高一数学-向量方法证明三角形中的射影定理[5.9.2正弦定理、余弦定理(二)第2课时] 精品

高一数学-向量方法证明三角形中的射影定理[5.9.2正弦定理、余弦定理(二)第2课时] 精品

向量方法证明三角形中的射影定理[5.9.2正弦定理、余弦定理(二) 第2课时]

在△ABC中,设三内角A、B、C的对边分别是a、b、c.

∵+=,

∴·(+)=·,

∴·+·=·,

∴|AC|2+|AC||CB|cos(180°-C)=|AB||AC|cos A

∴|AC|-|CB|cos C=|AB|cos A

∴b-a cos C=c cos A

即b=c cos A+a cos C ①类似地有c=a cos B+b cos A,②a=b cos C+c cos B. ③上述三式称为三角形中的射影定理.

正弦定理证明

一、正弦定理的几种证明方法
1.利用三角形的高证明正弦定理
(1)当 ? ABC 是锐角三角形时,设边 AB 上的高是 CD,根据锐角三角函数的定义,
有CD ?asinB ,CD ? b sin A 。
C
由此,得
a sin A
b ? sinB
同理可得 ,
c sinC
?
b sin B

b
a
A
B
故有
a
b
sinA ? sinB
c ? sinC .从而这个结论在锐角三角形中成立.
D
(2)当 ? ABC 是钝角三角形时,过点 C 作 AB 边上的高,交 AB 的延长线于点 D, 根据锐角三角函数的定义,有CD ?asin?CBD ?asin?ABC ,CD ? b sin A 。由此,

a sin A
b ? sin?ABC
同理可得 ,
c sinC
b ? sin?ABC
C
故有
a
b
sinA ? sin?ABC
c ? sinC .
b
a
A
由(1)(2)可知,在
?
ABC
中,
a sin
A
?
b sin
B
c ? sinC
成立.
BD
从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即
a
b
c
sinA ? sinB ? sinC .
2.利用三角形面积证明正弦定理
已知△ ABC,设 BC=a, CA=b,AB=c,作 AD⊥BC,垂足为 D. 则 Rt△ ADB
中, sin B ? AD , ∴AD=AB·sinB=csinB.
A
AB
∴S△ ABC= 1 a ? AD ? 1 acsin B . 同理,可证 S△ ABC= 1 absin C ? 1 bcsin A.
2
2
2
2
∴ S△ ABC= 1 absin C ? 1 bcsin A ? 1 acsin B . ∴absinc=bcsinA=acsinB, C
2
2
2
D
B
在等式两端同除以 ABC,可得 sin C ? sin A ? sin B . 即 a ? b ? c .
c
a
b
sin A sin B sin C
3.向量法证明正弦定理
(1)△ ABC 为锐角三角形,过点 A 作单位向量 j 垂直于 AC ,则 j 与 AB 的夹角为
90°-A,j 与 CB 的夹角为 90°-C. 由向量的加法原则可得 AC ? CB ? AB ,
为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量
第1页共5页

正弦定理证明

正弦定理的证明解读 克拉玛依市高级中学 曾艳 一、正弦定理的几种证明方法 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B =,同理可得 sin sin c b C B =, 故有 sin sin a b A B =sin c C =.从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 =∠sin sin a b A ABC , 同理可得 =∠sin sin c b C ABC 故有 =∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中,sin sin a b A B =sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即sin sin a b A B =sin c C =. 1’用知识的最近生长点来证明: 实际应用问题中,我们常遇到问题: 已知点A ,点B 之间的距|AB|,可测量角A 与角B , 需要定位点C ,即: 在如图△ABC 中,已知角A ,角B ,|AB |=c , 求边AC 的长b 解:过C 作CD ⊥AB 交AB 于D ,则 cos AD c A = sin sin cos sin tan sin cos BD c A c A C DC C C C C === sin cos (sin cos sin cos )sin cos sin sin sin c A C c C A A C c B b AC AD DC c A C C C +==+=+ == a b D A B C A B C D b a

