,尽量避免大数除以小数的情 况,以减少舍入误差。
选择合适的数据类型
根据计算需求选择合适的数据类型,如单精 度浮点数、双精度浮点数等。
逐步细化计算步骤
将复杂计算分解为多个简单步骤,逐步细化 以提高计算精度。
三角形重要性质
三角形的稳定性
01
三角形具有稳定性,是建筑、工程等领域常用的结构形状。
三角形的面积公式
02
包括底乘高的一半、海伦公式等多种计算方法。
三角形的中线、角平分线、高线等性质
03
中线平分对应边、角平分线平分对应角、高线垂直于对应底边
等。
相似与全等三角形
相似三角形定义及性质
对应角相等、对应边成比例的三角形 为相似三角形,具有相似比等性质。
高度测量
解三角形也可以用于测量山峰、建筑物等高度。例如,通过在山脚和山 顶各设置一个观测点,测量两个观测点之间的水平距离和仰角,再利用 三角函数公式求解高度。
角度测量
在地理学中,角度测量也是非常重要的。解三角形可以通过已知三边或 已知两边和夹角等条件,利用三角函数公式求解未知角度。
航海学:航向、航速、航程计算
注意事项
需确保两角为夹边的两角
应用场景
在三角形求解、角度计算等方面有广泛应用
已知三边求角度(SSS)
已知条件
三边a、b、c
求解方法
利用余弦定理cosA=(b²+c²-a²)/2bc求解角度A,同理可求B、C
注意事项
需注意余弦定理中边长的对应关系
应用场景
在几何、测量等领域中广泛应用
采用数值积分方法对定积分进行近 似计算,并讨论积分误差。
04
数值稳定性和精度保持策略
避免大数相除
在计算过程中,尽量避免大数除以小数的情 况,以减少舍入误差。
选择合适的数据类型
根据计算需求选择合适的数据类型,如单精 度浮点数、双精度浮点数等。
逐步细化计算步骤
将复杂计算分解为多个简单步骤,逐步细化 以提高计算精度。
三角形重要性质
三角形的稳定性
01
三角形具有稳定性,是建筑、工程等领域常用的结构形状。
三角形的面积公式
02
包括底乘高的一半、海伦公式等多种计算方法。
三角形的中线、角平分线、高线等性质
03
中线平分对应边、角平分线平分对应角、高线垂直于对应底边
等。
相似与全等三角形
相似三角形定义及性质
对应角相等、对应边成比例的三角形 为相似三角形,具有相似比等性质。
高度测量
解三角形也可以用于测量山峰、建筑物等高度。例如,通过在山脚和山 顶各设置一个观测点,测量两个观测点之间的水平距离和仰角,再利用 三角函数公式求解高度。
角度测量
在地理学中,角度测量也是非常重要的。解三角形可以通过已知三边或 已知两边和夹角等条件,利用三角函数公式求解未知角度。
航海学:航向、航速、航程计算
注意事项
需确保两角为夹边的两角
应用场景
在三角形求解、角度计算等方面有广泛应用
已知三边求角度(SSS)
已知条件
三边a、b、c
求解方法
利用余弦定理cosA=(b²+c²-a²)/2bc求解角度A,同理可求B、C
注意事项
需注意余弦定理中边长的对应关系
应用场景
在几何、测量等领域中广泛应用
解三角形PPT精品课件
sin PAB 6 122 16
答:AB方向的方位角的正弦值为 6 122 。 16
本章知识框架图
正弦定理 余弦定理
解三角形 应用举例
课堂小结
1、正弦定理、余弦定理的简单应用; 2、利用正、余弦定理、三角形面积公式解 三角形问题; 3、解三角形的实际应用问题
平衡膳食与膳食指南
一、膳食结构的类型与特点
典型例题
例 在ABC中,a2 (b b c),求A与B满足的关系
解答
例 在ABC中,a2 (b b c),求A与B满足的关系
