等比数列知识点总结与典型例题(精华版)

合集下载

高中数学选择性必修二 4 3 1 1等比数列的概念和通项公式(知识梳理+例题+变式+练习)(含答案)

高中数学选择性必修二 4 3 1 1等比数列的概念和通项公式(知识梳理+例题+变式+练习)(含答案)

4.3.1.1等比数列的概念和通项公式知识点一 等比数列的概念(1)文字语言:一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q(q ≠0)表示. (2)符号语言:a n +1a n =q (q 为常数,n ∈N *)【重点总结】(1)由等比数列的定义知,数列除末项外的每一项都可能作分母,故每一项均不为0,因此公比也不为0,由此可知,若数列中有“0”项存在,则该数列不可能是等比数列.(2)“从第2项起”是因为首项没有“前一项”,同时注意公比是每一项与其前一项之比,前后次序不能颠倒.(3)定义中的“同一个常数”是定义的核心之一,一定不能把“同”字省略.要点二 等比中项如果在a 与b 中间插入一个数G ,使a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项. 【重点总结】(1)若G 是a 与b 的等比中项,则G a =bG,所以G 2=ab ,G =±ab.(2)与“任意两个实数a ,b 都有唯一的等差中项A =a +b2”不同,只有当a 、b 同号时a 、b 才有等比中项,并且有两个等比中项,分别是ab 与-ab ;当a ,b 异号时没有等比中项.(3)在一个等比数列中,从第2项起,每一项(有穷数列的末项除外)都是它的前一项与后一项的等比中项. 要点三 等比数列的通项公式设等比数列{a n }的公比为q ,则这个等比数列的通项公式是a n =11n a q (a 1,q ≠0且n ∈N *). 【重点总结】(1)已知首项a 1和公比q ,可以确定一个等比数列. (2)在公式a n =a 1q n -1中,有a n ,a 1,q ,n 四个量,已知其中任意三个量,可以求得第四个量,其中a 1,q 为两个基本量.(3)对于等比数列{a n },若q<0,则{a n }中正负项间隔出现,如数列1,-2,4,-8,16,…;若q>0,则数列{a n }各项同号.从而等比数列奇数项必同号;偶数项也同号.【基础自测】1.判断正误(正确的画“√”,错误的画“×”)(1)若一个数列为{a n },且满足a na n -1=q (n ≥2,q 为不等于0的常数),则这个数列是等比数列.( )(2)在等比数列{a n }中,若已知任意两项的值,则可以求出首项、公比和数列任一项的值.( ) (3)G 为a ,b 的等比中项⇔G 2=ab .( )(4)若一个数列从第二项开始,每一项都是它前后两项的等比中项,则这个数列是等比数列.( ) 【答案】(1)√(2)√(3)×(4)× 2.(多选题)下列数列不是等比数列的是( )A .2,22,3×22,… B.1a ,1a 2,1a3,…C .s -1,(s -1)2,(s -1)3,…D .0,0,0,… 【答案】ACD【解析】A 中,222≠3×2222,A 不是等比数列;B 中,1a 21a =1a 31a 2=…,B 是等比数列;C 中,当s =1时,不是等比数列;当s ≠1时,是等比数列,所以C 不是等比数列;D 显然不是等比数列.故选ACD. 3.已知{a n }是等比数列,a 1=1,a 4=22,则a 3=( ) A .±2 B .2 C .-2 D .4 【答案】B【解析】设等比数列{a n }的公比为q ,则有1×q 3=22=(2)3,∴q =2,∴a 3=a 4q=2,故选B.4.已知等比数列{a n }中,a 1=-2,a 3=-8,则a n =________. 【答案】-2n 或(-2)n【解析】∵a 1=-2,a 3=-8,∴a 3a 1=q 2=-8-2=4,∴q =±2,∴a n =(-2)·2n -1或a n =(-2)·(-2)n -1,即a n=-2n 或a n =(-2)n .题型一 等比数列通项公式的求法及应用 探究1 基本量的计算 【例1】在等比数列{a n }中 (1)a 4=2,a 7=8,求a n ;(2)a 2+a 5=18,a 3+a 6=9,a n =1,求n .【解析】(1)因为⎩⎪⎨⎪⎧ a 4=a 1q 3,a 7=a 1q 6,所以⎩⎪⎨⎪⎧a 1q 3=2, ①a 1q 6=8, ② 由②①得q 3=4,从而q =34,而a 1q 3=2, 于是a 1=2q 3=12,所以a n =a 1q n -1=22-53n .(2)方法一:由已知可得⎩⎪⎨⎪⎧a 2+a 5=a 1q +a 1q 4=18, ①a 3+a 6=a 1q 2+a 1q 5=9, ② 由②①得q =12,从而a 1=32.又a n =1,所以32×⎝⎛⎭⎫12n -1=1,即26-n =20,所以n =6. 方法二:因为a 3+a 6=q (a 2+a 5),所以q =12.由a 1q +a 1q 4=18,得a 1=32.由a n =a 1q n -1=1,得n =6. 【重点小结】 (1)由a 7a 4=q 3便可求出q ,再求出a 1,则a n =a 1·q n -1.(2)两个条件列出关于a 1,q 的方程组,求出a 1,q 后再由a n =1求n ;也可以直接先由q =a 3+a 6a 2+a 5入手.【方法归纳】等比数列通项公式的求法(1)根据已知条件,建立关于a 1,q 的方程组,求出a 1,q 后再求a n ,这是常规方法.(2)充分利用各项之间的关系,直接求出q 后,再求a 1,最后求a n ,这种方法带有一定的技巧性,能简化运算.探究2 等比数列的实际应用【例2】计算机的价格不断降低,若每台计算机的价格每年降低13,现在价格为8 100元的计算机3年后的价格可降低为( )A .300元B .900元C .2 400元D .3 600元 【答案】C【解析】降低后的价格构成以23为公比的等比数列,则现在价格为8 100元的计算机3年后的价格可降低为8 100×⎝⎛⎭⎫233=2 400(元). 【方法技巧】关于等比数列模型的实际应用题,先构造等比数列模型,确定a 1和q ,然后用等比数列的知识求解. 【跟踪训练1】(1)在等比数列{a n }中,a 3+a 4=4,a 2=2,则公比q 等于( ) A .-2 B .1或-2 C .1 D .1或2 【答案】B【解析】a 3+a 4=a 2q +a 2q 2=2q +2q 2=4, 即q 2+q -2=0,解得q =1或q =-2,故选B.(2)在等比数列{a n }中,a n >0,已知a 1=6,a 1+a 2+a 3=78,则a 2等于( ) A .12 B .18 C .24 D .36 【答案】B【解析】设公比为q ,由已知得6+6q +6q 2=78, 即q 2+q -12=0解得q =3或q =-4(舍去). ∴a 2=6q =6×3=18.故选B.(3)某林场的树木每年以25%的增长率增长,则第10年末的树木总量是今年的________倍. 【答案】1.259【解析】设这个林场今年的树木总量是m ,第n 年末的树木总量为a n ,则a n +1=a n +a n ×25%=1.25a n . 则a n +1a n=1.25,则数列{a n }是公比q =1.25的等比数列. 则a 10=a 1q 9=1.259 m.所以a 10a 1=1.259.题型二 等比中项【例3】已知等比数列的前三项和为168,a 2-a 5=42,求a 5,a 7的等比中项.【解析】设该等比数列的公比为q ,首项为a 1, 因为a 2-a 5=42,所以q ≠1,由已知,得⎩⎪⎨⎪⎧a 1+a 1q +a 1q 2=168a 1q -a 1q 4=42, 所以⎩⎪⎨⎪⎧ a 1(1+q +q 2)=168a 1q (1-q 3)=42①②因为1-q 3=(1-q )(1+q +q 2),所以由②除以①,得q (1-q )=14.所以q =12.所以a 1=4212-⎝⎛⎭⎫124=96.若G 是a 5,a 7的等比中项,则应有G 2=a 5a 7=a 1q 4·a 1q 6=a 21q 10=962×⎝⎛⎭⎫1210=9. 所以a 5,a 7的等比中项是±3. 【方法归纳】(1)首项a 1和q 是构成等比数列的基本量,从基本量入手解决相关问题是研究等比数列的基本方法. (2)解题时应注意同号的两个数的等比中项有两个,它们互为相反数,而异号的两个数没有等比中项. 【跟踪训练2】如果-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B .b =-3,ac =9 C .b =3,ac =-9 D .b =-3,ac =-9【答案】B【解析】∵-1,a ,b ,c ,-9成等比数列, ∴a 2=(-1)×b ,b 2=(-1)×(-9)=9 ∴b <0,∴b =-3.又b 2=ac ,∴ac =9.故选B.题型三 等比数列的判定与证明【例4】已知数列{a n }的前n 项和为S n ,S n =13(a n -1)(n ∈N *)(1)求a 1,a 2;(2)求证:数列{a n }是等比数列.【解析】(1)当n =1时,S 1=13(a 1-1)=a 1,解得:a 1=-12,当n =2时,S 2=13(a 2-1)=a 1+a 2,解得a 2=14.(2)证明:当n ≥2时,a n =S n -S n -1=13(a n -1)-13(a n -1-1),得a n a n -1=-12.又a 1=-12,所以{a n }是首项为-12,公比为-12的等比数列.【变式探究1】将本例中条件换为“数列{a n }满足a 1=1,a n +1=2a n +1”,求证:{a n +1}成等比数列,并求a n .【解析】由a n +1=2a n +1,∴a n +1+1=2(a n +1),∴a n +1+1a n +1=2,∴{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2×2n -1=2n , ∴a n =2n -1.【变式探究2】将本例中的条件换为“数列{a n }中,a 1=56,a n +1=13a n +⎝⎛⎭⎫12n +1”,求a n . 【解析】令a n +1-A ·⎝⎛⎭⎫12n +1=13⎣⎡⎦⎤a n -A ·⎝⎛⎭⎫12n ,则a n +1=13a n +A 3·⎝⎛⎭⎫12n +1. 由已知条件知A3=1,得A =3,所以a n +1-3×⎝⎛⎭⎫12n +1=13⎣⎡⎦⎤a n -3×⎝⎛⎭⎫12n . 又a 1-3×⎝⎛⎭⎫121=-23≠0, 所以⎩⎨⎧⎭⎬⎫a n -3×⎝⎛⎭⎫12n 是首项为-23,公比为13的等比数列. 于是a n -3×⎝⎛⎭⎫12n =-23×⎝⎛⎭⎫13n -1,故a n =3×⎝⎛⎭⎫12n -2×⎝⎛⎭⎫13n . 【方法归纳】判定数列是等比数列的常用方法(1)定义法:a n +1a n =q (q 是常数)或a na n -1=q (q 是常数,n ≥2)⇔{a n }为等比数列.(2)等比中项法:a 2n +1=a n ·a n +2(a n ≠0,n ∈N *)⇔{a n }为等比数列.(3)通项公式法:a n =a 1q n -1(其中a 1,q 为非零常数,n ∈N *)⇔{a n }为等比数列. 【易错辨析】忽略等比数列各项的符号规律致错【例5】在等比数列{a n }中,a 5=1,a 9=81,则a 7=( ) A .9或-9 B .9 C .27或-27 D .-27 【答案】B【解析】由等比中项的性质得a 27=a 5a 9=81,∴a 7=±9,由于等比数列中的奇数项的符号相同,所以a 7=9,故选B. 【易错警示】 1. 出错原因没有弄清等比数列各项的符号规律,直接由等比中项得a 7=±9,错选A. 2. 纠错心得在等比数列中,奇数项的符号相同,偶数项的符号相同.解此类题时要小心谨慎,以防上当.一、单选题1.已知等比数列{}n a 中,3a 是1a ,2a 的等差中项,则数列{}n a 的公比为( ) A .12-或1B .12-C .12D .1【答案】A【分析】首先根据题意得到3122a a a =+,从而得到2210q q --=,再解方程即可. 【解析】由题知:3122a a a =+,所以221q q =+,即2210q q --=,解得12q =-或1q =.故选:A2.已知等比数列{}n a 满足2512,4a a ==,则公比q =( ) A .12-B .12C .2-D .2【答案】B 【分析】由352a a q =即可求出.【解析】 352a a q =,即3124q =,解得12q =. 故选:B .3.已知{}n a 为等比数列,n S 是它的前n 项和.若2312a a a ⋅=,且4a 与72a 的等差中项为54,则5S =( ) A .29 B .31 C .33 D .35【答案】B 【分析】设等比数列{}n a 的公比为q ,由已知可得q 和1a ,代入等比数列的求和公式即可 【解析】因为 2312a a a =23114a q a a ==,42a ∴=,3474452224a a a a q +=⨯=+, 所以11,162q a ==,551161231112S ⎛⎫- ⎪⎝⎭==-,故选:B.4.《莱茵德纸草书》(RhindPapyrus )是世界上最古老的数学著作之一.书中有这样一道题目:把93个面包分给5个人,使每个人所得面包个数成等比数列,且使较小的两份之和等于中间一份的四分之三,则最大的一份是( )个. A .12 B .24 C .36 D .48【答案】D 【分析】设等比数列{}n a 的首项为10a >,公比1q >,根据题意,由()()211513141931a q a q a q q ⎧+=⎪⎪⎨-⎪=⎪-⎩求解. 【解析】设等比数列{}n a 的首项为10a >,公比1q >,由题意得:123123453493a a a a a a a a ⎧+=⎪⎨⎪++++=⎩,即()()211513141931a q a q a q q ⎧+=⎪⎪⎨-⎪=⎪-⎩, 解得132a q =⎧⎨=⎩,所以45148a a q ==,故选:D5.在等比数列{}n a 中,若1614a a a ⋅⋅为定值,n T 为数列{}n a 的前n 项积,则下列各数为定值的是( ) A .11T B .12TC .13TD .14T【答案】C 【分析】根据等比数列的通项公式用1,a q 表示出1614a a a ,然后再分别表示出各选项中的积进行判断. 【解析】设公比为q ,则()35133186161411111a a a a a q a q a q a q =⋅==为定值,即61a q 为定值,(1)112(1)211111n n n n n n n T a a q a qa qa q--+++-=⋅==,11555111111()T a q a q ==,不是定值,1211126621211T a q a q ⎛⎫== ⎪⎝⎭,不是定值,13786131311()T a q a q ==,是定值,1413131414221411()T a q a q ⨯==,不是定值.故选:C .6.在各项都为正数的数列{}n a 中,首项12,n a S =为数列{}n a 的前n 项和,且()2121(42)0n n n S S a n ----=≥,则10S =( ) A .1022 B .1024C .2046D .2048【答案】C 【分析】当2n ≥时,1n n n a S S -=-,故可以得到()()11220n n n n a a a a --+-=,因为120n n a a -+>,进而得到120n n a a --=,所以{}n a 是等比数列,进而求出102046S = 【解析】由()2121(42)0n n n S S a n ----=≥,得22140nn a a --=,得()()11220n n n n a a a a --+-=, 又数列{}n a 各项均为正数,且12a =, ∴120n n a a -+>,∴120n n a a --=,即12nn a a -= ∴数列{}n a 是首项12a =,公比2q 的等比数列,其前n 项和()12122212n n nS +-==--,得102046S =,故选:C.7.已知数列{}n a 的前n 项和为n S ,若21n n S a =-,则202120221S a +=( )A .2B .1C .12D .13【答案】B 【分析】由21n n S a =-,根据n a 与n S 的关系,得出{}n a 是首项为1,公比为2的等比数列,结合等比数列的求和公式,即可求解. 【解析】由数列{}n a 的前n 项和21n n S a =-,当1n =时,可得11121a S a ==-,所以11a =;当2n ≥时,()112121n n n n n a S S a a --=-=---,所以12n n a a -=, 所以{}n a 是首项为1,公比为2的等比数列,所以202120212021122112S -==--,202120222a =,所以2021202211S a +=. 故选:B.8.在等比数列{}n a 中,()23122a a a a +=+,则数列{}n a 的公比q =( ) A .2 B .1 C .1-或1 D .1-或2【答案】D 【分析】用1,a q 表示出已知等式后可得结论. 【解析】由题意知()()211210a q q a q +-+=,所以()()120q q +-=,所以1q =-或2q.故选:D .二、多选题9.(多选题)已知等比数列{}n a 的前n 项和是n S ,则下列说法一定成立的是( ) A .若30a >,则20210a > B .若40a >,则20200a > C .若30a >,则20210S > D .若30a >,则20210S <【答案】ABC【分析】根据等比数列通项式,前n 项和n S 代入即可得出答案. 【解析】设数列{}n a 的公比为q ,当30a >,则2018202130a a q=>,A 正确; 当40a >,则2016202040a a q=>,B 正确. 又当1q ≠时,()20211202111a q qS -=-,当1q <时,2021202110,10,0q qS ->->∴>,当01q <<时,2021202110,10,0q q S ->->∴>,当1q >时,2021202110,10,0q qS -<-<∴>当1q =时,2021120210S a =>,故C 正确,D 不正确. 故选:ABC10.(多选题)若数列{a n }是等比数列,则下面四个数列中也是等比数列的有( ) A .{ca n }(c 为常数) B .{a n +a n +1}C .{a n ·a n +1)D .{}3n a【答案】CD 【分析】A. 由c =0判断;B.q =-1时判断;CD.由等比数列的定义判断. 【解析】当c =0时,{ca n }不是等比数列,故A 错误;当数列{a n }的公比q =-1时,a n +a n +1=0,{a n +a n +1}不是等比数列,故B 错误; 由等比数列的定义,选项CD 中的数列是等比数列,故CD 正确. 故选:CD11.设数列{}n a 是各项均为正数的等比数列,n T 是{}n a 的前n 项之积,227a =,369127a a a ⋅⋅=,则当n T 最大时,n 的值为( )A .4B .5C .6D .7【答案】AB【分析】 设等比数列{}n a 的公比为q ,求出q 的值,进而可求得数列{}n a 的通项公式,解不等式1n a ≥,求出n 的取值范围,即可得解.【解析】设等比数列{}n a 的公比为q ,则33696127a a a a ⋅⋅==,可得613a =,13q ∴==,所以,225212733n n n n a a q ---⎛⎫==⨯= ⎪⎝⎭, 令531n n a -=≥,解得5n ≤,故当n T 最大时,4n =或5.故选:AB.第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题12.在等比数列{}n a 中,1521,8,n a a a S ==是数列{}n a 的前n 项和,若63k S =,则k =________.【答案】6【分析】由1521,8a a a ==,解得2q求解. 【解析】在等比数列{}n a 中,设公比为q ,因为1521,8a a a ==,所以48,0q q q =≠,解得2q, 所以126312kk S -==-,解得6k =, 故答案为:613.在正项等比数列{}n a 中,若13a 、312a 、22a 成等差数列,则2021202020232022a a a a -=-________.【答案】19【分析】设正项等比数列{}n a 的公比为q ,则0q >,根据已知条件求出q 的值,再结合等比数列的基本性质可求得结果.【解析】设正项等比数列{}n a 的公比为q ,则0q >,因为13a 、312a 、22a 成等差数列,则31232a a a =+,即211132a q a a q =+, 可得2230q q --=,0q >,解得3q =, 因此,()20212020202120202202320222021202019a a a a a a q a a --==--. 故答案为:19. 14.已知正项数列{}n a 的前n 项和为n S ,若241,4n n a S b a a +==,数列{}n a 的通项公式为___________. 【答案】21()2n n a -= 【分析】当1n =时,求得102b a =>,再由n n S a b =-+,得到11(2)n n S a b n --=-+≥, 相减可得120n n a a --=,结合等比数列的通项公式,求得b ,进而求得数列的通项公式.【解析】由题意,正项数列{}n a 满足241,4n n a S b a a +==, 当1n =时,可得1111a S a a b =++=,则102b a =>, 由n n S a b =-+,则11(2,)n n S a b n n N +--=-+≥∈,两式相减可得120n n a a --=,所以1(22)1,n n n n N a a +-≥=∈, 即数列{}n a 为公比为12的等比数列, 所以2416,4b a a b ==,所以2441461a b a b =⨯=,解得4b =, 所以122b a ==,所以数列{}n a 的通项公式为1121112()()22n n n n a a q ---==⨯=.故答案为:21()2n n a -=.四、解答题15.已知n S 为数列{}n a 的前n 项和,12a =,172n n S a ++=,2211log log n n n b a a +=⋅,n T 为数列{}n b 的前n 项和.(1)求数列{}n a 的通项公式;(2)若2022n m T >对所有*n N ∈恒成立,求满足条件m 的最小整数值.【答案】(1)322n n a -= (2)674【分析】(1)利用递推公式,结合前n 项和与第n 项的关系、等比数列的定义进行求解即可; (2)根据对数的运算性质,结合裂项相消法进行求解即可.(1)由题意172n n S a ++=,当2n ≥时,172n n S a -+=,两式相减得:17n n n a a a +=-,即:()182n n a a n +=≥,所以2n ≥时,{}n a 为等比数列又因为1n =时,217272216a S =+=⨯+=, 所以218a a =, 所以,对所有*n N ∈,{}n a 是以2为首项,8为公比的等比数列,所以132282n n n a --=⨯=;(2) 由题知:32312212211log log log 2log 2n n n n n b a a -++==⋅⋅ ()()13231n n =-+11133231n n ⎛⎫=- ⎪-+⎝⎭所以12111111111134473231331n n T b b b n n n ⎛⎫⎛⎫=+++=-+-++-=- ⎪ ⎪-++⎝⎭⎝⎭所以111202220221674167433131n T n n ⎛⎫⎛⎫=⨯-=-< ⎪ ⎪++⎝⎭⎝⎭所以满足2022n m T >恒成立的最小m 值为674.16.等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b =. (1)求n a 与n b ;(2)求12111nS S S +++. 【答案】(1)33(1)3n a n n =+-=,13n n b -=(2)()231n n + 【分析】(1)由{}n b 的公比22S q b =及2212b S +=可解得3q =,由11b =则n b 可求,又由22S q b =可得29S =,26a =,213d a a =-=,则n a 可求;(2)由(1)可得3(1)2n n n S +=,则122113(1)31n S n n n n ⎛⎫==- ⎪++⎝⎭,故由裂项相消法可求12111nS S S +++. (1) 等差数列{}n a 中,13a =,前n 项和为n S ,等比数列{}n b 各项均为正数,11b =,且2212b S +=,{}n b 的公比22S q b =,222212S q b b S ⎧=⎪⎨⎪+=⎩,解得3q =,13n n b -=. {}n b 各项均为正数,∴3q =,13n n b -=.由23b =,得29S =,26a =,213d a a =-=,∴()3313n a n n =+-=. (2)3(1)3(1)322n n n n n S n -+=+=, 122113(1)31n S n n n n ⎛⎫==- ⎪++⎝⎭,12111211111132231n S S S n n ⎛⎫+++=-+-++- ⎪+⎝⎭ 2121313(1)n n n ⎛⎫=-= ⎪++⎝⎭. 17.已知数列{a n }中,a 1=4,a n +1=2a n -5,求证{a n -5}是等比数列.【答案】证明见解析【分析】由a n +1-5=2(a n -5)结合等比数列的定义证明即可.【解析】证明:由a n +1=2a n -5得a n +1-5=2(a n -5). 又a 1-5=-1≠0,故数列{a n -5}是首项为-1,公比为2的等比数列.。