正弦定理的四种证明方法

正弦定理的四种证明方法 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义, 有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 1’用知识的最近生长点来证明: 实际应用问题中,我们常遇到问题: 已知点A ,点B 之间的距|AB|,可测量角A 与角B , 需要定位点C ,即: 在如图△ABC 中,已知角A ,角B ,|AB |=c , 求边AC 的长b 解:过C 作CD ⊥AB 交AB 于D ,则 cos AD c A = sin sin cos sin tan sin cos BD c A c A C DC C C C C = == sin cos (sin cos sin cos )sin cos sin sin sin c A C c C A A C c B b AC AD DC c A C C C +==+=+ == a b D A B C A B C D b a

用向量法证明欧拉线问题

b sin A=a sin B, (b co s A)2+(b sin A)2=(c-a co s B)2+ (a sin B)2, ∴a co s B+b co s A=c(射影定理), a sin A = b sin B (正弦定理), b2=c2+a2-2ca co s B(余弦定理). 用向量法证明欧拉线问题 刘步松 (江苏省运河师范学校 221300) 设三角形A B C外心为O,重心为W,垂心为H,则O,W,H三点共线,且 OH = 3 OW ,这便是著名的欧拉线问题.但平面几何证法较麻烦,笔者用向量坐标法去证,感觉过程较为简洁. 证 以外心O为原点,过O平行于B C 的直线为x轴,B C的中垂线为y轴,建立直角坐标系.设A D是B C上的高,并设各点坐 图1 标如下:A(a,b),B (-c,d),C(c,d), H(a,y),则B H= (a+c,y-d),A C =(c-a,d-b),因 为B H⊥A C,有B H ?A C=0,即(a+ c)(c-a)+(y-d)(d-b)=0,解之得y= -a2+c2+bd-d2 -d+b .因为O是外心,所以 OA = OB = O C ,即a2+b2=(-c)2+ d2=c2+d2,从而a2-c2=d2-b2,代入y的表达式,求得y=b+2d,即H的坐标是(a,b+ 2d).从H及A,B,C的坐标可以发现,O H = OA+OB+O C.又由重心定理OW= 1 3 (OA+OB+O C),从而有H,W,O共线,并 有 O H =3 OW .证毕. 构造法解竞赛题初探 胡国生 (江苏省洪泽县中学 223100) 大多数竞赛试题设计新颖,构思巧妙,综 合性强,注重对学生的思维能力的考查,因此 难度较大,不少学生无从下手.本文在用构造 法解竞赛题方面做一些粗浅探讨,希望对数 学爱好者有所启迪. 1 构造特殊图形 例1 正数a,b,c,A,B,C满足a+A=b +B=c+C=k,求证:aB+bC+c A

数学正弦定理证明如何证明

数学正弦定理证明如何证明 正弦定理该怎么证明呢?关于它们的证明方法之怎样的呢?下面 就是给大家的正弦定理证明方法内容,希望大家喜欢。 用三角形外接圆 证明:任意三角形ABC,作ABC的外接圆O. 作直径BD交⊙O于D.连接DA. 因为直径所对的圆周角是直角,所以∠DAB=90度 因为同弧所对的圆周角相等,所以∠D等于∠C.所以 c/sinC=c/sinD=BD=2R 类似可证其余两个等式。 ∴a/sinA=b/sinB=c/sinC=2R 用直角三角形 证明:在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H CH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到a/sinA=b/sinB 同理,在△ABC中,b/sinB=c/sinC∴a/sinA=b/sinB=c/sinC 在直角三角形中,在钝角三角形中(略)。 用三角形面积公式 证明:在△ABC中,设BC=a,AC=b,AB=c。作CD⊥AB垂足为点D,作BE⊥AC垂足为点E,则CD=a·sinB,BE=csinA,由三角形面积公式得:AB·CD=AC·BE

