高等数学 高职高专新概念教材电子教案

合集下载

教案高职高专高等数学

教案高职高专高等数学

教案-高职高专高等数学一、教学目标1. 知识点:本章主要介绍高职高专高等数学的基本概念、性质和运算规则。

2. 能力点:培养学生掌握高等数学的基本运算方法,提高学生的逻辑思维和解决问题的能力。

3. 情感态度:激发学生对高等数学的兴趣,培养学生的自信心和自主学习能力。

二、教学内容1. 基本概念:实数、整数、有理数、无理数、实数域等。

2. 性质:实数的四则运算、相反数、平方根、立方根等。

3. 运算规则:实数的加法、减法、乘法、除法、乘方等运算规则。

三、教学重点与难点1. 教学重点:实数的基本概念、性质和运算规则。

2. 教学难点:实数的运算规则,特别是乘方和除法的运算规则。

四、教学方法1. 讲授法:讲解实数的基本概念、性质和运算规则。

2. 案例分析法:通过具体的例子,让学生理解和掌握实数的运算方法。

3. 练习法:布置适量的练习题,让学生巩固所学知识。

五、教学过程1. 导入新课:通过引入实际问题,激发学生对高等数学的兴趣,引出实数的概念。

2. 讲解实数的基本概念:介绍实数的概念,解释实数的分类,如整数、有理数、无理数等。

3. 讲解实数的性质:讲解实数的相反数、平方根、立方根等性质。

4. 讲解实数的运算规则:讲解实数的加法、减法、乘法、除法、乘方等运算规则。

5. 案例分析:通过具体的例子,让学生理解和掌握实数的运算方法。

6. 练习巩固:布置适量的练习题,让学生巩固所学知识。

7. 总结与反馈:对本节课的内容进行总结,回答学生的疑问,收集学生的反馈意见。

8. 布置作业:布置课后作业,巩固本节课所学知识。

教案-高职高专高等数学六、教学评价1. 形成性评价:通过课堂提问、练习和小测验,及时了解学生对实数概念、性质和运算规则的理解和掌握情况。

2. 总结性评价:通过课后作业和期中期末考试,评估学生对实数知识的掌握程度和应用能力。

七、教学资源1. 教材:选择适合高职高专学生的高等数学教材,提供系统的知识框架和实例分析。

2. 多媒体课件:制作多媒体课件,通过图形、动画等形式,生动展示实数的性质和运算规则。

高职高专高等数学pdf教材

高职高专高等数学pdf教材

高职高专高等数学pdf教材高等数学(高职高专)【PDF教材】一、引言在高职高专阶段学习高等数学是必不可少的,它是培养学生数学素养和解决实际问题的重要基础。

为了方便学生学习和提供更好的教学资源,本文将介绍高职高专阶段适用的高等数学PDF教材。

二、教材特点1. 全面而系统的内容高职高专阶段的高等数学PDF教材内容全面,包括函数与极限、导数与微分、积分与定积分、微分方程等各个重要的数学概念和方法。

教材体系完善,易于学生掌握并灵活运用。

2. 知识点精细化解析教材中的每个知识点都有详细的解析和例题讲解,旨在帮助学生深入理解数学概念和解题思路。

教材还提供了大量的例题和习题,供学生巩固知识、拓展思路。

3. 实用性强高职高专阶段的高等数学PDF教材注重实际应用,紧密结合不同专业领域的实际问题,将数学方法与实际问题相结合,培养学生解决实际问题的能力。

4. 多媒体资源支持高等数学PDF教材提供了丰富的多媒体资源支持,包括配套的教学视频和动画演示,可帮助学生更直观地理解和掌握数学概念和方法。

三、学习建议1. 认真预习课本内容在课前认真预习高等数学PDF教材的相关内容,理解教材的概念和方法,对课堂学习起到很大的帮助。

培养良好的学习习惯,提前预习,做好笔记,有助于加深对知识点的理解和记忆。

2. 制定学习计划制定合理的学习计划,合理安排每天的学习时间,保证学习的连贯性和持续性。

高等数学需要掌握的知识点较多,因此需要长期、持续的学习和积累才能取得好成绩。

3. 多做习题高等数学PDF教材中提供了丰富的习题,学生应该充分利用这些习题进行巩固和拓展,提高解题能力和应用能力。

习题的反复练习可以帮助学生更好地掌握数学知识和解题技巧。

4. 寻求帮助和互助在学习过程中,遇到难题或疑惑时,不要犹豫寻求帮助。

可以向老师请教,或参加学习小组,与同学们进行讨论和交流,相互帮助,共同进步。

四、结语高等数学PDF教材是高职高专阶段学习高等数学的重要辅助教材,具有内容全面、知识点精细化解析、实用性强和多媒体资源支持等特点。

高职高专高等数学教案

高职高专高等数学教案

高职高专高等数学教案一、教案内容:1. 教学目标:(1) 掌握函数、极限、导数、积分等基本概念和运算方法。

(2) 培养学生的逻辑思维能力和解决实际问题的能力。

(3) 提高学生运用数学知识分析和解决专业问题的能力。

2. 教学内容:(1) 函数的定义与性质(2) 极限的定义与计算(3) 导数的定义与计算(4) 积分的定义与计算(5) 应用举例3. 教学方法:(1) 采用讲授法,系统地讲解基本概念和运算方法。

