(完整版)高三数学概率统计知识点归纳

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率统计知识点归纳

平均数、众数和中位数

平均数、众数和中位数.要描述一组数据的集中趋势,最重要也是最常见的方法就是用这“三数”来说明.

一、正确理解平均数、众数和中位数的概念

平均数平均数是反映一组数据的平均水平的特征数,反映一组数据的集中趋势.平均数的大小与一组数据里的每一个数据都有关系,任何一个数据的变化都会引起平均数的变化.2.众数在一组数据中出现次数最多的数据叫做这一组数据的众数.一组数据中的众数有时不唯一.众数着眼于对各数出现的次数的考察,这就告诉我们在求一组数据的众数时,既不需要排列,又不需要计算,只要能找出样本中出现次数最多的那一个(或几个)数据就可以了.当一组数据中有数据多次重复出现时,它的众数也就是我们所要关心的一种集中趋势.3.中位数中位数就是将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).一组数据中的中位数是唯一的.

二、注意区别平均数、众数和中位数三者之间的关系

平均数、众数和中位数都是描述一组数据的集中趋势的量,但它们描述的角度和适用的范围又不尽相同.在具体问题中采用哪种量来描述一组数据的集中趋势,那得看数据的特点和要关注的问题.

三、能正确选用平均数、众数和中位数来解决实际问题

由于平均数、众数和中位数都是描述一组数据的集中趋势的量,所以利用平均数、众数和中位数可以来解决现实生活中的问题.

极差、方差、标准差

极差、方差和标准差都是用来研究一组数据的离散程度的,反映一组数据的波动范围或波动大小的量.

极差

一组数据中最大值与最小值的差叫做这组数据的极差,即极差=最大值-最小值.极差能够反映数据的变化范围,差是最简单的一种度量数据波动情况的量,它受极端值的影响较大.

二、方差

方差是反映一组数据的整体波动大小的特征的量.它是指一组数据中各个数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小.

求一组数据的方差可以简记先求平均,再求差,然后平方,最后求平均数.一组数据x1、x2、x3、…、xn 的平均数为x ,则该组数据方差的计算公式为:

])()()[(1222212x x x x x x n S n -++-+-=Λ.

三、标准差

在计算方差的过程中,可以看出方差的数量单位与原数据的单位不一致,在实际的应用时常常将求出的方差再开平方,此时得到量为这组数据的标准差.

即标准差=方差.

四、极差、方差、标准差的关系

方差和标准差都是用来描述一组数据波动情况的量,常用来比较两组数据的波动大小.两组数据中极差大的那一组并不一定方差也大.在实际问题中有时用到标准差,是因为标准差的单位和原数据的单位一致,且能缓解方差过大或过小的现象.

一、 随机事件的概率

1、必然事件:一般地,把在条件S 下,一定会发生的事件叫做相对于条件S 的必然事件。

2、不可能事件:把在条件S 下,一定不会发生的事件叫做相对于条件S 的不可能事件。

3、确定事件:必然事件和不可能事件统称相对于条件S 的确定事件。

4、随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件。

7、概率:随机事件A 的概率是频率的稳定值,反之,频率是概率的近似值.

概率的正确解释:随机事件在一次试验中发生与否是随机的,但随机性中含有规律性。认识了这种随机中的规律性,可以比较准确地预测随机事件发生的可能性。

概率的基本性质

1、事件的关系与运算

(1)包含。对于事件A 与事件B ,如果事件A 发生,则事件B 一定发生,称事件B 包含事件A (或事件A 包含于事件B ),记作(B A ⊇⊆或A B)。

不可能事件记作∅。

(2)相等。若B A A B ⊇⊇且,则称事件A 与事件B 相等,记作A=B 。

(3)事件A 与事件B 的并事件(和事件):某事件发生当且仅当事件A 发生或事件B 发生。

(4)事件A 与事件B 的交事件(积事件):某事件发生当且仅当事件A 发生且事件B 发生。

(5)事件A 与事件B 互斥:A B I 为不可能事件,即=A B ∅I ,即事件A 与事件B 在任何一次试验中并不会同时发生。

(6)事件A 与事件B 互为对立事件:A B I 为不可能事件,A B U 为必然事件,即事件A 与事件B 在任何一次试验中有且仅有一个发生。

2、概率的几个基本性质

(1)0()1P A ≤≤.

(2)必然事件的概率为1.()1P E =.

(3)不可能事件的概率为0. ()0P F =.

(4)事件A 与事件B 互斥时,P(A U B)=P(A)+P(B)——概率的加法公式。

(5)若事件B 与事件A 互为对立事件,,则A B U 为必然事件,()1P A B =U .

三、古典概型

1、基本事件的特点:(1)任何两个事件是互斥的;

(2)任何事件(除不可能事件)都可以表示成基本事件的和。

2、古典概型:(1)试验中所有可能出现的基本事件只有有限个;

(2)每个基本事件出现的可能性相等。

具有这两个特点的概率模型称为古典概型。

3、公式:

()=

A P A 包含的基本事件的个数基本事件的总数

四、几何概型 1、几何概型:每个事件发生的概率只有与构成该事件区域的长度(面积或体积)成比例的概率模型。

2、几何概型中,事件A 发生的概率计算公式:

()P A =构成事件A 的区域长度(面积或体积)

试验的全部结果所构成的区域长度(面积或体积)

相关文档
最新文档