解:由已知a2 (b b c) a2 b2 bc,移项得:b2 a2 bc
由余弦定理:a2 b2 c2 2bccosA,移项:2bccosA=b2 a2 c2
B A B或B (A B) (舍去)
即A与B满足的关系为A 2B
本题启示
典型例题
例 在ABC中,已知A、B、C所对的边分别是a、b、c,边c 7 , 2
且 tan A tan B 3 tan A • tan B 3,又ABC的面积为
SABC
3 3 ,求a 2
b的值
例 在ABC中,已知A、B、C所对的边分别是a、b、c,边c 7 , 2
1 2
ab sin C
3 3 ,ab 2
6
由余弦定理得:c2 a2 b2 2ab cos C
c2 (a b)2 2ab 2ab cos C 代入计算得:a b 11
2
本章知识框架图
正弦定理 余弦定理
解三角形 应用举例
求解三角形应用题的一般步骤:
1、分析题意,弄清已知和所求; 2、根据提意,画出示意图; 3、将实际问题转化为数学问题,写出已知所求; 4、正确运用正、余弦定理。
高中数学解三角形ppt课件
证明几何定理
如勾股定理、正弦定理、余弦定理等 ,可以通过面积公式进行证明
计算三角形的内角和
利用面积公式和三角形内角和定理, 可以求出三角形的内角和
面积公式在物理问题中的应用
1 2
计算物体的受力面积
在物理学中,经常需要计算物体在某个方向上的 投影面积或受力面积,可以通过面积公式进行计 算
计算物体的体积和表面积
02 余弦定理
在任意三角形中,任何一边的平方等于其他两边 平方的和减去这两边与它们夹角的余弦的积的两 倍。
03 三角形的面积公式
S=1/2absinC,其中a、b为两边长,C为两边夹 角。
02
正弦定理及其应用
正弦定理的推导与证明
推导过程
通过三角形的外接圆和正弦函数的定义,推导出正弦定理的表达式。
一些几何性质。
最值问题
通过解三角形的方法,可以求解一 些与三角形相关的最值问题,如最 大面积、最小周长等。
存在性问题
在数学竞赛中,有时需要判断满足 某些条件的三角形是否存在,这可 以通过解三角形的方法来实现。
THANKS
感谢观看
对于一些规则或不规则的物体,可以通过计算其 各个面的面积,进而求出物体的体积和表面积
3
解决光学问题
在光学中,经常需要计算光线通过某个形状的面 积或光斑的大小,可以通过面积公式进行求解
05
解三角形综合应用举例
解直角三角形问题举例
已知两边求角度
通过正弦、余弦定理求解 直角三角形中的角度。
三角形的面积
解决三角形中的边长问题
利用正弦定理求出三角形中的未知边长。
正弦定理在物理问题中的应用
解决力学问题
在力学中,正弦定理可用于解决 涉及三角形的问题,如力的合成 与分解等。
《高二数学解三角形》课件
方向测量
在地理测量中,利用解三角形的方法可以精确地测量方向。例如,使用 罗盘和三角函数可以确定一个物体的方向。
03
卫星轨道确定
在卫星轨道确定中,解三角形也是非常重要的工具。通过解三角形,可
以精确地计算卫星的位置和速度。
几何图形中的应用
三角形面积计算
解三角形的一个重要应用是计算三角 形的面积。通过解三角形,可以找到 三角形的底和高,然后使用公式计算 面积。
代数方法解题主要依赖于三角形的边和角的关系,通过代数 运算来求解三角形。
代数方法解题通常需要利用三角形的边和角的关系,如余弦 定理、正弦定理等,通过代数运算来求解三角形的角度、边 长等参数。这种方法适用于已知条件较为复杂,需要精细计 算的情况。
几何方法解题