(2) 利用数学软件或图形计算器,进行实时演示和验证。

(3) 开展小组讨论和问题解答,提高学生的参与度和合作意识。

(4) 结合实际案例,培养学生的应用能力。

4. 教学手段:(1) 教材:高职高专高等数学教材(2) 课件:采用PowerPoint或其他多媒体软件制作(3) 数学软件:如MATLAB、Mathematica等(4) 图形计算器:如图形计算器、平板电脑等5. 教学评价:(1) 平时成绩:包括课堂表现、作业完成情况、小组讨论等(2) 考试成绩:包括期末考试、期中考试等(3) 应用能力:结合实际案例,进行问题分析和解决二、教案内容:1. 教学目标:(1) 掌握微分方程的基本概念和解法。

(2) 培养学生的抽象思维能力和解决实际问题的能力。

(3) 提高学生运用数学知识分析和解决专业问题的能力。

2. 教学内容:(1) 微分方程的定义与分类(2) 常微分方程的解法(3) 线性微分方程的解法(4) 非线性微分方程的解法(5) 应用举例3. 教学方法:(1) 采用讲授法,系统地讲解基本概念和解法。

(2) 利用数学软件或图形计算器,进行实时演示和验证。

(3) 开展小组讨论和问题解答,提高学生的参与度和合作意识。

(4) 结合实际案例,培养学生的应用能力。

4. 教学手段:(1) 教材:高职高专高等数学教材(2) 课件:采用PowerPoint或其他多媒体软件制作(3) 数学软件:如MATLAB、Mathematica等(4) 图形计算器:如图形计算器、平板电脑等5. 教学评价:(1) 平时成绩:包括课堂表现、作业完成情况、小组讨论等(2) 考试成绩:包括期末考试、期中考试等(3) 应用能力:结合实际案例,进行问题分析和解决三、教案内容:1. 教学目标:(1) 掌握线性代数的基本概念和运算方法。

教案高职高专高等数学

教案高职高专高等数学

教案高职高专高等数学第一章:函数与极限1.1 函数的概念与性质理解函数的定义掌握函数的性质,如单调性、奇偶性、周期性等学会运用函数的性质解决问题1.2 极限的概念与性质理解极限的定义掌握极限的性质,如保号性、传递性等学会运用极限的性质解决问题1.3 函数的极限理解函数的极限定义掌握函数极限的性质,如保号性、存在性等学会运用函数极限的性质解决问题第二章:导数与微分2.1 导数的概念与性质理解导数的定义掌握导数的性质,如保号性、单调性等学会运用导数的性质解决问题2.2 微分的概念与性质理解微分的定义掌握微分的性质,如微分与导数的关系等学会运用微分解决问题2.3 求导法则掌握常见函数的求导法则,如幂函数、指数函数等学会运用求导法则求解函数的导数第三章:积分与微分方程3.1 不定积分与定积分的概念与性质理解不定积分与定积分的定义掌握不定积分与定积分的性质,如保号性、可加性等学会运用不定积分与定积分的性质解决问题3.2 常见积分公式掌握常见积分公式,如幂函数、指数函数等学会运用积分公式求解不定积分与定积分3.3 微分方程的概念与解法理解微分方程的定义掌握微分方程的解法,如常系数线性微分方程等学会运用微分方程的解法解决问题第四章:级数4.1 数列的概念与性质理解数列的定义掌握数列的性质,如收敛性、发散性等学会运用数列的性质解决问题4.2 级数的概念与性质理解级数的定义掌握级数的性质,如收敛性、发散性等学会运用级数的性质判断级数的收敛性4.3 常见级数求和法掌握常见级数求和法,如等比级数、等差级数等学会运用求和法求解级数的和第五章:向量与线性方程组5.1 向量的概念与运算理解向量的定义掌握向量的运算,如加法、减法、数乘等学会运用向量的运算解决问题5.2 线性方程组的概念与解法理解线性方程组的定义掌握线性方程组的解法,如高斯消元法等学会运用线性方程组的解法解决问题5.3 矩阵的概念与运算理解矩阵的定义掌握矩阵的运算,如加法、减法、数乘等学会运用矩阵的运算解决问题第六章:概率论与数理统计6.1 随机事件与概率理解随机事件的概念掌握概率的计算方法,如古典概率、条件概率等学会运用概率论解决问题6.2 随机变量及其分布理解随机变量的概念掌握随机变量的分布,如均匀分布、正态分布等学会运用随机变量的分布解决问题6.3 数理统计的基本概念理解数理统计的基本概念,如样本、总体等掌握数理统计的基本方法,如描述性统计、推断性统计等学会运用数理统计的方法解决问题第七章:线性代数7.1 线性空间与线性变换理解线性空间的概念掌握线性变换的定义与性质学会运用线性变换解决问题7.2 特征值与特征向量理解特征值与特征向量的概念掌握特征值与特征向量的计算方法学会运用特征值与特征向量解决问题7.3 矩阵的特殊类型理解对称矩阵、正交矩阵等特殊矩阵的概念掌握特殊矩阵的性质与运算学会运用特殊矩阵解决问题第八章:微分几何8.1 微分几何的基本概念理解微分几何的基本概念,如曲线、曲面等掌握微分几何的基本方法,如切线、法线等学会运用微分几何的方法解决问题8.2 微分几何的方程理解微分几何方程的概念掌握微分几何方程的求解方法学会运用微分几何方程解决问题8.3 微分几何的应用理解微分几何在现实生活中的应用,如曲面拟合等学会运用微分几何解决实际问题第九章:常微分方程9.1 常微分方程的基本概念理解常微分方程的定义掌握常微分方程的解法,如分离变量法、积分因子法等学会运用常微分方程的解法解决问题9.2 常微分方程的应用理解常微分方程在现实生活中的应用,如人口增长模型等学会运用常微分方程解决实际问题9.3 常微分方程组的解法理解常微分方程组的概念掌握常微分方程组的解法,如消元法、矩阵法等学会运用常微分方程组的解法解决问题第十章:复变函数与积分变换10.1 复变函数的基本概念理解复变函数的定义掌握复变函数的性质,如解析性、奇偶性等学会运用复变函数的性质解决问题10.2 积分变换的概念与方法理解积分变换的定义掌握常见积分变换的方法,如傅里叶变换、拉普拉斯变换等学会运用积分变换解决问题10.3 复变函数的应用理解复变函数在现实生活中的应用,如信号处理等学会运用复变函数解决实际问题重点和难点解析重点环节1:函数的极限性质需要重点关注函数极限的保号性和传递性。

