线性方程组直接法
解线性方程组的直接方法
解线性方程组的直接方法一、高斯消元法高斯消元法是解线性方程组最常用的方法之一、它通过一系列的消元操作,将线性方程组转化为阶梯型方程组,从而求解未知数的值。
1.确定线性方程组的阶数和未知数的个数。
设线性方程组中有n个未知数。
2.将线性方程组写成增广矩阵的形式。
增广矩阵是一个n行n+1列的矩阵,其中前n列是线性方程组的系数矩阵,第n+1列是等号右边的常数。
3.通过初等行变换(交换行、数乘行、行加行)将增广矩阵化为阶梯型矩阵。
具体步骤如下:a.首先,找到第一个非零元素所在的列,将它所在的行视为第一行。
b.将第一行的第一个非零元素(主元)变成1,称为主元素。
c.将主元所在列的其他元素(次元素)变为0,使得主元所在列的其他元素只有主元素是非零的。
d.再找到第一个非零元素所在的列,将它所在的行视为第二行,并重复上述步骤,直到将增广矩阵化为阶梯型矩阵。
4.根据阶梯型矩阵求解未知数的值。
具体步骤如下:a.从最后一行开始,依次求解每个未知数。
首先,将最后一行中非零元素所在的列作为含有该未知数的方程,将该未知数的系数设为1b.将含有该未知数的方程中其他未知数的系数设为0,并对其他方程进行相应的变换,使得该未知数所在列的其他元素都为0。
c.重复上述步骤,直到求解出所有未知数的值。
高斯消元法的优点是简单易懂、容易实现,但当线性方程组的系数矩阵接近奇异矩阵时,计算精度可能会降低。
二、矩阵求逆法矩阵求逆法是解线性方程组的另一种直接方法。
它通过对系数矩阵求逆,然后与常数矩阵相乘,得到未知数的值。
1.确定线性方程组的阶数和未知数的个数。
设线性方程组中有n个未知数。
2.将线性方程组写成矩阵方程的形式,即Ax=b,其中A是一个n阶方阵,x和b分别是n维列向量。
3.求系数矩阵A的逆矩阵A^-1a. 首先,计算系数矩阵A的行列式det(A)。
b. 判断det(A)是否为0,如果det(A)=0,则该线性方程组无解或有无穷多解;如果det(A)≠0,则系数矩阵A可逆。
解线性方程组的直接方法
(1.5)
消去法的回代过程是解上三角形方程组(1.5).我们从方程组(1.5)的第三个方 x3 6 / 6 1 ; 程解得 然后将它代入第二个方程得到
x2 ( 5 x3 ) / 3 2;
最后,将 x3 1, x2 2 代第一个方程得到
x1 (3 2 x2 3 x3 ) / 2 2.
②
(n+1)n/2次运算
i 1 l11 bi lij x j l21 l22 j 1 A xi , i 1, , n lii l l l nn n1 n 2
③
(n+1)n/2次运算
n u11 u12 u1n bi uij x j u22 u2 n j i 1 A x , i n, ,1 i uii u nn
1,2,...,n)
( 1 .2 )
Ax b,
a1n a2 n , ann
§1 1.1 Gauss 消去法 本章主要介绍求解线性方程组(1.1)的直接法。所谓直接法,就是不考虑 计算过程的舍入误差时,经有限次数的运算便可求得方程组准确解的方法.我 们还将在§5中对计算过程中的舍入误差作一些初步分析.
a11 a 21 A, b ... an 2
之间有一对应关系.不难看出:
a12 a22 ... an 2
... ... ... ...
a1n a2 n ... ann
b1 b2 ... bn
(1.3)
(1)交换矩阵(1.3)的第p,q两行(记作 的第p,q两个方程;
(1.8)
(1.9)
(1.9)式是消元过程的一般计算公式.式中作分母的元素
数值分析--解线性方程组的直接方法
值 为A的特征值,x为A对应的特征向量,A的全体特征值
分 析
称为A的谱,计作 ( A),即 ( A) {i ,i 1,2,, n}, 则称
》
( A)
max
1in
|
i
|
为矩阵A的谱 半 径.
三、特殊矩阵
第5章 解线性方程组的直接方法
1) 对角矩阵
2) 三对角矩阵
3) 上三角矩阵
4) 上海森伯(Hessenberg)阵
分 析
1.00x 1.00y 2.00
》 解法1: 1.00105 x 1.00 y 1.00
(1.00 1.00105) y (2.00 1.00105)
1.00105 x 1.00 y 1.00
1.00
105
y
1.00
105
x 0.00,
y 1.00
第5章 解线性方程组的直接方法
1
Ly b y 3,Ux y x 1.
2
1
第5章 解线性方程组的直接方法
§3 高斯主元素消去法
若ak(kk) 0,或ak(kk)很接近于0,会导致其他元素数量级严重 增长和舍入误差的扩散,使得计算结果不可靠.