等比数列知识点总结与典型例题-(精华版)

等比数列知识点总结与典型例题-(精华版)

等比数列知识点总结与典型例题-(精华版)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN等比数列知识点总结与典型例题1、等比数列的定义:()()*12,nn a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠,首项:1a ;公比:q推广:n m n m n n n m m a a a q q q a --=⇔=⇔=3、等比中项:(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个( (2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅ 4、等比数列的前n 项和n S 公式:(1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a qS qq--==-- 11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数) 5、等比数列的判定方法:(1)用定义:对任意的n ,都有11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,为等比数列(2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠⇔为等比数列 (3)通项公式:()0{}n n n a A B A B a =⋅⋅≠⇔为等比数列 6、等比数列的证明方法:依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔为等比数列 7、等比数列的性质:(2)对任何*,m n N ∈,在等比数列{}n a 中,有n m n m a a q -=。

等比数列知识点总结与典型例题+答案

等比数列知识点总结与典型例题+答案

等比数列知识点总结与典型例题2、通项公式:4、等比数列的前n 项和S n 公式:(1)当 q 1 时,S n na in⑵当q 1时,5罟5、等比数列的判定方法:等比数列等比中项:a n 2a n 1a n 1 (a n 1a n 1 0){a n }为等比数列通项公式:a nA B n A B 0{a n }为等比数列1、等比数列的定义:a n 1a n 2,且n N * , q 称为公比n 1a naga iB n a i0,A B0,首项:a 1;公比:q推广:a na m qa nama n m — \ a m3、等比中项:(1)如果a, A, b 成等比数那么A 叫做a 与b 的等差中项,即: A 2 ab 或A ab注意:同号的两个数才有等比中并且它们的等比中项有两个((2)数列a n 是等比数列2 a n a n 1aq qA'B nA' ( A, B,A',B'为常数)(1) 用定义:对任意的都有a n 1qa n 或旦口 q (q 为常数,a n 0){a n }为a n6、等比数列的证明方法:依据定义:若-a^ q q 0 n 2,且n N*或i qa“ {a“}为等比数列a n 17、等比数列的性质:(2) 对任何m,n N*,在等比数列{a n}中,有a. a m q n m。

(3) 若m n s t(m,n,s,t N*),则a. a m a s a t。

特别的,当m n 2k 时,得2a n a m a k注:3] a n a2 a n 1 a3a n 2等差和等比数列比较:经典例题透析类型一:等比数列的通项公式例1.等比数列{a n}中,a1 a9 64, a3 a7 20, 求a11.思路点拨:由等比数列的通项公式,通过已知条件可列出关于a1和q的二元方程组,解出a i和q,可得an ;或注意到下标1 9 3 7,可以利用性质可求出a3、a y,再求a ii.总结升华:①列方程(组)求解是等比数列的基本方法,同时利用性质可以减少计算量;②解题过程中具体求解时,要设法降次消元,常常整体代入以达降次目的,故较多变形要用除法(除式不为零).举一反三:【变式1 ] {an}为等比数列,a仁3,a9=768,求a6。

