中值定理及其应用课件

合集下载

数学分析第六章微分中值定理及其应用课件1

数学分析第六章微分中值定理及其应用课件1
即 f '() 0
例如, f ( x) x2 2x 3 ( x 3)(x 1).
在[1,3]上连续, 在(1,3)上可导, 且 f (1) f (3) 0,
f ( x) 2( x 1), 取 1, (1 (1,3)) f () 0.
几何解释:
y
C
在曲线弧AB上至少有一
点C , 在该点处的切线是
二、拉格朗日(Lagrange)中值定理
拉格朗日(Lagrange)中值定理 (1)如果函数 f(x)在 闭区间[a, b]上连续(,2在) 开区间(a, b) 内可导,那末在 (a, b)内至少有一点(a b),使等式
f (b) f (a) f ' ()(b a) 成立.
注意 : 与罗尔定理相比条件中去掉了 f (a) f (b). 结论亦可写成 f (b) f (a) f (). ba
使 f ( x) 0.
又例如,
y
1 0,
x, x
x 0
(0,1] ;
y x, x [0,1].
例1 证明方程 x5 5x 1 0 有且仅有一个小于
1 的正实根.
证 设 f ( x) x5 5x 1, 则 f ( x)在[0,1]连续,
且 f (0) 1, f (1) 3.
由介值定理
所得曲线a, b两端点的函数值相等.
作辅助函数
F ( x) f ( x) [ f (a) f (b) f (a) ( x a)]. ba
F ( x) 满足罗尔定理的条件,
则在(a, b)内至少存在一点, 使得 F () 0.
即 f () f (b) f (a) 0 ba
或 f (b) f (a) f ()(b a).
拉格朗日中值公式

《中值定理》课件

《中值定理》课件

魏尔斯特拉斯逼近定理
魏尔斯特拉斯逼近定理是中值定理中的一种,它指出任何连续函数都可以中值定理是中值定理中的一种,它描述了函数在一个区间内存在某个点,该点处的瞬时变化率等于该区间 平均变化率的值。
柯西中值定理
柯西中值定理是中值定理中的一种,它更具有一般性,适用于实数区间和复 数区间上的函数。它指出了当两个函数经过某个点处函数值相等时,这两个 函数在某个点处的导数也相等。
《中值定理》PPT课件
欢迎来到本次关于《中值定理》的PPT课件。在这个课件中,我们将深入探讨 中值定理的定义、数学表述、证明以及应用,并比较三种不同中值定理之间 的异同。接下来,让我们开始吧!
什么是中值定理
中值定理是微积分中的重要定理之一,它研究函数在一个区间上的平均变化率与瞬时变化率之间的关系。它包括三 种不同的定理,分别是魏尔斯特拉斯逼近定理、拉格朗日中值定理和柯西中值定理。
总结
通过比较三种不同中值定理的异同,我们能更好地了解它们在解决不同问题 时的特点和适用范围。中值定理在微积分、数学物理以及其他领域都有广泛 的应用。继续深入学习中值定理,将为你的数学知识打下坚实的基础。

第三章中值定理与导数的应用课件

第三章中值定理与导数的应用课件
那么在(a,b)内至少有一点 使等式
f (b) f (a) f ' ( ) 成立 F (b) F (a) F ' ( )
例1:验证罗尔定理对函数y ln sin x在区间
[
6
,
5
6
]的正确性
解:y ln sin x在[ , 5 ]上连续
66
y ln sin x在( , 5 )上可导
66
lim 2 cos3x 3 1 x0 3 cos2x 2
例6:求
lim
x
xn ex
(n 0, 0)
解:lim xn lim n xn1 lim n (n 1) xn2
e e x x x
x x
2 ex
lim n! 0
x n ex
例7:求 lim x sin x
且f ( ) ln 1 f (5 )
6
2
6

y'
c os x
ctgx

0
x
(
, 5 )sin x源自2 662罗尔定理正确
例2:证明arctgx arcctgx
2
证 : (arctgx arcctgx)' 1 1 0 1 x2 1 x2
arctgx arcctgx c
取x 1 c c
若f (x)是一般的函数,且它存在直到n 1 阶的导数,那么
n
f (x)
f (k) (a) (xa)k ?
k 0 k!
泰勒(Taylor)中值定理
泰勒(Taylor)中值定理 如果函数 f ( x)在含有 x0 的某个开区间(a, b)内具有直到(n 1)阶的导数,则
当 x在(a, b)内时, f ( x)可以表示为( x x0 )的一个