《例3’采用3位十进制,用消元法求解
数 值
1.00105 x 1.00y 1.00
L21L1 U2U11
L21L1
U
U 1
21
I
(因为上式右边为上三角矩阵,左边为单位下三角矩阵
从而上式两边都必须等于单位矩阵)
《 数
L1 L2 , U1 U2
1 1 1
值分例2
析
.例1中,A
0
4
-1,将A作LU分解。
计算方法2线性方程组直接法
04
矩阵的三角分解法
LU分解法
定义:将系数矩阵A分解为一个下三角 矩阵L和一个上三角矩阵U的乘积,即 A=LU。
适用范围:适用于所有可逆矩阵,特别 适用于中小型稠密矩阵。
迭代法收敛性判断
在迭代法求解方程组时,可以通过观察迭代过程中解向量的范数的变化情况来判断迭代法 是否收敛。如果解向量的范数逐渐减小并趋于零,则表明迭代法收敛。
方程组性态分析
方程组的性态是指方程组解的存在性、唯一性和稳定性等方面的性质。通过分析方程组的 系数矩阵的范数,可以对方程组的性态进行初步的判断。例如,如果系数矩阵的谱半径( 即最大特征值的模)较小,则方程组往往具有较好的性态。
03
线性方程组在科学研究、工程技术和经济管理等领域具有广 泛的应用。
直接法的定义与分类
1
直接法是一种通过有限步四则运算求解线性方程 组的方法,具有计算精度高、稳定性好的特点。
2
直接法可分为高斯消元法、列主元消元法、全主 元消元法等多种方法,其中高斯消元法是最基本 的方法。
3
各种直接法的主要区别在于选主元和消元的过程 中采用不同的策略,以达到提高计算精度和稳定 性的目的。
对系数矩阵A进行Crout分解,得到下三角矩阵L和单位 上三角矩阵U。
利用后向代入法求解Ux=y,得到向量x。
求解步骤
利用前向代入法求解Ly=b,得到向量y。
适用范围:适用于所有可逆矩阵,特别适用于中小型稠 密矩阵。与LU分解法和Doolittle分解法相比,Crout 分解法在某些情况下具有更高的计算效率。
性质
(整理)线性方程组的直接法
第二章线性方程组的直接法在近代数学数值计算和工程应用中,求解线性方程组是重要的课题。
例如,样条插值中形成的关系式,曲线拟合形成的法方程等,都落实到解一个元线性方程组,尤其是大型方程组的求解,即求线性方程组(2.1)的未知量的数值。
(2.1)其中ai j,bi为常数。
上式可写成矩阵形式Ax = b,即(2.2)其中,为系数矩阵,为解向量,为常数向量。
当detA=D0时,由线性代数中的克莱姆法则,方程组的解存在且惟一,且有为系数矩阵的第列元素以代替的矩阵的行列式的值。
克莱姆法则在建立线性方程组解的理论基础中功不可没,但是在实际计算中,我们难以承受它的计算量。
例如,解一个100阶的线性方程组,乘除法次数约为(101·100!·99),即使以每秒的运算速度,也需要近年的时间。
在石油勘探、天气预报等问题中常常出现成百上千阶的方程组,也就产生了各种形式方程组数值解法的需求。
研究大型方程组的解是目前计算数学中的一个重要方向和课题。
解方程组的方法可归纳为直接解法和迭代解法。
从理论上来说,直接法经过有限次四则运算,假定每一步运算过程中没有舍入误差,那么,最后得到方程组的解就是精确解。
但是,这只是理想化的假定,在计算过程中,完全杜绝舍入误差是不可能的,只能控制和约束由有限位算术运算带来的舍入误差的增长和危害,这样直接法得到的解也不一定是绝对精确的。
迭代法是将方程组的解看作某种极限过程的向量极限的值,像第2章中非线性方程求解一样,计算极限过程是用迭代过程完成的,只不过将迭代式中单变量换成向量而已。
在用迭代算法时,我们不可能将极限过程算到底,只能将迭代进行有限多次,得到满足一定精度要求的方程组的近似解。
在数值计算历史上,直接解法和迭代解法交替生辉。
一种解法的兴旺与计算机的硬件环境和问题规模是密切相关的。
一般说来,对同等规模的线性方程组,直接法对计算机的要求高于迭代法。
对于中等规模的线性方程组,由于直接法的准确性和可靠性高,一般都用直接法求解。
线性方程组的直接法和迭代法
线性方程组的直接法 直接法就就是经过有限步算术运算,无需迭代可直接求得方程组精确解的方法。
线性方程组迭代法 迭代法就就是用某种极限过程去逐步逼近线性方程组精确解的方法.该方法具有 对讣算机的存贮单元需求少,程序设计简单、原始系数矩阵在计算过程中不变等 优点,就是求解大型稀疏矩阵方程组的重要方法.迭代法不就是用有限步运算求 精确解,而就是通过迭代产生近似解逼近精确解•如Jacobi 迭代、Gauss- Seidel 迭代、S0R 迭代法等。
1. 线性方程组的直接法直接法就就是经过有限步算术运算,无需迭代可直接求得方程组精确解的方 法。
1.1 Cramer 法则Cramer 法则用于判断具有n 个未知数的n 个线性方程的方程组解的情况。
当 方程组的系数行列式不等于零时,方程组有解且解唯一。
如果方程组无解或者有 两个不同的解时,则系数行列式必为零。
如果齐次线性方程组的系数行列式不等 于零,则没有非零解。
如果齐次线性方程组有非零解,则系数行列式必为零。
定理1如果方程组Ax = b 中»= A 工0,则Ax = b 有解,且解事唯一的, 解为X 严 ¥,/岸,..% 理,D 就是D 中第i 列换成向量b 所得的行列式。
Cramer 法则解n 元方程组有两个前提条件:1、 未知数的个数等于方程的个数。
2、 系数行列式不等于零例1 a 取何值时,线性方程组X] + 兀2 + 兀3 = adX] +兀2 +些=1有唯一解。
內+花+ 0勺=1所以当a 丰1时,方程组有唯一解。
定理2当齐次线性方程组Av = O, |4|乂0时该方程组有唯一的零解。
定理3齐次线性方程组Ar = 0有非零解<=>同=0。
1.2 Gauss 消元法Gauss 消元法就是线性代数中的一个算法,可用来为线性方程组求解,求出 矩阵的秩,以及求出可逆方阵的逆矩阵。
当用于一个矩阵时,高斯消元法会产生出 一 1 1 11 1 1解:|牛 a 1 1= () 1-6/ 1-« 1 1 a 00 G-1 =_(。
解线性方程组的直接方法
3.对 i k 1,, n 置
对 置
aij aik akj aij
16
第二章 解线性方程组的直接方法
4.若 k n 1, 转5;否则 k 1 k ,转2。 5.若
ann 0,
输出失败信息,停机;否则,置
bn / ann bn
6.对 k n 1, n 2,,1 置
3
第二章 解线性方程组的直接方法
如果线性方程组(2-1)的系数行列式不为零,即
det( A) 0, 则该方程组有唯一解。由克莱姆(carmer)
法则,其解为
det( Ai ) xi det( A)
其中
(i 1, 2,
, n)
Ai 为用方程组(2-1)的右端向量b代替A中第i列 向量所得的矩阵。这种方法需要计算 n 1 个n 阶行
n 1 阶顺序主子式均不为零的矩阵A,计算实践还表明,
Gauss消去法的数值稳定性差,当出现小主元素时,会严重 影响计算结果的精度,甚至导出错误的结果.