几何方法解题主要依赖于几何图形的性质和定理,通过构造辅助线、图形变换等 方式来求解三角形。
正弦定理
总结词
利用正弦定理求解三角形的边长或角度。
详细描述
正弦定理是解三角形的重要工具,它建立了三角形边长和对应角正弦值之间的关 系。通过已知的边长和角度,我们可以使用正弦定理求解其他边长或角度。
余弦定理
总理是另一种求解三角形的方法,它建立了三角形边长的平方和与角度余弦值之间 的关系。通过已知的边长和角度余弦值,我们可以使用余弦定理求解其他边长或角度。
解三角形的重要性
总结词
解三角形在数学、物理、工程等领域具有广泛的应用价值。
详细描述
解三角形在数学中扮演着重要的角色,它不仅是解决几何问题的基础,也是解决物理、工程等领域问题的重要工 具。例如,在物理学中,解三角形可以用于解决力学、光学、电磁学等方面的问题;在工程学中,解三角形可以 用于解决建筑、机械、航空航天等方面的问题。
在地理测量中,利用解三角形的方法可以精确地测量方向。例如,使用 罗盘和三角函数可以确定一个物体的方向。
03
卫星轨道确定
在卫星轨道确定中,解三角形也是非常重要的工具。通过解三角形,可
以精确地计算卫星的位置和速度。
几何图形中的应用
三角形面积计算
解三角形的一个重要应用是计算三角 形的面积。通过解三角形,可以找到 三角形的底和高,然后使用公式计算 面积。
代数方法解题主要依赖于三角形的边和角的关系,通过代数 运算来求解三角形。
代数方法解题通常需要利用三角形的边和角的关系,如余弦 定理、正弦定理等,通过代数运算来求解三角形的角度、边 长等参数。这种方法适用于已知条件较为复杂,需要精细计 算的情况。
几何方法解题
几何方法解题主要依赖于几何图形的性质和定理,通过构造辅助线、图形变换等 方式来求解三角形。
正弦定理
总结词
利用正弦定理求解三角形的边长或角度。
详细描述
正弦定理是解三角形的重要工具,它建立了三角形边长和对应角正弦值之间的关 系。通过已知的边长和角度,我们可以使用正弦定理求解其他边长或角度。
余弦定理
总理是另一种求解三角形的方法,它建立了三角形边长的平方和与角度余弦值之间 的关系。通过已知的边长和角度余弦值,我们可以使用余弦定理求解其他边长或角度。
解三角形的重要性
总结词
解三角形在数学、物理、工程等领域具有广泛的应用价值。
详细描述
解三角形在数学中扮演着重要的角色,它不仅是解决几何问题的基础,也是解决物理、工程等领域问题的重要工 具。例如,在物理学中,解三角形可以用于解决力学、光学、电磁学等方面的问题;在工程学中,解三角形可以 用于解决建筑、机械、航空航天等方面的问题。
浙教版九年级下册 1.3 解直角三角形 课件(共42张PPT)
3.5 5
=0.7,
∴α≈350.
答:斜面钢条a的长度约为6.1米,坡角约为350.
特别强调:
在解直角三角形的过程中,常会遇到近似计
算,本书除特别说明外,边长保留四个有效数 字,角度精确到1′.
解直角三角形,只有下面两种情况: (1)已知两条边; (2)已知一条边和一个锐角 (必须有一个条件是边)
钢条的长度a和倾角a 吗?
L
变化:已知平顶屋面的宽度
L和坡顶的设计倾角α(如
述例题中,我们都是利用直角三角 形中的已知边、角来求出另外一些的边角. 像这样,
******************************** 在直角三角形中,由已知的一些
因此 AB=AE+EF+BF
≈6.72+12.51+7.90 ≈27.13(米).
图 19.4.6
答:路基下底的宽约为27.13米.