《积分中值定理》课件

《积分中值定理》课件
积分中值定理在实数理论中有重要应用, 如证明实数的连续性、稠密性等性质。
在其他数学领域的应用实例
复变函数
积分中值定理在复变函数中有广泛的应用, 如在解决柯西积分公式、留数定理等问题时 起到关键作用。
概率论与数理统计
积分中值定理在概率论与数理统计中有重要 应用,如在计算期望、方差等统计量时起到 关键作用。
03
综上所述,积分中值定理是一个具有 重要性和意义的数学定理。在未来的 研究中,我们需要进一步深入探索其 应用范围和条件,并尝试将其应用于 更广泛的领域,以推动数学和其他学 科的发展。
THANKS
感谢观看
利用微积分基本定理证明积分中值定理
总结词
通过利用微积分基本定理和函数的单调性,证明积分中值定理。
详细描述
首先,我们选取一个连续函数$f(x)$,并设其在区间$[a, b]$上非负且不恒为零。然后 ,我们证明函数$F(x) = int_{a}^{x}f(t)dt$在$[a, b]$上单调增加。由于$F(x)$单调增加 ,存在一个点$c in (a, b)$使得$frac{F(b) - F(a)}{b - a} = f(c)$。最后,我们得出结论
对积分中值定理未来的研究方向和展望
01
积分中值定理的研究已经取得了丰硕 的成果,但仍有许多值得探索的问题 。例如,对于更一般的函数空间和更 复杂的积分问题,如何应用积分中值 定理进行有效的处理?这需要我们进 一步深入研究积分中值定理的适用范 围和条件。
02
随着数学和其他学科的不断发展,积 分中值定理的应用领域也在不断扩大 。未来,我们可以尝试将积分中值定 理应用于更广泛的领域,如金融、经 济、生物等,以解决实际问题。同时 ,我们也可以探索积分中值定理与其 他数学理论的交叉应用,以推动数学 的发展。

《中值定理应用》PPT课件

《中值定理应用》PPT课件
x x0 x x0
(2) f , g在( x0 , x0 )可导 , 且g( x) 0,
f ( x ) ( 3) lim a , ( a 为 有 限 实 数 或 无 穷 大 ) x x0 g( x )
0 ( ) 0
f ( x ) f ( x) lim a . 则 : lim x x x x0 g ( x ) 0 g( x )
在[0, x0 ]上连续, 在(0, x0 )上可导, 且
F (0) F ( x0 ) 0, 则根据 Rolle 定理
(0, x0 ), 使
n n1 F ( ) (a0 x a1 x an1 x )
[na0 x
n1
a1 (n 1) x
f (a ) k f (a ) f (b) f (b) k G (a ) G (b) a b ab
8
因此 (a, b), 使
f ( x) k G( ) 0 x x f ( ) ( f ( ) k ) 即 0 2
16
证 由条件(1), 若f ( x)在x0点不连续 , 只要
补充定义 : f ( x0 ) g( x0 ) 0, 则 f , g 均在
又 g( x ) 0, 因而 f , g满足Cauchy中值定理
且在( x0 , x0 )内可导, [ x0 , x0 ]上连续,
即有

1 x (k ) 1 (k 3,4,, n) ak (e ) 归纳地可得: k! k! x 0
24
于是所求的 n 次多项式为:
Pn ( x) a0 a1 x a2 x an x 1 2 1 n 1 x x x 2! n! 1 2 1 n n x 1 x x x o ( x ) 而 f ( x) e 2! n! f (0) 2 f ( n ) ( 0) n n f ( 0) f ( 0) x x x o( x ) 2! n!