§2 主元素法
先看一个例子。 例2 求解方程组
20
Ax b
其中
(2-2)
a11 a12 a a 21 22 A an1 an 2
x1 a1n x a2 n 2 , , x ann xn
b1 b 2 b bn
n k 次,乘法 (n k )(n k 1) 次,故消元过程中乘除运
算总量为
n 乘法次数 (n k )(n k 1) (n2 1) 3 k 1
n 1
除法次数
n (n - k ) (n 1) 2 k 1
数值分析(本科)线性方程组直接法
线性方程组的直接解法
一、引言
求解线性方程组是数值计算的核心问题之一 两类解法:直接解法和迭代解法 满矩阵 ------ 直接法
大规模稀疏矩阵 ------- 迭代法 特殊形式的矩阵 ------- 追赶法 本章主要介绍直接法(包括追赶法)。
二、高斯消去法
求解线性方程组
注:本章所考虑的线性方程组的未知量个数与方程个数相等,
注:
利用三角分解的方法求解时,三角分解(消去过程)只需要计 算一次。
四、三角分解之杜利脱尔分解
注:
利用高斯消去法进行计算时,消去过程一般需要多次计算。
四、三角分解之杜利脱尔分解
注:
由于消去过程的计算量要远大与回代过程的计算量, 所以对于这类问题,应采用三角分解的方法求解。
四、三角分解之杜利脱尔分解
练习. 分别用高斯消去法和列主元高斯消去法计算下述线性方程 组
解:(列主元高斯消去法)
三、列主元高斯消去法
练习. 分别用高斯消去法和列主元高斯消去法计算下述线性方程 组
解:(列主元高斯消去法)
三、列主元高斯消去法
练习. 分别用高斯消去法和列主元高斯消去法计算下述线性方程 组
解:(列主元高斯消去法)
四、三角分解之杜利脱尔分解
引入如下矩阵
例如,
四、三角分解之杜利脱尔分解
上述初等变换用矩阵乘法来描述:
四、三角分解之杜利脱尔分解
高斯消去法的 消去过程
上三角阵
上述初等变换用矩阵乘法来描述:
四、三角分解之杜利脱尔分解
说明: 1)条件”所有顺序主子式均不等于零”:保证在消去的过程中主 元非零,即消去过程可以完成。
且方程组有唯一解,即系数矩阵为可逆方阵。
计算方法第六章解线性方程组的直接法
未知数
在方程组中需要求解的变量 。
系数
方程中未知数的系数,构成 系数矩阵。
直接法的基本思想
直接法
通过对方程组进行变换,消去未知数,从而求得方程 组的解。
高斯消元法
一种常用的直接法,通过对方程组进行初等行变换, 将系数矩阵变为上三角矩阵,然后回代求解。
列主元消元法
在高斯消元法的基础上,每次消元前选取列主元,避 免计算过程中出现零除问题,提高数值稳定性。
回代过程
从最后一行开始,将已知量代入方程求解, 得到当前未知数的解。然后逐层回代,得到 所有未知数的解。
高斯消元法的应用举例
01
求解二元一次方程 组
通过高斯消元法,可以方便地求 解二元一次方程组,得到未知数 的解。
02
求解三元一次方程 组
对于三元一次方程组,同样可以 通过高斯消元法进行求解,得到 未知数的解。
感谢您的观看
07
总结与展望
直接法的优缺点总结
精确性
直接法通过有限步精确运算可求得方程组的精确解,避免了迭代法可能产生的误差累积。
稳定性
对于适定问题,直接法的数值稳定性较好,不易受到舍入误差的影响。
直接法的优缺点总结
直接法的优缺点总结
计算量
对于大规模问题,直接法的计算 量往往很大,需要消耗大量的计 算资源和时间。
回代
从最后一个方程开始,逐个将已知量代入方程求解未知量,直到求出 所有未知量。
列主元消元法的应用举例
求解线性方程组
列主元消元法可以用于求解各种类型 的线性方程组,包括齐次线性方程组 和非齐次线性方程组。
求解最小二乘问题
列主元消元法可以用于求解最小二乘 问题,通过构造法方程组并应用列主 元消元法,可以得到最小二乘解。
线性方程组的直接解法
线性方程组的直接解法
线性方程组(linear equation system)是一类几何问题,也是解决线性系统和代数问题的重要方法,线性方程组由多个联立方程组成,这些方程中也可能含有未知量。
直接解法是把数学模型转换为数值模型,并给出实现其解题步骤的算法,它不同于间接求解的方法,既不做任何假设,也不处理不确定性问题,只是简单地直接求解线性方程组。
解线性方程组的直接解法主要分为三种,分别是高斯消元法、列主元消去法和列坐标变换法。
高斯消元法是一种比较常用的方法,主要是把线性方程组的未知量从左到右一步步求出来,其中用到的主要技术是把矩阵中部分元素消去为零,以便求解不定线性方程组的未知量。
而列主元消去法则是以一列为主元,去消除其他联立方程中出现的此列中的变量,从而最终求出其他未知变量的值。
最后,列坐标变换法是将线性方程组转换为一个更有利于求解的矩阵,其中未知量可以直接求得解答。
除了这三种常见方法外,还有一些更特殊的直接解法,比如要解常微分方程的未知函数,可以用拉格朗日方法和分部积分方法,再比如求解雅各比方程的根,可以通过主副方程互解求解,这种方法也叫作特征根法。
综上,解线性方程组的直接解法有高斯消元法、列主元消去法、列坐标变换法等;特殊问题可以采用拉格朗日方法、分部积
分法和特征根法等。
每种方法都有自己的优势,因此在使用时,可以根据问题的特点,选择适合的方法来解决。
数值分析 第三章解线性方程组的直接法
T T A LDU 0 , AT U 0 DT LT , A AT U 0 L A LDLT
由于A是正定矩阵,所以D中的元素都大于零,可以把D也再分解
14
d11 d11 1 1 1 d 22 D2 D2 , D2 D d nn
lii 1,lik 0 k i , ukj 0 k j
11
ai1 由此得算法: u1 j a1 j , j 1, 2,, n; li1 a ,i 1, 2,, n 11