高等数学电子教案(大专版)

高等数学电子教案(大专版)

高等数学电子教案(大专版)《高等数学》教案第一讲函数与极限1.函数的定义设有两个变量x ,y 。

对任意的x ∈D ,存在一定规律f ,使得y 有唯一确定的值与之对应,则y 叫x 的函数。

记作y=f(x),x ∈D 。

其中x 叫自变量,y 叫因变量。

函数两要素:对应法则、定义域,而函数的值域一般称为派生要素。

例1:设f(x+1)=2x 2+3x-1,求f(x).解:设x+1=t 得x=t-1,则f(t)=2(t-1)2+3(t-1)-1=2t 2-t-2∴f(x)=2x 2 – x – 2定义域:使函数有意义的自变量的集合。

因此,求函数定义域需注意以下几点:①分母不等于0 ②偶次根式被开方数大于或等于0 ③对数的真数大于0例2 求函数y=6—2x -x +arcsin712x -的定义域. 解:要使函数有定义,即有:1|712|062≤-≥--x x x ? 4323≤≤--≤≥x x x 或?4323≤≤-≤≤-x x 或于是,所求函数的定义域是:[-3,-2]Y [3,4].例3 判断以下函数是否是同一函数,为什么?(1)y=lnx 2与y=2lnx (2)ω=u 与y=x解(1)中两函数的定义域不同,因此不是相同的函数. (2)中两函数的对应法则和定义域均相同,因此是同一函数. 2. 初等函数(1)基本初等函数常数函数:y=c(c 为常数) 幂函数:y=μx (μ为常数)指数函数:y=xa (a>0,a ≠1,a 为常数) 对数函数:y=x a log (a>0,a ≠1,a 为常数)三角函数:y=sinx y=cosx y=tanx y=cotx y=secx y=cscx 反三角函数:y=arcsinx y=arccosx y=arctanx y=arccotx(2)复合函数设),(u f y =其)(x u ?=中,且)(x ?的值全部或部分落在)(u f 的定义域内,则称)]([x f y ?=为x 的复合函数,而u 称为中间变量.例4:若y=u ,u = sinx ,则其复合而成的函数为y=x sin ,要求u 必须≥0,∴sinx ≥0,x ∈[2k π,π+2k π]例5:分析下列复合函数的结构(1)y=2cotx (2)y=1sin 2+x e解:(1)y=u ,u=cosv ,v=2x(2)y=ue ,u=sinv ,v=t ,t=x 2+1例6:设f(x)=2x g(x)=x 2 求f[g(x)] g[f(x)]解:f[g(x)]=f(x 2)=(x 2)2=4x g[f(x)]=g(2x )=22x3. 极限(1)定义函数y=f(x),当自变量x 无限接近于某个目标时(一个数x 0,或+∞或—∞),因变量y 无限接近于一个确定的常数A ,则称函数f(x)以A 为极限。

高职高专高等数学教材word版

高职高专高等数学教材word版

高职高专高等数学教材word版对于题目为"高职高专高等数学教材word版"的要求,我将按照教材的格式进行书写。

高职高专高等数学教材Word版第一章:代数与函数1.1 线性方程组1.1.1 基本概念与性质在本节中,我们将学习线性方程组的基本概念和性质。

线性方程组是数学中常见的一种方程形式,其解可以描述多个变量之间的关系。

我们将介绍线性方程组的定义、解的存在唯一性以及解的表示方法等内容。

1.1.2 解的求解方法本小节将介绍线性方程组求解的基本方法。

我们将学习高斯消元法、矩阵方法和向量方法等求解线性方程组的方法,帮助学生掌握多种解法,灵活应用于实际问题中。

1.2 矩阵与行列式1.2.1 矩阵的基本概念本节将介绍矩阵的基本概念和性质。

矩阵是一种有序数的矩形排列形式,是代数运算的重要工具,具有丰富的应用背景。

我们将学习矩阵的定义、矩阵的运算规则以及特殊类型的矩阵等内容。

1.2.2 行列式及其性质在本小节中,将介绍行列式的概念和性质。

行列式是矩阵的一个重要特征值,通过行列式可以判断矩阵的可逆性以及解的存在条件等问题。

我们将学习行列式的定义、性质以及行列式的计算方法等内容。

第二章:微积分2.1 导数与微分2.1.1 导数的概念与性质本节将介绍导数的概念和性质。

导数是微积分的基本工具之一,用于描述函数的变化率和切线斜率等重要信息。

我们将学习导数的定义、导数的基本运算以及常见函数的导数计算等内容。

2.1.2 微分与微分近似在本小节中,我们将学习微分的概念和微分近似的应用。

微分是导数的一种形式,通过微分可以求得函数在一点处的变化量。

我们将探讨微分的定义、微分近似的原理以及泰勒公式的应用等内容。

2.2 积分与定积分2.2.1 定积分的概念与性质本节将介绍定积分的概念和性质。

定积分是微积分的重要概念,用于描述曲线与坐标轴所围成的面积或者函数的累积量等问题。

我们将学习定积分的定义、性质以及定积分计算的方法等内容。

高等数学电子教案(大专版)(2024)

