基于PLC控制的小车自动送料的设计

合集下载

基于PLC的自动送料小车系统设计

基于PLC的自动送料小车系统设计

基于PLC的自动送料小车系统设计摘要:PLC是一种广泛应用于自动化控制领域的计算机控制器。

它具有可靠性高、稳定性好等优点,被广泛应用于工业和制造业领域。

本文针对自动送料小车系统,设计了一种基于PLC的自动控制系统。

该系统采用PLC作为控制器,配合电子元件、机械构件等设备,实现了自动控制、定位、运输等功能。

通过该系统的设计与实现,可以提高小车系统的工作效率和精度。

关键词:PLC,自动控制,小车系统,精度Abstract:PLC is a computer controller widely used in the field of automation control. It has the advantages of high reliability and good stability, and has been widely used in industrial and manufacturing fields. In this paper, a PLC-based automatic control system is designed for automatic feeding carts. The system uses PLC as the controller, and is equipped with electronic components, mechanical components and other equipment to realize automatic control, positioning, transportation and other functions. Through the design and implementation of the system, the efficiency and accuracy of the cart system can be improved.Key words:PLC, automatic control, cart system, accuracy一、背景随着工业和制造业的发展,机械化、自动化生产已经成为了必然趋势。

基于PLC的自动送料小车系统设计

基于PLC的自动送料小车系统设计

基于PLC的自动送料小车系统设计
PLC(可编程逻辑控制器)可以用于设计和控制自动送料小车
系统。

下面是基于PLC的自动送料小车系统的设计步骤:
1. 确定系统需求:首先确定自动送料小车系统的功能和性能要求,包括料仓容量、送料速度、送料精度等。

2. 设计电气布置:根据系统需求,设计自动送料小车系统的电气布置图,包括PLC、传感器、执行器(如电机、驱动器等)、电源等的连接关系。

3. 编写PLC程序:根据系统需求和电气布置,编写PLC程序。

PLC程序包括控制逻辑、输入输出设备的配置、控制算法等。

4. 系统控制:根据PLC程序,实现自动送料小车系统的控制
功能,包括送料开始、停止、调速等操作。

5. 传感器和执行器的连接:将传感器和执行器与PLC进行连接,以实现对系统的实时监测和控制。

6. 调试和测试:对自动送料小车系统进行调试和测试,确保系统的正常工作。

7. 优化和改进:根据实际使用情况,对系统进行优化和改进,提高系统的工作效率和稳定性。

8. 文档编写和培训:编写自动送料小车系统的操作文档和维护
手册,并进行相关人员的培训,以确保系统的可操作性和可维护性。

以上是基于PLC的自动送料小车系统的设计步骤,通过PLC 的控制,可以实现自动化的送料过程,提高生产效率和产品质量。

PLC运料小车自动控制设计

PLC运料小车自动控制设计

PLC运料小车自动控制设计现代物流管理中,PLC运料小车的自动控制设计是非常重要的,它可以提高物流运输效率,减少人力成本,并确保物流过程中的安全性和可靠性。

在本文中,将会详细介绍PLC运料小车自动控制设计的关键内容。

首先,PLC运料小车自动控制设计涉及到多种传感器的使用。

传感器可以感知环境中的各种信息,并将这些信息传输给PLC控制器。

例如,可以安装距离传感器,用于检测小车与障碍物之间的距离,以避免碰撞发生。

同时,温度传感器可以监测小车所在环境的温度,并在需要时调节小车的工作状态。

通过使用传感器,PLC控制器可以根据环境的变化做出相应的调整,从而实现自动化控制。

其次,PLC运料小车自动控制设计需要确定小车运行的路径和速度。

路径规划是非常重要的一步,可以根据仓库的布局和货物存放位置来确定小车的运行路径。

同时,PLC控制器需要根据货物的重量和大小,以及小车的承载能力来确定小车的运行速度。

在运行过程中,PLC控制器可以根据环境的变化和指令的变化,实时调整小车的路径和速度,以实现最佳的运载效果。

此外,PLC运料小车自动控制设计还需要考虑到交通管理的问题。

在物流仓库中,可能存在多个小车同时运行的情况,为了确保安全和高效,需要PLC控制器对小车的运行进行调度和管理。

通过使用交通管理系统,可以避免小车之间的碰撞,减少运输时间,并确保货物的安全送达。

最后,PLC运料小车自动控制设计还需要考虑到通信系统的建立。

小车与PLC控制器之间需要进行无线通信,以便实现实时的数据传输和指令下达。

可以使用无线传感器网络或者蓝牙技术来建立通信系统,以确保小车和PLC控制器之间的信息传输的稳定性和可靠性。

综上所述,PLC运料小车自动控制设计是非常复杂的工作。

需要考虑到传感器的使用、路径规划、速度调节、交通管理以及通信系统的建立。

只有设计合理、系统稳定,才能实现物流运输过程的高效、安全和可靠。

plc控制小车自动送料

plc控制小车自动送料

PLC控制送料小车的设计一.自动送料小车概述自动送料小车系统是用于物料输送的流水线设备,主要是用于煤粉、细砂等材料的运输。

自动送料小车系统一般是由给料器、传送带、小车等单体设备组合来完成特定的过程。

送料小车控制系统采用了PLC控制。

此送料小车电气控制系统设计具有手动和自动两种工作方式。

在程序设计上采用了模块化的设计方法。

二.控制要求:某车间有6个工作台.送料车往返于工作台之间送料,如图所示。

每个工作台设有一个到位开关(SQ)和一个呼“按钮(SB)。

具体控制要求:(I)送料车开始应能停留在6个工作台中任意一个到位开关的位置上。

(2)设送料车现暂停于M号工作台(SQm闭合)处,若这时n号工作台呼叫(SBn闭合) 若:①m>n,送料车左行,直至SQn动作,到位停车,即送料车停车位置SQ 的编号大于呼叫按钮SB的编号时,送料车往左运行至呼叫位置后停止;②m<n,送料车右行.直至SQn动作,到位停车,即进料车所停位置SQ 的编号小于呼叫按钮SB前编号时,送料车往右运行至呼叫位置后停止;④ m=n,送料车原位不动,即送料车所停位置SQ的编号与呼叫按钮SB 的编号相同时,送科车不动。