uij aij lik ukj , j i, i 1,, n; lij
还可以进一步用标度化的选主元(相对最大)
6
第三节 矩阵的三角分解
消元法求解方程组是通过行初等变换把系数矩阵化为对角阵,由 线性代数知识可知,左乘一个初等矩阵,就相当于做一次行变换.
1 a 21 a11 a 记 L = 31 1 a11 an1 ห้องสมุดไป่ตู้ 11
第三章 解线性方程组的直接法
第一节 引言
解线性方程组的方法可分为两大类:直接法和迭代法. 直接法的基本原理就是高斯消元法,再根据数值计算的特点 做一些适当的处理而得到的一类算法.直接法的特点是没有 截断误差,只有计算误差(舍入误差). 迭代法是类似于上一章单个方程那样,以某种方式构造一 个向量序列,使得这个向量序列收敛到解向量.因此迭代 法既有截断误差又有舍入误差.
0.01000 0.01200 0 0.100 103 0 0 .
8.010 44.41 1175 105 6517 105 x3 5.546; x2 100.0; x1 104.0 0.1670 0.6781
第三章 解线性方程组的直接法
第三章 解线性方程组的直接法3.1 引言许多科学技术问题要归结为解含有多个未知量x 1, x 2, …, x n 的线性方程组。
例如,用最小二乘法求实验数据的曲线拟合问题,三次样条函数问题,解非线性方程组的问题,用差分法或有限元法解常微分方程、偏微分方程的边值等,最后都归结为求解线性代数方程组。
关于线性方程组的数值解法一般有两类:直接法和迭代法。
1. 直接法直接法就是经过有限步算术运算,可求得线性方程组精确解的方法(假设计算过程中没有舍 入误差)。
但实际计算中由于舍入误差的存在和影响,这种方法也只能求得线性方程组的近似解。
本章将阐述这类算法中最基本的高斯消去法及其某些变形。
2. 迭代法迭代法就是用某种极限过程去逐步逼近线性方程组精确解的方法,迭代法需要的计算机存储 单元少、程序设计简单、原始系数矩阵在计算过程中不变,这些都是迭代法的优点;但是存在收敛性和收敛速度的问题。
迭代法适用于解大型的稀疏矩阵方程组。
为了讨论线性方程组的数值解法,需要复习一些基本的矩阵代数知识。
3.1.1 向量和矩阵 用nm ⨯R表示全部n m ⨯实矩阵的向量空间,nm C⨯表示全部n m ⨯复矩阵的向量空间。
()⎪⎪⎪⎪⎪⎭⎫⎝⎛==⇔∈⨯nn n n n n ij nm a a aa a aa a a a212222111211A R A 此实数排成的矩形表,称为m 行n 列矩阵。
⎪⎪⎪⎪⎪⎭⎫⎝⎛=⇔∈n n x x x 21x R x x 称为n 维列向量矩阵A 也可以写成)(n 21a ,,a ,a A = 其中 a i 为A 的第i 列。
同理⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=T T T n 21b b b A其中T i b 为A 的第i 行。
矩阵的基本运算:(1) 矩阵加法 )( ,n m n m R C ,R B ,R A B A C ⨯⨯⨯∈∈∈+=+=n m ij ij ij b a c . (2) 矩阵与标量的乘法 ij j a ci αα== ,A C (3) 矩阵与矩阵乘法 p nk kjik b acij ⨯⨯⨯=∈∈∈==∑m p n n m R C ,R B ,R A AB C ( ,1(4) 转置矩阵 ji ij T nm a c ==∈⨯ , ,A C RA(5) 单位矩阵 ()n n ⨯∈=R e ,,e ,e I n 21 ,其中 ()Tk e 0,0,1,0,0 = k=1,2,…,n(6) 非奇异矩阵 设nn ⨯∈RA ,nn ⨯∈RB 。
第3章 线性方程组求解的直接解法
线性方程组求解的直接法5.2线性方程组直接解法概述直接解法就是利用一系列公式进行有限步计算,直接得到方程组的精确解的方法.当然,实际计算结果仍有误差,譬如舍入误差,而且舍入误差的积累有时甚至会严重影响解的精度.这是一个众所周知的古老方法,但用在计算机上仍然十分有效.求解线性方程组最基本的一种直接法是消去法.消去法的基本思想是,通过将一个方程乘以或除以某个常数,以及将两个方程相加减这两种手段,逐步减少方程中的变元的数目,最终使每个方程仅含一个变元,从而得出所求的解.高斯(Gauss )消去法是其中广泛应用的方法,其求解过程分为消元过程和回代过程两个环节.消元过程将所给的方程组加工成上三角方程组,所归结的方程组再通过回代过程得出它的解.Gauss 消去法由于添加了回代的过程,算法结构稍复杂,但这种改进的算法明显减少了计算量.直接法比较适用于中小型方程组.对高阶方程组,即使系数矩阵是稀疏的,但在运算中很难保持稀疏性,因而有存储量大,程序复杂等不足.5.3直接解法5.3.1Gauss 消去法Gauss 消去法是一个古老的求解线性方程组的方法,由它改进而来的选主元法是目前计算机上常用的有效的求解低阶稠密矩阵线性方程组的方法.例5.1用Gauss 消去法解方程组1231231232221(5.3.1)1324 (5.3.2)2539(5.3.3)2x x x x x x x x x ⎧++=⎪⎪++=⎨⎪++=⎪⎩解〖JP4〗第1步,式35.3.12⨯-()()加到式(5.3.2)上,式()15.3.1()2⨯-加到式(5.3.3)上,得到等价方程组123232322211(5.4.4)282(5.4.5)x x x x x x x ⎧++=⎪⎪-+=-⎨⎪⎪+=⎩第2步,式()2⨯5.3.4加到式(5.3.5)上得等价的方程组12323322211100(5.3.6)x x x x x x ++=⎧⎪-+=-⎨⎪=⎩第3步,回代法求解方程组(5.3.6),即可求得该方程组的解为32110,1,.2x x x ===-.