即c·a·sinB=b·csinA∴a/sinA=b/sinB同理可得 b/sinB=c/sinC ∴a/sinA=b/sinB=c/sinC 用余弦定理:a^2+b^2-2abCOSc=c^2 COSc=(a^2+b^2-c^2)/2ab SINc^2=1-COSc^2 SINc^2/c^2=4a^2*b^2-(a^2+b^2-c^2)^2/4a^2*b^2*c^2 =[2(a^2*b^2+b^2*c^2+c^2*a^2)-a^2-b^2-c^2]/4a^2*b^2*c^2 同理可推倒得SINa^2/a^2=SINb^2/b^2=SINc^2/c^2 得证 正弦定理:三角形ABC中BC/sinA=AC/sinB=AB/sinC 证明如下:在三角形的外接圆里证明会比较方便 例如,用BC边和经过B的直径BD,构成的直角三角形DBC可 以得到: 2RsinD=BC(R为三角形外接圆半径) 角A=角D 得到:2RsinA=BC 同理:2RsinB=AC,2RsinC=AB 这样就得到正弦定理了 猜你感兴趣: 1.高中数学定理证明 2.承兑延期证明

正弦定理证明上课讲义

正弦定理证明

正弦定理的证明解读 克拉玛依市高级中学 曾艳 一、正弦定理的几种证明方法 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定 义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B =,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC , 同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 1’用知识的最近生长点来证明: 实际应用问题中,我们常遇到问题: 已知点A ,点B 之间的距|AB|,可测量角A 与角B , 需要定位点C ,即: a b D A B C A B C D b a

在如图△ABC 中,已知角A ,角B ,|AB |=c , 求边AC 的长b 解:过C 作CD ⊥AB 交AB 于D ,则 cos AD c A = sin sin cos sin tan sin cos BD c A c A C DC C C C C = == sin cos (sin cos sin cos )sin cos sin sin sin c A C c C A A C c B b AC AD DC c A C C C +==+=+ == 推论: sin sin b c B C = 同理可证: sin sin sin a b c A B C == 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD ⊥BC,垂足为 D.则Rt △ADB 中,AB AD B =sin ,∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=?.同理,可证 S △ABC =A bc C ab sin 21 sin 21=. ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21==.∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即C c B b A a sin sin sin = =. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与CB 的夹角为90°-C .由向量的加法原则可得AB CB AC =+, 为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量 j 的数量积运算,得到AB j CB AC j ?=+?)( 由分配律可得AB j CB j AC ?=?+. B ∴|j | AC Co s90°+|j |CB Co s(90°-C )=|j |AB Co s(90°-A ). j D C B A C

(经典)高中数学正弦定理的五种最全证明方法

(经典)高中数学正弦定理的五种最全证明方法

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为 D.则Rt△ADB 中,AB AD B =sin ,∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=?.同理,可证 S △ABC =A bc C ab sin 21 sin 21=. ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21==.∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==.即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C .由向量的加法原则可得 AB CB AC =+, a b D A B C B C D b a D C B A

(经典)高中数学正弦定理的五种全证明方法

(经典)高中数学正弦定理的五种全证明方法

————————————————————————————————作者:————————————————————————————————日期:

高中数学正弦定理的五种证明方法 ——王彦文 青铜峡一中 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD⊥BC,垂足为D 则Rt△ADB 中,AB AD B =sin ∴S △ABC =B ac AD a sin 2121=?同理,可证 S △ABC =A bc C ab sin 21 sin 21= ∴ S △ABC =B ac A bc C ab sin 2 1 sin 21sin 21== 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与 CB 的夹角为90°-C 由向量的加法原则可得 AB CB AC =+ a b D A B C A B C D b a D C B A