三.PLC选型根据控制要求,系统的输入量有:启、停按钮信号,1号位-6 号位的限位开关SQl—SQ6信号,1号位-6号位的呼叫开关SB1~SB6信号:系统的输出信号有:前进、后退控制电机接触器驱动信号,电机运行的声光信号。

共需实际输人点数l7个,输出点数4个,本文选用日本三菱公司的FXON-40MR产品,其输入点数为24,输出点数为I6点。

小车行驶控制系统PLC的I/O资源配置表如表l所示:系统I/O资源配置表(2)外围设备在外围设备方面,采用RS232通信或RS485通信方式,与上位机连接,外部输入设备有光电开关,接近开关,按钮等。

外部输出设备有接触器,电磁阀,指示灯等。

输入/输出点分配如图1所示。

三菱图1 PLC输入/输出点分配图四.控制程序设计本程序设计的关键是处理好呼叫按钮和到位开关的位置关系,为此我们采用了将每个位置的行程开关与每个位置的按钮记录到数据寄存器中去,如将送料小车当前位置送到数据寄存器DO中,将呼叫工作台号送数据寄存器Dl中,然后通过比较DO与Dl中的数据,决定送料小车运行方向和达到的目标位置。

基于PLC的自动送料小车的控制系统设计

基于PLC的自动送料小车的控制系统设计

基于PLC的自动送料小车的控制系统设计自动送料小车是一种常见的物流设备,可以用于在仓库中实现自动化的物料搬运和送料任务。

该系统的核心是PLC(可编程逻辑控制器),通过编程控制小车的运动和各种操作。

设计一个基于PLC的自动送料小车控制系统时,需要考虑以下几个方面:1.系统结构设计:首先,需要设计系统的硬件结构,包括小车的运动系统、送料装置、传感器和PLC控制器等。

根据实际需求,选择适当的电机和传动装置,确保小车能够平稳、高效地运动。

同时,安装传感器来检测货物位置、安全障碍等信息,并将其与PLC连接起来,实现数据的传输和交互。

2.控制逻辑设计:在PLC控制器中,需要编写程序实现小车的控制逻辑。

根据实际应用场景,编写适当的算法,控制小车的启动、停止、加速、减速以及转弯等动作。

同时,根据传感器的反馈信息,判断货物的位置,确保小车能准确地将货物送到目的地。

此外,还可以添加一些安全措施,如碰撞检测、急停装置等,保障人员和设备的安全。

3.用户界面设计:为了便于操作和监控,可以设计一个人机界面(HMI),通过触摸屏或键盘等设备,与PLC进行交互。

在界面上,显示小车的状态、当前任务、货物数量等信息,同时还可以设置一些操作按钮,如启动、停止、重置等,方便用户进行操作。

4.网络通信设计:为了进一步提高系统的自动化程度,可以将PLC与上位机或其他设备进行网络通信。

通过网络通信,可以实现远程监控、数据传输、故障诊断等功能,提高系统的可靠性和效率。

最后,为了保证系统的可靠性和稳定性,需要进行充分的测试和调试。

对小车的运动、控制逻辑、传感器等进行全面测试,并进行相应的优化和调整,直到系统能够正常工作。

总之,基于PLC的自动送料小车控制系统设计,需要考虑系统结构、控制逻辑、用户界面和网络通信等方面,确保系统能够稳定、高效地运行,提高物流作业的自动化水平。

基于PLC的自动送料小车系统设计

基于PLC的自动送料小车系统设计

基于PLC的自动送料小车系统设计随着工业生产的不断发展,自动化技术也逐渐得到了广泛应用。

自动化生产可以提高生产效率、降低生产成本并且能够保证生产质量。

在自动生产线上,自动送料小车也成为了必不可少的一环。

本文将围绕着自动送料小车展开,基于PLC设计自动送料小车系统,并详细介绍系统的设计流程及各个模块的编程。

一、需求分析自动送料小车系统是一种自动化供料系统。

其主要功能是在工业生产线上实现工件的自动送达,通常用于物料的搬运和转移等操作。

在实现自动送料小车系统之前,应先分析其需求。

首先,需分析自动送料小车系统的功能:自动供料、满载停车、自动卸货。

其次,应分析小车行驶路线的规划:行驶路径应该合理,车辆应该避免碰撞以及可以在不同的位置巡线等功能。

对于自动送料小车系统,行驶路线应该通过传感器实现不同位置的检测和控制,从而实现自动导航和路径规划。

最后,应分析小车和供料站之间的通信:小车和供料站之间应该保持良好的通信,以便实现自动卸货和检测车辆状态等操作。

二、系统设计方案在需求分析的基础上,本文提出了一种基于PLC的自动送料小车系统设计方案。

本文选用西门子S7-1200系列PLC作为主控制器,在其基础上利用模块化设计思想,将系统分为四个模块:车辆控制模块、供料站控制模块、传感器检测模块、通信控制模块。