用矩阵描述其约化过程即为233(2)22221011100100r r r ⨯+⇒⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦→[]122133(1)3()21()222212221,3241/201111395/20282r r r r r r A b ⨯-+⇒⨯-+⇒⎡⎤⎡⎤⎢⎥⎢⎥=--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦→.这种求解过程称为具有回代的Gauss 消去法.由此例可见,Gauss 消去法的基本思想是:用矩阵的初等行变换将系数矩阵A 化为具有简单形式的矩阵(如上三角阵、单位矩阵等),而三角形方程组是很容易回代求解的.一般地,设有n 个未知数的线性方程组为11112211211222221122n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪++=⎩L L MM M L (5.3.7)1212)(,,)(,,)T T ij n n n n A a X x x x b b b b ⨯===L L (,,,则方程组(5.3.7)化为AX b =.方便起见,记()(1)det 0A AA ==≠,(1)b b =,且()1A的元素记为()()11,ij a b ,的元素记为()1i b ,则消去法的步骤如下:第1步:1110a≠(),,计算(1)11(1)11(2,3,4),i i a m i n a ==L 用()1i m -乘方程组(5.3.7)中的第1个方程加到第i个方程中()2,3,i n =L ,即进行行初等变换()112,3,i i i R m R R i n -⋅→=L ,消去第2个到第n个方程中的未知数1,x ,得等价方程组111121(2)(2)(2)22222(2)(2)(2)2inn n n nn n x a a b x a a b ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦LMM LM M L (5.3.8)记为(2)(2)A X b =,其中(2)(1)(1)(2)(1)(1)1111(,2,3),2,3,ij ij i j i i i a a m a i j n b b m b i n =-==-=L L ,,第k 步()1,2,1k n =-L:继续上述消元过程.第1步到第1k -步计算已完成,且得到与原方程组等价的方程组(1)(1)(1)(1)1112111(2)(2)(2)222223()()()()()()nn k k k kkkn k n k k k nk nn n a a a b x a a b xx aa b x a a b ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦L L LLOM L M MMM L(5.3.9)记为()(()K k A X b =,进行第k 步消元:设()0k kka≠,计算乘数()()(1,)k ikk ik kka m k k n a ==+L ,用ik m -乘方程组(5.3.9)中第k 个方程加到第i 1)i k n =+L (,,,个方程上消去方程组(5.3.9)中第i 1)i k n =+L (,,个方程的未知数k x ,得到与原方程组等价的方程组:(1)()()(1)()()(1)(1)()(,1,)( 1.)k k k ij ij ik kj k k k i i ik k k k k k a a m a i j k n b b m b i k n A A k b b k ++++⎧=-=+⎪=-=+⎨⎪⎩L L ()与前行元素相同,与前个元素相同 (5.3.10) 记为(1)(1)k k A X b ++=其中(1)(1,k k A b ++)中元素计算公式为(1)()()(1)()()(1)(1)()(,1,)( 1.)k k k ij ij ik kj k k k i i ik k k k k k a a m a i j k n b b m b i k n A A k b b k ++++⎧=-=+⎪=-=+⎨⎪⎩L L ()与前行元素相同,与前个元素相同 (5.3.11)重复上述过程,且设()0(1,2,1)k kk a k n ≠=-L ,共完成1n -步消元计算,得到与方程组(5.3.7)等价的三角形方程组1111211(2)(2)(2)22222()()n n n n n nn n x a a b x a b ⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦LMOM M (5.3.12)再用回代法求方程组(5.3.12)的解,计算公式为()()()()1()(),(1,2,1)n n n nn n i i i ij j j i i i ii b x a b a x x i n n a =+⎧=⎪⎪⎨-⎪==--⎪⎩∑L (5.3.13)元素()k kka 称为约化的主元素.将方程组(5.3.7)化为方程组(5.3.12)的过程称为消元过程.方程组(5.3.12)的求解过程(5.3.13)称为回代过程.由消元过程和回代过程求解线性方程组的方法称为Gauss 消去法.定理5.1(Gauss 消去法)设AX b =。
第6章 线性方程组直接法
(1) 1
(2) (2) (2) (2) a22 x2 a23 x3 ...... a2n xn b2