《中值定理应用》课件

《中值定理应用》课件

物理学
在物理学中,中值定理被用于解释和预测流体动力学、 电磁学等领域的现象,为物理学家提供了重要的工具。
中值定理的未来研究方向
深化理解
未来研究中,需要进一步深化对中值定理的理解,探索其在数学和其他领域中的更多应用。
交叉学科应用
鼓励跨学科的研究,将中值定理与其他数学分支或其他领域的知识相结合,开拓新的应用领域。
拉格朗日中值定理
如果一个函数在闭区间上连续,开区 间上可导,则存在至少一个点,使得 在该点的导数等于函数在该区间内平 均变化率的乘积。
在微分学中的应用
泰勒中值定理
任何在闭区间上连续的函数都可以用多项式 函数来近似,多项式的阶数取决于所要求的 精度。
柯西中值定理
如果两个函数在闭区间上连续,开区间上可 导,且在区间两端取值相等,则至少存在一 个点,使得两个函数在该点的导数之比等于 它们在该区间内平均变化率的比值。
中值定理应用
目录
CONTENTS
• 中值定理简介 • 中值定理的应用场景 • 中值定理在数学分析中的应用 • 中值定理在其他领域的应用 • 中值定理的最新研究进展
01 中值定理简介
中值定理的定义
罗尔定理
拉格朗日中值定理
柯西中值定理
如果函数$f(x)$在闭区间$[a,b]$上连 续,在开区间(a,b)上可导,且 $f(a)=f(b)$,那么在开区间(a,b)内至 少存在一点$xi$,使得$f'(xi)=0$。
中值定理在数学研究中的新进展
新的证明方法
近年来,数学家们不断探索中值定理的新证明方法, 使得定理的证明更加简洁明了,有助于加深对中值定 理的理解。
扩展到高维空间
随着数学的发展,中值定理的应用范围逐渐扩展到高 维空间,为解决高维数学问题提供了新的思路和方法 。

《微分学中值定理》课件

《微分学中值定理》课件
a. 证明f(x)在区间[a,b]上连续 b. 证明f(x)在(a,b)内可导 c. 利用极限的定义证明柯西定理
结论:柯西定理是微分学中值定理的一个重要结果,对于理解微 分学的基本概念和定理具有重要意义。
单击此处输入你的项正文,文字是您思想的提炼,言简意赅的阐述观点。 Nhomakorabea04
微分学中值定理的推论
推论一:若函数在某区间内可导,则函数在该区间内单调
推论二:若函数在某区间内可导,则函数在该区间内至多 存在一个极值点
极值点的定义:函数在某点处的导数为0,且该点两侧的导数符号相 反
极值点的存在性:若函数在某区间内可导,则函数在该区间内至多 存在一个极值点
极值点的唯一性:若函数在某区间内可导,且该区间内只有一个极 值点,则该极值点为函数的最大值或最小值
极值点的应用:在微分学中,极值点是研究函数性质的重要工具, 可以用于求解函数的最大值和最小值,以及判断函数的单调性等。
推论三:若函数在某区间内可导,则函数在该区间内取得 极值的必要条件
必要条件:函数在某区间内可导
极值:函数在某点处的值大于或小于其附近点的值
证明:通过微分学中值定理的推论,可以证明函数在某区间内取得极值的必要条件
利用微分学中值定理解决实际问题
实例1:求解函数在某点处的导 数
实例2:求解函数在某区间上的 最大值和最小值
实例3:求解函数在某点处的斜 率
实例4:求解函数在某点处的切 线方程
06
微分学中值定理的扩展
泰勒定理与微分学中值定理的关系
泰勒定理是微分 学中值定理的推 广和延伸
泰勒定理将微分 学中值定理中的 函数值扩展到函 数值和导数值
应用:在解决实际问题时,可以利用这个推论来判断函数是否取得极值,从而找到最优解