如图,沿水库拦水坝的背水坡将坝面加宽两 米,坡度由原来的1:2改成1:2.5,已知原背水坡 长BD=13.4米,
求: (1)原背水坡的坡角 和加宽后的背水
坡的坡角
(1)c=10,∠A=30°
B
(2)b=4,∠B=72°
(3)a=5, c=7
C
A
(4)a=20,sinA= 1
2
应用练习
如图东西两炮台A、B相距2000米,同时发现入侵敌 舰C,炮台A测得敌舰C在它的南偏东40゜的方向,炮台B 测得敌舰C在它的正南方,试求敌舰与两炮台的距离.
(精确到1米)
本题是已知
面的夹角叫做坡角,记作a,有i= h = tan a. l
显然,坡度越大,坡角a就越大,坡面就越陡.
试一试
1、如图
1)若h=2cm, l=5cm,则i= 2 ; 5
解三角形PPT演示课件
量之间的夹角。
振动分析
在振动分析中,经常需要研究物体的振动规律。通过使用三角函数和解三角形的方法, 可以分析出物体的振动频率、振幅和相位等参数,进而对物体的振动特性进行分析和预
测。
06
总结与展望
解三角形的意义
三角形是几何学中最基础、最重要的图形之一,解三角形是 研究三角形的重要手段之一。通过解三角形,我们可以了解 三角形的性质、特点、变化规律等,为几何学、物理学、工 程学等领域提供重要的理论支撑和实践指导。
解三角形的方法
解三角形的方法有很多种, 包括正弦定理、余弦定理、 勾股定理等。
三角形的重要性
三角形在日常生活中的应用
三角形在日常生活中的应用非常广泛,如建筑、工程、航海、航 空等领域。
三角形在数学中的地位
三角形是几何学中最基础和最重要的图形之一,对于几何学的发展 和应用具有重要意义。
三角形在物理学中的应用
角度和为180度
三角形的三个内角之和为180度。
边与角之间的关系
正弦定理
在一个三角形中,任意一边与其对应 角的正弦值的比等于三角形的外接圆 直径。
余弦定理
在一个三角形中,任意一边的平方等 于其他两边平方和减去两倍的这两边 与它们夹角的余弦的积。
03
解三角形的工具
三角函数
三角函数是解三角形的重要工具,用于描述三角形中各角度和边长之间的关系。 常用的三角函数包括正弦、余弦、正切等,它们在解三角形问题中发挥着关键作用。
掌握三角函数的性质和公式,能够快速解决各种解三角形问题。
余弦定理
余弦定理是解三角形的一个重要 定理,用于计算三角形各边的长
度。
定理公式为:c²=a²+b²2abcosC,其中a、b、c分别代 表三角形的三条边边和夹角,或者已 知的三边,利用余弦定理可以求
振动分析
在振动分析中,经常需要研究物体的振动规律。通过使用三角函数和解三角形的方法, 可以分析出物体的振动频率、振幅和相位等参数,进而对物体的振动特性进行分析和预
测。
06
总结与展望
解三角形的意义
三角形是几何学中最基础、最重要的图形之一,解三角形是 研究三角形的重要手段之一。通过解三角形,我们可以了解 三角形的性质、特点、变化规律等,为几何学、物理学、工 程学等领域提供重要的理论支撑和实践指导。
解三角形的方法
解三角形的方法有很多种, 包括正弦定理、余弦定理、 勾股定理等。
三角形的重要性
三角形在日常生活中的应用
三角形在日常生活中的应用非常广泛,如建筑、工程、航海、航 空等领域。
三角形在数学中的地位
三角形是几何学中最基础和最重要的图形之一,对于几何学的发展 和应用具有重要意义。
三角形在物理学中的应用
角度和为180度
三角形的三个内角之和为180度。
边与角之间的关系
正弦定理
在一个三角形中,任意一边与其对应 角的正弦值的比等于三角形的外接圆 直径。
余弦定理
在一个三角形中,任意一边的平方等 于其他两边平方和减去两倍的这两边 与它们夹角的余弦的积。
03
解三角形的工具
三角函数
三角函数是解三角形的重要工具,用于描述三角形中各角度和边长之间的关系。 常用的三角函数包括正弦、余弦、正切等,它们在解三角形问题中发挥着关键作用。
掌握三角函数的性质和公式,能够快速解决各种解三角形问题。
余弦定理
余弦定理是解三角形的一个重要 定理,用于计算三角形各边的长
度。
定理公式为:c²=a²+b²2abcosC,其中a、b、c分别代 表三角形的三条边边和夹角,或者已 知的三边,利用余弦定理可以求
第五章 第七节 解三角形的实际应用 课件(共43张PPT)
易知∠CAB=10°,∠ACB=10°,所以 AB=BC=10 米, 在 Rt△AOB 中,BO=10sin 70°≈9.4(米).故选 C.]