a x ...... a x b
(3) 33 3 (3) 3n n
(3) 3
……
a x b
( n) nn n
§2 主元素消去法
前述顺序消去法是按序通过用a11,a(2)22,…,a(n-1)n-1 (a(k)kk≠0)作为除数来达到消元目的的。在实际计算时,
由方程组的最后一个方程直接可得
xn bn / ann
将其代入倒数第二个方程可求得
xn1 (bn1 an1n xn ) / an1n1
4
第6章
解线性方程组的直接法
如此再解出xn-2,…,x2,x1,一般有
xi (bi
《 计 算 方 法 》
k i 1
n
aik xk ) / aii , i n, n 1, ,1
第6章
解线性方程组的直接法
第6章 解线性代数方程组的直接法
§1 高斯消去法
《 计 算 方 法 》
§2 主元素消去法 §3 LU分解 §4 对称正定矩阵的平方根法和LDLT分解 §5 误差分析
1
第6章
解线性方程组的直接法
《 计 算 方 法 》
n阶线性代数方程组 a11x1 + a12x2 + .….. + a1nxn = b1 a21x1 + a22x2 + .….. + a2nxn = b2 …… an1x1 + an2x2 + .….. + annxn = bn
数值分析第五章解线性方程组的直接法
数值分析第五章解线性方程组的直接法解线性方程组是数值分析中的一个重要问题,对于大规模的线性方程组来说,直接法是一种常用的求解方法。
本文将介绍解线性方程组的直接法,包括高斯消元法和LU分解法,并对其稳定性和计算复杂度进行讨论。
高斯消元法是一种常用的直接法,用于求解非奇异线性方程组。
其基本思想是通过初等行变换将线性方程组转化为上三角方程组,然后通过回代求解得到方程的解。
高斯消元法的步骤如下:1.将线性方程组表示为增广矩阵[A,b],其中A是系数矩阵,b是常数向量。
2.从第一行开始,选择一个非零元素作为主元,通过行变换将主元下方的元素全部消为零。
3.重复第2步,直到矩阵变为上三角矩阵。
4.通过回代求解上三角矩阵,得到方程组的解。
高斯消元法的主要优点是简单直接,容易实现,但存在一些问题。
首先,如果系数矩阵A是奇异矩阵,即行列式为零,那么高斯消元法无法得到方程组的解。
其次,如果系数矩阵A的其中一行或几行接近于线性相关,那么在消元过程中会引入大量的舍入误差,导致计算结果不准确。
这也说明了高斯消元法的稳定性较差。
为了提高稳定性,可以使用LU分解法来解线性方程组。
LU分解法将系数矩阵A分解为两个矩阵L和U的乘积,其中L是下三角矩阵,U是上三角矩阵。
这样,原始的线性方程组可以表示为LUx=b,进而可以通过两个步骤来求解方程组:1.进行LU分解,将系数矩阵A分解为L和U。
2.分别用前代和回代的方法求解方程组Ly=b和Ux=y。
LU分解法相对于高斯消元法的优点是,可以在求解多个右端向量时,避免重复计算LU分解,从而提高计算效率。
同时,LU分解法的稳定性也较高,对于多个右端向量求解时,舍入误差的累积相对较小。
然而,LU分解法也存在一些问题。
首先,LU分解法的计算复杂度较高,需要进行两次矩阵乘法和一次矩阵向量乘法,而且LU分解过程中需要对系数矩阵A进行大量的行变换,增加了计算量。
其次,当系数矩阵A的一些元素非常小或非常大时,LU分解法容易出现数值不稳定的情况,即舍入误差的累积较大,导致计算结果不准确。
解线性方程组的直接方法
解线性方程组的直接方法一、高斯消元法高斯消元法是解线性方程组的一种常用且直接的方法。
它的基本思想是通过一系列的代数运算,将方程组化为一个三角方程组,然后从最后一行开始,逐步回代求解未知数。
下面以一个二元一次方程组为例,说明高斯消元法的具体步骤:例如,给定方程组:a₁₁x₁+a₁₂x₂=b₁a₂₁x₁+a₂₂x₂=b₂其中,a₁₁,a₁₂,a₂₁,a₂₂,b₁,b₂为已知系数。
1.检查a₁₁的值是否为0,若为0则交换第一行与非零行。
2.将第一行的每个元素除以a₁₁,使a₁₁成为13.将第一行乘以(-a₂₁)并加到第二行上,使第二行的第一个元素变为0。
4.引入一个新的未知数y₂=a₂₁x₁+a₂₂x₂,并代入第二行,化简方程组。
5.使用回代法求解方程组。
高斯消元法的优势在于其直接的解题思路和较高的计算精度,但是其缺点是计算复杂度较高,对于大规模的方程组不太适用。
二、逆矩阵法逆矩阵法是解线性方程组的另一种直接方法,它通过求解方程组的系数矩阵的逆矩阵,并将其与方程组的常数向量相乘,得到方程组的解向量。
下面以一个三元一次方程组为例,说明逆矩阵法的具体步骤:例如,给定方程组:a₁₁x₁+a₁₂x₂+a₁₃x₃=b₁a₂₁x₁+a₂₂x₂+a₂₃x₃=b₂a₃₁x₁+a₃₂x₂+a₃₃x₃=b₃其中,a₁₁,a₁₂,a₁₃,a₂₁,a₂₂,a₂₃,a₃₁,a₃₂,a₃₃,b₁,b₂,b₃为已知系数。
1.计算系数矩阵A的行列式D=,A。
2. 求解系数矩阵A的伴随矩阵Adj(A)。
3. 计算逆矩阵A⁻¹=Adj(A)/D。
4.将常数向量b用列向量表示。
5.计算解向量x=A⁻¹b。
逆矩阵法的优势在于其求解过程相对简单,计算量较小,并且不需要对系数矩阵进行消元操作。
但是逆矩阵法的限制在于当系数矩阵不可逆时无法使用。
三、克莱姆法则克莱姆法则是解线性方程组的另一种直接方法,它通过定义克莱姆行列式和克莱姆向量,利用行列式的性质求解方程组的解向量。
线性方程组直接法
练习 利用LU分解法求解方程组
1 2 3 x1 2 1 3 5 x2 4. 1 3 6 x3 5
1001 2 3 2 1 答L: U 110 01 2 , y 2 ,x 0 .