高等数学电子教案(大专版)(2024)

02
函数与极限
2024/1/28
8
函数概念及性质
2024/1/28
函数定义
设$x$和$y$是两个变量,$D$是一个数集。如果存在一种对应法则$f$,使得对于$D$中 的每一个数$x$,按照某种对应法则$f$,在数集$M$中都有唯一确定的数$y$与之对应, 则称$f$为从$D$到$M$的一个函数,记作$y = f(x), x in D$。
向量的坐标表示法
详细讲解向量的坐标表示法,包括向量在空间直角 坐标系中的表示方法、向量的模和方向余弦的坐标 计算公式等。
向量的运算与坐标计算
介绍向量的加法、减法、数乘和点积、叉积 等运算在坐标计算中的实现方法,以及这些 运算的几何意义和性质。
2024/1/28
30
平面与直线方程
2024/1/28
平面的方程
导数的定义
导数描述了函数在某一点处的切线斜 率,反映了函数值随自变量变化的快 慢程度。
导数的几何意义
导数在几何上表示曲线在某一点处的 切线斜率,即函数图像在该点的倾斜 程度。
13
导数的计算法则
基本初等函数的导数公式
包括常数函数、幂函数、指数函数、对数函数 、三角函数等的基本导数公式。
导数的四则运算法则
2024/1/28
全微分的定义
如果函数$z=f(x,y)$在点$(x,y)$的全 增量$Delta z=f(x+Delta x,y+Delta y)-f(x,y)$可以表示为$Delta z=ADelta x+BDelta y+o(rho)$,其 中$A$和$B$不依赖于$Delta x$和 $Delta y$而仅与$x$和$y$有关, $rho=(Delta x^2+Delta y^2)^{frac{1}{2}}$,则称函数 $z=f(x,y)$在点$(x,y)$处可微,而 $ADelta x+BDelta y$称为函数 $z=f(x,y)$在点$(x,y)$处的全微分。