本题以“珠穆朗玛峰”为背景设计试题,考查解三角形等 知识,体现了智育的素养导向.破解此类题的关键是准确获取有效信息,合 理运用获取到的信息画出草图,把所求的问题转化到几何图形中,通过合理 运用平面几何相关知识进行求解.
2 2
,
所以 θ=π4 ,∠ABC=3θ=34π ,
所以 AC2=16+8-2×4×2
2
×(-
2 2
)=40,
所以 AC=2 10 .]
平面几何中解三角形问题的求解思路 (1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用 正弦、余弦定理求解. (2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.
C [函数 f(x)的定义域为 R.
A.50 2 m C.25 2 m
B.50 3 m D.252 2 m
A
[由正弦定理得sin
AB ∠ACB
= sin
AC ∠CBA
,又由题意得∠CBA=30°,
所以 AB=ACsinsin∠∠CBAACB
50× =1
2 2
=50
2
(m).]
2
4.如图所示,已知两座灯塔 A 和 B 与海洋观察站 C 的距离相等,灯塔 A 在观察站 C 的北偏东 40°,灯塔 B 在观察站 C 的南偏东 60°,则灯塔 A 在灯塔 B 的 ________方向.
解析: 如图,设辑私艇在 C 处截住走私船,D 为岛 A 正南方向上一点, 缉私艇的速度为 x 海里/小时,结合题意知 BC=0.5x,AC =5,∠BAC=180°-38°-22°=120°,
本题以“珠穆朗玛峰”为背景设计试题,考查解三角形等 知识,体现了智育的素养导向.破解此类题的关键是准确获取有效信息,合 理运用获取到的信息画出草图,把所求的问题转化到几何图形中,通过合理 运用平面几何相关知识进行求解.
2 2
,
所以 θ=π4 ,∠ABC=3θ=34π ,
所以 AC2=16+8-2×4×2
2
×(-
2 2
)=40,
所以 AC=2 10 .]
平面几何中解三角形问题的求解思路 (1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用 正弦、余弦定理求解. (2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.
C [函数 f(x)的定义域为 R.
A.50 2 m C.25 2 m
B.50 3 m D.252 2 m
A
[由正弦定理得sin
AB ∠ACB
= sin
AC ∠CBA
,又由题意得∠CBA=30°,
所以 AB=ACsinsin∠∠CBAACB
50× =1
2 2
=50
2
(m).]
2
4.如图所示,已知两座灯塔 A 和 B 与海洋观察站 C 的距离相等,灯塔 A 在观察站 C 的北偏东 40°,灯塔 B 在观察站 C 的南偏东 60°,则灯塔 A 在灯塔 B 的 ________方向.
