(完整版)中值定理及其应用
中值定理及函数应用

拉格朗日中值定理的名称来源于法国数学家拉格朗日,他在18世纪中叶证明了 这一定理。该定理是微分学中的基本定理之一,是解决各种问题的关键工具。
柯西中值定理
总结词
柯西中值定理是微分学中的又一重要定理,它指出如果两个函数在闭区间上连续,在开区间上可导,且在该区间 内至少存在一点,使得两个函数的导数之比等于这两个函数在该点的函数值之比,则在该区间内至少存在一点, 使得该点的导数等于两个函数在该点的函数值的商的导数。
中值定理及函数应用
目 录
• 中值定理简介 • 中值定理的应用 • 函数的应用 • 中值定理与函数的应用实例 • 中值定理与函数的应用前景
01 中值定理简介
罗尔定理
总结词
罗尔定理是微分学中的基本定理之一,它指出如果一个函数 在闭区间上连续,在开区间上可导,且在区间的两端取值相 等,则在开区间内至少存在一点,使得该点的导数为零。
极值的计算
通过求导数,找到导数为0的点,然后判断该点两侧的函数值变化情况,确定是否为极值 点,并计算出极值。
函数的单调性
单调性的概念
单调性是指函数在某个区间内单调增加或单调减少的性质。
单调性的判定
通过一阶导数来判断函数的单调性,当一阶导数大于0时,函 数在该区间内单调增加;当一阶导数小于0时,函数在该区间
在物理学中,中值定理的应用非常广泛。例 如,在研究热力学中的热传导和热辐射时, 可以利用中值定理来推导一些重要的结论。
03 函数的应用
函数的极值
极值的概念
极值是函数在某点附近取得的最大或最小值,它反映了函数在某一点上的变化率。
极值的判定
通过一阶导数和二阶导数来判断函数的极值,当一阶导数等于0且二阶导数大于0时,函 数在该点取得极小值;当一阶导数等于0且二阶导数小于0时,函数在该点取得极大值。
关于高等数学常见中值定理证明及应用

中值定理首先我们来看看几大定理:1、介值定理:设函数fx在闭区间a,b上连续,且在该区间的端点取不同的函数值fa=A及fb=B,那么对于A与B之间的任意一个数C,在开区间a,b内至少有一点ξ使得fξ=Ca<ξ<b.Ps:c是介于A、B之间的,结论中的ξ取开区间;介值定理的推论:设函数fx在闭区间a,b上连续,则fx在a,b上有最大值M,最小值m,若m≤C≤M,则必存在ξ∈a,b, 使得fξ=C;闭区间上的连续函数必取得介于最大值M与最小值m之间的任何值;此条推论运用较多Ps:当题目中提到某个函数fx,或者是它的几阶导函数在某个闭区间上连续,那么该函数或者其几阶导函数必可以在该闭区间上取最大值和最小值,那么就对于在最大值和最小值之间的任何一个值,必存在一个变量使得该值等于变量处函数值;2、零点定理:设函数fx在闭区间a,b上连续,且fa与fb异号,即fa.fb<0,那么在开区间内至少存在一点ξ使得fξ=0.Ps:注意条件是闭区间连续,端点函数值异号,结论是开区间存在点使函数值为0.3、罗尔定理:如果函数fx满足:1、在闭区间a,b上连续;2、在开区间a,b内可导;3、在区间端点处函数值相等,即fa=fb.那么在a,b内至少有一点ξ<aξ<b,使得f`x=0;4、 拉格朗日中值定理:如果函数fx 满足:1、在闭区间a,b 上连续;2、在开区间a,b 内可导;那么在a,b 内至少有一点ξ<a ξ<b,使得fb-fa=f`ξ.b-a.5、 柯西中值定理:如果函数fx 及gx 满足1、在闭区间a,b 上连续;2、在开区间a,b 内可导;3、对任一xa<x<b,g`x ≠0,那么在a,b 内至少存在一点ξ,使得Ps :对于罗尔定理、拉格朗日中值定理、柯西中值定理结论都是开开区间内取值;6、 积分中值定理:若函数fx 在a,b 上连续,则至少存在一点],[b a ∈ξ使得)()()(a b f dx x f ba -=⎰ξPs :该定理课本中给的结论是在闭区间上成立;但是在开区间上也是满足的,下面我们来证明下其在开区间内也成立,即定理变为:若函数fx 在a,b 上连续,则至少存在一点),(b a ∈ξ使得)()()(a