教案高职高专高等数学

教案高职高专高等数学

教案高职高专高等数学一、教学目标1. 知识点:本章主要介绍高职高专高等数学的基本概念、性质和运算方法。

2. 能力点:培养学生掌握基本的数学运算能力,提高逻辑思维和解决问题的能力。

3. 情感态度:激发学生对高等数学的兴趣,培养学生的耐心和自信心。

二、教学内容1. 第一节:函数的概念与性质教学重点:函数的定义、图像、性质及其应用。

教学难点:函数的连续性和导数的应用。

2. 第二节:极限与无穷小教学重点:极限的定义、性质和运算方法。

教学难点:无穷小的概念及其比较。

3. 第三节:导数与微分教学重点:导数的定义、计算方法和应用。

教学难点:高阶导数和隐函数的导数。

4. 第四节:积分与面积教学重点:积分的定义、计算方法和应用。

教学难点:不定积分和定积分的计算。

5. 第五节:级数与方程教学重点:级数的概念、收敛性和应用。

教学难点:级数求和的方法和级数解方程。

三、教学方法1. 采用讲授法,系统地讲解高职高专高等数学的基本概念、性质和运算方法。

2. 利用多媒体辅助教学,展示函数图像、极限和积分计算等,增强学生的直观理解。

3. 提供适量习题,引导学生进行自主学习和合作交流,巩固所学知识。

四、教学评估1. 课堂问答:通过提问学生,了解学生对教学内容的理解和掌握程度。

2. 习题练习:布置课堂习题,评估学生对基本概念和运算方法的掌握情况。

3. 单元测试:进行定期的单元测试,全面评估学生的学习成果和不足之处。

五、教学资源1. 教材:选用合适的高职高专高等数学教材,为学生提供系统的学习材料。

2. 多媒体课件:制作精美的多媒体课件,辅助教学,提高学生的学习兴趣。

3. 习题库:提供丰富的习题库,供学生进行自主练习和巩固所学知识。

教案高职高专高等数学(续)六、第六节:多元函数与微分教学重点:多元函数的定义、图像和性质。

教学难点:多元函数的偏导数和全微分。

七、第七节:重积分与向量分析教学重点:二重积分、三重积分的定义和计算方法。

教学难点:向量场的概念、散度和平移旋度。

高职高专《高等数学》教案编写示例二2024新版

高职高专《高等数学》教案编写示例二2024新版

期中、期末考试成绩分析
成绩分布统计
对期中、期末考试成绩进行统计和分析,了解成绩分布情况,包括 平均分、最高分、最低分等。
知识点掌握情况
通过分析试卷中不同知识点的得分情况,评估学生对各个知识点的 掌握程度。
难易程度评估
根据考试成绩和学生反馈,对试卷的难易程度进行评估,为后续教学 提供参考。
学生意见反馈及改进措施
05 教学效果评价与 反馈
课堂表现及作业完成情况评价
学生课堂参与度
通过观察学生在课堂上的表现,如提问、讨论、小组合作等,评 估学生的参与度和积极性。
作业完成情况
检查学生作业的完成情况,包括作业的正确率、提交及时性等, 以了解学生对知识点的掌握情况。
课堂小测验
在课堂上进行小测验,检验学生对当堂课程内容的理解程度和应 用能力。
01
03 02
教学内容安排
连续函数的概念及性质 第二章:导数与微分 导数的定义、性质及计算
教学内容安排
01
微分的定义、性质及应用
02
高阶导数及隐函数求导
第三章:中值定理与导数的应用
03
教学内容安排
01
中值定理及其应用
02
洛必达法则及应用
03
函数的单调性、极值与最值
教学方法与手段
讲授法
通过教师对知识点的详细讲解,使学生掌握 基本概念和理论。
学生意见收集
通过问卷调查、座谈会等方式收集学生对课程的 意见和建议。
问题诊断与改进
针对学生反馈的问题,进行诊断分析,找出问题 的根源,并制定相应的改进措施。
经验总结与分享
将收集到的学生意见和改进措施进行整理和总结 ,与同行教师分享交流,促进教学质量的提升。

专科高等数学教材pdf

专科高等数学教材pdf

专科高等数学教材pdf敬启者,首先,感谢您对专科高等数学教材PDF的关注。

对于这个题目,我会按照一个教材章节的格式为您撰写文章,以便提供更具体的信息。

【章节名称】第一章:函数【正文】在专科高等数学教材中,函数作为教学的基础和重点内容之一,具有重要的地位。

本章通过引入基本概念、性质和应用,旨在帮助学生全面理解和应用函数这一数学概念。

1.1 函数的定义与性质函数是数学中一个基本的概念,它描述了两个集合之间的一种特殊关系。

我们首先介绍函数的定义:对于集合A和B,如果对于集合A中的每一个元素a,都存在唯一的元素b属于集合B与之对应,那么我们就说在A和B之间建立了一个函数。

函数的表示通常用f(x)来表示,其中x是自变量,f(x)是对应的函数值。

另外,我们还需要了解函数的性质,如奇偶性、周期性和单调性等,这些性质有助于我们对函数的进一步了解。

1.2 常见函数类型与图像专科高等数学教材中会涉及到若干常见的函数类型,如常数函数、幂函数、指数函数、对数函数和三角函数等。

对于每一种函数,我们将介绍其表达式、定义域、值域以及相关的图像特征。

通过对这些函数类型的学习,可以帮助学生建立起对不同函数类型的直观印象,并理解它们的特点和应用。

1.3 函数的运算与复合函数函数的运算是函数学习过程中另一个重要的内容。

在这一部分,我们将介绍函数的四则运算,包括函数的加法、减法、乘法和除法。

此外,还将学习到函数的复合运算,也就是将一个函数作为另一个函数的输入。

这种运算有助于求解更加复杂的函数问题,并在实际应用中扮演重要角色。

1.4 一元函数的导数与微分导数是专科高等数学中的重要概念,它描述了函数在某一点的变化率。

我们将介绍导数的定义,包括极限、导数的几何意义和导数的计算方法。

此外,我们还会了解到导数与函数的关系,如导数的单调性和函数的极值等。

微分作为导数的一种应用,也将在这一部分进行详细的讲解。

1.5 函数的应用最后,我们将探讨函数在实际问题中的应用。

高等数学高职高专完整全套教学课件(1)

高等数学高职高专完整全套教学课件(1)

高等数学高职高专完整全套教学课件一、教学内容1. 第一章:函数与极限函数的概念、性质与图像极限的定义、性质及运算无穷小与无穷大的概念及其关系2. 第二章:导数与微分导数的定义、运算法则及求导公式微分的概念及其运算法则高阶导数的概念及其求法二、教学目标1. 理解并掌握函数、极限、导数与微分的基本概念及性质。

2. 能够运用求导公式和法则进行导数的计算,解决实际问题。

3. 培养学生的逻辑思维能力和解决复杂问题的能力。

三、教学难点与重点1. 教学难点:函数与极限的概念,导数的求法,微分的应用。

2. 教学重点:函数的性质与图像,导数的计算,微分的基本概念。

四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、直尺、圆规等。

2. 学具:教材、笔记本、文具等。

五、教学过程1. 引入:通过实际问题,引导学生了解函数在现实生活中的应用。

2. 知识讲解:讲解函数的定义、性质与图像,配合实例进行分析。

介绍极限的概念、性质及运算,通过例题进行讲解。

阐述导数与微分的定义、运算法则,配合求导公式进行讲解。

3. 随堂练习:针对每个知识点,设计相应的练习题,巩固所学内容。

六、板书设计1. 黑板左侧:列出本节课的主要知识点、公式及例题。

2. 黑板右侧:展示解题过程和答案,方便学生对照学习。

七、作业设计1. 作业题目:求下列函数的极限:lim(x→0) sin(x)/x,lim(x→∞)(1+1/x)^x。

求函数f(x) = x^3 3x^2 + 2x 1的导数。

求函数f(x) = e^x在x=1处的微分。

2. 答案:见附件。

八、课后反思及拓展延伸2. 拓展延伸:引导学生了解极限、导数与微分在物理学、工程学等领域的应用。

推荐相关学习资料,帮助学生深入理解高等数学的知识体系。

重点和难点解析1. 教学内容的选取与组织2. 教学目标的设定3. 教学难点与重点的区分4. 教学过程中的实践情景引入和例题讲解5. 板书设计的信息布局6. 作业设计的题目选取与答案提供7. 课后反思与拓展延伸的实际操作一、教学内容的选取与组织教学内容应紧密结合高职高专学生的学习基础和实际需求。