解析: 如图,设辑私艇在 C 处截住走私船,D 为岛 A 正南方向上一点, 缉私艇的速度为 x 海里/小时,结合题意知 BC=0.5x,AC =5,∠BAC=180°-38°-22°=120°,
解三角形(正弦定理余弦定理三角形面积公式)课件
反射定律
当光线遇到平面镜时,会产生反射现象。通过解三角形的方法可以计算入射角和反射角的关系,从而解释反射现 象。
建筑学中的角度计算
确定建筑物的角度
在建筑设计中,需要计算建筑物与水平面之间的角度,以确保建筑物的稳定性。利用解三角形的方法 可以计算出建筑物所需的倾斜角度。
测量建筑物的高度
通过观测建筑物与水平面之间的角度,利用解三角形的方法可以计算出建筑物的高度。
将三角形的三边长度转化为面积的表 达式,便于计算。
面积公式的应用
01
解决实际问题
利用三角形面积公式解决实际 问题,如土地测量、建筑规划
等。
02
数学竞赛解题
在数学竞赛中,三角形面积公 式是解决几何问题的重要工具
之一。
03
数学建模
在数学建模中,三角形面积公 式可以用于描述和解决现实生 活中的问题,如最优分割等。
详细描述
其中一种常见的证明方法是利用三角形的外接圆性质,通过相似三角形和勾股定 理进行推导。此外,还可以利用三角函数的加法定理、三角形的面积公式等其他 方法进行证明。掌握多种证明方法有助于加深对正弦定理的理解和应用。
02
余弦定理
定义与性质
总结词
余弦定理是三角形中一个重要的 定理,它描述了三角形各边与其 所对的角之间的关系。
应用场景
01
总结词
02
详细描述
正弦定理在解决三角形问题时非常有用,特别是在已知两边及夹角、 已知两角及夹边等情况下求解第三边。
通过正弦定理,我们可以解决各种与三角形相关的问题,如计算三角 形的面积、判断三角形的形状、解决几何作图问题等。它是三角函数 和几何学中非常重要的定理之一。
证明方法
总结词
当光线遇到平面镜时,会产生反射现象。通过解三角形的方法可以计算入射角和反射角的关系,从而解释反射现 象。
建筑学中的角度计算
确定建筑物的角度
在建筑设计中,需要计算建筑物与水平面之间的角度,以确保建筑物的稳定性。利用解三角形的方法 可以计算出建筑物所需的倾斜角度。
测量建筑物的高度
通过观测建筑物与水平面之间的角度,利用解三角形的方法可以计算出建筑物的高度。
将三角形的三边长度转化为面积的表 达式,便于计算。
面积公式的应用
01
解决实际问题
利用三角形面积公式解决实际 问题,如土地测量、建筑规划
等。
02
数学竞赛解题
在数学竞赛中,三角形面积公 式是解决几何问题的重要工具
之一。
03
数学建模
在数学建模中,三角形面积公 式可以用于描述和解决现实生 活中的问题,如最优分割等。
详细描述
其中一种常见的证明方法是利用三角形的外接圆性质,通过相似三角形和勾股定 理进行推导。此外,还可以利用三角函数的加法定理、三角形的面积公式等其他 方法进行证明。掌握多种证明方法有助于加深对正弦定理的理解和应用。
02
余弦定理
定义与性质
总结词
余弦定理是三角形中一个重要的 定理,它描述了三角形各边与其 所对的角之间的关系。
应用场景
01
总结词
02
详细描述
正弦定理在解决三角形问题时非常有用,特别是在已知两边及夹角、 已知两角及夹边等情况下求解第三边。
通过正弦定理,我们可以解决各种与三角形相关的问题,如计算三角 形的面积、判断三角形的形状、解决几何作图问题等。它是三角函数 和几何学中非常重要的定理之一。
证明方法
总结词
解三角形-PPT课件
2023最新整理收集 do something
本 章 优 化 总 结
本章优化总结
知识体系网络
专题探究精讲
知识体系网络
专题探究精讲
判断三角形形状 判断三角形的形状,一般有以下两种途径: (1)将已知条件统一化成边的关系,用代数方法 求解; (2)将已知条件统一化成角的关系,用三角方法 求解. 在解三角形时的常用结论有:
【解】 (1)依题意,PA-PB=1.5×8=12 (km), PC-PB=1.5×20=30 (km). 因此 PB=(x-12) km,PC=(18+x) km. 在△PAB 中,AB=20 km, cos∠PAB=PA2+2PAAB·A2-B PB2=x2+2022-x·20x-122 =3x+ 5x32.