b f dx x f b a -=⎰ξ证明:设⎰=x a dx x f x F )()(,],[b a x ∈因为)(x f 在闭区间上连续,则)(x F 在闭区间上连续且在开区间上可导导函数即为)(x f ;则对)(x F 由拉格朗日中值定理有:),(b a ∈∃ξ使得a b dxx f a b a F b F F b a -=--=⎰)()()()`(ξ而)()`(ξξf F =所以),(b a ∈∃ξ使得)()()(a b f dx x f ba -=⎰ξ;在每次使用积分中值定理的时候,如果想在开区间内使用,我们便构造该函数,运用拉格朗日中值定理来证明下使其在开区间内成立即可;千万不可直接运用,因为课本给的定理是闭区间;定理运用:1、设)(x f 在0,3上连续,在0,3内存在二阶导函数,且⎰+==20)3()2()()0(2f f dx x f f . 证明:1)2,0(∈∃η使)0()(f f =η2)3,0(∈∃ξ使0)``(=ξf证明:先看第一小问题:如果用积分中指定理似乎一下子就出来了,但有个问题就是积分中值定理是针对闭区间的;有的人明知这样还硬是这样做,最后只能是0分;具体证明方法在上面已经说到,如果要在开区间内用积分中指定理,必须来构造函数用拉格朗日中值定理证明其在开区间内符合;1、令]2,0[),()(0∈=⎰x x F dt t f x则由题意可知)2,0(]2,0[)(上连续,在x F 内可导. 则对)(x F 由拉格朗日中值定理有:2、对于证明题而言,特别是真题第一问证明出来的结论,往往在第二问中都会有运用,在做第二问的时候我们不要忘记了第一问证明出来的东西,我们要时刻注意下如何将第一问的东西在第二问中进行运用:第二问是要证明存在点使得函数二阶倒数为0,这个很容易想到罗尔定理来证明零点问题,如果有三个函数值相等,运用两次罗尔定理那不就解决问题啦,并且第一问证明出来了一个等式,如果有fa=fb=fc,那么问题就解决了;第一问中已经在0,2内找到一点,那么能否在2,3内也找一点满足结论一的形式呢,有了这样想法,就得往下寻找了,)3()2()0(2f f f +=,看到这个很多人会觉得熟悉的,和介值定理很像,下面就来证明:]3,0[)(在x f 上连续,则在]3,2[上也连续,由闭区间上连续函数必存在最大值和最小值,分别设为M,m;则.)3(,)2(M f m M f m ≤≤≤≤从而,M f f m ≤+≤2)3()2(,那么由介值定理就有: 则有罗尔定理可知:0)`(),,0(11=∈∃ξηξf ,0)`(),,(22=∈∃ξηξf cPs :本题记得好像是数三一道真题,考察的知识点蛮多,涉及到积分中值定理,介值定理,最值定理,罗而定理,思路清楚就会很容易做出来;2、设fx 在0,1上连续,在0,1内可导,且f0=0,f1=1.证明:ξξξ-=∈∃1)()1,0()1(f 使得、本题第一问较简单,用零点定理证明即可;1、首先构造函数:]1,0[,1)()(∈-+=x x x f x F由零点定理知:ξξξξ-==∈∃1)(,0)()1,0(f F 即使得2、初看本问貌似无从下手,但是我们始终要注意,对于真题这么严谨的题目,他的设问是一问紧接一问,第一问中的结论或多或少总会在第二问中起到作用;在想想高数定理中的就这么些定理,第一问用到的零点定理,从第二问的结论来看,也更本不涉及什么积分问题,证明此问题也只可能从三大中值定理出发,具体是哪个定理,得看自己的情况,做题有时候就是慢慢试,一种方法行不通,就换令一种方法,有想法才是最重要的,对于一道题,你没想法,便无从下手;另外在说一点,在历年证明题中,柯西中值定理考的最少;本题结论都涉及一阶倒数,乘积之后为常数,很可能是消去了变为1你题目做多了,肯定就知道事实就是这样.