高中数学(人教版)第6章微分中值定理及其应用拉格朗日定理和函数的单调性课件

高中数学(人教版)第6章微分中值定理及其应用拉格朗日定理和函数的单调性课件
b a , a b.
注 例3中的不等号可以成为严格的. 事实上, 当
0 a b 和 a b 0时, 显然不为零, 严格不等
式成立.
罗尔定理与拉格朗日定理
当 a 0 b 时,
存在 1 (0, b), 2 (a , 0), 使得
arctan b arctan a arctan b arctan 0 arctan 0 arctan a
x x0
x x0
罗尔定理与拉格朗日定理
证 分别按左右极限来证明.
(1) 任取 x U ( x0 ), f ( x ) 在 [ x0 , x] 上满足拉格朗日
定理条件, 则存在 ( x0 , x ), 使得
f ( x ) f ( x0 ) f ( ). x x0
多项式, 所以 p( x )在[x1 , x2 ]上满足罗尔定理的条件,
从而存在 (a, b), 使得 p( ) 0, 这与条件矛盾. 又若 p( x ) 有一个 k 次重根 x0 , 则
p( x ) ( x x0 )k p1 ( x ), k 2.
( x ), 因为 p( x ) k ( x x0 )k 1 p1 ( x ) ( x x0 )k p1
3.若 f (x) 在(a, b) 上可微, [a, b] 上连续, 则对于任意
x (a , b], 存在 (a , x ), 使
f ( x ) f (a ) f ( )( x a ),
当 x a 时, 必有 a . 从等式
由于x0 x , 因此当x x0 时,随之有 x0 ,
对上式两边求极限,便得
f ( x ) f ( x0 ) lim lim f ( ) f ( x0 0). x x0 x x0 x x0

Lagrange中值定理PPT演示课件

Lagrange中值定理PPT演示课件

拉格朗日中值定理的应用
思考1:
假设F ( x)定义在a, 上,具有n阶导数,满足
1 F (a) F (a) F n1 (a) 0; 2 x a, , F n ( x) 0. 证明:x a, , F ( x) 0.
思考2:
设f x为非常值非线性函数,在
[a, b]上可导,则 (a, b),使得 f ( ) f (b) f (a)
h
注 以 3为例,中值 h是关于h的函数为隐函数.
6
拉格朗日中值定理的应用
应用例题1 证明不等式:x 0时, x ln(1 x) x. 1 x
分析: x ln(1 x) x 1 ln(1 x) ln1 1.
1 x
1 x
x
证明: 考虑函数f (t ) ln(t), f (t )在[1,1 x]上连续,
A
N
f (a) f (b).
直线AB的方程:
o a 1 x
y f (a) f (b) f (a) (x a) ba
f
x
f
(a
)
f
(b) b
f a
(a)
(
x
a)
F(x)
F ( x)在a, b两端点的函数值相等.
B
D
2 b x
3
拉格朗日中值定理
f
x
f (a)
f
(b) b
f a
(a)
则对x
R,
1 x2
f
( x)
1 1 x2
1 x2
1 1 x2
1 x2 x2
1 x2 1 x2
0.
由拉格朗日定理的推论知f ( x) C .又f (0) 0,故等式成立.

高等数学第三章第一节中值定理课件.ppt

高等数学第三章第一节中值定理课件.ppt
及 满足 :
(1) 在闭区间 [ a , b ] 上连续
(2) 在开区间 ( a , b ) 内可导
(3)在开区间 ( a , b ) 内 至少存在一点
使
f (b) f (a) F (b) F (a)
f ( ) . F( )
分析: F(b) F(a) F()(b a) 0 a b
要证 f (b) f (a) F( ) f ( ) 0
且 x0 I , 使 f (x0 ) C0.
自证: arctan x arccot x , x (, )
2
例3. 证明不等式 x ln(1 x) x (x 0). 1 x
证: 设 f (t) ln(1 t) ,
中值定理条件, 因此应有
即 因为

三、柯西(Cauchy)中值定理

2. 设 f (x) 0 , f (0) 0 证明对任意 x1 0, x2 0 有
f (x1 x2 ) f (x1) f (x2 ) 证:不妨设 0 x1 x2
f (x1 x2) f (x2) f (x1)
f (x1 x2) f (x2) f (x1) f (0)
上面两式相比即得结论. 错!
柯西定理的几何意义:
弦的斜率 切线斜率
注意:
x F (t)
y
f
(t)
d y f (t) d x F(t)
y
f (b)
f (a)
o F(a)F( )
F (b) x
例4. 设
至少存在一点
使
证: 结论可变形为
证明
设 F (x) x2, 则 f (x), F(x) 在 [0, 1] 上满足柯西中值 定理条件, 因此在 ( 0 , 1 ) 内至少存在一点 , 使