2.1 车辆控制模块车辆控制模块是实现自动送料小车物流的核心控制模块。

通过这个模块,整个系统可以实现自动化操作,具有自动导航、路径规划、自动供料、满载停车等功能。

因此,在车辆控制模块中,应该包括以下几个方面的功能设计:1. 结合规划好的地图路线,通过PLC控制车辆的运动轨迹。

2. 通过PLC控制车辆的自动开始、停止及停靠等操作,同时实现供料站卸料。

3. 通过PLC控制车辆的报警及轻微故障修复。

3. 检测车辆是否已经停留在了正确的供料位置并启动卸料工作。

2.3 传感器检测模块传感器检测模块可以通过各种传感器来实现对车辆状态、供料站状态等的全面检测。

基于PLC的自动送料装车控制系统的设计

基于PLC的自动送料装车控制系统的设计

目录1绪论 (1)1.1题目来源及课题意义 (1)1.2系统的主要技术参数 (1)2器件选择 (2)2.1PLC的定义 (2)2.2PLC的分类 (2)2.2.1.按 I/O 点数分类 (2)2.2.2 按结构分类 (3)2.2.3按功能分类 (3)2.3物位传感器的选择 (4)2.3.1 电容式物位传感器 (5)2.3.2 阻力式料位传感器 (5)2.4LED显示电路选择 (7)2.4.1 LED静态显示方式 (7)2.4.2 LED动态显示方式 (8)2.5键盘输入电路 (8)2.5.1矩阵式键盘接口: (8)2.5.2独立式按键接口: (9)3 控制系统的实现 (10)3.1控制要求 (10)3.2流程图 (10)3.3系统的I/O连接图 (11)3.4控制系统的梯形图 (12)4 结语 (15)参考文献: (16)致谢 (16)1 绪论1.1 题目来源及课题意义随着科学技术的日新月异,自动化程度要求越来越高,原有的生产装料装置远远不能满足当前高度自动化的需要。

减轻劳动强度,保障生产的可靠性、安全性,降低生产成本,减少环境污染、提高产品的质量及经济效益是企业生成所必须面临的重大问题。

基于PLC的自动送料装车控制系统可以解决上述问题,因此对它的设计具有了现实可能性。

自动运料车工作原理及技术要求该自动送料装车系统的操作过程是:在允许汽车开进后,汽车到达指定位置(由传感器进行相应的位置检测),此时可以起动控制系统。

首先送料皮带最上层的电动机动作,经过等时间间隔,下层送料皮带的各电动机依次动作。

当最后一台送料皮带的电动机动作一定的时间后,装满料的料斗打开进行自动装料。

当汽车装满料后,料斗关闭,各电动机由下至上经过等间隔依次停止,汽车开走,完成一次装车。

控制系统返回初始状态,等待下一次装料。

根据实际系统的操作过程,设计了以下的模拟过程:初始状态:红灯L1 灭,绿灯L2 亮,表示允许汽车开进装车。

汽车开进到位后(用S2 接通表示),L1 亮,L2 灭。

基于PLC的自动送料小车的控制系统设计

基于PLC的自动送料小车的控制系统设计

毕业论文基于PLC的自动送料小车的控制系统设计学生姓名: XX专业班级:自动化2011级2班指导教师:XXX 教授学院:机电工程学院2015年6月基于PLC的自动送料小车的控制系统设计摘要PLC,即可编程逻辑控制器,由于其具有使用方便,编程简单,可实现功能强大,性能价格比值高,需求硬件配套齐全,可适应性极强,可靠性较高,而且抗干扰能力强,适应较为恶劣环境,系统的设计、安装、调试工作量少,同时故障维修方便等特点,使得其应用领域越来越普遍,从早期的适用于继电器的配套产品,到现如今的广泛出现于各类控制系统存在的地方。

并且,随着科学技术的日益发展,PLC在功能上得到明显提升,正在被全球广泛使用,其地位愈加显著,成为我们生活工作不可替代的一部分。

我们大家都知道,在以往的工作环境现场用来运输的小车普遍都是用继电器,但众所周知,继电器有着很多明显的不足,例如,检查维修不容易,并且继电器控制故障的出现也较为频繁,同时需要的接触点,端点接线也是十分复杂的,相比于继电器,PLC有着很多明显的优势,不仅在工作场合,在整个市场营销等环节也有着突出的地位,是现在引领潮流的控制器,所以,不选择继电器而是更多地用PLC来代替已经成为发展的方向。

此次运料小车的控制设计,使得在生产生活中手动与自动的生产方式得以明显结合,提高了工作效率,降低了工作成本,通过搭配智能寻路等附加功能,大大增加了送料小车的工作能力,同时能处于恶劣环境工作的特点,使送料小车的优势更加明显,工作范围更为广泛。

本文以送料小车整体的构想和设计方案为切入,首先第一章介绍了送料小车意义背景,自动送料小车在如今国内外工业中的使用现状,以及使用PLC控制的选择原因;第二章介绍了送料小车的整体构想,逻辑语言流程图,小车总体模拟图;第三章进行编程软件及选择的PLC的介绍;第四章包括软件编程,包括程序梯形图,PLC端口接线图,得出结论。

关键词送料小车,PLC,自动控制The design of the control system of the automatic feeding carbased on PLCAbstractPLC,programmable logic controller, because of its easy to use,simple programming,can achieve a powerful, high ratio of performance to price,demand complete hardware,strong adaptability, high reliability, and strong anti-interference ability, suitable for bad environment, system design, installation, commissioning work less,also fault maintenance is convenient wait for a characteristic,the application domain is more and more common, from early for relay of ancillary products, to today's widespread in all kinds of control system。