高中数学《等比数列性质》复习基础知识与练习题(含答案解析)

高中数学《等比数列性质》复习基础知识与练习题(含答案解析)

高中数学《等比数列性质》复习基础知识与练习题(含答案解析)一、基础知识1、定义:数列{}n a 从第二项开始,后项与前一项的比值为同一个常数()0q q ≠,则称{}n a 为等比数列,这个常数q 称为数列的公比注:非零常数列既可视为等差数列,也可视为1q =的等比数列,而常数列0,0,0,只是等差数列2、等比数列通项公式:11n n a a q−=⋅,也可以为:n mn m a a q−=⋅3、等比中项:若,,a b c 成等比数列,则b 称为,a c 的等比中项 (1)若b 为,a c 的等比中项,则有2a bb ac b c=⇒= (2)若{}n a 为等比数列,则n N *∀∈,1n a +均为2,n n a a +的等比中项 (3)若{}n a 为等比数列,则有m n p q m n p q a a a a +=+⇔= 4、等比数列前n 项和公式:设数列{}n a 的前n 项和为n S 当1q =时,则{}n a 为常数列,所以1n S na = 当1q ≠时,则()111n n a q S q−=−可变形为:()1111111n n n a q a aS q qq q −==−−−−,设11a k q =−,可得:n n S k q k =⋅−5、由等比数列生成的新等比数列(1)在等比数列{}n a 中,等间距的抽取一些项组成的新数列仍为等比数列 (2)已知等比数列{}{},n n a b ,则有 ① 数列{}n ka (k 为常数)为等比数列 ② 数列{}na λ(λ为常数)为等比数列,特别的,当1λ=−时,即1n a ⎧⎫⎨⎬⎩⎭为等比数列③ 数列{}n n a b 为等比数列④ 数列{}n a 为等比数列6、相邻k 项和的比值与公比q 相关: 设1212,m m m k n n n k S a a a T a a a ++++++=+++=+++,则有:()()212212k m n m m m m k mk n n n k nn a q q q S a a a a q T a a a a a q q q −++++++++++++====++++++ 特别的:若121222,,k k k k k k k a a a S a a a S S +++++=+++=−2122332,k k k k k a a a S S +++++=−,则232,,,k k k k k S S S S S −−成等比数列7、等比数列的判定:(假设{}n a 不是常数列) (1)定义法(递推公式):()1n na q n N a *+=∈ (2)通项公式:nn a k q =⋅(指数类函数) (3)前n 项和公式:nn S kq k =−注:若()n n S kq m m k =−≠,则{}n a 是从第二项开始成等比关系 (4)等比中项:对于n N *∀∈,均有212n n n a a a ++=8、非常数等比数列{}n a 的前n 项和n S 与1n a ⎧⎫⎨⎬⎩⎭前n 项和n T 的关系()111n n a q S q−=−,因为1n a ⎧⎫⎨⎬⎩⎭是首项为11a ,公比为1q 的等比数列,所以有()1111111111111nn n nn n q a q q q T q a q q a qq−⎡⎤⎛⎫−−⎢⎥ ⎪⎝⎭⎢⎥−⎣⎦===−−−⋅ ()()1112111111n n n nn n a q a q q S a q T q q−−−−=⋅=−− 例1:已知等比数列{}n a 的公比为正数,且223951,2a a a a ==,则10a =________思路:因为2396a a a =,代入条件可得:22652a a =,因为0q >,所以65a =,q =所以810216a a q == 答案:16例2:已知{}n a 为等比数列,且374,16a a =−=−,则5a =( ) A. 64 B. 64− C. 8 D. 8− 思路一:由37,a a 可求出公比:4734a q a ==,可得22q =,所以253428a a q ==−⋅=− 思路二:可联想到等比中项性质,可得253764a a a ==,则58a =±,由等比数列特征可得奇数项的符号相同,所以58a =− 答案:D小炼有话说:思路二的解法尽管简单,但是要注意双解时要验证项是否符合等比数列特征。

等比数列知识点归纳及总结公式

等比数列知识点归纳及总结公式

等比数列知识点归纳及总结公式等比数列是数学中常见的一种数列形式,它的定义是指一个数列中,从第二项起,每一项都是前一项与一个固定的非零常数的乘积。

在学习等比数列时,我们需要了解其定义、性质、求和公式等相关知识点。

本文将对等比数列的常见知识点进行归纳总结,并提供相应的公式。

一、等比数列的定义等比数列可以通过以下定义来进行理解:在数列$a_1,a_2,a_3,...,a_n$ 中,若对于任意的正整数 $n$ ,都有$\frac{{a_{n+1}}}{{a_n}}=r$ 成立(常数 $r$ 称为等比数列的公比),则称这个数列为等比数列。

通常我们用 $a_1$ 表示等比数列的首项。

二、等比数列的性质1. 公比与首项的关系:等比数列的公比 $r$ 与首项 $a_1$ 之间存在以下关系:$a_2=a_1 \cdot r$,$a_3=a_2 \cdot r=a_1 \cdot r^2$,以此类推,可得第 $n$ 项为 $a_n=a_1 \cdot r^{n-1}$。

2. 通项公式:根据等比数列的性质1,可推导出等比数列的通项公式为 $a_n=a_1 \cdot r^{n-1}$。

3. 首项与公比的关系:若已知等比数列的首项 $a_1$ 和第 $n$ 项$a_n$,则公比 $r$ 可以通过 $r=\sqrt[n-1]{\frac{{a_n}}{{a_1}}}$ 来求解。

4. 等比数列的倒数列:等比数列的倒数列也是一个等比数列,其公比为原数列公比的倒数。

即若 $a_1,a_2,a_3,...,a_n$ 是一个等比数列,且公比为 $r$,则其倒数列为$\frac{1}{a_1},\frac{1}{a_2},\frac{1}{a_3},...,\frac{1}{a_n}$,且其公比为 $\frac{1}{r}$。

5. 前 $n$ 项和公式:等比数列的前 $n$ 项和可以通过以下公式来求解:$S_n=a_1\frac{{1-r^n}}{{1-r}}$,其中 $S_n$ 表示前 $n$ 项和。