高等数学(高职高专)完整全套教学课件

高等数学(高职高专)完整全套教学课件

高等数学(高职高专)完整全套教学课件一、教学内容本节课的教学内容来自于高等数学教材的第五章——多元函数微分学。

具体内容包括:多元函数的极限与连续性,偏导数,全微分,复合函数的偏导数,隐函数的偏导数,以及高阶偏导数。

二、教学目标1. 使学生掌握多元函数的极限与连续性的概念及其判断方法。

2. 使学生理解偏导数的概念,掌握偏导数的计算方法。

3. 使学生掌握全微分的概念及其计算方法,能够求解复合函数的偏导数。

4. 使学生掌握隐函数的偏导数求解方法,能够求解高阶偏导数。

三、教学难点与重点1. 教学难点:隐函数的偏导数求解方法,高阶偏导数的求解。

2. 教学重点:多元函数的极限与连续性,偏导数的计算,全微分的计算,复合函数的偏导数。

四、教具与学具准备1. 教具:多媒体教学设备,黑板,粉笔。

2. 学具:笔记本,笔,高等数学教材。

五、教学过程1. 实践情景引入:通过生活中的实际问题,引导学生思考多元函数的极限与连续性的重要性。

2. 知识讲解:讲解多元函数的极限与连续性的概念,并通过例题进行讲解。

3. 偏导数讲解:讲解偏导数的概念,并通过例题进行讲解。

4. 全微分讲解:讲解全微分的概念,并通过例题进行讲解。

5. 复合函数偏导数讲解:讲解复合函数的偏导数求解方法,并通过例题进行讲解。

6. 隐函数偏导数讲解:讲解隐函数的偏导数求解方法,并通过例题进行讲解。

7. 高阶偏导数讲解:讲解高阶偏导数的求解方法,并通过例题进行讲解。

8. 随堂练习:针对所学内容,进行随堂练习,巩固知识点。

六、板书设计板书设计如下:1. 多元函数的极限与连续性定义判断方法2. 偏导数定义计算方法3. 全微分定义计算方法4. 复合函数的偏导数求解方法例题5. 隐函数的偏导数求解方法例题6. 高阶偏导数求解方法例题七、作业设计1. 题目:判断下列函数在某一点的极限与连续性。

函数1:f(x, y) = (x^2 + y^2) / (x^2 + y^2)函数2:g(x, y) = x^2 + y^22. 题目:求下列函数的偏导数。

高等数学电子教案(最新版

高等数学电子教案(最新版

解决方案
理解向量的基本概念和运算规则,掌握向量的数量积、 向量积、混合积的计算方法;理解空间曲线和曲面的几 何性质,掌握空间曲线和曲面的参数方程和一般方程。
THANKS
感谢观看
高等数学的重要性与应用
总结词
高等数学在科学、工程、经济等领域有 着广泛的应用,是许多学科的基础工具 。
VS
详细描述
高等数学在科学研究、工程技术和经济发 展等领域中发挥着重要的作用。它是许多 学科的基础工具,如物理、化学、工程学 、经济学等都需要用到高等数学的知识。 通过学习高等数学,人们能够更好地理解 和分析各种复杂的现象和问题,为科学研 究和技术创新提供支持。
不定积分与定积分
不定积分的概念与性质
不定积分是微分学的逆运算,用于求函数的原函数。不定积分具有一些重要的性质,如线性性质、积 分常数性质等。
定积分的概念与性质
定积分是积分学的核心概念,用于计算平面图形面积和体积等。定积分具有一些重要的性质,如可加 性、区间可加性等。
级数与幂级数
级数的概念与性质
级数是无穷序列的和,分为收敛级数和发散 级数。级数具有一些重要的性质,如正项级 数、交错级数、几何级数等。
重积分与线积分
• 总结词:重积分与线积分是高等数学中的重要概念,它研究的是对积分区域进行积分的方法。 • 详细描述:重积分主要研究的是对二维或更高维度的区域进行积分的方法,而线积分主要研究的是对一维曲线
进行积分的方法。这些积分方法在解决实际问题中具有广泛的应用,如物理学中的质量分布问题、工程学中的 流体动力学问题等都可以用重积分与线积分来解决。 • 总结词:重积分与线积分在解决实际问题中具有广泛的应用,如物理学中的力学和热学等问题;工程学中的机 械设计和流体动力学等问题;经济学中的成本和收益等问题。 • 详细描述:在物理学中,重积分与线积分被广泛应用于描述物体的运动轨迹和质量分布

《高等数学》电子教案(New)

《高等数学》电子教案(New)

第一章预备知识授课序号01)C C C=;(2)B A B)C C C=.B A B授课序号02教学基本指标教学课题第一章第二节函数及其性质课的类型复习、新知识课教学方法讲授、课堂提问、讨论、启发、自学教学手段黑板多媒体结合教学重点单调性与奇偶性教学难点有界性充要条件、分段函数参考教材作业布置课后习题大纲要求理解集合、函数的概念,了解函数的基本性质(有界性、单调性、奇偶性和周期性)。