并且第一问中0与1之间夹了个ξ,如果我们在0与ξ,ξ与1上对)(x f 运用拉格朗日中值定理似乎有些线索;写一些简单步骤,具体详细步骤就不多写了:将第一问中)(ξf 代入即可;Ps :本题是05年数一的一道真题,第一问是基本问题,送分的,第二问有一定区分度,对定理熟练的会容易想到拉格朗日定理,不熟练的可能难以想到方法;做任何题,最重要的不是你一下子就能把题目搞出来,而是你得有想法,有想法才是最重要的,有了想法你才能一步步的去做,如果行不通了,在改变思路,寻求新的解法,如果你没想法,你就根本无从下手;3、设函数fx 在闭区间0,1上连续,在开区间0,1内可导,且f0=0,f1=1/3.对于这道题的结论比较有意思,比较对称,另外一个就是结论的条件,为何要把ηξ、放在两个范围内,不像上一题中直接来个)1,0(∈ξη、,这个分界点1/2 的作用是干吗的;很可能也是把1 /2当做某一个点就像上一题中的ξ,是否要用到拉格朗日中值定理呢,这是我们的一个想法;那具体的函数如何来构造呢,这个得从结论出发,22)`()`(ηξηξ+=+f f我们把等式变一下:0)`()`(22=-+-ηηξξf f ,2)`(ξξ-f 这个不就是331)(ξξ-f 关于ξ的导数而且题目中f1=1/3,貌似这样有点想法了,本题会不会也像上一题那样,运用拉格朗日中值定理后相互消掉变为0呢,有了这些 想法我们就要开始往下走了:先来构造一个函数:0)`()`(=+ξηF F 刚好证明出来;Ps :本题是近几年数二的一道真题,只有一问,有比较大区分度的,得从条件结论互相出发,如何构造出函数是关键;做出来之后我们反过来看这个1/2的作用就知道了,如果只给)1,0(∈ξη、,那就更难了 得自己找这个点,既然题中给了这个点,并且把两个变量分开在两个区间内,我们就对这两个变量在对应区间用相应定理;说明真题出的还是很有技巧的;一般设计难一点的中值定理证明,往往得用拉格朗日定理来证明,两个变量,都涉及到导数问题,这是因为拉格朗日中值定理条件要少些,只需连续,可导即可,不像罗尔定理得有式子相等才可进一步运用;4.设fx 在区间-a,aa>0上具有二阶连续导数,f0=01、写出fx 的带拉格朗日余项的一阶麦克劳林公式2、证明在-a,a 上至少存在一点η使得⎰-=aa dx x f f a )(3)``(3η第一问课本上记住了写出来就行,考的很基础1、22!2)``()0`(!2)``(!1)0`()0()(x f x f x f x f f x f ξξ+⋅=++=2、第二问先将第一问的式子fx 代入看看有什么结果出来⎰⎰--⋅=a a aa dx x f dx x f 22)``()(ξ,)``(ξf 此处不能直接拿到积分号外面,因为他不是与x 无关的数;做到这儿,我们想办法把他弄到积分号外面似乎就能出来,有了这样想法就得寻求办法;题目中说道fx 有二阶连续导数,为何要这样说呢,我们知道连续函数有最大值,最小值,往往会接着和介值定理一起运用;所以有:因为fx 有二阶连续导数,所以存在最大值和最小值,设为M,m 则对于区间-a,a,222)``(,)``(Mx x f mx M x f m ≤⋅≤≤≤ξ所以由介值定理有结论成立;Ps :本题是以前的一道真题,具体哪年也记不得了,主要就是考到介值定理的运用;题目中说的很明白的,有二阶连续导数,往往当题目中提及到什么连续啊,特别是对于导函数连续的,我们总得注意下他有最大值,最小值,进而与介值定理联合运用;5、设fx 在],0[π上连续,且0cos )(,0)(00=⋅=⎰⎰ππxdx x f dx x f .证明:在),0(π内至少存在两个不同点0)()(2121==ξξξξf f 使得、本题看似很简洁,但做起来去不容易;结论是证明等式成立且为0,很容易让我们想到罗尔定理,我们如果能找到三个点处函数值相等,那么是不是就能有些思路了呢;令:],0[,)()(0π∈=⎰x dt t f x F x ,0)()0(==πF F似乎只需在找出一点Fc=0即可;,如果一切如我们所想,证明也就完成了;0)(sin )(cos )(cos cos )(0000=⋅+⋅==⋅⎰⎰⎰ππππdx x F x x F x x xdF xdx x f 