等比数列常考考点及经典例题

等比数列常考考点及经典例题

[目的]1.利用等比数列的通项公式前n 项和公式进行基本量的计算;2.利用等比数列的有关性质进行运算;3.结合常见变形判断证明等比数列.[基础梳理]1.等比数列的有关概念 (1)定义:①文字语言:从第2项起,每一项与它的前一项的比都等于同一个常数. ②符号语言:a n +1a n=q (n ∈N *,q 为非零常数).(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫作a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇔G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1. (2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的性质(1)通项公式的推广:a n =a m ·q n-m(m ,n ∈N *).(2)对任意的正整数m ,n ,p ,q ,若m +n =p +q ,则a m ·a n =a p ·a q .(3)若等比数列前n 项和为S n ,则S m ,S 2m -S m ,S 3m -S 2m 仍成等比数列,即(S 2m -S m )2=S m (S 3m -S 2m )(m ∈N *,公比q ≠-1).(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n +3k ,…为等比数列,公比为q k .[考点例题]考点一 等比数列的性质及基本量的计算|方法突破(1)(2018·甘肃两市六校联考)在递增的等比数列{a n }中,已知a 1+a n =34,a 3·a n -2=64,且前n 项和S n =42,则n =( )A .3B .4C .5D .6(2)已知等比数列{a n }为递增数列.若a 1>0,且2(a n +a n +2)=5a n +1,则数列{a n }的公比q =________. (3)(2017·高考全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和. 已知S 2=2,S 3=-6. ①求{a n }的通项公式;②求S n ,并判断S n +1,S n ,S n +2是否成等差数列.[跟踪训练]1.设S n 是等比数列{a n }的前n 项和,若2a 1+3a 2=1,a 3=3a 4,则2S n +a n =( ) A .1 B.13 C.12D .22.(2018·沈阳模拟)已知各项不为0的等差数列{a n }满足2a 2-a 27+2a 12=0,数列{b n }是等比数列,且b 7=a 7,则b 3b 11等于( )A .16B .8C .4D .2考点二 等比数列的判定或证明|方法突破(1)对任意等比数列{a n },下列说法一定正确的是( ) A .a 1,a 3,a 9成等比数列 B .a 2,a 3,a 6成等比数列 C .a 2,a 4,a 8成等比数列D .a 3,a 6,a 9成等比数列(2)已知数列{a n }的前n 项和为S n =a n -1(a 是不为0的实数),则{a n }( ) A .一定是等比数列 B .一定是等差数列 C .是等差数列或是等比数列D .既不可能是等差数列,也不可能是等比数列(3)(2018·泰安模拟)数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2(n ∈N *),设b n =a n +1-2a n . ①求证:{b n }是等比数列;②设c n =a n 3n -1,求证:{c n }是等比数列.等比数列的判断与证明的常用方法[跟踪训练]1.已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10)B.19(1-310) C .3(1-3-10) D .3(1+3-10)2.已知{a n }是各项均为正数的等差数列,lg a 1,lg a 2,lg a 4成等差数列,又b n =1a 2n,n =1,2,3,….判断{b n }是否为等比数列?考点三 等比数列前n 项和及综合应用|方法突破角度1 等比数列的求和问题(1)(2018·大同模拟)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D.558(2)(2018·唐山模拟)在各项均为正数的等比数列{a n }中,已知a 2a 4=16,a 6=32,记b n =a n +a n +1,则数列{b n }的前5项和S 5为__________.[跟踪训练]1.(2018·沈阳模拟)在等比数列{a n }中,公比q =2,前99项的和S 99=30,则a 3+a 6+a 9+…+a 99=__________.角度2 等比数列的综合问题1.设数列{a n }的前n 项和为S n .已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3,n ∈N *. (1)证明:a n +2=3a n ; (2)求S n .2.(2016·高考全国卷Ⅲ)已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{}a n 是等比数列,并求其通项公式; (2)若S 5=3132,求λ.[考点跟踪]1.[考点一、二](2017·高考全国卷Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=__________.2.[考点三](2015·高考全国卷Ⅰ)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.3.[考点一](2016·高考全国卷Ⅰ)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.[高考真题]1.在等比数列{a n }中,a 2a 3a 4=8,a 7=8,则a 1=( ) A .1 B .±1 C .2D .±22.已知等比数列{a n }为递增数列,a 1=-2,且3(a n +a n +2)=10a n +1,则公比q =________. 3.若数列{a n +1-a n }是等比数列,且a 1=1,a 2=2,a 3=5,则a n =__________. 4.已知数列{a n }满足a 1=1,a n +1=3a n +1. (1)证明{a n +12}是等比数列,并求{a n }的通项公式;(2)证明1a 1+1a 2+…+1a n <32.[练习]1.(2018·长春调研)等比数列{a n }中,a 3=9,前三项和S 3=27,则公比q 的值为( ) A .1 B .-12C .1或-12D .-1或-122.数列{a n }满足:a n +1=λa n -1(n ∈N *,λ∈R 且λ≠0),若数列{a n -1}是等比数列,则λ的值等于( ) A .1 B .-1 C.12D .23.已知正项等比数列{a n }满足:a 3=a 2+2a 1,若存在两项a m ,a n ,使得a m a n =4a 1,则1m +4n 的最小值为( )A.32B.53C.256D .不存在4.设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n +a 1=2a n ,且a 1,a 2+1,a 3成等差数列,则a 1+a 5=________. 5.已知数列{a n }的前n 项和为S n ,且S n =32a n -1(n ∈N *).(1)求数列{a n }的通项公式;(2)设b n =2log 3a n 2+1,求1b 1b 2+1b 2b 3+…+1b n -1b n .[答案][考点例题]考点一(1)因为{a n }为等比数列,所以a 3·a n -2=a 1·a n =64,又a 1+a n =34,所以a 1,a n 是方程x 2-34x +64=0的两根,解得⎩⎪⎨⎪⎧ a 1=2,a n =32或⎩⎪⎨⎪⎧ a 1=32,a n =2,又因为{a n }是递增数列,所以⎩⎪⎨⎪⎧a 1=2,a n =32.由S n =a 1-a n q 1-q =2-32q1-q =42,解得q =4,由a n =a 1q n -1=2×4n -1=32,解得n =3,故选A.(2)∵2(a n +a n +2)=5a n +1,∴2a n +2a n q 2=5a n q , 化简得,2q 2-5q +2=0,即(2q -1)(q -2)=0, 由题意知,q >1.∴q =2.(3)①设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6.解得q =-2,a 1=-2. 故{a n }的通项公式为a n =(-2)n .②由①可得S n =a 1(1-q n )1-q=-23+(-1)n2n +13.由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23=2[-23+(-1)n2n +13]=2S n ,故S n +1,S n ,S n +2成等差数列. [跟踪训练]1.设等比数列{a n }的公比为q ,因为2a 1+3a 2=1,a 3=3a 4,所以2a 1+3a 1q =1 ①,a 1q 2=3a 1q 3 ②,由②得q =13,代入①得a 1=13,所以a n =a 1q n -1=⎝⎛⎭⎫13n ,S n =13×⎝⎛⎭⎫1-13n 1-13=12×⎝⎛⎭⎫1-13n ,则2S n +a n =1. 2.由等差数列性质得a 2+a 12=2a 7,所以4a 7-a 27=0,又a 7≠0,所以a 7=4,b 7=4,由等比数列性质得b 3b 11=b 27=16,故选A.考点二(1)设等比数列的公比为q ,则a 3=a 1q 2,a 6=a 1q 5,a 9=a 1q 8,满足(a 1q 5)2=a 1q 2·a 1q 8, 即a 26=a 3·a 9.(2)当a =1时,{a n }的各项都为0,这个数列是等差数列,但不是等比数列;当a ≠1时,由S n =a n -1知,{a n }是等比数列,但不是等差数列,故选C.(3)证明:①a n +2=S n +2-S n +1=4a n +1+2-4a n -2=4a n +1-4a n . b n +1b n =a n +2-2a n +1a n +1-2a n =(4a n +1-4a n )-2a n +1a n +1-2a n =2a n +1-4a na n +1-2a n=2.因为S 2=a 1+a 2=4a 1+2,所以a 2=5. 所以b 1=a 2-2a 1=3.所以数列{b n }是公比为2,首项为3的等比数列.②由①知b n =3·2n -1=a n +1-2a n ,所以a n +12n -1-a n 2n -2=3.所以数列⎩⎨⎧⎭⎬⎫a n 2n -2是等差数列,公差为3,首项为2.所以a n 2n -2=2+(n -1)×3=3n -1.所以a n =(3n -1)·2n -2,所以c n =2n -2.所以c n +1c n =2n -12n -2=2.所以数列{c n }为等比数列.[跟踪训练]1.由已知得a n +1a n =-13,则数列{a n }是公比为-13的等比数列,因为a 2=-43,所以a 1=4,则数列{a n }前10项的和S 10=4⎣⎡⎦⎤1-⎝⎛⎭⎫-13101-⎝⎛⎭⎫-13=3(1-3-10).2.∵lg a 1,lg a 2,lg a 4成等差数列,∴2lg a 2=lg a 1+lg a 4,即a 22=a 1a 4.又设等差数列{a n }的公差为d , 则(a 1+d )2=a 1(a 1+3d ),即d 2=a 1d .当d =0时,{a n }是一个各项均为正数的常数列, ∴{b n }是等比数列.当d ≠0时,d =a 1>0,a 2n =a 1+(2n -1)d =2n d ,b n =1a 2n =1d ·12n =12d ·⎝⎛⎭⎫12n -1.故{b n }是首项为b 1=12d ,公比为12的等比数列.考点三(1)因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.(2)设数列{a n }的公比为q ,由a 23=a 2a 4=16得,a 3=4,即a 1q 2=4,又a 6=a 1q 5=32,解得a 1=1,q =2,所以a n =a 1q n -1=2n -1,b n =a n +a n +1=2n -1+2n =3·2n -1,所以数列{b n }是首项为3,公比为2的等比数列,所以S 5=3(1-25)1-2=93.[跟踪训练] 角度11.因为S 99=30,即a 1(299-1)=30.又因为数列a 3,a 6,a 9,…,a 99也成等比数列且公比为8,所以a 3+a 6+a 9+…+a 99=4a 1(1-833)1-8=4a 1(299-1)7=47×30=1207.角度21. (1)证明:由条件,对任意n ∈N *,有a n +2=3S n -S n +1+3, 因而对任意n ∈N *,n ≥2,有a n +1=3S n -1-S n +3. 两式相减,得a n +2-a n +1=3a n -a n +1,即a n +2=3a n ,n ≥2. 又a 1=1,a 2=2,所以a 3=3S 1-S 2+3=3a 1-(a 1+a 2)+3=3a 1. 故对一切n ∈N *,a n +2=3a n .(2)由(1)知,a n ≠0,所以a n +2a n=3.于是数列{a 2n -1}是首项a 1=1,公比为3的等比数列;数列{a 2n }是首项a 2=2,公比为3的等比数列,因此a 2n -1=3n -1,a 2n =2×3n -1.于是S 2n =a 1+a 2+…+a 2n =(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n ) =(1+3+…+3n -1)+2(1+3+…+3n -1) =3(1+3+…+3n -1)=3(3n -1)2,从而S 2n -1=S 2n -a 2n =3(3n -1)2-2×3n -1=32(5×3n -2-1).综上所述,S n=⎩⎨⎧32(5×3n -32-1),n 是奇数,32(3n2-1),n 是偶数.2.(1)证明:由题意得a 1=S 1=1+λa 1, 故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1得a n +1=λa n +1-λa n , 即(λ-1)a n +1=λa n ,由a 1≠0,λ≠0得a n ≠0,所以a n +1a n =λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝⎛⎭⎫λλ-1n -1.(2)由(1)得S n =1-⎝⎛⎭⎫λλ-1n .由S 5=3132得1-⎝⎛⎭⎫λλ-15=3132,即⎝⎛⎭⎫λλ-15=132.解得λ=-1. [考点跟踪]1.设等比数列{a n }的公比为q ,则a 1+a 2=a 1(1+q )=-1,a 1-a 3=a 1(1-q 2)=-3,两式相除,得1+q 1-q 2=13,解得q =-2,a 1=1,所以a 4=a 1q 3=-8.2.因为在数列{a n }中,a 1=2,a n +1=2a n ,所以数列{a n }是首项为2,公比为2的等比数列,因为S n =126,所以2-2n +11-2=126,解得2n +1=128,所以n =6.3.设公比为q , ∴a 1+a 1q 2=10,① a 1q +a 1q 3=5,② ∴①②得1+q 2q (1+q 2)=2. ∴⎩⎪⎨⎪⎧q =12,a 1=8.∴a 2=4,a 3=2,a 4=1. 当n ≥5时,a n <1. ∴a 1a 2…a n ≤a 1a 2a 3a 4=64.[高考真题]1.因为数列{a n }是等比数列,所以a 2a 3a 4=a 33=8,所以a 3=2,所以a 7=a 3q 4=2q 4=8,所以q 2=2,a 1=a 3q2=1,故选A.2.因为等比数列{a n }为递增数列且a 1=-2<0,所以0<q <1,将3(a n +a n +2)=10a n +1两边同除以a n 可得3(1+q 2)=10q ,即3q 2-10q +3=0,解得q =3或q =13,而0<q <1,所以q =13.3.∵a 2-a 1=1,a 3-a 2=3,∴q =3, ∴a n +1-a n =3n -1,∴a n -a 1=a 2-a 1+a 3-a 2+…+a n -1-a n -2+a n -a n -1=1+3+…+3n -2=1-3n -11-3,∵a 1=1,∴a n =3n -1+12.4.证明:(1)由a n +1=3a n +1得a n +1+12=3(a n +12).又a 1+12=32,所以{a n +12}是首项为32,公比为3的等比数列.所以a n +12=3n2,因此{a n }的通项公式为a n =3n -12.(2)由(1)知1a n =23n -1.因为当n ≥1时,3n -1≥2×3n -1,所以13n -1≤12×3n -1.于是1a 1+1a 2+…+1a n ≤1+13+…+13n -1=32⎝⎛⎭⎫1-13n <32. 所以1a 1+1a 2+…+1a n <32.[练习]1.当公比q =1时, a 1=a 2=a 3=9, ∴S 3=3×9=27.当q ≠1时,S 3=a 1-a 3q 1-q ,∴27=a 1-9q 1-q ,∴a 1=27-18q , ∴a 3=a 1q 2, ∴(27-18q )·q 2=9, ∴(q -1)2(2q +1)=0, ∴q =-12.综上q =1或q =-12.选C.2.由a n +1=λa n -1,得a n +1-1=λa n -2=λ⎝⎛⎭⎫a n -2λ.由于数列{a n -1}是等比数列,所以2λ=1,得λ=2. 3.∵正项等比数列{a n }满足:a 3=a 2+2a 1, ∴a 1q 2=a 1q +2a 1,即q 2=q +2,解得q =-1(舍)或q =2, ∵存在两项a m ,a n ,使得a m a n =4a 1, ∴a m a n =16a 21,∴(a 1·2m -1)·(a 1·2n -1)=16a 21,∴a 21·2m+n -2=16a 21,∴m +n =6,∴1m +4n =⎝⎛⎭⎫1m +4n ⎣⎡⎦⎤16(m +n ) =16⎝⎛⎭⎫5+n m +4m n ≥16⎝⎛⎭⎫5+2n m ·4m n =32(当且仅当n =2m 时取等号), ∴1m +4n 的最小值是32. 4.由已知S n +a 1=2a n ,有a n =S n -S n -1=2a n -2a n -1(n ≥2),即a n =2a n -1(n ≥2). 从而a 2=2a 1,a 3=2a 2=4a 1. 又因为a 1,a 2+1,a 3成等差数列, 即a 1+a 3=2(a 2+1),所以a 1+4a 1=2(2a 1+1), 解得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列, 故a n =2n ,则a 1+a 5=2+25=34. 5.(1)当n =1时,a 1=32a 1-1,∴a 1=2,当n ≥2时,∵S n =32a n -1,①∴S n -1=32a n -1-1(n ≥2),②①-②得a n =(32a n -1)-(32a n -1-1),即a n =3a n -1,∴数列{a n }是首项为2,公比为3的等比数列, ∴a n =2×3n -1.(2)由(1)得b n =2log 3a n2+1=2n -1,∴1b 1b 2+1b 2b 3+…+1b n -1b n =11×3+13×5+…+1(2n -3)(2n -1)=12(1-13+13-15+…+12n -3-12n -1)=n -12n -1.。

高中数学必修五 等比数列及前n项和(总结、例题、练习)

高中数学必修五 等比数列及前n项和(总结、例题、练习)