了解反函数的概念,会建立简单实际问题中的函数关系式。

教学基本内容一、基本概念:1、函数设和是两个变量,是一个非空的数集,如果按照某个法则,对于每个数,变量都有唯一的确定的值与之对应,则称此对应法则为定义在上的函数. 数集称为这个函数的定义域,称为自变量,称为因变量.与自变量对应的因变量的值记作,称为函数在点处的函数值. 当取值时,的对应值就是. 当取遍定义域的各个数值时,对应的函数值全体组成的数集就称为该函数的值域.2、函数的有界性设函数的定义域为,数集. 如果存在正数,使得对任一,都有,则称函数在上有界;如果这样的不存在,则称函数在上无界.3、函数的单调性设函数的定义域为,区间,如果对于区间内的任意两点及,当时,恒有,则称函数在区间内是单调增加的;如果对于区间内的任意两点及,当时,恒有,则称函数在区间内是单调减少的. 单调增加或单调减少的函数统称为单调函数.4、函数的奇偶性设函数的定义域关于原点对称(即若,则必有),如果对于任一,恒成立,则称为偶函数;如果对于任一,恒成立,则称为奇函数。

5、函数的周期性设函数的定义域为,如果存在一个正数,使得对于任一有,且恒成立,则称为周期函数,称为函数的周期,通常我们说的周期函数的周期是指最小正周期.6、反函数定义.定义2 设函数的定义域为,值域为,因为是函数值组成的数集,所以若对于任一,都有唯一的适合关系,那么就将此值作为取定的值的对应值得到一个定义在上的新函数,这个新的函数就称为的反函数,记作.这个函数的定义域为,值域为,相对于反函数而言,原来的函数就称为直接函数.二、定理与性质:函数在上有界的充分必要条件是函数在上既有上界又有下界.三、主要例题:例1求下列函数的定义域.(1); (2) .例2 讨论函数的奇偶性.例3设是定义在内的任意函数,试证:(1) 是偶函数;(2) 是奇函数.例4 求函数的反函数.例5 函数,其中为某确定的常数. 它的定义域为,值域为,它的图形是一条平行于轴的直线(图0-26),这函数称为常数函数.例6 函数的定义域为,值域,这函数称为绝对值函数.授课序号03教学基本指标教学课题第一章第三节初等函数课的类型复习、新知识课教学方法讲授、课堂提问、讨论、启发、自学教学手段黑板多媒体结合教学重点初等函数图像和性质教学难点复合函数、反三角函数参考教材作业布置课后习题大纲要求掌握基本初等函数的性质和图形;理解复合函数的概念教学基本内容一、基本概念:1、幂函数函数(是常数)称为幂函数.幂函数的定义域随而异,当时,的定义域是;当时,的定义域是;2、指数函数函数称为指数函数,定义域为,值域为.3、对数函数指数函数的反函数称为对数函数,定义域为,值域为.4、三角函数正弦函数,余弦函数,正切函数,余切函数,正割函数和余割函数统称为三角函数.5、反三角函数三角函数的反函数称为反三角函数.常用的反三角函数有如下四种:,定义域为,值域为,称为反正弦函数;,定义域为,值域为,称为反余弦函数;在区间上正切函数的反函数记作,定义域是,值域为,余切函数的反函数为,定义域是,值域为,在整个定义域上是单调递减函数二、定理与性质:一般地,若函数的定义域为,函数在数集上有定义,且对所有的,,则对于每个数值,通过有唯一确定的数值与对应,从而得到一个以为自变量,为因变量的函数,这个函数称为由函数与的复合函数,记作,其中称为中间变量.三、主要例题:例1.设,求和.例2求函数的定义域.例3设的定义域是,求的定义域.例4已知的图形,试作的图形.例5 已知的图形,试作,的图形.例6已知的图形,试作,的图形.第二章 连续与极限 授课序号04教学基本指标教学课题 第二章 第一节 数列的极限定义与计算 课的类型 复习、新知识课 教学方法 讲授、课堂提问、讨论、启发、自学 教学手段 黑板多媒体结合 教学重点 极限运算性质 教学难点 极限定义 参考教材作业布置课后习题大纲要求理解极限的概念,掌握极限四则运算法则及换元法则。

高职高专高等数学教案

高职高专高等数学教案

高职高专高等数学教案教案标题:高职高专高等数学教案教案目标:1. 确保学生掌握高等数学的基本概念、原理和方法。

2. 培养学生分析和解决实际问题的能力。

3. 提高学生的数学思维和逻辑推理能力。

教学内容:1. 函数与极限2. 导数与微分3. 积分与不定积分4. 微分方程5. 无穷级数与级数应用教学步骤:第一课:函数与极限1. 引入函数的概念,讲解函数的定义及性质。

2. 介绍极限的概念和基本性质。

3. 给出一些典型的函数极限计算例题,引导学生掌握极限的计算方法。

第二课:导数与微分1. 介绍导数的概念和基本性质。

2. 讲解导数的计算方法和常见函数的导数。

3. 引导学生通过实例理解导数的几何意义和物理意义。

第三课:积分与不定积分1. 介绍积分的概念和基本性质。

2. 讲解不定积分的计算方法和常见函数的积分。

3. 给出一些典型的积分计算例题,引导学生掌握积分的计算方法。

第四课:微分方程1. 引入微分方程的概念和基本形式。

2. 讲解一阶微分方程的求解方法。

3. 给出一些典型的微分方程求解例题,引导学生掌握微分方程的求解方法。

第五课:无穷级数与级数应用1. 介绍无穷级数的概念和基本性质。

2. 讲解级数收敛的判定方法。

3. 引导学生通过实例掌握级数求和的方法。

教学方法:1. 结合理论讲解和例题演练,注重理论与实际问题的联系。

2. 引导学生进行思维训练和逻辑推理,培养学生的问题解决能力。

3. 利用多媒体教学手段,提高教学效果和学生的学习兴趣。

评估方式:1. 课堂练习:通过课堂上的小组讨论和解题演练,检查学生对知识点的理解和掌握程度。

2. 作业批改:及时批改学生的作业,指出错误并给予指导。

3. 期中考试和期末考试:对学生进行综合性的考核,检验他们对高等数学知识的掌握情况。

教学资源:1. 高等数学教材和参考书籍。

2. 多媒体教学设备。

3. 针对高职高专高等数学的在线教学资源。

教学反思:1. 及时总结和分析学生的学习情况,调整教学策略和方法。

高等数学电子教案(大专版)