(1)设A到P的距离为x km,用x表示B、C到P 的距离,并求x的值; (2)求静止目标P到海防警戒线a的距离.(结果 精确到0.01 km)
【思路点拨】 (1)PA、PB、PC长度之间的关 系可以通过收到信号的先后时间建立起来; (2)作PD⊥a,垂足为D,要求PD的长,只需要 求出PA的长和cos∠APD,即cos∠PAB的 值.由题意,PA-PB,PC-PB都是定值,因 此,只需要分别在△PAB和△PAC中,求出 cos∠PAB,cos∠PAC的表达式,建立方程即可.
例4 如图所示,a是海面上一条南北方向的 海防警戒线,在a上点A处有一个水声监测点, 另两个监测点B、C分别在A的正东方向20 km 处和54 km处,某时刻,监测点B收到发自静 止目标P的一个声波,8 s后监测点A、20 s后 监测点C相继收到这一信号,在当时的气象条 件下,声波在水中的传播速度是1.5 km/s.
(1) 在 △ ABC 中 , ∠ A> ∠ B⇔ a>b ⇔ sinA>sinB ⇔
本 章 优 化 总 结
本章优化总结
知识体系网络
专题探究精讲
知识体系网络
专题探究精讲
判断三角形形状 判断三角形的形状,一般有以下两种途径: (1)将已知条件统一化成边的关系,用代数方法 求解; (2)将已知条件统一化成角的关系,用三角方法 求解. 在解三角形时的常用结论有:
【解】 (1)依题意,PA-PB=1.5×8=12 (km), PC-PB=1.5×20=30 (km). 因此 PB=(x-12) km,PC=(18+x) km. 在△PAB 中,AB=20 km, cos∠PAB=PA2+2PAAB·A2-B PB2=x2+2022-x·20x-122 =3x+ 5x32.
(1)设A到P的距离为x km,用x表示B、C到P 的距离,并求x的值; (2)求静止目标P到海防警戒线a的距离.(结果 精确到0.01 km)
【思路点拨】 (1)PA、PB、PC长度之间的关 系可以通过收到信号的先后时间建立起来; (2)作PD⊥a,垂足为D,要求PD的长,只需要 求出PA的长和cos∠APD,即cos∠PAB的 值.由题意,PA-PB,PC-PB都是定值,因 此,只需要分别在△PAB和△PAC中,求出 cos∠PAB,cos∠PAC的表达式,建立方程即可.
例4 如图所示,a是海面上一条南北方向的 海防警戒线,在a上点A处有一个水声监测点, 另两个监测点B、C分别在A的正东方向20 km 处和54 km处,某时刻,监测点B收到发自静 止目标P的一个声波,8 s后监测点A、20 s后 监测点C相继收到这一信号,在当时的气象条 件下,声波在水中的传播速度是1.5 km/s.