似乎已经找到这个点了;但是积分中值定理中,是取闭区间,如果要用的话得先构造函数用拉格朗日中值定理来证明其在开区间内成立;构造函数],0[,)(sin )(0π∈⋅=⎰x dt t F t x G x 具体的证明步骤和上面涉及到的一样,自己去证;证完后就得到所以有:),0(,0)()()0(ππ∈===c F c F F接下来的证明就和第一题中第二小问一样了,具体就不去证明了,自己证,关键掌握方法,思路;Ps :本题是02年左右的数一一道证明题,看看题目很简洁,但具体来做,如果对定理的运用不熟练,还是不好弄出来;本题中涉及到积分,而且又要证明等式成立且为0,容易想到积分中值定理,以及罗尔定理;但是积分中值定理是对于闭区间而言,而我们要用到开区间,只能自己构造函数来证明其在开区间内成立,如果在实际做题的时候你不证明直接用,估计一半的分都没了;本题关键的就是寻找这个点C,找出来了其他的都不是问题,既然是关键点,那得分点也肯定最多了,你不证明这个点,直接套用课本中定理如果用的话,得分类讨论了,硬是说C 点就成立,那估计一半的分都没了;对于中值定理这章,就先给出上面一些经典的题目,大家好好体会下,多做些题,多思考;下面来讲讲对于证明题中的,函数如何来构造:基本上都是从结论出发,运用求导或是积分,或是求微分方程,解出来也可;本人自己总结了一些东西,与大家交流下:首先我们来看看一些构造函数基本方法:一、要证明的等式是一阶导数与原函数之间的关系:一般都会构造出为任意常数或者或者n x e e XXX x g n x x ,)(-⋅=1、如果只是单纯导函数和原函数之间关系,想想构造带有x x e e -或者)()`(x f x f = 可以构造x e x f x g -⋅=)()(0)()`(=+x f x f 可构造x e x f x g ⋅=)()(λ=+)()`(x f x f 可构造x x e e x f x g ⋅-⋅=λ)()()()(x f dt t f xa =⎰这个也是原函数与一阶导函数问题,构造函数⎰⋅=-x a x dt t f e x g )()( 先将其变形下:x x f x f λλ-=-1)()`(左边是导函数与原函数关系可构造:x e x f λ-⋅)(右边可以看成是x x λ-`也成了导函数和原函数之间关系,如是可以构造:x e x λ-⋅从而要构造的函数就是:x e x x f x g λ--=))(()(2、如果还涉及到变量X,想想构造n x0)()`(=+x f x xf 可构造x x f x g ⋅=)()(xx f x f )(2)(-=可构造2)()(x x f x g ⋅= 0)()`(=+x nf x xf 可构造n x x f x g ⋅=)()(3、另外还可以解微分方程来构造函数:如0)`()(=+x f x xf二、二阶导数与原函数之间关系构造带有x x e e -或者如何构造如下:)()`()`()``(x f x f x f x f +=+对于此式子,你会不会有所想法呢,在上面讲到一阶导函数与原函数之间的构造方法,等式前面也可以看成是一阶导函数与原函数只不过原函数是)`(x f 之间关系,从而等式左边可以构造x e x f ⋅)`(等式右边可以构造x e x f ⋅)(总的构造出来函数为:x e x f x f x g ⋅-=))()`(()(另:如果这样变形:构造函数如下:x e x f x f x g -⋅+=))()`(()(,可以看上面原函数与导函数之间关系如何构造的;从而对于此函数构造有两种方法,具体用哪一种构造得看题目给的条件了;如果题目给了)()`(x f x f -为什么值可以考虑第一中构造函数,如果题目给了)()`(x f x f +,则可以考虑第二种构造方法;先变形:变成一阶导函数和原函数之间关系这个函数确实不好构造,如果用微分方程来求会遇到复数根;实际做的时候还得看题目是否给了)`(x f 的一些条件,如果在某个开区间内不为0,而构造出来的函数在闭区间端点取值相等,便可用罗而定理来证明;具体来看看题目:1、 设)(x f 