基于PLC控制的小车自动化送料系统设计

基于PLC控制的小车自动化送料系统设计
(2)运料小车行走条件:
运料小车右行条件:小车在1,2,3号仓位,4号仓要料;小车在1,2号仓位,3号仓要料;小车在1号仓位,2号仓要料。
运料小车左行条件:小车在4,3,2,0号仓位,1号仓要料;小车在4,3,0号仓位,2号仓要料;小车在4,0号仓位,3号仓要料;小车在0位,4号仓位要料是小车的停止条件。
控制系统是整个生产线的灵魂,对整个生产线起着指挥的作用。一旦控制系统出现故障,轻者影响生产线的继续进行,重者甚至发生人身安全事故,这样将给企业造成重大损失。
送料小车是基于PLC控制系统来设计的,控制系统的每一步动作都直接作用于送料小车的运行,因此,送料小车性能的好坏与控制系统性能的好坏有着直接的关系。送料小车能否正常运行、工作效率的高低都与控制系统密不可分。
关键词:PLC;送料小车;控制;程序设计

随着社会迅速的发展,各机械产品层出不穷。控制系统的发展已经很成熟,应用范围涉及各个领域,例如:机械、汽车制造、化工、交通、军事、民用等。PLC专为工业环境应用而设计,其显著的特点之一就是可靠性高,抗干扰能力强。PLC的应用不但大大地提高了电气控制系统的可靠性和抗干扰能力,而且大大地简化和减少了维修维护的工作量。PLC以其可靠性高、抗干扰能力强、编程简单、使用方便、控制程序可变、体积小、质量轻、功能强和价格低廉等特点 ,在机械制造、冶金等领域得到了广泛的应用。
在设计该PLC送料小车设计程序的同时总结了以往PLC送料小车设计程序的一般方法、步骤,并且把以前学过的基础课程融汇到本次设计当中来,更加深入的了解了更多的PLC知识。
1
1.1 控制系统在送料小车中的作用与地位
在现代化工业生产中,为了提高劳动生产率,降低成本,减轻工人的劳动负担,要求整个工艺生产过程全盘自动化,这就离不开控制系统。

基于PLC的自动送料小车控制设计

基于PLC的自动送料小车控制设计
(3)USS协议库
STEP 7-Micro/WIN指令库,该指令库包括预先组态好的子程序和中断程序,这些子程序和中断程序都是专门为通过USS协议与驱动通讯而设计的。通过USS指令,您可以控制这个物理驱动,并读/写驱动参数。
(4)Modbus从站协议指令
STEP 7-Micro/WIN指令库包含有专门为Modbus通讯设计的预先定义的子程序和中断服务程序,使得与Modbus主站的通讯简单易行。使用Modbus从站协议指令,您可以将S7-200组态作为Modbus RTU从站,与Modbus主站通讯。
1
图1-1 送料小车
本控制系统只要是用于控制送料小车的自动送料。它既能减轻人的劳动强度又能自动准确到达人不能达到或很难到达的预定位置。如图1-1,推车机可以沿轨道上下移动,到达预定位置。推车机上是一个小型泵站,通过控制电磁阀换向,使两油缸伸出、缩回,顶出送料小车,再由各个仓位控制要料。
用PLC对送料小车实现控制,其具体要求如下:
送料小车2动作要求:送料小车负责向四个料仓送料,送料路上从左向右共有4个料仓(位置开关SQ11,SQ12,SQ13,SQ14)分别受PLC的I1.0,I1.1,I1.2,I1.3检测,当信号状态为1是,说明运料小车到达该位置。小车行走受两个信号的驱动,Q1.5驱动小车左行,Q1.4驱动小车右行。料仓要料由4个手动按钮(SB11,SB12,SB13,SB14)发出(对应于PLC为I1.4,I1.5,I1.6,I1.7)按钮发出信号其相应指示灯就亮(HL11-HL14),指示灯受PLC的Q1.0-Q1.3控制。
因此,最终我选择了用可编程控制器PLC来实现送料小车系统的控制,完成本次的设计题目。
第三章
3.1 STEP7-Micro/WIN32编程软件介绍

基于PLC的自动送料小车控制系统设计

基于PLC的自动送料小车控制系统设计

发展趋势:
目前,PLC在国内外已广泛应用于钢铁、石油、化工、电力、建材、机械 制造、汽车、轻纺、交通运输、环保及文化娱乐等各个行业,使用情况大致可 归纳为如下几类: 1)开关量的逻辑控制。这是PLC最基本、最广泛的应用领域,它取代传统的 继电器电路, 实现逻辑控制、顺序控制,既可用于单台设备的控制,也可用于多 机群控及自动化流水线。 2)模拟量控制。在工业生产过程当中,有许多连续变化的量,如温度、压力、 流量、液位和速度等都是模拟量。 3)运动控制。PLC可以用于圆周运动或直线运动的控制。 4)过程控制。过程控制是指对温度、压力、流量等模拟量的闭环控制。 5)数据处理。现代PLC具有数学运算(含矩阵运算、函数运算、逻辑运算)、 数据传送、数据转换、排序、查表、位操作等功能,可以完成数据的采集、分 析及处理。 6)通信及联网。PLC通信含PLC间的通信及PLC与其它智能设备间的通信。
基于PLC的自动送料小车控制系统设计
Trolley control system design of automatic feed based on PLC
汇报人:李超
Designed by Danny
内容
背景及意义
选题依据、研究现状
研究内容
PLC工作原理,掌握组态软件的使用
技术实施路线 计划安排
研究方法与技术路线
工作进展及安排
依据及意义
随着时代的进步和发展,PLC技术已经普及到我们的生活、工作、科研,
各个领域,已经成为一种比较成熟的技术。随着社会的发展,知识的更新,各行 各业的需要带动了电子产品的发展,未来的智能化计算器将是我们的发展方向, 更希望成为现代社会应用广泛的计算工具。 送料小车是基于PLC控制系统来设计的,控制系统的每一步动作都直接 作用于送料小车的运行,因此,送料小车性能的好坏与控制系统性能的好坏 有着直接的关系。送料小车能否正常运行、工作效率的高低都与控制系统密 不可分。所以,对送料小车控制系统的设计要予以重视。 相信在使用并掌握了PLC技术后,不管在今后开发或是工作上,一定会 带来意想不到的惊喜