正弦定理的几种证明方法

正弦定理的几种证明方法 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定 义,有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC , 同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即sin sin a b A B =sin c C = . 1’用知识的最近生长点来证明: | 实际应用问题中,我们常遇到问题: 已知点A ,点B 之间的距|AB|,可测量角A 与角B , 需要定位点C ,即: 在如图△ABC 中,已知角A ,角B ,|AB |=c , 求边AC 的长b 解:过C 作CD?AB 交AB 于D ,则 cos AD c A = sin sin cos sin tan sin cos BD c A c A C DC C C C C = == sin cos (sin cos sin cos )sin cos sin sin sin c A C c C A A C c B b AC AD DC c A C C C +==+=+ == ` a b D A ( C A B ~ D b a

用向量法证明正弦定理教学设计

用向量法证明正弦定理教学设计 一、 教学目标 1、知识与技能:掌握正弦定理的内容及其证明方法;会运用正弦定理解决一些简单的三角形度量问题。 2、过程与方法:让学生通过向量方法证明正弦定理,了解知识之间的联系,让学生在应用定理解决问题的过程中更深入地理解定理及其作用。 3、情感、态度与价值观:通过正弦定理的发现与证明过程体验数学的探索性与创造性,让学生体验成功的喜悦。 二、教学重难点分析 重点:正弦定理的向量证明过程并运用正弦定理解决一些简单的三角形度量问 题。 难点:正弦定理的发现并证明过程以及已知两边以及其中一边的对角解三角形 时解的个数的判断。 三、教学过程 1.借助Rt △ABC ,中找出边角关系。 在Rt ?ABC 中,设BC=a, AC=b, AB=c, 根据锐角三角函数中正弦函数的定义, 有sin A= ,sinB= ,sinC= , 则在这三个式子中,能得到c= = = 从而在直角三角 形ABC 中,sin sin sin a b c A B C == 2.那么在任意三角形中这个结论是否成立?通过向量进行证明。 过点A 作单位向量j AC ⊥ , 由向量的加法可得 AB AC CB =+ 则 ()j AB j AC CB ?=?+ ∴j AB j AC j CB ?=?+? ()()00cos 900cos 90-=+- j AB A j CB C ∴sin sin =c A a C ,即sin sin = a c A C 同理,过点C 作⊥ j BC ,可得 s i n s i n =b c B C 从而 s i n s i n a b A B = sin c C = 从上面的研探过程,可得以下定理 3.正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即 sin sin a b A B =sin c C = 4.总结正弦定理适用范围 范围a :已知三角形的两边及其中一边的对角,求另外一边的对角 范围b :已知三角形两角一边求出另外一边 5.定理变形: a:b:c=sinA:sinB:sinC C A B

正弦定理的三种证明

A B C c b a C B A D a b c A B C D a b △ABC 中的三个内角∠A ,∠B ,∠C 的对边,分别用,,a b c 表示. 正弦定理:在三角形中,各边的长和它所对角的正弦的比相等,即 = = sin sin sin a b c A B C 证明:按照三角形的种类,分三种情形证明之. (1) 在R t A B C ?中,如图1-1 sin = a A c ,sin = b B c 因此, = =sin sin a b c A B 有因为sin =1C ,所以 = = sin sin sin a b c A B C (2)在锐角△ABC 中,如图1-2 作C D AB ⊥于点D ,有sin =C D A b ,sin = C D B a , 因此,sin =sin b A a B ,即=sin sin a b A B 同理可证: = sin sin a c A C ,故 = = sin sin sin a b c A B C . (3)在钝角△ABC 中,如图1-3 作C D AB ⊥,交A B 的延长线于点D ,则 sin = C D A b ,sin =sin = C D A B C C B D a ∠ 因此,sin =sin b A a B ,即= sin sin a b A B 同理可证: = sin sin b c B C 故==sin sin sin a b c A B C 综上所述,在任意的三角形中,正弦定理总是成立.