高等数学电子教案(大专版)

《高等数学》教案第一讲 函数与极限1.函数的定义 设有两个变量x ,y 。

对任意的x ∈D ,存在一定规律f ,使得y 有唯一确定的值与之对应,则y 叫x 的函数。

记作y=f(x),x ∈D 。

其中x 叫自变量,y 叫因变量。

函数两要素:对应法则、定义域,而函数的值域一般称为派生要素。

例1:设f(x+1)=2x 2+3x-1,求f(x).解:设x+1=t 得x=t-1,则f(t)=2(t-1)2+3(t-1)-1=2t 2-t-2∴f(x)=2x 2 – x – 2定义域:使函数有意义的自变量的集合。

因此,求函数定义域需注意以下几点:①分母不等于0 ②偶次根式被开方数大于或等于0 ③对数的真数大于0例2 求函数y=6—2x -x +arcsin712x -的定义域. 解:要使函数有定义,即有:1|712|062≤-≥--x x x ⇔ 4323≤≤--≤≥x x x 或⇔4323≤≤-≤≤-x x 或 于是,所求函数的定义域是:[-3,-2]Y [3,4].例3 判断以下函数是否是同一函数,为什么? (1)y=lnx 2与y=2lnx (2)ω=u 与y=x解 (1)中两函数的 定义域不同,因此不是相同的函数. (2)中两函数的 对应法则和定义域均相同,因此是同一函数. 2. 初等函数(1)基本初等函数常数函数:y=c(c 为常数) 幂函数: y=μx (μ为常数) 指数函数:y=xa (a>0,a ≠1,a 为常数) 对数函数:y=x a log (a>0,a ≠1,a 为常数)三角函数:y=sinx y=cosx y=tanx y=cotx y=secx y=cscx 反三角函数:y=arcsinx y=arccosx y=arctanx y=arccotx(2)复合函数 设),(u f y =其)(x u ϕ=中,且)(x ϕ的值全部或部分落在)(u f 的定义域内,则称)]([x f y ϕ=为x 的复合函数,而u 称为中间变量.例4:若y=u ,u = sinx ,则其复合而成的函数为y=x sin ,要求u 必须≥0,∴sinx ≥0,x ∈[2k π,π+2k π]例5:分析下列复合函数的结构(1)y=2cotx (2)y=1sin 2+x e解:(1)y=u ,u=cosv ,v=2x(2)y=ue ,u=sinv ,v=t ,t=x 2+1例6:设f(x)=2x g(x)=x 2 求f[g(x)] g[f(x)]解:f[g(x)]=f(x 2)=(x 2)2=4x g[f(x)]=g(2x )=22x3. 极限(1)定义 函数y=f(x),当自变量x 无限接近于某个目标时(一个数x 0,或+∞或—∞),因变量y 无限接近于一个确定的常数A ,则称函数f(x)以A 为极限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第9章 空间解析几何与向量代数
第1节 空间直角坐标系与向量的概念 第2节 向量的数量积与向量积 第3节 平面与直线 第4节 曲面与空间曲线
第10章 多元函数微分学
第1节 多元函数的概念、极限与连续 第2节 偏导数 第3节 全微分 第4节 多元复合函数与隐函数的微分法 第5节 偏导数在几何上的应用 第6节 二元函数的极值
第2章 极限与连续
第1节 极限的概念 第2节 极限的运算 第3节 函数的连续性
第3章 导数与微分
第1节 导数的概念 第2节 求导法则 第3节 微分
第4章 导数的应用
第1节 微分中值定理 第2节 洛必达法则 第3节 函数的单调性、极值和最值 第4节 曲线的凹凸性与拐点 第5节 函数图形的描绘 第6节 曲率
高等数学电子教案Biblioteka 第1章 第2章 第3章 第4章 第5章 第6章 第7章 第8章 第9章 第10章 第11章 第12章
函数 极限与连续 导数与微分 导数的应用 不定积分 定积分 定积分的应用 常微分方程 空间解析几何与向量代数 多元函数微分学 多元函数积分学 级数
第1章 函数
第1节 函数及其性质 第2节 初等函数
第11章 多元函数积分学
第1节 二重积分的概念与性质 第2节 二重积分的计算 第3节 二重积分的应用
第12章 级数
第1节 无穷级数的概念与性质 第2节 正项级数及其收敛性 第3节 绝对收敛与条件 第4节 幂级数 第5节 函数展开成幂级数 第6节 傅立叶级数
第5章 不定积分
第1节 不定积分的概念与性质 第2节 不定积分的积分方法
第6章 定积分
第1节 定积分的概念与性质 第2节 定积分基本公式 第3节 定积分的积分方法 第4节 广义积分
第7章 定积分的应用
第1节 定积分的几何应用 第2节 定积分在物理学中的应用
第8章 常微分方程
第1节 常微分方程的基本概念 第2节 一阶微分方程与可降阶的高阶微分方程 第3节 二阶常系数线性微分方程 第4节 微分方程的应用
相关文档
最新文档