111 001 1 1
二、解三对角方程组的追赶法
在数值求解常微分方程边值问题、热传导方程和建立
二、向量和矩阵的范数
定义1 ( 向量范数) x 和 y 是 Rn 中的任意向量 , 向量范数‖•‖是定义
在 Rn上的实值函数, 它满足:
(1) ‖ x ‖≥0, 并且当且仅当 x=0 时, ‖ x ‖=0;
(2) ‖k x ‖=|k| ‖ x ‖, k 是一个实数;
(3) ‖ x + y ‖≤ ‖ x ‖+ ‖ y ‖
1 0 01 2 3
A 2 3
1 5
0 0 1 0
1 0
4
24
LU
3=-72/-24; 2=[-10+4*3]/1;
求解
1=[14-(2*2+3*3)]/1]
Ly (14, 18, 20)T , 得y (14, 10,72)T 同理当 ukk 0或 Ux (14, 10, 72)T , 得x (1, 2, 3)T 很小时,可用
子式 Di 0(i 1,2,,k),即
a11 Di
ai1
a1i
aii
0aa1i((i1i1))
0 Di
Di1 0
由于高斯消去法过在程消中元可能ak(出 kk) 现 0的情况, 这时消去法将无;法即进使行主a元 k(kk) 素0但很小时, 用其作除数,会他导元致素其数量级的长严和重舍增
入误差的扩散,使最得后计也算的解不可靠。
第5章 解线性方程组的直接方法
第5章
解线性方程组的直接方法
定理3 若A∈Rnⅹn 为对称矩阵.如果det(Ak) >0(k=1,2,…,n),
或A得特征值λi>0(i=1,2, …,n ).则A为对称正定矩阵。
《 数 值 分 析 》
有重特征值的矩阵不一定相似于对角矩阵,那么一般n阶 矩阵A在相似变换下能简化到什么形状?
定理4(若尔当(Jordan)标准型) 设A为n阶矩阵,则 存在一个非奇异矩阵P使得
a1(1) x1 b1(1) n ( 2) ( 2) a2 n x2 b2 ( k ) . (2.8) (k ) akn xk bk (k ) (k ) ann xn bn
(2.12 )
(2.7)
简记为
A(2)X=b(2) ,
( ( ( aij2) aij1) mi1 a11) , j
其中A(2),b(2)的元素计算公式为
(i, j 2,3,, n),
bi( 2) bi(1) mi1 b1(1) , (i 2,3,, n).
第k步:若
(k akk ) 0,
a11 ... ... Ak ak1 ... ... , akk
《 数 值 分 析 》
a
1k
k 1,2, n.
(3)A的特征值λi>0(i=1,2, …,n ). (4)A的顺序主子式都大于零,即det(Ak) >0(k=1,2,…,n)
(1))=(a
), b(1)=b. ij
第5章 解线性方程组的直接方法 (1)消元过程 1 (1 第1步:设 a (1) 0,首先计算乘数 mi1 ai(1 ) / a11) , i 2,3n, 11 用-mi1乘(2.1)的第1个方程组,加到第i个中,消去方程组(2.1)的从 第2个方程到第n个方程中的未知数X1,得到与方程组(2.1)等价的线性方 程组 《 数 值 分 析 》
数值分析第五章线性方程组直接解法
x3 1 x2 8 7x3 1
x1 2 2x2 2x3 2
3
Gauss 消去法
考虑 n 阶线性方程组:
a11x1 a12x2 ... a1nxn b1
a21
x1
a22 x2
...
a2n xn
b2
an1x1 an2x2 ... annxn bn矩阵形式Biblioteka Ax b109 1
1
0 109 109
列主元Gauss消去法:
109 1 1
1
1 2
1 1 2 109 1 1
x2 1, x1 0
x1 x2
1 1
数值分析
第五章 解线性方程组的直接方法
—— 矩阵三角分解法
18
LU 分解
1、LU分解 将 Gauss 消去过程中第 k-1 步消元后的系数 矩阵记为:
10
LU 分解存在唯一性
LU 分解存在
高斯消去法不被中断
所有顺序主子式不为零
a(k) kk
0
定理:若 A 的所有顺序主子式不为零,则 A 存在 唯一的 LU分解
11
列主元 Gauss 消去法
Gauss 消去法有效的条件是: 主元全不为零
例:解线性方程组
0 1
1 0
x1 x2
1 1
列主元 Gauss 消去法
( k = 1, …, n-1)
a(k) nk
a(k) nn
A L A 则 A(k) 与 A(k+1) 之间的关系式可以表示为: (k1)
(k) k
其中: 1
Lk
1 mk1,k 1
mik
a(k) ik
a(k) kk
( i = k + 1, …, n )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常使用的向量范数有三种,设 x=(x1,x2,…,xn)T
x
max
1i n
xi
n
x 1
xi
i 1
n
1
x ( 2
xi2 ) 2
i 1
向量的 - 范数 向量的1- 范数
向量的2 - 范数
工科研究生公共课程数学系列
定义2(矩阵的范数) 如果矩阵A R nn 的某个非负的
实值函数N ( A) A ,满足条件
(1) A 0( A 0 A 0)(正定条件) (2) cA c A c为实数(其次条件) (3) A B A B (三角不等式) (4) AB A B 则称N ( A)是R nn的一个矩阵范数(或模)
4 3
A 2
1
A 6, 1
A 7
常用的 矩阵范
数
n
A
max
1in
j 1
其中
a1(11)
0
0
a1(12) a2(22)
an(22)
a1(1n) a2(2n)
an(2n)
x1
x2
xn
bbb12n(((122)))
.