B A C B 证明:如图所示,圆O 是△ABC 的外接圆,半径为R 连接A O 并延长,交圆O 于点D ,连接C D , 易知,=90ACD ∠ ,=B D ∠∠ sin = =2A C b D A D R ,即sin = 2b B R 因此 =2sin b R B 同理,延长,BO CO , 可证= =2sin sin a c R A C 故===2sin sin sin a b c R A B C 证明:过点B 作单位向量j BC ⊥ ,那么就有 j A C j A B j B C =+ cos(90)cos(90)0b C c B ?+=++ sin b C ?-=-sin sin b c B C ? =, 同理有sin sin a b A B =。 故 = = sin sin sin a b c A B C 【小技巧】 根据几何图形确定向量夹角的方法: 如果两个向量所在之间直线相交,或通过平移一个向量而相交,那么 (1) 向量夹角为锐角,很容易判断; (2) 向量夹角为钝角时,可以先判断锐角,再取补角 例如: 确定向量j 与向量AB 的夹角时,由于是钝角, 先确定向量j 与向量BA 的夹角为90B - ,再求补角,即为90B + 确定向量j 与向量A C 的夹角时,先平移j ,同上可得,夹角为90C +

正弦定理与余弦定理的证明

一、正弦定理的几种证明方法 1.利用三角形的高证明正弦定理 (1)当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义, 有=sin CD a B ,sin CD b A =。 由此,得 sin sin a b A B = ,同理可得 sin sin c b C B = , 故有 sin sin a b A B = sin c C = .从而这个结论在锐角三角形中成立. (2)当?ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。由此,得 = ∠sin sin a b A ABC ,同理可得 = ∠sin sin c b C ABC 故有 = ∠sin sin a b A ABC sin c C = . 由(1)(2)可知,在?ABC 中, sin sin a b A B = sin c C = 成立. 从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即 sin sin a b A B = sin c C = . 2.利用三角形面积证明正弦定理 已知△ABC,设BC =a, CA =b,AB =c,作AD ⊥BC,垂足为则Rt △ADB 中,AB AD B =sin ∴ ∴S △ABC =B ac AD a sin 2121=?同理,可证 S △ABC =A bc C ab sin 21 sin 21= ∴ S △ABC =B ac A bc C ab sin 2 1sin 21sin 21==∴ 在等式两端同除以ABC,可得b B a A c C sin sin sin ==即C c B b A a sin sin sin ==. 3.向量法证明正弦定理 (1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于AC ,则j 与AB 的夹角为90°-A ,j 与CB 的夹角为90°-C 由向量的加法原则可得 AB CB AC =+ 为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量 a b D A B C A B C D b a D C B A

向量法证明不等式(完整版)

向量法证明不等式 向量法证明不等式 第一篇: 向量法证明不等式 向量法证明不等式 高中新教材引入平面向量和空间向量,将其延伸到欧氏空间上的n维向量,向量的加、减、数乘运算都没有发生改变.若在欧式空间中规定一种涵盖平面向量和空间向量上的数量积的运算,则高中阶段的向量即为n= 2,3时的情况. 设a,b是欧氏空间的两向量,且a=。 因此,原不等式等价于证明a?b?a?b,其中a?b,向量 a和b不可能同向,不取等号。 二利用a?b?ab证明不等式 2222例2 、已知实数mnx满足m?n?a,x??b (a?b),求mx?n得最大值 ?解析: 构造向量a?0,求证: 4a0矛盾, 故a=0时,4a0, ∴存在m,当-1 第五篇: 不等式的证明.

3.在横线上填写恰当的符号 2x 2若x∈r,且x≠ 1,那么,1?x. 若0<a< 1,那么-a). 1413 若a>0,a≠ 1,那么loga_____loga. 当x≥1时,那么x5+x4+x32+x+ 1. 4.设p=a2b2+ 5,q=2ab-a2-4a,若p>q,则实数a,b满足的条件为________. 5.设a>0,b>0,则下面两式的大小关系为2lg_____lg+lg.提升你的能力!基础巩固题 1.设0<a< 2,下列不等式成立的是 1111?1?a2?1?a2?1?a21?a2?1?ab.1?a1?a a.1?a .1?a2?11111?a2?1?a21?a21?a1?a1?ad.1?a 2.若a<b<0,则下列不等式关系中不能成立的是 11?a.ab 11?b.a?ba .|a|>|b| d.a2>b2