在0,1上连续,在0,1内可导,且f0=f1=0,f1/2=1证明:2、存在1)()`(),,0(+-=∈ηηηξηf f 使得1、对一问直接构造函数用零点定理:x x f x F -=)()(具体详细步骤就不写了;2、该问主要问题是如何构造函数:如果熟练的话用上面所讲方法来构造: 1)()`(+-=ηηηf f 先变形 另:用微分方程求解法来求出要构造的函数把常数退换掉之后就是要构造的函数函数构造出来了,具体步骤自己去做;2、设)`(x f 在a,b 上连续,fx 在a,b 内二阶可导,fa=fb=0,0)(=⎰b a dx x f证明:1存在)`()(),`()(),(,221121ξξξξξξf f f f b a ==∈使得2存在)()``(,),,(21ηηξξηηf f b a =≠∈使得1、第一问中的函数构造:2、第二问中函数构造有两种构造方法,上面讲解中说道了我们在这用第一种原因在于第一问中)()`(x f x f -=0符合此题构造; 具体详细步骤自己去写写;3、设奇函数]1,1[)(-在x f 上具有二阶导数,且f1=1,证明:(1) 存在1)`(),1,0(=∈ξξf 使得(2) 存在1)`()``(),1,1(=+-∈ηηηf f 使得第一问中证明等式,要么用罗尔定理,要么介值定理,要么零点本题很容易想到用罗尔定理构造函数来求,因为涉及到了导函数1、x x f x F -=)()(,题目中提到奇函数,f0=0有F0=F1=0从而用罗尔定理就出来了;2、第二问中的结论出发来构造函数,从上面讲的方法来看,直接就可以写出要构造的函数先变形下:x xx e x f x G e e x f f f ⋅-==⋅=+)1)`(()()`(1)`()``(ηη函数构造出来,并且可以用到第一问的结论,我们只需要在-1,0之间在找一个点也满足1的结论即可;也即1)`(),0,1(=-∈ζζf从而可以对)1,1(),(-⊆∈ξζη运用罗尔定理即可;Ps :本题为13年数一真题,第一问基础题,但要看清题目为奇函数,在0点处函数值为0.第二问关键是构造函数,函数构造出来了就一步步往下做,缺什么条件就去找什么条件或者证明出来,13年考研前我给我的几个考研小伙伴们讲过构造函数的一些方法,考场上都很快就搞出来了;以上是关于中值定理这章的一些小小的讲解,由于科研实践很忙,这些都是今天抽出时间写出来的,Word 上写,真心费时间,如果大家还有什么问题,可以来讨论下;。
中值定理与导数的应用(高等数学)

(2) 函数的极值及其求法
定义 设函数f ( x )在区间(a , b0的一个邻域, 对于这邻域内的 任何点x ,除了点x0外, f ( x ) f ( x0 )均成立, 就称 f ( x0 )是函数f ( x )的一个极大值; 如果存在着点x0的一个邻域, 对于这邻域内的 任何点x ,除了点x0外, f ( x ) f ( x0 )均成立, 就称 f ( x0 )是函数f ( x )的一个极小值.
(
1 1 x
2
) 0.
f (1) f (1) 2 arcsin x arccos x (1 x 1). 2 又
又 f (0) arcsin 0 arccos 0 0 , 2 2 即C . 2
f ( x) C, x (1,1)
极值的第二判别法 设 f ( x ) 在x0 处具有二阶导数, 且 f ' ( x0 ) 0 , f '' ( x0 ) 0 , 那末 '' f (1)当 ( x0 ) 0 时, 函数 f ( x ) 在x0 处取得极大值; '' (2)当 f ( x0 ) 0 时, 函数 f ( x ) 在x0 处取得极小值.
' f 即 ( ) 0
(1)
(2) 拉格朗日中值定理
拉格朗日(Lagrange)中值定理 如果函数 f(x)在 闭区间[a , b]上连续,在开区间(a , b ) 内可导, 那末在
(a , b ) 内至少有一点(a b ) ,使等式
( 2)
(1)
f (b ) f (a ) f ' ( )( b a ) 成立.