(1) 在 △ ABC 中 , ∠ A> ∠ B⇔ a>b ⇔ sinA>sinB ⇔
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代入计算得:a b
11 2
本章知识框架图
正弦定理 解 三 角 形 余弦定理 应 用 举 例
求解三角形应用题的一般步骤:
1、分析题意,弄清已知和所求;
2、根据提意,画出示意图; 3、将实际问题转化为数学问题,写出已知所求; 4、正确运用正、余弦定理。
应用举例
某渔船在航行中遇险发出呼救信号,我海军舰艇在A处获悉后 立即测出该渔船在方向角为北偏东45o,距离10海里的C处, 渔船沿着方位角为105o的方向以v海里 / 小时的速度向小岛靠拢, 我海军艇舰立即以4v海里 / 小时的速度前去营救。设艇舰在B处 与渔船相遇,求AB方向的方位角的正弦值
由余弦定理:a2 b2 c2 2bccosA,移项: 2bccosA=b2 a2 c2
2bccosA=-bc+c2, 2b cos A b c
由正弦定理:2 2RsinB cos A 2R sin B 2R sin C
2sinB cos A sin B sin C sin B sin (A B) sin B sin A cos B sin B cos A
解得 sin CAB
sin PAB
6 122 16
答:AB方向的方位角的正弦值为
6 122 。 16
本章知识框架图
正弦定理 解 三 角 形 余弦定理 应 用 举 例
课堂小结
1、正弦定理、余弦定理的简单应用; 2、利用正、余弦定理、三角形面积公式解
三角形问题;
3、解三角形的实际应用问题
必修5 解三角形复ห้องสมุดไป่ตู้ 课件
正弦定理
a b c 2R sin A sin B sin C ( R为三角形外接圆半径)
a a 2 R sin A (sin A 2 R ) b ) b 2 R sin B (sin B 2R c c 2 R sin C (sin C 2 R )
角称为该直线的方位角。方位角的取值范围为0°~360°
Q
P C
105o
v
B
45
A
o
10 4v
BC AB 解:由正弦定理得, sin CAB sin ACB
vt 4vt sin CAB sin120o
61 3 cos CAB 8 8 sin PAB sin (CAB 45o) sin CAB cos 45o cos CAB sin 45o
C
方 向 角 方 位 角
A
B
图2
方向角和方位角的区别
北
南偏东45
o
西
东
45o
南
方向角
一般是指以观测者的位置为中心,将正北或正南
方向作为起始方向旋转到目标的方向线所成的角(一般指 锐角),通常表达成北(南)偏东(西)××度.
方位角和方向角的区别
北
方位角120o
西
120o
东
南
方位角
从标准方向的北端起,顺时针方向到直线的水平
三角形面积公式
1 s ab sin C 2 1 bc sin A 2 1 ac sin B 2
解决已知两边及其夹角求三角形面积
课 堂 练 习
(1)在ABC中,已知a 4,b 4 2,B 45o,求A (2)在ABC中,已知三边长AB=7,BC=5,AC=6,求 cos B
a : b : c sin A : sin B : sin C
余弦定理
a 2 b 2 c 2 2bc cos A b2 a 2 c 2 2ac cos B c a b 2ab cos C
2 2 2
推论 b2 c2 a 2 cos A 2bc a 2 c2 b2 cos B 2ac a 2 b2 c 2 cos C 2ab
本章知识框架图
正弦定理 解 三 角 形 余弦定理
典型例题
例 在ABC中,a2 ( b b c),求A与B满足的关系
解
答
例 在ABC中,a2 ( b b c),求A与B满足的关系
解:由已知a 2 ( b b c) a 2 b2 bc,移项得:b2 a 2 bc
sin B sin A cos B sinB cos A sin (A B)
B A B或B (A B) (舍去)
即A与B满足的关系为A 2B
本题启示
典 型 例 题
7 例 在ABC中,已知A、B、C所对的边分别是a、b、c,边c , 2 且 tan A tan B 3 tan A tan B 3,又ABC的面积为 SABC 3 3 ,求a b的值 2
7 例 在ABC中,已知A、B、C所对的边分别是a、b、c,边c , 2 且 tan A tan B 3 tan A tan B 3,又ABC的面积为 SABC 3 3 ,求a b的值 2
解:由已知tan A tan B 3(tan A tan B 1)
得 tan (A B) tan A tan B 3, C 60o 1 tan A tan B
SABC
1 3 3 ab sin C , ab 6 2 2
由余弦定理得:c2 a2 b2 2ab cos C
2 c2 (a b) 2ab 2ab cos C