基于PLC的运料小车控制系统设计

基于PLC的运料小车控制系统设计

基于PLC的运料小车控制系统设计现代物流系统中,运料小车被广泛应用于物料搬运和运输过程。

为了提高生产效率和安全性,需要一个可靠的控制系统来管理和控制运料小车。

本文将详细介绍基于可编程逻辑控制器(PLC)的运料小车控制系统的设计。

首先,我们需要确定运料小车的控制需求和功能。

根据实际需求,设计师可以确定运量小车的速度、转弯半径、负载能力等基本参数。

在这个基础上,我们可以继续设计控制系统。

PLC是一种特殊的计算机,其功能类似于人机接口(HMI)和传感器/执行器之间的中间件。

PLC具有高可靠性、可编程性和实时性的特点,非常适合用于控制物流运输过程中的小车。

运料小车控制系统主要包括以下几个部分:传感器、PLC和执行器。

传感器用于检测小车的位置、速度、负载等信息,并将这些信息传递给PLC。

PLC根据传感器输入的信息,通过执行器控制小车的运动、速度和负载等参数。

在传感器方面,可以使用激光测距传感器来检测小车的位置和距离,使用速度传感器来测量小车的速度。

对于负载检测,可以使用称重传感器或压力传感器。

PLC可以使用特定的编程软件进行编程。

程序可以基于运料小车的控制需求,如路径规划、运动控制、负载检测等。

编程软件通常具有图形化界面,可以方便地将传感器的输入和执行器的输出与逻辑运算符、计数器和定时器等连接起来,以实现特定的控制功能。

执行器可以是电机或气动元件,用于控制小车的运动、速度和负载。

电机控制可以通过调整电机转速或控制转矩来实现。

气动元件可以控制小车的转弯半径和速度。

除了传感器、PLC和执行器之外,还需要注意安全问题。

可以在小车上安装碰撞传感器或红外传感器,以避免与障碍物发生碰撞。

另外,还可以在PLC程序中添加紧急停止功能,以便在发生紧急情况时及时停止小车。

总体来说,基于PLC的运料小车控制系统设计需要考虑控制需求和功能,选择合适的传感器和执行器,编写适当的PLC程序,同时确保安全性。

通过合理的设计和实施,可以提高物流运输过程中运料小车的效率和安全性。

基于PLC控制的小车自动化送料系统

基于PLC控制的小车自动化送料系统

基于PLC控制的小车自动化送料系统1 引言运料车的作用是将搅拌好的成品料提升到成品料存储仓中。

早期的搅拌设备中,运料车控制通常都是采用继电器逻辑控制,由于继电器的稳定性远远比不上目前的PLC 控制设备。

特别是随着科技的不断发展,plc 以其体积小,功能强、故障率低、可靠性高、维护方便等优点,被国内外沥青混合料搅拌设备厂家广泛采用。

本项目运用plc(可编程逻辑控制)控制运料小车的运行,取代了传统的继电器控制,实现了运料过程的自动化控制。

在具体控制过程中,通过移位指令、计时器和移位寄存器的复位指令使运料车能够连续运行,直到需要停止时按停止按钮停车。

运料车还可通过手动控制其运行,但操作起来复杂,而且易出错控制工程网原创安全所有,plc 在小车自动送料控制系统中可实现较高的自动化程度,大大提高系统的稳定性和可靠性,减少调试、运行、维护的强度,成为“无人值班控制工程网原创安全所有,少人值守”的优选小车送料自动控制系统。