ai(j2) ai(j1) mi1 a1(1j), (i, j 2,3, , n)
bi(2) bi(1) mi1 b1(1) , (i 2,3, , n)
1 1 1 6
0 4 1
5
0 4 1 11
1 1 1 6
0 4 1
5
0 0 2 6
解得 x* (1,2,3)T
(消去第二列) (回代、求解)
工科研究生公共课程数学系列
(1)消元过程
第一步:若 a1(11) 0, 用 mi1 ai(11) / a1(11) 乘第一行 加到第i行中,得到
5.1 预备知识
线性方方程组
a11x1 a12 x2 a1n xn b1
a21x1
a22 x2
a2n xn
b2
am1x1 am2 x2 amn xn bm
矩阵形式
a11
a21
am1
简记为
a12 a22
am2
a1n x1 b1
a2n
x2
b2
(2)回代过程
若 an(nn) 0, 则
xn bn(n) an(nn)
xk
bk(k
)
j
n
k
ak(kj 1
)x
j
高斯消去法解n阶 线性方程组约含
n3/3次乘除运算,
与克莱姆法则相比 计算量相当小。
ak(kk) , (k n 1, ,1)
工科研究生公共课程数学系列
说明:1)ak(kk) 0, k 1,2, , n, 可以通过高斯消去法求解. 2)系数矩阵非奇异,总可以通过带行交换的高 斯消去法进行求解。
3 ) 约化的主元素ai(ii) 0(i 1,2, , k ) A的顺序主 子式Di 0(i 1,2, , k),即
a11 Di
ai1
a1i aii
0
aa1i((i11i ))
0 Di
工科研究生公共课程数学系列
一、常见矩阵
1) 对角矩阵—除主对角线上元素以外,其余元素都为0 的方阵 ,diag(ai)
2) 上(下)三角矩阵—主对角线一侧元素全为0的方阵 3) 三对角矩阵——除三条平行于(含)主对角线上元素
以外,其余元素都为0的方阵 4) 对称矩阵—关于主对角线对称元素相等的方阵 5) 对称正定矩阵—特征值全为正的对称阵 6) 非奇异矩阵—可逆阵⇔det(A)不为0 7) 正交矩阵—ATA=E 8) 埃尔米特矩阵—A=AH(A的共轭转置)
思想:对线性方程组 AX=b的增广矩阵通过 行变换成对应等价的 上三角矩阵的同解方
x1 x2 x3 6 例5 -1:解方程组4x2 x3 5
2x1 2x2 x3 1
1 1 1 6 ( A b) 0 4 1 5
2 2 1 1
(消去第一列)
程组。
上述方法也叫顺序高斯消 去法,即按照方程及未知 数给定排列顺序依次消元 计算。
bi(k 1) bi(k) mik bk(k) , (i k 1, , n)
工科研究生公共课程数学系列
第n-1步: … …
a1(11)
0
0
a1(12) a2(22)
0
a1(1n) a2(2n)
an(nn)
Байду номын сангаас
x1
x2
xn
bb12((12)) bn(n)
.
aij
n
A
1
max 1in
i1
aij
A 15 5 5 5.12 2
矩阵的行范数
定义 设A的特征值为i , 称
矩阵的列范数(A)
max
1in
i
为谱半径。
A 2
max ( AT A)
矩阵的2-范数
其中max ( AT A)表示AT A的最大特征值。
工科研究生公共课程数学系列
5.2 高斯消去法
工科研究生公共课程数学系列
二、向量和矩阵的范数
定义1 ( 向量范数) x 和 y 是 Rn 中的任意向量 , 向量范数‖•‖是定义
在 Rn上的实值函数, 它满足:
(1) ‖ x ‖≥0, 并且当且仅当 x=0 时, ‖ x ‖=0;
(2) ‖k x ‖=|k| ‖ x ‖, k 是一个实数;
(3) ‖ x + y ‖≤ ‖ x ‖+ ‖ y ‖
amn
xn
bm
Ax b
工科研究生公共课程数学系列
解线性方程组是科学研究和工程计算中最常遇到 的问题,实际中的很多问题都是将其最终化为线性方 程组来求解,如偏微分方程的近似解法。因此讨论线 性方程组的解法在数值计算中占有重要的作用。
•线性方程组的两类解法: • 1、直接法——在没有舍入误差下经过有限次 四则运算而得到精确解的方法 • 2、迭代法——通过逐次逼近来得到近似解 • 在实际中要针对不同的线性方程组选择适合 的方法来求解
an(kk11)
a1(1n)
ak(kn) ak(k11n)
an(kn1)
x1
xk
xk
1
xn
b1(1)
bbk(kk(k1)1) bn(k 1)
.
其中
ai(jk1) ai(jk) mik ak(kj ), (i, j k 1, , n)
第二步:若 a2(22) 0, 用… …. ……
工科研究生公共课程数学系列
第k步:若 ak(kk) 0, 用 mik ai(kk) / ak(kk) 乘第k行 加到第i行中,得到
a1(11)
a1(1k)
ak(kk ) 0
0
a1(1k)1
ak(kk
) 1
ak(k11k)1