第五节 等比数列及前n 项和【基础知识】1.等比数列的定义如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数(不为零),那么这个数列叫作等比数列,这个常数叫作等比数列的公比,通常用字母__q __表示(q ≠0). 2.等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,则它的通项a n =a 1·q n -1(a 1≠0,q ≠0). 3.等比中项若G 2=a ·b _(ab ≠0),那么G 为a 与b 的等比中项. 4.等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m,(n ,m ∈N +).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N +),则a k ·a l =a m ·a n .(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),1n a ⎧⎫⎨⎬⎩⎭,{2n a },{a n ·b n },n n a b ⎧⎫⎨⎬⎩⎭仍是等比数列.5.等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n ,S n =111(1)(1)(1)11n n na q a a q a q q q q =⎧⎪--⎨=≠⎪--⎩6.等比数列前n 项和的性质公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为__q n __. 难点正本 疑点清源 1.等比数列的特征从等比数列的定义看,等比数列的任意项都是非零的,公比q 也是非零常数. 2.等比数列中的函数观点利用函数、方程的观点和方法,揭示等比数列的特征及基本量之间的关系.在借用指数函数讨论单调性时,要特别注意首项和公比的大小. 3.两个防范(1)由a n +1=qa n ,q ≠0并不能立即断言{a n }为等比数列,还要验证a 1≠0.(2)在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形导致解题失误.【考点剖析】考点一:等比数列基本量的运算【题组训练】1.已知等比数列{a n}满足a1=14,a3a5=4(a4-1),则a2等于()A.2B.1C.12D.18【答案】C【解析】由{a n}为等比数列,得a3a5=24a,又a3a5=4(a4-1),所以24a=4(a4-1),解得a4=2.设等比数列{a n}的公比为q,则由a4=a1q3,得2=14q3,解得q=2,所以a2=a1q=12.2.(2021·湘东五校联考)已知在等比数列{a n}中,a3=7,前三项之和S3=21,则公比q的值是()A.1 B.-1 2C.1或-12D.-1或12【答案】C【解析】当q=1时,a n=7,S3=21,符合题意;当q≠1时,由21317,(1)=211a qa qq⎧=⎪⎨-⎪-⎩得q=-12.综上,q的值是1或-12,故选C.3.(2017·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【答案】B【解析】每层塔所挂的灯数从上到下构成等比数列,记为{a n},则前7项的和S7=381,公比q=2,依题意,得S7=71(12)12a--=381,解得a1=3..【名师微点】等比数列基本量运算的解题策略(1)等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.(2)等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =11(1)11n n a a q a q q q--=--. 考点二:等比数列的判定与证明例1.[典例精析]已知数列{a n }的前n 项和为S n ,a 1=1,S n +1=4a n +2(n ∈N *),若b n =a n +1-2a n ,求证:{b n }是等比数列. 【证明】因为a n +2=S n +2-S n +1=4a n +1+2-4a n -2=4a n +1-4a n , 所以1n n b b +=211111112442242222n n n n n n nn n n n n na a a a a a a a a a a a a ++++++++----===--- 因为S 2=a 1+a 2=4a 1+2,所以a 2=5. 所以b 1=a 2-2a 1=3.所以数列{b n }是首项为3,公比为2的等比数列.[解题技法]等比数列的判定方法[提醒] (1)前两种方法是判定等比数列的常用方法,常用于证明;后两种方法常用于选择题、填空题中的判定.(2)若要判定一个数列不是等比数列,则只需判定存在连续三项不成等比数列即可. 考点三:等比数列的性质及应用例2.(1)已知等比数列{a n }的各项为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( )A.12B.10C.8 D.2+log35(2)设等比数列{a n}中,前n项和为S n,已知S3=8,S6=7,则a7+a8+a9等于()A.18B.-18C. 578D.558(3)已知等比数列{a n}共有2n项,其和为-240,且奇数项的和比偶数项的和大80,则公比q=________.【答案】(1)B(2)A(3)2【解析】(1)由a5a6+a4a7=18,得a5a6=9,所以log3a1+log3a2+...+log3a10=log3(a1a2 (10)=log3(a5a6)5=5log39=10.(2)因为a7+a8+a9=S9-S6,且S3,S6-S3,S9-S6也成等比数列,即8,-1,S9-S6成等比数列,所以8(S9-S6)=1,即S9-S6=18,所以a7+a8+a9=1 8 .(3)由题意,得=240=80S SS S+-⎧⎪⎨-⎪⎩奇偶奇偶,,解得=80=160SS-⎧⎪⎨-⎪⎩奇偶,所以q=160=80SS--偶奇=2.[解题技法]应用等比数列性质解题时的2个注意点(1)在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m+n=p+q(m,n,p,q∈N*),则a m·a n=a p·a q”,可以减少运算量,提高解题速度.(2)在应用相应性质解题时,要注意性质成立的前提条件,有时需要进行适当变形.此外,解题时注意设而不求思想的运用.2.4 等比数列 基础练一、单选题1.在等比数列{}n a 中,201920168a a =,则数列{}n a 的公比q 的值为( )A .2B .3C .4D .82.已知等比数列{}n a 中,2017a ,2019a 是方程2410x x -+=的两个根,则2018a =( )A .1B .±1C .2018D .1,2018 3.已知数列{}n a 是公比为q 的等比数列,且132,,a a a 成等差数列,则公比q 的值为( )A .11,-2B .1C .1-2D .-24.若等差数列{}n a 和等比数列{}n b 满足111a b ==-,448a b ==,则22a b 为( ) A .1B .1-C .2D .2-5.已知等比数列{}n a 满足112a =,且()24341a a a ⋅=-,则5a =( ) A .8B .16C .32D .646.在各项不为零的等差数列{}n a 中,2201720182019220a a a -+=,数列{}n b 是等比数列,且20182018b a =,则()220172019log b b ⋅的值为( )A .1B .2C .4D .8二、填空题7.若,22,33x x x ++是一个等比数列的前3项,则第四项为_________.8.在等比数列{}n a 中,1132a =,当11n 时,1n a >恒成立,则公比q 的取值范围是______.9.已知数列{}n a 满足()*1111,3n n n a a n a a +==∈+N ,那么{}n a 的通项公式是___.三、解答题10.已知:n S 为{}n a 的前n 项和,且满足n n a S n +=.(1)求证:{}1n a -成等比数列; (2)求n a .2.5 等比数列的前n 项和基础练一、单选题1.已知数列{}n a 的前n 项和22n S n n =+,则数列11{}n n a a +⋅的前6项和为( )A .215 B .415 C .511 D .1011 2.数列11111,2,3,424816…的前n 项和为( )A .()211122n n n ++-B .()1111122n n n +++-C .()211222n n n ++-D .()1112122n n n ⎛⎫++- ⎪⎝⎭3.数列{}n a的通项公式为n a =n S 为其前n 项和.若9n S =,则n =( )A .99B .98C .97D .964.若数列{}n a 的通项公式为221n n a n =+-,则数列{}n a 的前n 项和n S 为( )A .221n n +-B .1221n n ++-C .1222n n ++-D .222n n +-5.数列{}n a 满足n a =123...nn ++++,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为( )A .2nn +B .22nn + C .1n n + D .21nn + 6.已知等比数列{}n a 的前n 项和为n S ,若367,63S S ==,则数列{}n na 的前n 项和为( )A .3(1)2n n -++⨯B .3(1)2n n ++⨯C .1(1)2n n ++⨯D .1(1)2n n +-⨯二、填空题7.已知数列{a n }的通项a n =2n +n ,若数列{a n }的前n 项和为Sn ,则S 8=_________8.()()11114473231n n +++=⨯⨯-+ 9.已知数列111112123123n+++++++,,,,,,则其前n 项的和等于_________.三、解答题10.已知等差数列{a n }满足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式;(2)求数列12n n a -⎧⎫⎨⎬⎩⎭的前n 项和.参考答案11.【答案】A【解析】设等比数列{a n }的公比为q ,∵a 2019=8a 2016,∴q 3=8,解得q =2. 故选A . 2.【答案】B【解析】∵2017a ,2019a 是方程x 2﹣4x+1=0的两个根,∴20172019a a =1,则在等比数列{a n }中,201720192018a a a =2=1,2008a ∴=±1故选B . 3.【答案】A【解析】数列{}n a 是公比为q 的等比数列,132,,a a a 故3122a a a =+,由此解得112q =-, 故选A 。

等比数列知识点并附例题及解析

等比数列知识点并附例题及解析

等比数列知识点并附例题及解析1、等比数列的定义:()()*12,nn a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠,首项:1a ;公比:q推广:n m n m n n n m m a a a q q q a --=⇔=⇔=3、等比中项:(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个( (2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅ 4、等比数列的前n 项和n S 公式:(1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a qS qq--==-- 11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数)5、等比数列的判定方法:(1)用定义:对任意的n ,都有11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,为等比数列(2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠⇔为等比数列 (3)通项公式:()0{}n n n a A B A B a =⋅⋅≠⇔为等比数列 6、等比数列的证明方法:依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔为等比数列 7、等比数列的性质:(2)对任何*,m n N ∈,在等比数列{}n a 中,有n m n m a a q -=。

(3)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ⋅=⋅。

高中数学数列知识点总结(精华版)

高中数学数列知识点总结(精华版)

高中数学数列知识点总结(精华版)等比数列公式性质知识点1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q表示,定义的表达式为an+1/an=q(n∈n_,q为非零常数).(2)等比中项:如果a、g、b成等比数列,那么g叫做a与b的等比中项.即:g是a与b的等比中项a,g,b成等比数列g2=ab.2.等比数列的有关公式(1)通项公式:an=a1qn-1.3.等比数列{an}的常用性质(1)在等比数列{an}中,若m+n=p+q=2r(m,n,p,q,r∈n_),则am·an=ap·aq=a.特别地,a1an=a2an-1=a3an-2=….(2)在公比为q的等比数列{an}中,数列am,am+k,am+2k,am+3k,…仍是等比数列,公比为qk;数列sm,s2m-sm,s3m-s2m,…仍是等比数列(此时q≠-1);an=amqn-4.等比数列的特征(1)从等比数列的定义看,等比数列的任意项都是非零的,公比q也是非零常数.(2)由an+1=qan,q≠0并无法立即断言{an}为等比数列,还要检验a1≠0.5.等比数列的前n项和sn(1)等比数列的前n项和sn就是用错位二者加法求出的,特别注意这种思想方法在数列议和中的运用.(2)在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形导致解题失误.1.等比中项如果在a与b中间插入一个数g,使a,g,b成等比数列,那么g叫做a与b的等比中项。

存有关系:注:两个非零同号的实数的'等比中项有两个,它们互为相反数,所以g2=ab是a,g,b 三数成等比数列的必要不充分条件。

2.等比数列通项公式an=a1_q’(n-1)(其中首项是a1,公比是q)an=sn-s(n-1)(n≥2)前n项和当q≠1时,等比数列的前n项和的公式为sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)当q=1时,等比数列的前n项和的公式为sn=na13.等比数列前n项和与通项的关系an=a1=s1(n=1)an=sn-s(n-1)(n≥2)4.等比数列性质(1)若m、n、p、q∈n_,且m+n=p+q,则am·an=ap·aq;(2)在等比数列中,依次每k项之和仍成等比数列。

小学等比数列知识点归纳总结

小学等比数列知识点归纳总结

小学等比数列知识点归纳总结等比数列是数学中常见的数列形式之一,它由首项和公比确定。

在小学阶段,学生们初步接触到等比数列的概念和性质,并学习如何求解等比数列中的各项值以及计算等比数列的和。

本文将对小学等比数列的知识点进行归纳总结。

一、等比数列的定义和性质等比数列是指一个数列中,从第二项开始,每一项与前一项的比值都相等的数列。

对于一个等比数列来说,它可以用以下形式表示:a,ar,ar^2,ar^3,...其中,a表示首项,r表示公比,n表示项数。

在等比数列中,我们可以得出以下性质:1. 第n项的计算公式第n项的计算公式为:an = a * r^(n-1)其中,an表示等比数列的第n项。

2. 公比的确定公比r可以通过任意两项的比值求得,即r = 第n项/第(n-1)项。

3. 通项公式的推导由于等比数列的第n项的计算公式中包含了指数运算,我们可以通过观察前几项的比值来推导通项公式。

例如,当首项为a,公比为r时,我们可以得到等比数列的通项公式为:an = a * r^(n-1)。

二、等比数列的应用等比数列在实际生活和数学问题中有着广泛的应用,以下是一些常见的应用场景:1. 财务管理在财务管理领域,等比数列经常用于计算利息、复利和投资增长等问题。

通过了解等比数列的性质和计算公式,我们可以更好地理解和应用于财务管理中的复利增长问题。

2. 几何图形等比数列可以与几何图形相联系,例如等比数列中的每一项可以表示连续放大或缩小的几何图形的边长、面积或者体积。

3. 科学实验在科学实验中,等比数列经常用于描述物质转化的速率。

通过观察实验中物质数量的变化,我们可以将其表示成等比数列,并进一步研究物质转化的规律。

4. 运动问题等比数列可以应用于运动问题中的速度、距离等相关计算。

当知道等比数列中的两项的值时,我们可以通过计算得到其他项的值,并用于解决运动问题。

三、等比数列的求解在解决等比数列的问题时,我们通常需要计算等比数列的前n项和和求解特定项的值。

等比数列复习(全面知识点+精选例题+习题附答案)精编材料pdf版

等比数列复习(全面知识点+精选例题+习题附答案)精编材料pdf版

四、等比数列1.等比数列的定义如果一个数列从第2项起,每一项与它前一项的比等于同一个常数,那么这个数列就叫作等比数列,这个常数叫作等比数列的公比,通常用字母q 表示(0q ≠).递推式表示为1n na q a +=或1(2)nn a q n a -=≥. 例如:数列{}n a 满足12n n a a +=,则数列{}n a 是公比为2的等比数列.特别注意:等比数列中任何一项都不为0,公比0q ≠,若一个数列是常数列,则此数列一定是等差数列,除了0,0,0,这样的常数列之外,其余的也都是等比数列.注:10a >,1q >时,{}n a 是递增的等比数列;10a >,01q <<时,{}n a 是递减的等比数列; 10a <,01q <<时,{}n a 是递增的等比数列; 10a <,1q >时,{}n a 是递减的等比数列;1q =时,{}n a 是非零常数列; 0q <时,{}n a 是摆动数列.2.等比中项若三个数a ,G ,b 成等比数列,则G 叫作a 与b 的等比中项. 此时2G ab = 例如:2和8的等比中项为4±. 注:①一个等比数列,从第2项起,每一项都是它的前后两项的等比中项,即212n n n a a a ++=,每一项都是前后距离相同两项的等比中项,即2n n m n m a a a -+=.②当三个数成等比数列时,当四个数成等比数列时,常设这解析:由前三项成等比数列,可知2(33)x +3.等比数列的通项公式等比数列{}n a 的首项为1a ,公比为q ,则11n n a a q -=.4.等比数列的性质(1)等比数列{}n a 的第m 项为m a ,则n mn m a a q -=.★例如:7652812310a a q a q a q a q -=====.(2)若m n p q +=+,则m n p q a a a a =,若2m n p +=,则2m n p a a a =.★例如:2192837465a a a a a a a a a ====,12132n n n a a a a a a --===.(3)下标成等差数列且公差为m 的项k a ,k m a +,2k m a +,组成公比为mq 的等比数列.例如:135721,,,,,,n a a a a a -组成公比为2q 的等比数列; 51015205,,,,,,n a a a a a 组成公比为5q 的等比数列.(4){}n a 是公比为q 的等比数列,则{}n ka 也是等比数列,公比为q . (5){}n a ,{}n b 都是等比数列,则{}n ka ,{||}n a ,2{}n a ,1{}n a ,{}n n a b ,{}n na b 也是等比数列.}a 中,2a =,公差0d ≠,且,a5.判断一个数列是等比数列的方法 (1)定义法:1n na q a +=(常数).★ (2)等比中项法:212+=n n n a a a +或211-+=n n n a a a .★ (3)通项公式法:11=n n a a q-(公比为q ).(4)前n 项和公式法:(0,0)nn S Aq A A q =-≠≠.11=知1a +练习题:答案解析:45a a a +=则1ln ln a +5022)22a a a a a a a a =++=++解析:由等比数列性质可知当2q =-时,四个数为1,2,4,8--无论怎样组合,不能同时满足128x x =且348x x =,故舍去 综上15m n +=. 答案:15数学浪子整理制作,侵权必究。