本文通过分析可知,用plc 控制运料系统,安全、可靠,而且维护、调试方便,具有很高的推广价值。

2 设计与实现分析 2.1 运料车系统工作过程介绍成品料存储仓一般有单仓、双仓或三仓等配置形式,另外再配一个废料仓。

我们以双仓为例来说明其控制过程。

图1 为运料车工作过程示意图。

运料车在工作前要先选仓。

1 号成品料仓和2 号成品料仓的仓顶上各有(图1 运料车工作过程示意图)两个门,起防雨和保温的作用。

废料仓顶上没有门。

当选择好料仓时,舱门自动打开,这时才允许运料车工作。

运料车的工作过程为:前进——停车卸料——后退——等待装料——再前进。

2.2 小车自动送料系统设计(1)沥青入喷射腔,各热骨料仓装料,。

plc自动送料小车课程设计

plc自动送料小车课程设计

plc自动送料小车课程设计一、课程目标知识目标:1. 学生能理解PLC(可编程逻辑控制器)的基本原理和工作机制。

2. 学生能掌握自动送料小车系统的组成、功能及其相互之间的关系。

3. 学生能了解并运用PLC编程实现对自动送料小车的控制。

技能目标:1. 学生能运用所学知识,进行自动送料小车系统的设计、安装和调试。

2. 学生能通过PLC编程软件进行程序编写,实现对自动送料小车的自动化控制。

3. 学生能通过小组合作,解决实际操作过程中遇到的问题,提高团队协作能力。

情感态度价值观目标:1. 学生培养对自动化技术的兴趣,激发创新意识,提高学习积极性。

2. 学生通过实践操作,培养动手能力,增强自信心,形成良好的学习习惯。

3. 学生在学习过程中,能够关注工程实际问题,提高社会责任感和使命感。

课程性质:本课程为实践性较强的课程,结合理论知识与实践操作,培养学生的动手能力和解决实际问题的能力。

学生特点:学生具备一定的PLC基础知识,但对自动送料小车系统的设计与应用相对陌生,需要通过实践操作加深理解。

教学要求:教师需引导学生结合课本知识,进行实践操作,注重培养学生的团队合作意识和创新能力。

在教学过程中,关注学生的个体差异,提供针对性的指导。

通过课程学习,使学生能够将理论知识与实际应用相结合,达到预期的学习成果。

二、教学内容1. PLC基础知识回顾:包括PLC的定义、组成、工作原理及编程语言等,涉及课本第1章内容。

2. 自动送料小车系统组成:介绍自动送料小车的结构、功能及各部件的作用,如传感器、执行器、控制器等,对应课本第3章相关内容。

3. PLC编程与应用:学习PLC编程方法,掌握Ladder Diagram(梯形图)的编写,结合自动送料小车案例进行编程实践,涉及课本第4章内容。

4. 自动送料小车控制系统设计:包括控制系统的设计原则、步骤和方法,学习如何根据实际需求设计PLC控制系统,参考课本第5章内容。

5. 系统安装与调试:学习自动送料小车系统的安装方法,掌握调试过程中常见问题及解决办法,结合课本第6章内容进行实践操作。

基于PLC的自动送料小车的控制系统设计

基于PLC的自动送料小车的控制系统设计

基于PLC的自动送料小车的控制系统设计自动送料小车(Automated Guided Vehicle,AGV)是一种能够自主导航并执行货物运输任务的无人驾驶车辆。

PLC(Programmable Logic Controller)被广泛应用于工业控制系统中,它可以对AGV进行控制和监控。

本文将介绍基于PLC的自动送料小车的控制系统设计。

1.系统架构2.车辆导航AGV车辆的导航可以采用多种方式,如激光导航、磁导航、视觉导航等。

其中,激光导航是一种成熟且精度高的导航方式。

AGV车辆通过激光传感器不断扫描环境,获取地图信息并确定自己的位置,然后根据目标位置进行导航。

PLC控制器接收到目标位置后,会通过与AGV车辆的通信接口将导航指令发送给车辆。

同时,PLC控制器也会接收车辆的实时位置信息,用于实时监控和调度任务。

3.任务调度在自动送料小车的控制系统中,PLC控制器负责任务的调度和分配。

根据系统中的任务优先级和车辆当前状态,PLC控制器会为每个车辆分配相应的任务。

这些任务包括货物的取放、货物的运输、车辆的充电等。

PLC控制器会根据任务的优先级和车辆的位置、状态等信息,制定最优的调度策略。

通过合理的任务调度,可以提高系统的效率和生产能力。

4.AGV驱动器AGV驱动器负责控制车辆的运动。

它接收PLC控制器发送的运动指令,并控制车辆的速度和方向。

AGV驱动器还可以监测车辆的运动状态,如速度、位置等,并将这些信息反馈给PLC控制器。

PLC控制器可以根据车辆的运动状态进行实时监控和控制。

例如,当车辆遇到障碍物时,PLC控制器会根据传感器的反馈信息,及时调整运动方向或停止车辆的运动,确保车辆的安全。

5.系统安全性设计在自动送料小车的控制系统设计中,安全性是一个重要的考虑因素。

为了确保系统的安全运行,可以采取以下措施:-安全区域划分:将工作区域划分为安全区域和非安全区域,并通过传感器实时监测车辆与人员或其他障碍物的距离,避免发生碰撞事故。

基于plc的自动送料小车设计

基于plc的自动送料小车设计

基于plc的自动送料小车设计xx班 级专 业所 在 系指导老师完成时间:2010年12月24日至2011年1月7日目录 (1)摘要 (2)引言 (3)PLC)(PLC)概况 (4)章可编程控制器(第1章可编程控制器1.1 PLC的定义 (4)1.2 PLC的发展 (4)1.3 PLC的特点 (5)1.4 PLC的基本组成及各部分作用 (5)1.5 PLC的应用领域 (8)第2章控制系统介绍和控制过程要求 ····································································· .102.1 控制系统的作用与地位 (10)2.2 控制系统介绍 (10)第3章送料小车系统方案的选择 (12)3.1 可编程控制器 PLC的优点 (12)3.2 小车送料系统方案的选择 (13)第4章变速箱在小车中的应用 (14)4.1变速箱的概述和分类 (14)4.2变速箱的基本组成和工作原理 (15)第5章基于PLC的送料小车接线图及梯形图 (19)5.1 送料小车PLC的 I/O分配表 (19)5.2 PLC端子接线图 (20)5.3 梯形图分段设计 (21)5.4 程序运行原理说明调试与完善 ·············· - 27 -5.5系统总梯形图设计 (26)结 论论 (31)参考文献 (32)可编程序控制器(Programmable controller)简称PLC,由于PLC的可靠性高、环境适应性强、灵活通用、使用方便、维护简单,所以PLC的应用领域在迅速扩大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要本设计是为了实现送料小车的手动和自动化的转化,改变以往小车的单纯手动送料,减少了劳动力,提高了生产效率,实现了自动化生产!而且本送料小车的设计是由于工作环境恶劣,不允许人进入工作环境的情况下孕育而成的。

本文从第一章送料小车的系统方案的确定为切入点,介绍了为什么选用PLC 控制小车;第二章介绍了送料小车的应达到的控制要求;第三章根据控制要求进行了小车系统的具体设计,包括端子接线图、梯形图(分段设计说明和系统总梯形图)和程序指令设计;最后得出结论。