正弦定理的证明

正弦定理的证明 (方法一)可分为锐角三角形和钝角三角形两种情况:当?ABC 是锐角三角形时,设边AB 上的高是CD ,根据任意角三角函数的定义,有CD=sin sin a B b A =,则 sin sin a b A B = 同理可得sin sin c b C B = 从而 sin sin a b A B = sin c C = 思考:是否可以用其它方法证明这一等式?由于涉及边长问题, 从而可以考虑用向量来研究这个问题。 (方法二)利用向量证明 如图,在?ABC 中,过点A 作一个单位向量j ,使j AC ⊥ 。 当BAC ∠为钝角或直角时,同理可证上述结论。 从上面的研探过程,可得以下定理 正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即sin sin a b A B = sin c C = [理解定理] (1)正弦定理说明同一三角形中,边与其对角的正弦成正比,且比例系数为同一正数,即存在正数k 使sin a k A =,sin b k B =,sin c k C =;

(2) sin sin a b A B = sin c C = 等价于 sin sin a b A B = , sin sin c b C B = , sin a A = sin c C 下面还介绍几种证明的方法,供感兴趣同学探索。 (方法三)利用复数证明 如图,如图2,建立平面直角坐标系.在复平面内,过点A 作BC 的平行线,过点C 作AB 的平行线,交于点D . 根据复数相等的定义,实部等于实部,虚部等于虚部.可以得出 (方法四)利用?ABC 的外接圆证明Ⅰ 如图,O Θ是?ABC 的外接圆,设半径为R ,分 别连结OA 、 OB 、OC ,过点 O 作,OD BC ⊥垂足为D 。 证明: (方法五)利用?ABC 的外接圆证明Ⅱ 如图,O Θ是?ABC 的外接圆,设半径为R ,连结BO 并延长,交 O 于点D ,连结AD 。

《正弦定理》教案

《正弦定理》教学设计 一、教学目标分析 1、知识与技能:通过对锐角三角形中边与角的关系的探索,发现正弦定理;掌握正弦定理的内容及其证明方法;能利用正弦定理解三角形以及利用正弦定理解决简单的实际问题。 2、过程与方法:让学生从实际问题出发,结合以前学习过的直角三角形中的边角关系,引导学生不断地观察、比较、分析,采取从特殊到一般以及合情推理的方法发现并证明正弦定理,使学生体会完全归纳法在定理证明中的应用;让学生在应用定理解决问题的过程中更深入的理解定理及其作用。 3、情感态度与价值观:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,发现并证明正弦定理。从发现与证明的过程中体验数学的探索性与创造性,让学生体验成功的喜悦,激发学生的好奇心与求知欲。培养学生处理解三角形问题的运算能力和探索数学规律的推理能力,并培养学生坚忍不拔的意志、实事求是的科学态度和乐于探索、勇于创新的精神。 二、教学重点、难点分析 重点:通过对锐角三角形边与角关系的探索,发现、证明正弦定理并运用正弦定理解决一些简单的三角形度量问题。 难点:①正弦定理的发现与证明过程;②已知两边以及其中一边的对角解三角形时解的个数的判断。 三、教法与学法分析 本节课是教材第一章《解三角形》的第一节,所需主要基础知识有直角三角形的边角关系,三角函数相关知识。在教法上,根据教材的内容和编排的特点,为更有效的突出重点,突破难点,教学中采用探究式课堂教学模式,首先从学生熟悉的锐角三角形情形入手,设计恰当的问题情境,将新知识与学生已有的知识建立起密切的联系,通过学生自己的亲身体验,使学生经历正弦定理的发现过程,激发学生的求知欲,调动学生主动参与的积极性,引导学生尝试运用新知识解决新问题,即在教学过程中,让学生的思维由问题开始,通过猜想的得出、猜想的探究、定理的推导等环节逐步得到深化。教学过程中鼓励学生合作交流、动手实践,通过对定理的推导、解读、应用,引导学生主动思考、总结、归纳解答过程中的内在规律,形成一般结论。在学法上,采用个人探究、教师讲解,学生讨论相结合的方法,让学生在问题情境中学习,自觉运用观察、类比、归纳等思想方法,体验数学知识的内在联系,重视学生自主探究,增强学生由特殊到一般的数学思维能力,形成实事求是的科学态度和严谨求真的学习习惯。 四、学情分析 对于高一的学生来说,已学的平面几何,解直角三角形,三角函数等知识,有一定观察分析、解决问题的能力,但对前后知识间的联系、理解、应用有一定难度,因此思维灵活性受到制约。同时,由于学生目前还没有学习平面向量,因此,对于正弦定理的证明方法——向量法,本节课没有涉及到。根据以上特点,教师恰当引导,提高学生学习主动性,多加以前后知识间的联系,带领学生直接参与分析问题、解决问题并品尝劳动成果的喜悦。 五、教学工具 多媒体课件 六、教学过程 创设情境,导入新课