极值点可以是不可导点。
(完整版)中值定理的应用方法与技巧

中值定理的应用方法与技巧中值定理包括微分中值定理和积分中值定理两部分。
微分中值定理即罗尔定理、拉格朗日中值定理和柯西中值定理,一般高等数学教科书上均有介绍,这里不再累述。
积分中值定理有积分第一中值定理和积分第二中值定理。
积分第一中值定理为大家熟知,即若)(x f 在[a,b]上连续,则在[a,b]上至少存在一点ξ,使得))(()(a b f dx x f ba -=⎰ξ。
积分第二中值定理为前者的推广,即若)(),(x g x f 在[a,b]上连续,且)(x g 在[a,b]上不变号,则在[a,b]上至少存在一点ξ,使得⎰⎰=ba ba dx x g f dx x g x f )()()()(ξ。
一、 微分中值定理的应用方法与技巧三大微分中值定理可应用于含有中值的等式证明,也可应用于恒等式及不等式证明。
由于三大中值定理的条件和结论各不相同,又存在着相互关联,因此应用中值定理的基本方法是针对所要证明的等式、不等式,分析其结构特征,结合所给的条件选定合适的闭区间上的连续函数,套用相应的中值定理进行证明。
这一过程要求我们非常熟悉三大中值定理的条件和结论,并且掌握一定的函数构造技巧。
例一.设)(x ϕ在[0,1]上连续可导,且1)1(,0)0(==ϕϕ。
证明:任意给定正整数b a ,,必存在(0,1)内的两个数ηξ,,使得b a b a +='+')()(ηϕξϕ成立。
证法1:任意给定正整数a ,令)()(,)(21x x f ax x f ϕ==,则在[0,1]上对)(),(21x f x f 应用柯西中值定理得:存在)1,0(∈ξ,使得a a a =--=')0()1(0)(ϕϕξϕ。
任意给定正整数b ,再令)()(,)(21x x g bx x g ϕ==,则在[0,1]上对)(),(21x g x g 应用柯西中值定理得:存在)1,0(∈η,使得b b b =--=')0()1(0)(ϕϕηϕ。
中值定理大全

中值定理大全中值定理是微积分中的一组重要定理,包括了拉格朗日中值定理、柯西中值定理和罗尔中值定理。
下面是这三个定理的详细介绍:1. 拉格朗日中值定理(Lagrange's Mean Value Theorem):如果一个函数在闭区间[a,b]上连续,在开区间(a,b)上可导,那么在开区间(a,b)上至少存在一个点c,使得函数的导数在这个点的值等于函数在区间[a,b]上的平均变化率。
即:若$f(x)$在$[a,b]$上连续,在$(a,b)$上可导,则至少存在一个$c \in (a,b)$,使得$f'(c)=\frac{f(b)-f(a)}{b-a}$。
2. 柯西中值定理(Cauchy's Mean Value Theorem):如果两个函数在闭区间[a,b]上连续,在开区间(a,b)上可导,并且其中一个函数在区间的每一点的导数都不为零,那么存在一个点c,使得这两个函数在这个点的导数之比等于它们在区间的函数值之比。
即:若$f(x)$和$g(x)$在$[a,b]$上连续,在$(a,b)$上可导,且$g'(x)$不为零,则存在一个$c \in (a,b)$,使得$\frac{f'(c)}{g'(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}$。
3. 罗尔中值定理(Rolle's Mean Value Theorem):如果一个函数在闭区间[a,b]上连续,在开区间(a,b)上可导,并且在区间的两个端点处的函数值相等,那么至少存在一个点c,使得函数在这个点的导数为零。
即:若$f(x)$在$[a,b]$上连续,在$(a,b)$上可导,且$f(a)=f(b)$,则存在一个$c \in (a,b)$,使得$f'(c)=0$。
这些中值定理在微积分中有广泛的应用,可以用来证明诸如极值存在性、方程的根的存在性等问题,是微积分中的重要工具。
第四章 中值定理及其应用

则F( x) f ( x) g( x) 0.
F( x) C, 即f ( x) g( x) C.
上页 下页 返回
例3、证明 arcsin x arccos x (1 x 1).
2
证:(arcsin x arccos x) 1 1 x2
由f ( x)、g( x)在[a,b]上满足拉格朗日中值定理条件,
f ( ) f (b) f (a) (1)
ba
g( ) g(b) g(a) (2)
ba
(1) (2)得: f ( ) f (b) f (a) . 这样证可以吗? g( ) g(b) g(a)
分析:条件中比罗尔 b a y
定理少了第三个条件.
C
y f (x)
M
B
由于直线AB对应的函数为
A
N
g(x)
f (a)
f
(b) b
f a
(a)
(
x
a).o
a
x
D
bx
且从图中可知 f ( x)与g( x)在x a及x b的值相等,
故G( x) f ( x) g( x)在[a,b]上满足罗尔定理的条件.