关键词:运料小车,三菱PLC,线圈,行程开关第一章绪论1.1问题的提出及研究意义传统的运料小车大都是继电器控制,而继电器控制有着接线繁多,故障率高的缺点,且维护维修不易等缺点。

作为目前国内控制市场上的主流控制器,plc 在市场、技术、行业影响等方面有重要作用,利用PLC控制来代替继电器控制已是大势所趋。

1.2国内外研究现状1.2.1国内现状我国可编程控制器的引进、应用、研制、生产是伴随着改革开放开始的。

最初是在引进设备中大量使用了可编程控制器。

接下来在各种企业的生产设备及产品中不断扩大了PLC的应用。

目前,我国自己已可以生产中小型可编程控制器。

上海东屋电气有限公司生产的CF系列、杭州机床电器厂生产的DKK及D系列、大连组合机床研究所生产的S系列、苏州电子计算机厂生产的YZ系列等多种产品已具备了一定的规模并在工业产品中获得了应用。

此外,无锡华光公司、上海乡岛公司等中外合资企业也是我国比较著名的PLC生产厂家。

可以预期,随着我国现代化进程的深入,PLC在我国将有更广阔的应用天地。

1.2.2国外现状在工业生产过程中,大量的开关量顺序控制,它按照逻辑条件进行顺序动作,并按照逻辑关系进行连锁保护动作的控制,及大量离散量的数据采集。

传统上,这些功能是通过气动或电气控制系统来实现的。

1968年美国GM(通用汽车)公司提出取代继电气控制装置的要求,第二年,美国数字设备公司(DEC)研制出了基于集成电路和电子技术的控制装置,首次采用程序化的手段应用于电气控制,这就是第一代可编程序控制器,称Programmable ,是世界上公认的第一台PLC.限于当时的元器件条件及计算机发展水平,早期的PLC主要由分立元件和中小规模集成电路组成,可以完成简单的逻辑控制及定时、计数功能。

20世纪70年代初出现了微处理器。

人们很快将其引入可编程控制器,使PLC增加了运算、数据传送及处理等功能,完成了真正具有计算机特征的工业控制装置。

1.3本文研究的内容本论文的任务设计一个运料小车往返运动PLC控制系统。

系统控制要求如下:压下行程开关SQ3,SQ3为小车的原位开关。

按下启动按钮SB2,装料电磁阀YC1得电,延时20s,小车装料结束。

接着控制器KM3、KM5得电,向右快行;碰到限位开关SQ2后,KM5失电,小车慢行;碰到SQ3时,KM3失电,小车停止。

此后,电磁阀YC2得电,卸料开始,延时15s后,卸料结束;接触器KM4、KM5得电,小车向左快行;碰到限位开关SQ1,KM5失电,小车慢行;碰到SQ4 时,KM4失电,小车停止,回到原位,完成一个循环工作过程。

整个过程分为装料、右快行、右慢行、卸料、左快行、左慢行六个状态,如此周而复始的循环。

对于突然停电应对小车进行复位,有以下过程完成一个循环,复位---装料---右快行---右慢行---卸料---左快行---左慢行——停止。

YC1T1图1.1 运料小车往返运动示意图第二章运料小车的设计分析2.1电机正反转的特点自动控制是生产机械电气化自动中应用最多和作用原理最简单的一种形式,在位置控制的电气自动装置线路中,由行程开关或终端开关的动作发出信号来控制电动机的工作状态。

若在预定的位置电动机需要停止,则将行程开关的常闭触点串接在相应的控制电路中,这样在机械装置运动到预定位置时行程开关动作,常闭触点断开相应的控制电路,电动机停转,机械运动也停止。

若需停止后立即反向运动,则应将此行程开关的常开触点并接在另一控制回路中的启动按钮处,这样在行程开关动作时,常闭触点断开了正向运动控制的电路,同时常开触点又接通了反向运动的控制电路(如图2.1)。

图2.1 控制图图2.2 电动机正反转控制图为了达到延时应该线圈KT,这时经过一段时间的延时(左右各一个),KT 延时常开触点闭合,使KM2通电,达到电机反转向右移动,反之相同。

2.2行程开关的特点行程开关又称限位开关,用于控制机械设备的行程及限位保护。

在实际生产中,将行程开关安装在预先安排的位置,当装于生产机械运动部件上的模块撞击行程开关时,行程开关的触点动作,实现电路的切换。

因此,行程开关是一种根据运动部件的行程位置而切换电路的电器,它的作用原理与按钮类似。

行程开关广泛用于各类机床和起重机械,用以控制其行程、进行终端限位保护。

在电梯的控制电路中,还利用行程开关来控制开关轿门的速度、自动开关门的限位,轿厢的上、下限位保护。

行程开关按其结构可分为直动式、滚轮式、微动式和组合式。

(1)直动式行程开关其结构原理,其动作原理与按钮开关相同,但其触点的分合速度取决于生产机械的运行速度,不宜用于速度低于0.4m/min的场所。

直动式行程开关组成:推杆、弹簧、动断触点、动合触点。

(2)滚轮式行程开关其结构原理,当被控机械上的撞块撞击带有滚轮的撞杆时,撞杆转向右边,带动凸轮转动,顶下推杆,使微动开关中的触点迅速动作。

当运动机械返回时,在复位弹簧的作用下,各部分动作部件复位。

滚轮式行程开关组成:滚轮、上转臂、弹簧、套架、滑轮、压板、触点、横板滚轮式行程开关又分为单滚轮自动复位和双滚轮(羊角式)非自动复位式,双滚轮行移开关具有两个稳态位置,有“记忆”作用,在某些情况下可以简化线路。