等比数列知识点及题型归纳

等比数列知识点及题型归纳

等比数列知识点及题型归纳一、等比数列简介等比数列是数学中常见的一种数列。

如果一个数列中,从第二项开始,每一项与前一项的比都相等,则这个数列被称为等比数列。

等比数列的通项公式为:an = a1 * r^(n-1),其中an表示第n项,a1表示第一项,r表示公比,n表示项数。

二、等比数列的性质:1. 常比:等比数列中,公比r始终是一个常数。

2. 正比和负比:如果公比r>1,则称等比数列为正比数列;如果0<r<1,则称等比数列为负比数列。

3. 倒数和倒数的倒数:对于等比数列,如果公比r不等于1,则相邻两项的倒数也是一个等比数列,并且它们的公比是1/r。

4. 等比中项:对于等比数列,存在一个项x,称为等比中项,它满足x²=a1*a(n+1),其中a1表示第一项,an表示最后一项。

5. 等比数列的和:等比数列的前n项和可以表示为Sn = a1 * (1-r^n) / (1-r),其中a1表示第一项,r表示公比。

三、等比数列的常见题型:1. 求第n项:已知等比数列的首项和公比,求第n项的值。

2. 求前n项和:已知等比数列的首项和公比,求前n项和的值。

3. 求公比:已知等比数列的首项和第n项,求公比的值。

4. 求等比中项:已知等比数列的首项和最后一项,求等比中项的值。

5. 求满足条件的项数:已知等比数列的首项和公比,求满足条件的项数。

6. 判断数列性质:已知数列的前几项,判断数列是等比数列还是等差数列。

7. 求等差数列对应项:已知等差数列和等比数列的相同位置上的项相等,求该等差数列的对应项。

四、等比数列的应用:等比数列在实际生活和工作中有着广泛的应用。

以下是一些等比数列的典型应用场景:1. 财务计算:等比数列可以用来计算贷款或投资的复利。

2. 科学研究:等比数列的合理运用可以帮助科学家研究自然界中的各种现象。

3. 经济分析:等比数列可以用来分析经济增长和衰退的趋势。

4. 工程计划:等比数列可以用来计算任务的进度和耗时。

高二数学等比数列知识点总结与经典习题

高二数学等比数列知识点总结与经典习题

参考答案例题1、 9n-1 练习1、1、42、B [解析] 98·(23)n-1=13,∴(23)n-1=827=(23)3∴n=4.3、A [解析] ∵{a n}是等比数列,a1+a2=3,a2+a3=6,∴设等比数列的公比为q,则a2+a3=(a1+a2)q=3q=6,∴q=2. ∴a1+a2=a1+a1q=3a1=3,∴a1=1,∴a7=a1q6=26=64.4、A [解析] a4=a1q3=q3=8,∴q=2,∴a5=a4q=16.5、C [解析] m-k=(a5+a6)-(a4+a7)=(a5-a4)-(a7-a6)=a 4(q -1)-a 6(q -1)=(q -1)(a 4-a 6) =(q -1)·a 4·(1-q 2)=-a 4(1+q )(1-q )2<0(∵a n >0,q ≠1). 6、B [解析] 设公比为q ,由已知得a 1q 2·a 1q 8=2(a 1q 4)2,即q 2=2,因为等比数列{a n }的公比为正数,所以q =2,故a 1=a 2q =12=22,故选B.7、B [解析]由条件知⎩⎪⎨⎪⎧a 2=-bb 2=ac =9c 2=-9b,∵⎩⎪⎨⎪⎧a 2≥0,a ≠0,∴a 2>0,∴b <0,∴b =-38、 a n=S n-S n-1=2n-1-[2n-1-1]=2n-2n-1=2n-1,a n 2是以a 12=1为首项,4为公比的等比数列;S=4n-1/39、(1)a+b+c,b+c-a,c+a-b,a+b-c 组成公比为q 的等比数列,所以q 3=(a+b-c)/(a+b+c) ,q 2=(c+a-b)/(a+b+c) q=(b+c-a)/(a+b+c),q 3+q 2+q=(a+b-c)/(a+b+c)+(c+a-b)/(a+b+c)+(b+c-a)/(a+b+c)=(a+b+c)/(a+b+c)=1(2)因为a+b+c ,b+c-a ,c+a-b ,a+b-c 成等比数列,公比为q 所以(c+a-b)/(b+c-a)=q, (a+b-c)/(c+a-b)=q ∴q=[(c+a -b)+ (a+b-c)]/[(b+c-a) +(c+a-b)]=2a/(2c)=a/c.例题2、 解a n-an-1=3n-1 将n=2,3,4,5代入得:a ₂-a ₁=3¹a ₃-a ₂=3² a ₃-a ₄=3³............... a n -a n-1=3n-1将上面的式子相加得:a n -a 1 = 3¹+3²+3³+.......+3n-1a n = 1+3¹+3²+3³+.......+3n-1=(1/2)(3ⁿ-1)练习1、C [解析] ∵a 2,12a 3,a 1成等差数列,∴a 3=a 2+a 1,∵{a n }是公比为q 的等比数列,∴a 1q 2=a 1q +a 1, ∴q 2-q -1=0,∵q >0,∴q =5+12. ∴a 3+a 4a 4+a 5=a 3+a 4a 3+a 4q =1q =5-12.2、C [解析] ∵a ,b ,c 成等比数列, ∴b 2=ac >0. 又∵Δ=b 2-4ac =-3ac <0,∴方程无实数根.3、(a n +2)/2=√(2S n ) S n =(a n +2)2/8 S n+1=(a n+1+2)2/8 a n+1=S n+1-S n =a n+12/8+a (n+1)/2-a n 2/8-a n /2a n+12/8-a (n+1)/2-a n 2/8-a n /2=0 a n+12-4a n+1-a n 2-4a n =0 a (n+1)=a n +4 a n =-2+4n例题3、 xS n =x+3x 2+5x 3+7x 4+...+(2n-3)x(n-1)+(2n-1)xn①因为 S n =1+3x+5x 2+7x 3+9x 4+...+(2n-1)x(n-1) ②②-①得,(1-x)S n =1+2[x+x 2+x 3+x 4+.....+x n-1]-(2n-1)x n(1-x)S n =1+2[(x-x n)/(1-x)]-(2n-1)x n(1-x)S n =1+(2x-2x n)/(1-x)-2nx n+x n(1-x)S n =1+2x/(1-x)-2x n/(1-x)-2nx n+x n(1-x)S n =1+2x/(1-x)+{1-2n-2/(1-x)}x nS n ={1+(2x)/(1-x)+[1-2n-2/(1-x)]x n}/(1-x)练习1、在等比数列中,依次每k 项之和仍成等比数列。

等差数列与等比数列类比总结(全面知识点+100道练习题附解析)精编材料word版

等差数列与等比数列类比总结(全面知识点+100道练习题附解析)精编材料word版

等差数列与等比数列知识点总结及经典题目100道练习题:答案解析:14d +5 6解析:nS有最小值,可知1a<,0d>761aa<-变形得676a aa+<,故6a<,67a a+>671121212()12()22a aa aS++==>当12n<时,nS很明显都是小于0的故nS取到最小正数时的n为12.答案:1257解析:由1020S S=知对称轴为15n=,故最大值为前15项之和.答案:A5 8解析:41434442S a d⨯=+=,81878562S a d⨯=+=两式联立解得114a=,2d=-故2(1)14(2)152nn nS n n n-=+⨯-=-+对称轴为7.5,故当7n=或8n=时取最大值27715756S=-+⨯=.答案:最大值为7856S S==59解析:根据对称性,由67S S=可知58S S=,49S S=由中间到两端以此减小,所以985S S S<=,C选项错误.答案:C6 0解析:由条件可知函数零点在18与19之间,又函数过原点则对称轴应介于182与192之间,即大于9小于9.5数列的下标只能取正整数,离对称轴最近的正整数为9,故9S最大.答案:C数学浪子整理制作,侵权必究。

(完整版)等比数列知识点总结

(完整版)等比数列知识点总结

a na n 一1= q (q 士 0)(n > 2,且n 仁 N * ), q 称为a n = a 1q n 一1 = a1qq n = A . B n (a 1 . q 士 0, A . B 士 0),首项: a 1 ;公比: q推广:a n = a m q n 一m 一 q n 一m = an( 1)如果a , A,b 成等比数列,那么 A 叫做a 与b 的等差中项,即: A 2 = ab 或A = 士 abma a m a 一 q = n 一m n注意:两个等比中项互为相反数)(2)数列{a n }是等比数列一 a n 2 = a n一1 . a n+1S( 1)当q = 1 时,S n = na1( 2 )当q 士 1时,S=a1(1一q n)=a1一anqn 1一 q 1一 q= a1一a1q n = A 一 A . B n = A ' B n 一 A '1一 q 1一 q( A, B, A',B '为常数)( 1 )用定义:对任意的n ,都有an+1= qan或 = q(q为常数, an士 0) 一 {an}为等比数列①等比数列通项公式( 2 )等比中项:a n 2 = a n+1a n 一1 (a n+1a n 一1 士 0) 一 {a n }为等比数列( 3 )通项公式:a n = A. B n (A. B 士 0) 一 {a n }为等比数列依据定义:若a na n 一1= q (q 士 0)(n > 2,且n e N * )或a n+1 = qa n 一 {a n } 为等比数列7、等比数列的性质:( 1)当q 士 1时a n = a 1q n 1 = a1qq n = A . B n (A . B 0)是关于n 的带有系数的类指数函数,底数为公比 q ;②前n 项和S n =a 1 (1 q n )1q= a 11q a 11qq n = A A . B n = A'B n A',系数和常数项是互为相反数的类指数函数,底数为公比 q 。

等比数列及其前n项和知识点讲解+例题讲解(含解析)

等比数列及其前n项和知识点讲解+例题讲解(含解析)