证: f ( x)在[a,b]上连续, o a
bx
f ( x)在[a,b]上必取得最大值 M 和最小值 m.
(1) 若 M m,则f ( x) C,所以在(a,b)内,有 f ( x) 0.
(a,b),有f ( ) 0,故结论成立.
上页 下页 返回
3、罗尔定理:设f ( x)在[a,b]上连续,在(a,b)内可导
2
2
故 arcsin x arccos x (1 x 1).
拉格朗日中值定理与应用

拉格朗日中值定理与应用拉格朗日中值定理是微积分中的一项重要定理,它是由法国数学家拉格朗日在18世纪提出的。
这个定理在数学领域有着广泛的应用,特别是在求解函数的极值、证明函数的性质以及优化问题等方面起到了重要的作用。
拉格朗日中值定理的表述如下:设函数f(x)在闭区间[a, b]上连续,在开区间(a, b)内可导,则存在一个点c,使得f'(c) = (f(b) - f(a))/(b - a)。
换句话说,函数在开区间内的某一点的导数等于函数在闭区间上的平均变化率。
这个定理的证明思路相对简单,我们可以通过引入一个辅助函数g(x) = f(x) -(f(b) - f(a))/(b - a) * (x - a),来进行证明。
首先,我们可以发现g(a) = g(b),因为f(a) = f(b)。
其次,由于g(x)在闭区间[a, b]上连续,在开区间(a, b)内可导,根据罗尔定理,我们可以得到存在一个点c,使得g'(c) = 0。
进一步计算g'(c),可以得到g'(c)= f'(c) - (f(b) - f(a))/(b - a) = 0,即f'(c) = (f(b) - f(a))/(b - a)。
因此,拉格朗日中值定理得证。
拉格朗日中值定理的应用非常广泛。
首先,它可以用来证明函数的性质。
例如,如果一个函数在某个区间上导数恒为零,那么根据拉格朗日中值定理,这个函数在该区间上必然是一个常数函数。
其次,它可以用来求解函数的极值。
根据拉格朗日中值定理,如果一个函数在某个开区间上导数存在且不变号,那么函数在该开区间上的极值点必然存在。
通过求解导数等于零的方程,我们可以找到这些极值点。
此外,拉格朗日中值定理还可以用来证明其他重要的数学定理,例如泰勒定理等。
除了理论上的应用,拉格朗日中值定理在实际问题中也有着广泛的应用。
例如,在经济学中,我们经常需要求解某个函数在某个区间上的平均增长率,这时就可以利用拉格朗日中值定理来求解。
中值定理及应用

证 ∵ f ( x ) 在 [a , b] 连续 , 必有最大值 M 和最小值 m .
(1) 若 M = m .
则 f ( x) = M .
由此得 f ′( x ) = 0. ∀ ξ ∈ (a , b ),
都有 f ′( ξ ) = 0.
( 2) 若 M ≠ m .
∵ f ( a ) = f (b ),
y = x , x ∈[−2,2] 及 y = 1 − 3 x2 , x ∈[−2,2]. 例如, 例如
除不满足条件 ( 2)( f ′(0)不存在 )外, 满足罗尔定理的 一切条件 , 但在( −2,2)内找不到一点能使 f ′( x ) = 0.
又例, 又例
1− x f ( x) = 0
F (b ) = [ f (b) − f (a )]b − f (b )(b − a ) = af (b ) − bf ( a )
F (a ) = [ f (b ) − f (a )]a − f (a )(b − a ) = af (b) − bf (a )
有 F ( a ) = F ( b ), 由Roll-定理知 定理知: 定理知
∴ 至少存在一个 ξ (在 x0 , x1 之间), 使得 f ′(ξ ) = 0.
但 f ′( x ) = 5( x 4 − 1) < 0, ( x ∈ (0,1)) 矛盾 ∴ 只有唯一实根 . 矛盾,
4 ( 1) 例3 求证 ax3 + 3bx2 + 2cx − a − b − c = 0在 0,内 至少有一个根。 至少有一个根。
f ( x )在[0, 上满足 R − 定理的条件,则 ∃ξ 1 ∈ (0,)使f ′( ξ 1 ) = 0; 1] 定理的条件, 1