微分中值定理与导数的应用课件

微分中值定理与导数的应用课件
x
ex x
,
0
.
29
第30页/共112页
例6
tan x lim x tan3x
证 设 f (t) ln(1 t),
f (t)在[0, x]上满足拉格朗日定理的条件,
f ( x) f (0) f ()(x 0), (0 x)
f (0) 0, f ( x) 1 , 由上式得 1 x
ln(1 x) x , 1
又0 x
111 x
1 1 1, 1 x 1
(2) 若 M m. f (a) f (b),
最值不可能同时在端点取得. 设 M f (a),
则 (a, b),使 f ( ) M .
由费马引理,
f ( ) 0 .
5
第6页/共112页
注意: 如果定理的三个条件有一个不满足,则定理的结论就可能不成立。
y
y
y
B
A
B
A
B
A
aO
bx a O c bx a O
而 f (0) , 且 f (1) f (1) ,
2
2
故 f ( x) , x 1,1 .
2
类似可得: arctan x arccot x , x R .
2 15
第16页/共112页
利用拉格朗日定理可证明不等式.
例5 证明: 1 ln b 罗尔(Rolle)定 理 如果函数yf(x)满足条件:(1)在闭区间[a, b]上连续,(2)在开区间(a, b)内可
导,(3) f(a)f(b),则至少存在一点(a, b),使得f () 0。
几何解释:
如果连续光滑的曲线 yf(x) 在端点 A、B 处的 纵坐标相等。那么,在 曲线弧上至少有一点

高等数学《中值定理-泰勒》课件

高等数学《中值定理-泰勒》课件

3x 4 2
1
3 4
x
2
1
1 2
(
3 4
x)
21!
1 2
(
1 2
1)
(
3 4
x)2
o(
x2
)
2
3 4
x
1 4
9 16
x2
o( x2 )
4 3x
2
3 4
x
1 4
196
x2
o( x2 )
原式
lim
x0
1 2
9 16
x2
o(
x2
)
x2
9 32
例7 证明
证明
1
1 x (1 x)2
1 x 1 1 (1 1)x2 2 2! 2 2
使其精确到0.005,试确定 x 的适用范围.
解 近似公式的误差
R3(x)
x4 cos( x)
4!
x4 24

x 4 0.005
24
解得 x 0.588
即当 x 0.588 时,由给定的近似公式计算的结果
能准确到 0.005 .
例6 求
用洛必塔法则
解 用泰勒公式将分子展到 x2 项,由于 不方便 !
由f(x)、Pn(x)的性质知,Rn(x)在(a ,b)内
有直至(n+1)阶的导数,且有
Rn(n1) (x) f (n1) (x)
而 Rn (x0) Rn(x0) Rn(n) (x0) 0
对于函数Rn(x)与(x-x0)n+1在以 x0、x 为端 点的区间上,应用柯西中值定理,则有
பைடு நூலகம்(x
x
x0
n1

数学分析 第六章 中值定理ppt课件

数学分析 第六章 中值定理ppt课件

即f()f(b )f(a)0
ba f()f(b)f(a).
ba
或 f ( b ) f ( a ) f ()b ( a ).
25.03.2020
拉格朗日中值公式
18
f(b ) f(a ) f()b ( a ). 拉格朗日公式
在区[a间 ,x]上用 L定理得 f(x ) f( a ) f()(x a ).
且 f( 0 ) 1 ,f( 1 ) 3 . 由零点定理 x 0 ( 0 ,1 )使 ,f( x 0 ) 0 .即为方程的小于1的正实根. 设x 1 另 (0 ,1 )x 有 1 , x 0 , 使 f(x1)0. f(x)在x0,x1之间满足罗尔 件定理的条
至少存 (在 x 在 0,x 1之 一 )使 ,间 个 得 f()0.
f(x ) 2 (x 1 ),取 1 ,(1 ( 1 ,3 ))f()0.
25.03.2020
9
【证】 f(x)在 [a,b]连,续 必有最M 大 和值 最小 m. 值 (1)若 Mm. 则f(x)M .
由此 f(x得 )0. (a,b), 都f有 ()0.
(2)若 Mm . f(a)f(b), 最值不可能同时在取端得.点设 Mf(a),
2
22
例4 若 f ( x ) g ( x )则 ,f ( x ) g ( x ) C .
证明: 令 F (x ) f(x ) g (x ) F ( x ) f ( x ) g ( x ) 0 ,
F (x ) C , 即 f(x ) g (x ) C .
25.03.2020
23
f ( b ) f ( a ) f ( ) b a ( )( ( a , b ) ).
f ( x ) f ( a ) f () ( x a )(介 x ,a 之 于 ).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档