(经典)正弦定理、余弦定理知识点总结及最全证明

正弦定理、余弦定理知识点总结及证明方法 ——王彦文青铜峡一中1.掌握正弦定理、余弦定理,并能解决一 些简单的三角形度量问题. 2.能够运用正弦定理、余弦定理等知识和 方法解决一些与测量和几何计算有关的实际问 题. 主要考查有关定理的应用、三角恒等变换 的能力、运算能力及转化的数学思想.解三角 形常常作为解题工具用于立体几何中的计算或 证明,或与三角函数联系在一起求距离、高度 以及角度等问题,且多以应用题的形式出现. 1.正弦定理 (1)正弦定理:在一个三角形中,各边和它 所对角的正弦的比相等, 即.其中R是三角形外接圆的 半径. (2)正弦定理的其他形式: ①a=2R sin A,b=,c =; ②sin A=a 2R,sin B=, sin C=; ③a∶b∶c=______________________. 2.余弦定理 (1)余弦定理:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即 a2=,b2=, c2=. 若令C=90°,则c2=,即为勾股定理. (2)余弦定理的变形:cos A =,cos B=,cos C=. 若C为锐角,则cos C>0,即a2+b2______c2;若C为钝角,则cos C<0,即a2+b2______c2.故由a2+b2与c2值的大小比较,可以判断C为锐角、钝角或直角. (3)正、余弦定理的一个重要作用是实现边角____________,余弦定理亦可以写成sin2A=sin2B+sin2C-2sin B sin C cos A,类似地,sin2B=____________;sin2C=__________________.注意式中隐含条件A+B+C=π. 3.解斜三角形的类型 (1)已知三角形的任意两个角与一边,用____________定理.只有一解. (2)已知三角形的任意两边与其中一边的对角,用____________定理,可能有___________________.如在△ABC中,已知a, 时,只有一解. (4)已知两边及夹角,用____________定理,必有一解.

用正弦定理证明三重向量积

用正弦定理证明三重向量积 作者:光信1002班 李立 内容:通过对问题的讨论和转化,最后用正弦定理来证明三重向量积的公式——b )()b ()(a c a c c b a ?+?-=??。 首先,根据叉乘的定义,a 、b 、b a ?可以构成一个右手系,而且对公式的观察与分析我们发现,在公式中,a 与b 是等价的,所以我们不妨把a 、b 、b a ?放在一个空间直角坐标系中,让a 与b 处于oxy 面上,b a ?与z 轴同向。如草图所示: 其中,向量c 可以沿着z 轴方向与平行于oxy 平面的方向分解,即: xy z c c c += 将式子带入三重向量积的公式中,发现,化简得: b ) c (a )(c b a xy xy ??+?-=??a b c xy )( 这两个式子等价 现在我们考虑c b a ??)(刚好被a 与b 反向夹住的情况,其他的角度情况以此类推。