等比数列及其前n 项和一、知识梳理1.等比数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的比等于同一个非零常数,那么这个数列叫做等比数列.数学语言表达式:a n a n -1=q (n ≥2,q 为非零常数).(2)如果三个数a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项,其中G =2.等比数列的通项公式及前n 项和公式(1)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1q n -1; 通项公式的推广:a n =a m q n -m .(2)等比数列的前n 项和公式:当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q .3.等比数列的性质已知{a n }是等比数列,S n 是数列{a n }的前n 项和. (1)若k +l =m +n (k ,l ,m ,n ∈N *),则有a k ·a l =a m ·a n . (2)相隔等距离的项组成的数列仍是等比数列,即a k , a k +m ,a k +2m ,…仍是等比数列,公比为q m .(3)当q ≠-1,或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n ,…仍成等比数列,其公比为q n .证明:(1)当q ≠-1且q ≠0时,A a a a a S n n =++++=...321,n n n n n n n n n n n Aq q a q a q a a a a a S S =+++=++++=-+++ (2123212)n n n n n n n n n n n Aq q a q a q a a a a a S S 222221332221223......=+++=++++=-+++所以S n ,S 2n -S n ,S 3n -S 2n ,…仍成等比数列,其公比为q n(2)当q= -1时,<1>、当n 为奇数时,1a S n=,132,0a S S n n ==1120a a S S n n -=-=-, 11230a a S S n n =-=-所以S n ,S 2n -S n ,S 3n -S 2n ,…仍成等比数列,其公比为q n<2>、当n 为偶数时,032===n n n S S S ,S n ,S 2n -S n ,S 3n -S 2n不能构成等比数列小结:1.若数列{a n }为等比数列,则数列{c ·a n }(c ≠0),{|a n |},{a 2n},⎩⎨⎧⎭⎬⎫1an 也是等比数列. 2.由a n +1=qa n ,q ≠0,并不能立即断言{a n }为等比数列,还要验证a 1≠0. 3.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.二、例题精讲 + 随堂练习1.判断下列结论正误(在括号内打“√”或“×”) (1)等比数列公比q 是一个常数,它可以是任意实数.( ) (2)三个数a ,b ,c 成等比数列的充要条件是b 2=ac .( )(3)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n )1-a.( )(4)数列{a n }为等比数列,则S 4,S 8-S 4,S 12-S 8成等比数列.( ) 解析 (1)在等比数列中,q ≠0.(2)若a =0,b =0,c =0满足b 2=ac ,但a ,b ,c 不成等比数列. (3)当a =1时,S n =na .(4)若a 1=1,q =-1,则S 4=0,S 8-S 4=0,S 12-S 8=0,不成等比数列.答案 (1)× (2)× (3)× (4)×2.已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( ) A.-12B.-2C.2D.12解析 由题意知q 3=a 5a 2=18,即q =12.答案 D3.在9与243中间插入两个数,使它们同这两个数成等比数列,则这两个数为________.解析 设该数列的公比为q ,由题意知, 243=9×q 3,q 3=27,∴q =3.∴插入的两个数分别为9×3=27,27×3=81. 答案 27,814.(2019·天津和平区质检)已知等比数列{a n }满足a 1=1,a 3·a 5=4(a 4-1),则a 7的值为( ) A.2B.4C.92D.6解析 根据等比数列的性质得a 3a 5=a 24,∴a 24=4(a 4-1),即(a 4-2)2=0,解得a 4=2.又∵a 1=1,a 1a 7=a 24=4,∴a 7=4. 答案 B5.(2018·北京卷)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为( )A.32f B.322fC.1225fD.1227f解析 由题意知十三个单音的频率依次构成首项为f ,公比为122的等比数列,设此数列为{a n },则a 8=1227f ,即第八个单音的频率为1227f . 答案 D6.(2015·全国Ⅰ卷)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.解析 由a n +1=2a n ,知数列{a n }是以a 1=2为首项,公比q =2的等比数列,由S n =2(1-2n )1-2=126,解得n =6.答案 6考点一 等比数列基本量的运算【例1】 (1)(2017·全国Ⅲ卷)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________.(2)等比数列{a n }的各项均为实数,其前n 项和为S n ,已知S 3=74,S 6=634,则a 8=________.解析 (1)由{a n }为等比数列,设公比为q .由⎩⎪⎨⎪⎧a 1+a 2=-1,a 1-a 3=-3,得⎩⎪⎨⎪⎧a 1+a 1q =-1,①a 1-a 1q 2=-3,② 显然q ≠1,a 1≠0,②①得1-q =3,即q =-2,代入①式可得a 1=1, 所以a 4=a 1q 3=1×(-2)3=-8.(2)设数列{a n }首项为a 1,公比为q (q ≠1),则⎩⎪⎨⎪⎧S 3=a 1(1-q 3)1-q=74,S 6=a 1(1-q 6)1-q=634,解得⎩⎨⎧a 1=14,q =2, 所以a 8=a 1q 7=14×27=32.答案 (1)-8 (2)32规律方法 1.等比数列基本量的运算是等比数列中的一类基本问题,等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)便可迎刃而解.2.等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q 1-q.【训练1】 (1)等比数列{a n }中各项均为正数,S n 是其前n 项和,且满足2S 3=8a 1+3a 2,a 4=16,则S 4=( ) A.9B.15C.18D.30(2)(2017·北京卷)若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2=________.解析 (1)设数列{a n }的公比为q (q >0),则⎩⎪⎨⎪⎧2S 3=2(a 1+a 1q +a 1q 2)=8a 1+3a 1q ,a 1q 3=16, 解得q =2,a 1=2,所以S 4=2(1-24)1-2=30.(2){a n }为等差数列,a 1=-1,a 4=8=a 1+3d =-1+3d ,∴d =3,∴a 2=a 1+d =-1+3=2.{b n }为等比数列,b 1=-1,b 4=8=b 1·q 3=-q 3,∴q =-2,∴b 2=b 1·q =2,则a 2b 2=22=1.答案 (1)D (2)1考点二 等比数列的判定与证明【例2】 已知数列{a n }的前n 项和S n =1+λa n ,其中λ≠0. (1)证明{a n }是等比数列,并求其通项公式; (2)若S 5=3132,求λ.(1)证明 由题意得a 1=S 1=1+λa 1,故λ≠1,a 1=11-λ,a 1≠0.由S n =1+λa n ,S n +1=1+λa n +1, 得a n +1=λa n +1-λa n , 即a n +1(λ-1)=λa n ,由a 1≠0,λ≠0得a n ≠0,所以a n +1a n=λλ-1.因此{a n }是首项为11-λ,公比为λλ-1的等比数列,于是a n =11-λ⎝ ⎛⎭⎪⎫λλ-1n -1. (2)解 由(1)得S n =1-⎝ ⎛⎭⎪⎫λλ-1n.由S 5=3132,得1-⎝ ⎛⎭⎪⎫λλ-15=3132,即⎝ ⎛⎭⎪⎫λλ-15=132.解得λ=-1.【训练2】 (2019·广东省级名校联考)已知S n 是数列{a n }的前n 项和,且满足S n -2a n =n -4.(1)证明:{S n -n +2}为等比数列; (2)求数列{S n }的前n 项和T n . (1)证明 因为a n =S n -S n -1(n ≥2), 所以S n -2(S n -S n -1)=n -4(n ≥2), 则S n =2S n -1-n +4(n ≥2),所以S n -n +2=2[S n -1-(n -1)+2](n ≥2), 又由题意知a 1-2a 1=-3, 所以a 1=3,则S 1-1+2=4,所以{S n -n +2}是首项为4,公比为2等比数列. (2)解 由(1)知S n -n +2=2n +1, 所以S n =2n +1+n -2,于是T n =(22+23+…+2n +1)+(1+2+…+n )-2n=4(1-2n )1-2+n (n +1)2-2n =2n +3+n 2-3n -82.考点三 等比数列的性质及应用【例3】 (1)等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( ) A.12B.10C.8D.2+log 35(2)已知数列{a n }是等比数列,S n 为其前n 项和,若a 1+a 2+a 3=4,a 4+a 5+a 6=8,则S 12=( ) A.40B.60C.32D.50解析 (1)由等比数列的性质知a 5a 6=a 4a 7,又a 5a 6+a 4a 7=18,所以a 5a 6=9,则原式=log 3(a 1a 2…a 10)=log 3(a 5a 6)5=10.(2)数列S 3,S 6-S 3,S 9-S 6,S 12-S 9是等比数列,即数列4,8,S 9-S 6,S 12-S 9是首项为4,公比为2的等比数列,则S 9-S 6=a 7+a 8+a 9=16,S 12-S 9=a 10+a 11+a 12=32,因此S 12=4+8+16+32=60. 答案 (1)B (2)B【训练3】 (1)(2019·菏泽质检)在等比数列{a n }中,若a 3,a 7是方程x 2+4x +2=0的两根,则a 5的值是( ) A.-2B.- 2C.± 2D.2(2)(一题多解)设等比数列{a n }的前n 项和为S n ,若S 6S 3=3,则S 9S 6=________.解析 (1)根据根与系数之间的关系得a 3+a 7=-4, a 3a 7=2,由a 3+a 7=-4<0,a 3a 7>0, 所以a 3<0,a 7<0,即a 5<0, 由a 3a 7=a 25,得a 5=-a 3a 7=- 2.(2)法一 由等比数列的性质S 3,S 6-S 3,S 9-S 6仍成等比数列,由已知得S 6=3S 3,∴S 6-S 3S 3=S 9-S 6S 6-S 3,即S 9-S 6=4S 3,S 9=7S 3,∴S 9S 6=73.法二 因为{a n }为等比数列,由S 6S 3=3,设S 6=3a ,S 3=a (a ≠0),所以S 3,S 6-S 3,S 9-S 6为等比数列,即a ,2a ,S 9-S 6成等比数列,所以S 9-S 6=4a ,解得S 9=7a ,所以S 9S 6=7a 3a =73.答案 (1)B (2)73数学运算——等差(比)数列性质的应用1.数学运算是指在明析运算对象的基础上,依据运算法则解决数学问题的素养.本系列数学运算主要表现为:理解数列问题,掌握数列运算法则,探究运算思路,求得运算结果.通过对数列性质的学习,发展数学运算能力,促进数学思维发展.2.数学抽象是指能够在熟悉的情境中直接抽象出数学概念和规则,能够在特例的基础上归纳形成简单的数学命题,能够在解决相似的问题中感悟数学的通性通法,体会其中的数学思想.类型1 等差数列两个性质的应用 在等差数列{a n }中,S n 为{a n }的前n 项和: (1)S 2n -1=(2n -1)a n ;等差中项)(2)设{a n }的项数为2n ,公差为d ,则S 偶-S 奇=nd .【例1】 (1)等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m =________.(2)一个等差数列的前12项和为354,前12项中偶数项的和与奇数项的和的比为32∶27,则数列的公差d =________.解析 (1)由a m -1+a m +1-a 2m =0得2a m -a 2m =0,解得a m =0或2.又S 2m -1=(2m -1)(a 1+a 2m -1)2=(2m -1)a m =38, 显然可得a m ≠0,所以a m =2.代入上式可得2m -1=19,解得m =10.(2)设等差数列的前12项中奇数项和为S 奇,偶数项的和为S 偶,等差数列的公差为d .由已知条件,得⎩⎪⎨⎪⎧S 奇+S 偶=354,S 偶∶S 奇=32∶27,解得⎩⎪⎨⎪⎧S 偶=192,S 奇=162.又S 偶-S 奇=6d ,所以d =192-1626=5. 答案 (1)10 (2)5类型2 等比数列两个性质的应用在等比数列{a n }中,(1)若m +n =p +q (m ,n ,p ,q ∈N *),则a n ·a m =a p ·a q ;(2)当公比q ≠-1时,S n ,S 2n -S n ,S 3n -S 2n ,…成等比数列(n ∈N *).【例2】 (1)等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( )A.6B.5C.4D.3(2)设等比数列{a n }中,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( )A.18B.-18C.578D.558 解析 (1)数列{lg a n }的前8项和S 8=lg a 1+lg a 2+…+lg a 8=lg(a 1·a 2·…·a 8)=lg(a 1·a 8)4=lg(a 4·a 5)4=lg(2×5)4=4.(2)因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18,所以a 7+a 8+a 9=18.答案 (1)C (2)A类型3 等比数列前n 项和S n 相关结论的活用(1)项的个数的“奇偶”性质:等比数列{a n }中,公比为q . 若共有2n 项,则S 偶∶S 奇=q .(2)分段求和:S n +m =S n +q n S m (q 为公比).【例3】 (1)已知等比数列{a n }共有2n 项,其和为-240,且奇数项的和比偶数项的和大80,则公比q =________.(2)已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为________. 解析 (1)由题意,得⎩⎪⎨⎪⎧S 奇+S 偶=-240,S 奇-S 偶=80,解得⎩⎪⎨⎪⎧S 奇=-80,S 偶=-160, 所以q =S 偶S 奇=-160-80=2. (2)设等比数列{a n }的公比q ,易知S 3≠0.则S 6=S 3+S 3q 3=9S 3,所以q 3=8,q =2.所以数列⎩⎨⎧⎭⎬⎫1a n 是首项为1,公比为12的等比数列,其前5项和为1-⎝ ⎛⎭⎪⎫1251-12=3116.答案 (1)2 (2)3116三、课后练习1.已知等比数列{a n }的各项均为正数且公比大于1,前n 项积为T n ,且a 2a 4=a 3,则使得T 1>1的n 的最小值为( )A.4B.5C.6D.7 解析 ∵{a n }是各项均为正数的等比数列,且a 2a 4=a 3,∴a 23=a 3,∴a 3=1.又∵q >1,∴a 1<a 2<1,a n >1(n >3),∴T n >T n -1(n ≥4,n ∈N *),T 1<1,T 2=a 1·a 2<1,T 3=a 1·a 2·a 3=a 1a 2=T 2<1,T 4=a 1a 2a 3a 4=a 1<1,T 5=a 1·a 2·a 3·a 4·a 5=a 53=1,T 6=T 5·a 6=a 6>1,故n 的最小值为6. 答案 C 2.数列{a n }中,已知对任意n ∈N *,a 1+a 2+a 3+…+a n =3n -1,则a 21+a 22+a 23+…+a 2n 等于( )A.(3n -1)2B.12(9n -1)C.9n -1D.14(3n -1)解析 ∵a 1+a 2+…+a n =3n -1,n ∈N *,n ≥2时,a 1+a 2+…+a n -1=3n -1-1,∴当n ≥2时,a n =3n -3n -1=2·3n -1,又n =1时,a 1=2适合上式,∴a n =2·3n -1,故数列{a 2n }是首项为4,公比为9的等比数列.因此a 21+a 22+…+a 2n =4(1-9n )1-9=12(9n -1). 答案 B 3.(2019·华大新高考联盟质检)设等比数列{a n }的前n 项和为S n ,若a 3a 11=2a 25,且S 4+S 12=λS 8,则λ=______.解析 ∵{a n }是等比数列,a 3a 11=2a 25,∴a 27=2a 25,∴q 4=2,∵S 4+S 12=λS 8,∴a 1(1-q 4)1-q +a 1(1-q 12)1-q =λa 1(1-q 8)1-q, ∴1-q 4+1-q 12=λ(1-q 8),将q 4=2代入计算可得λ=83.答案 834.已知数列{a n }满足a 1=1,a n +1=2a n +λ(λ为常数).(1)试探究数列{a n +λ}是不是等比数列,并求a n ;(2)当λ=1时,求数列{n (a n +λ)}的前n 项和T n . 解 (1)因为a n +1=2a n +λ,所以a n +1+λ=2(a n +λ). 又a 1=1,所以当λ=-1时,a 1+λ=0,数列{a n +λ}不是等比数列, 此时a n +λ=a n -1=0,即a n =1; 当λ≠-1时,a 1+λ≠0,所以a n +λ≠0, 所以数列{a n +λ}是以1+λ为首项,2为公比的等比数列, 此时a n +λ=(1+λ)2n -1,即a n =(1+λ)2n -1-λ.(2)由(1)知a n =2n -1,所以n (a n +1)=n ×2n , T n =2+2×22+3×23+…+n ×2n ,① 2T n =22+2×23+3×24+…+n ×2n +1,② ①-②得:-T n =2+22+23+…+2n -n ×2n +1=2(1-2n )1-2-n ×2n +1=2n +1-2-n ×2n +1=(1-n )2n +1-2. 所以T n =(n -1)2n +1+2.。