(3)微动开关式行程开关的组成:常用的有ZXL系列产品:推杆、弹簧、压缩弹簧、动断触点、动合触点。

2.3梯形图编程在使用梯形图编程因遵循自左至右,自上而下的原则,(1)梯形阶梯都是始于左母线,终于右母线(通常可以省掉不画,仅画左母线)。

每行的左边是接点组合,表示驱动逻辑线圈的条件,而表示结果的逻辑线圈只能接在右边的母线上。

接点不能出现在线圈右边。

(2)接点应画在水平线上,不应画在垂直线上,对此类桥式电路,应按从左到右,从上到下的单向性原则,单独画出所有的去路。

(3)并联块串联时,应将接点多的去路放在梯形图左方(左重右轻原则);串联块并联时,应将接点多的并联去路放在梯形图的上方(上重下轻的原则)。

这样做,程序简洁,从而减少指令的扫描时间,这对于一些大型的程序尤为重要。

(4)不宜使用双线圈输出。

若在同一梯形图中,同一组件的线圈使用两次或两次以上,则称为双线圈输出或线圈的重复利用。

双线圈输出一般梯形图初学者容易犯的毛病之一。

在双线圈输出时,只有最后一次的线圈才有效,而前面的线圈是无效的。

这是由PLC的扫描特性所决定的。

PLC的CPU采用循环扫描的工作方式。

一般包括五个阶段(如图所示):内部诊断与处理,与外设进行通讯,输入采样,用户程序执行和输出刷新。

当方式开关处于STOP时,只执行前两个阶段:内部诊断与处理,与外设进行通讯。

2.3.1输入采样阶段PLC顺序读取每个输入端的状态,并将其存入到我们称之为输入映像寄存器的内在单元中。

当进入程序执行阶段,如输入端状态发生改变.输入映象区相应的单元信息并不会跟着改变,只有在下一个扫描周期的输入采样阶段,输入映象区相应的单元信息才会改变。

因此,PLC会忽视掉小于扫描周期的输入端的开关量的脉冲变化。

2.3.2程序执行阶段PLC从程序0步开始,按先上后下,先左后右的顺序扫描用户程序并进行逻辑运算。

PLC按输入映象区的内容进行逻辑运算,并把运算结果写入到输出映象区,而不是直接输出到端子。

2.3.3输出刷新阶段PLC根据输出映象区的内容改变输出端子的状态。

这才是PLC的实际输出。

以上简单说明了PLC的工作原理,下面我们再以实例说明为什么编写梯形图程序,不宜重复使用线圈。

如下图所示,设输入采样时,输入映象区中X001=ON,X002=OFF,Y003-ON,Y004=ON被实际写入到输出映象区。

但继续往下执行时,因X002=OFF,使Y003=OFF,这个后入为的结果又被写入输出映象区,改变原Y003的状态。

所以在输出刷新阶段,实际外部输出Y003=OFF,Y004=ON。

许多新手就碰到过这样的问题,为什么X001已经闭合了,而Y003没有输出呢?逻辑关系不对。

其实就是因为双线圈使用造成的。

注意:我们所说的是不宜(最好不要)使用双线圈,双线圈使用并不是绝对禁止的,在一些特殊的场合也可以使用双线圈,这时就需要你有较丰富的编程经验和技巧了。

下面我们会谈到这一点。

但对于初学者还是不要冒这个险。

其实,从以上的例子可以看出,重复利用线圈之所以会造成Y003的输出混乱,是由于程序是从上到下顺序执行的缘故造成的。

但如果我们可以改变程序执行的顺序,保证在任何时刻两个线圈只有一个驱动逻辑发生,就可以使用双线圈。

其中,最常用的方法就是使用跳转指令。

2.4功能指令功能转移图与步进梯形图表达的都是同一个程序,其优点是让用户每次考虑一个状态,而不必考虑其它的状态,从而使编程更容易,而且还可以减少指令的程序步数。

功能转移图中的一个状态表示顺序控制过程中的一个工步,因此步进梯形图也特别适用于时间和位移等顺序的控制过程,也能形象、直观的表示顺序控制。

功能编程开始时,必须用STL使STL接点接通,从而使主母线与子母线接通,连在子母线上的状态电路才能执行,这时状态就被激活。

状态的三个功能是在子母线上实现的,所以只有STL接点接通该状态的负载驱动和状态转移才能被扫描执行。

反之,STL接点断开,对应状态就为被激活,前一状态就自动关闭。

状态编程的这一特点,使各状态之间的关系就像是一环扣一环的链表,变得十分清晰单纯,不相邻状态间的繁杂连锁关系将不复存在,只需集中考虑实现本状态的三大功能既可。

另外,这也使程序的可读性更好,便于理解,也使程序的调试、故障的排除变得相对简单。

(1)初始状态的编程初始状态一般是指一个顺控工艺最开始的状态,对应于状态转移图初始位置是状态就是初始状态。

S0~S9共10个状态组件专用作初始状态,用了几个初始状态,就可以有几个相对独立的状态系列。

初始状态编程必须在其它状态前,如图2.3中将S2作为初始状态。

开始运行后,初始状态可以有其它状态来驱动,如图7-3中将状态S22来驱动初始状态S2的。

但是首次开始运行时,初始状态必须用其它方法预先驱动,使它处于工作状态,否则状态流程就不可能进行,一般利用系统的初始条件。

OO1OO20022.3 动力头1状态转移图如可由PLC 从STOP-RUN 切换瞬间的初始脉冲使特殊辅助继电器M8002接通来驱动初始状态。

相关文档
最新文档