由图易得,c b a ??)(与a 、b 共面,a 与b 不共线,不妨设yb xa c b a +=??)(,)2 ,0(,),,2(c ,π ππ??xy xy c b a ,所以: 在三角形中使用正弦定理,得 b a Sin c b a k c a Sin b y c b Sin a x xy xy ,c b a ]2 ,[],2[]b a,-Sin[c b a =??=-=-= ??)(又因为)(πππ 所以,解得k=c b a , 于是解得: xy xy xy c b c b Cos c ?=,b =x xy xy xy c a c a Cos c a y ?-=-=, 由图示和假定的条件,c b a ??)(在a 和b 方向上的投影皆为负值,所以x ,y 都取负值, 所以, b ) c (a )(c b a xy xy ??+?-=??a b c xy )( 其他的相对角度关系,以此类推,也能得到相同的答案,所以: b )()()(a c a b c c b a ?+?-=??,命题得证。 小结论:当直观解答有困难时,可以通过分析转化的方法来轻松地解决。

正弦定理的5种证明方法

正弦定理的5种证明方法 在⊿ABC 中,角A 、B 、C 的对边分别为,则这就是正弦定a b c 、、,sin sin sin a b c A B C ==理. 在这个定理的证明过程中蕴涵着丰富的几何意义.为了简单,仅以锐角三角形为例作简要说明.直角三角形的情形非常简单, 钝角三角形的情形与锐角三角形类似.证法一 三角形高法 是⊿ABC 的边上的高; sin ,sin a B b A c 是⊿ABC 的边上的高; sin ,sin a C c A b 是⊿ABC 的边上的高. sin ,sin b C c B a 根据这个几何意义,定理证明如下: 作锐角三角形ABC 的高CD ,则CD=. sin sin a B b A =所以 ,同理.sin sin a b A B =sin sin b c B C =因此.sin sin sin a b c A B C == 证法二 三角形外接圆法 是⊿ABC 的外接圆直径. 根据这个几何意义,定理证明如下:,,sin sin sin a b c A B C 作锐角三角形ABC 的外接圆直径CD ,连结DB .根据同弧 所对的圆周角相等及直径所对的圆周角是直角得, ∠A=∠D, ∠DBC=90°,(为⊿ABC 的外接圆半2CD R =R 径). 所以,所以.sin sin 2CB a A D CD R == =2sin a R A =同理.2,sin b R B =2sin c R C =因此.2sin sin sin a b c R A B C ===

证法三 三角形面积法 是三角形ABC 的面积.1sin ,2ab C 1sin ,2bc A 1sin 2 ac B 根据这个几何意义,定理证明如下: 作锐角三角形ABC 的高CD ,则CD=. sin a B 所以三角形ABC 的面积.11sin 22 S AB CD ac B = = 同理 所以 1sin ,2S ab C =1sin ,2S bc A =1sin 2bc A =1sin 2ac B 1sin ,2 ab C =同除以,再取倒数有.12abc sin sin sin a b c A B C ==证法四 向量的数量积法 把变形为.sin ,sin a B b A cos(),cos()2 2a B b A ππ --则在锐角三角形ABC 中,作高CD,则分别是向量cos(),cos()22a CD B b CD A ππ-- 与向量的数量积.,CB CA CD 利用这个几何意义,定理证明如下: 作锐角三角形ABC 的高CD .因为=,所以0==(), AB CB CA - AB ?CD CB CA - ?CD 所以,所以,CB CD CA CD ?=? cos()cos()22 a CD B b CD A ππ-=- 即sin sin . a B b A =所以 ,同理.sin sin a b A B =sin sin b c B C =因此.sin sin sin a b c A B C ==证法五 如果想避开分类讨论,可以把三角形放在平面直角坐标系中, 利用坐标法.  证明如下:  以C 为原点,以射线CA 为轴的正半轴建立平面直角坐标系, x )

相关文档
最新文档