(完整版)等比数列基础知识点+练习

(完整版)等比数列基础知识点+练习

等比数列复习资料题数列专题(三):等比数列知识点等比数列的基本观点和等差数列的差别与联系1.等比数列等差数列an 1a nqa n 1and 或 a nan 1d定义:q 或a nan 1公比: q公差:d递加数列 : a 1 0, q 1 a 1 0, 递加数列: d 0 单一性:0, 0 q则反之0 递减数列 : a 11递减数列: d 通项公式:a n a 1q n 1a n a 1n1 d① 等比中项:若成等比数列①等差中项:若 a, A,b 呈是等差数列a, A, ba b性质:则A2ab则A ②若 m n p q,则 a m a na p a q2 ②若 m n p q,则 a m a n a p a q① 定义法: a n1 等差数列的判断: ②等差中项法:③通项公式法: 2.① 定义法: a n2 等比数列的判断:a n 1 ②等比中项法:a n 1d n 2,且 n N * 或 a n 1 a nd 数列 a n 为等差数列 2a n a n1a n 1 (n 2, 且 n N * )数列 a n 为等差数列a n kn b(k,b 为常数 ) 数列 a n 为等差 数列 q n2, 且 n N *或an 1q数列 a n 为等比数列a na n2a n1a n 1 ( n 2,且 n N * )数列 a n 为等比数列注意: ① a n 1a n d (d 为常数, n N * ) 对随意的 n N *恒建立,不可以几项建立就说a n 为等差数列。

②an 1q(q 为常数, n N * ) 对随意 的n N * 恒建立,不可以几项建立就说 a n 为等比数列。

a n①假如两个数呈等差数列,则可设为 1 等差数列的假定 ②假如三个数呈等差数列,则可设为③假如四个数呈等差数列,则可设为a d ,a d;a d ,a, a d ;a 3d, a d , a d ,a 3d.①假如两个数呈等比数列,则可设为a类比,aq;3.q2 等比数列的假定②假如三个数呈等比数列,则可设为 a,a,aq;qa a3③假如四个数呈等比 数列,则可 设为 q 3 , q , aq, aq .考点一 等比数列的通项公式:利用方程的思想求出等比数列的首项a 1 和公比 qa n a 1q n 1例 11( 2013 北京高考)等比数列a n 知足 a 2a 4 20, a 3 a 5 40,则公比 q _________a 1 q a 1 q 320① 方程①q a 1 q 2a 1 q 420qa 12解:a 1 q 2 a 1q 440②a 1 q 2 a 1 q 440 q 2等比数列复习资料题2( 2014江苏高考)已知等比数列a n的各项均为正数,且a,a62a 4,则a6________21 a8分析:① 运用解方程的思想,求首项a1和公比 q②若求出首项 a1和公比 q很麻烦,数字很大或很难办理时,有时需要整体代换解: a8a6 2a4a1q 7a1 q52a1 q3q4q 2 2 q 4q 2q22a6a2 q 44 2 021舍q加强练习:1已知等比数列a n的公比为正数,且 a2a69a4, a21,则 a1A. 3B.3C.1D.1 332已知等比数列a n中,且 a6 a234, a6a230, 则 a4A. 8B.16C.8D.163已知等比数列a n中,知足a1,2,则a32 a3 a54a6A.1B.1C.2D.1244已知等比数列a n中,且 a1a2324, a3a436, 则 a5a6________ 5已知等比数列a n中,且 a5a627, a7a881,则 a3a4________①等比中项 :成等比数列,则G2;考点二等比数列的性质a,G, b ab②若 m n p q,则 a m a n a p a q例 22014天津高考设 a n是首项为 a1 , 公差为 1 的等差数列,S n为其前 n项和,若S1, S2, S4成等比数列,则a1A 2B2C 1D1 22分析:利用等比中项的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等比数列知识点总结与典型例题1、等比数列的定义:()()*12,nn a q q n n N a -=≠≥∈0且,q 称为公比 2、通项公式:()11110,0n nn n a a a q q A B a q A B q-===⋅⋅≠⋅≠,首项:1a ;公比:q推广:n m n m n n n m m a a a q q q a --=⇔=⇔=3、等比中项:(1)如果,,a A b 成等比数列,那么A 叫做a 与b 的等差中项,即:2A ab =或A =注意:同号的两个数才有等比中项,并且它们的等比中项有两个( (2)数列{}n a 是等比数列211n n n a a a -+⇔=⋅ 4、等比数列的前n 项和n S 公式:(1)当1q =时,1n S na = (2)当1q ≠时,()11111n n n a q a a qS qq--==-- 11''11n n n a aq A A B A B A q q=-=-⋅=---(,,','A B A B 为常数) 5、等比数列的判定方法:(1)用定义:对任意的n ,都有11(0){}n n n n n na a qa q q a a a ++==≠⇔或为常数,为等比数列(2)等比中项:21111(0){}n n n n n n a a a a a a +-+-=≠⇔为等比数列 (3)通项公式:()0{}n n n a A B A B a =⋅⋅≠⇔为等比数列 6、等比数列的证明方法:依据定义:若()()*12,nn a q q n n N a -=≠≥∈0且或1{}n n n a qa a +=⇔为等比数列 7、等比数列的性质:(2)对任何*,m n N ∈,在等比数列{}n a 中,有n m n m a a q -=。

(3)若*(,,,)m n s t m n s t N +=+∈,则n m s t a a a a ⋅=⋅。

特别的,当2m n k +=时,得2n m k a a a ⋅= 注:12132n n n a a a a a a --⋅=⋅=⋅⋅⋅等差和等比数列比较:经典例题透析类型一:等比数列的通项公式例1.等比数列{}n a 中,1964a a ⋅=, 3720a a +=,求11a .思路点拨:由等比数列的通项公式,通过已知条件可列出关于1a 和q 的二元方程组,解出1a 和q ,可得11a ;或注意到下标1937+=+,可以利用性质可求出3a 、7a ,再求11a .解析:法一:设此数列公比为q ,则8191126371164(1)20(2)a a a a q a a a q a q ⎧⋅=⋅=⎪⎨+=+=⎪⎩由(2)得:241(1)20a q q += (3)∴10a >.由(1)得:421()64a q = , ∴418a q = (4)(3)÷(4)得:42120582q q +==,∴422520q q -+=,解得22q =或212q =当22q =时,12a =,1011164a a q =⋅=;当212q =时,132a =,101111a a q =⋅=.法二:∵193764a a a a ⋅=⋅=,又3720a a +=,∴3a 、7a 为方程220640x x -+=的两实数根, ∴⎩⎨⎧==41673a a 或 ⎩⎨⎧==16473a a∵23117a a a ⋅=, ∴271131a a a ==或1164a =.总结升华:①列方程(组)求解是等比数列的基本方法,同时利用性质可以减少计算量;②解题过程中具体求解时,要设法降次消元,常常整体代入以达降次目的,故较多变形要用除法(除式不为零).举一反三:【变式1】{a n }为等比数列,a 1=3,a 9=768,求a 6。

【答案】±96法一:设公比为q ,则768=a 1q 8,q 8=256,∴q=±2,∴a 6=±96;法二:a 52=a 1a 9⇒a 5=±48⇒q=±2,∴a 6=±96。

【变式2】{a n }为等比数列,a n >0,且a 1a 89=16,求a 44a 45a 46的值。

【答案】64;∵21894516a a a ==,又a n >0,∴a 45=4 ∴34445464564a a a a ==。

【变式3】已知等比数列{}n a ,若1237a a a ++=,1238a a a =,求n a 。

【答案】12n n a -=或32n n a -=;法一:∵2132a a a =,∴312328a a a a ==,∴22a =从而13135,4a a a a +=⎧⎨=⎩解之得11a =,34a =或14a =,31a = 当11a =时,2q =;当14a =时,12q =。

故12n n a -=或32n n a -=。

法二:由等比数列的定义知21a a q =,231a a q =代入已知得2111211178a a q a q a a q a q ⎧++=⎪⎨⋅⋅=⎪⎩21331(1)7,8a q q a q ⎧++=⎪⇒⎨=⎪⎩211(1)7,(1)2(2)a q q a q ⎧++=⇒⎨=⎩ 将12a q=代入(1)得22520q q -+=, 解得2q =或12q =由(2)得112a q =⎧⎨=⎩或1412a q =⎧⎪⎨=⎪⎩ ,以下同方法一。

类型二:等比数列的前n 项和公式例2.设等比数列{a n }的前n 项和为S n ,若S 3+S 6=2S 9,求数列的公比q. 解析:若q=1,则有S 3=3a 1,S 6=6a 1,S 9=9a 1.因a 1≠0,得S 3+S 6≠2S 9,显然q=1与题设矛盾,故q ≠1.由3692S S S +=得,369111(1)(1)2(1)111a q a q a q q q q---+=---,整理得q 3(2q 6-q 3-1)=0,由q ≠0,得2q 6-q 3-1=0,从而(2q 3+1)(q 3-1)=0,因q 3≠1,故312q =-,所以2q =-。

举一反三:【变式1】求等比数列111,,,39L 的前6项和。

【答案】364243; ∵11a =,13q =,6n =∴666111331364112324313S ⎡⎤⎛⎫⨯-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎣⎦==⨯-=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-。

【变式2】已知:{a n }为等比数列,a 1a 2a 3=27,S 3=13,求S 5. 【答案】1211219或; ∵322273a a =⇒=,31(1)113313a q q q q -=⇒==-或,则a 1=1或a 1=9 ∴5555191131213121S 113913S ⎛⎫⨯ ⎪-⎝⎭==--或==-.【变式3】在等比数列{}n a 中,166n a a +=,21128n a a -⋅=,126n S =,求n 和q 。

【答案】12q =或2,6n =; ∵211n n a a a a -⋅=⋅,∴1128n a a =解方程组1112866n n a a a a =⎧⎨+=⎩,得1642n a a =⎧⎨=⎩ 或1264na a =⎧⎨=⎩①将1642n a a =⎧⎨=⎩代入11n n a a q S q -=-,得12q =,由11n n a a q -=,解得6n =;②将1264na a =⎧⎨=⎩代入11n n a a q S q -=-,得2q =,由11n n a a q -=,解得6n =。

∴12q =或2,6n =。

类型三:等比数列的性质例3. 等比数列{}n a 中,若569a a ⋅=,求3132310log log ...log a a a +++. 解析:∵{}n a 是等比数列,∴110293847569a a a a a a a a a a ⋅=⋅=⋅=⋅=⋅=∴1032313log log log a a a +++Λ553123103563log ()log ()log 910a a a a a a =⋅⋅=⋅==L举一反三:【变式1】正项等比数列{}n a 中,若a 1·a 100=100; 则lga 1+lga 2+……+lga 100=_____________. 【答案】100;∵lga 1+lga 2+lga 3+……+lga 100=lg(a 1·a 2·a 3·……·a 100) 而a 1·a 100=a 2·a 99=a 3·a 98=……=a 50·a 51∴原式=lg(a 1·a 100)50=50lg(a 1·a 100)=50×lg100=100。

【变式2】在83和272之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为________。

【答案】216;法一:设这个等比数列为{}n a ,其公比为q , ∵183a =,445127823a a q q ===⋅,∴48116q =,294q = ∴23362341111a a a a q a q a q a q ⋅⋅=⋅⋅=⋅33389621634⎛⎫⎛⎫=⋅== ⎪⎪⎝⎭⎝⎭。

法二:设这个等比数列为{}n a ,公比为q ,则183a =,5272a =,加入的三项分别为2a ,3a ,4a , 由题意1a ,3a ,5a 也成等比数列,∴238273632a =⨯=,故36a =, ∴23234333216a a a a a a ⋅⋅=⋅==。

类型四:等比数列前n 项和公式的性质例4.在等比数列{}n a 中,已知48n S =,260n S =,求3n S 。

思路点拨:等差数列中也有类似的题目,我们仍然采用等差数列的解决办法,即等比数列中前k 项和,第2个k 项和,第3个k 项和,……,第n 个k 项和仍然成等比数列。

解析:法一:令b 1=S n =48, b 2=S 2n -S n =60-48=12,b 3=S 3n -S 2n 观察b 1=a 1+a 2+……+a n ,b 2=a n+1+a n+2+……+a 2n =q n(a 1+a 2+……+a n ),b 3=a 2n+1+a 2n+2+……+a 3n =q 2n(a 1+a 2+……+a n )易知b 1,b 2,b 3成等比数列,∴2223112348b b b ===,∴S 3n =b 3+S 2n =3+60=63.法二:∵22n n S S ≠,∴1q ≠,由已知得121(1)481(1)601n na q q a q q⎧-=⎪-⎪⎨-⎪=⎪-⎩①②②÷①得514n q +=,即14nq = ③③代入①得1641a q=-, ∴3133(1)164(1)6314n n a q S q -==-=-。

相关文档
最新文档