解方程去括号
课件:利用去括号法则解方程
A 2x+6-5+5x=3x-3
B 2x+3-5+x=3x-3
C 2x+6-5-5x=3x-3
D 2x+3-5+x=3x-1
知识详析
A
去括号得法则:括号前面是
正因数,去掉括号和正号,
括号前面是负因数,去掉括
号和负号,括号里的每一项
都变号。
拓展归纳
去括号时要注意:(1)不要漏乘括号内的任何一项;(2)若括号
解方程 :2{3[4×(5x-1)-8]-20}-7=1;
将方程先去小括号,再去中括
号,去大括号,然后移项,合
并同类项,系数化为1。
知识详析
解:解 : 2{3[4(5x- 1) -8]-20}-7=1
去小括号,得2[3(20x-12)-20]-7= 1。
去小括号,得2(60x-56)-7= 1。
去括号,得120x-112-7=1。
移项,合并同类项,得120x=120。
两边同时除以 120 ,得 x= 1。
知识详析
例题2.
解方程 :5(x+8)-5=6(2x-7);
去括号,得 5x+40-5=12x-42。
移项、合并同类项,得-7x
=-77。方程两边同除11。
知识详析
例题2.
例题2.
解方程2(x+3)-5(1-x)=3(x-1)
前面是"一"号,记住去括号后括号内各项都变号,步骤是:去
括号→移项→合并同类项→未知数的系数化为1→检验.。
课堂练习
1.解方程4(x-1)-x=2(x+ ),步骤如下:
(1)去括号得4x-4-x=2x+1;(2)移项得4x
解一元一次方程---去括号
❖ 化简x-(2-2y) 的结果是 : x-2+2y
例题 解方程:
3x-7(x-1)=3-2(x+3)
解:去括号,得: 3x-7x+7=3-2x-6
移项,得: 3x-7x+2x=3-6-7
合并同类项,得: 系数化成1,得:
-2x=-10 X=5
练习:课本94页例1(1)和95页练习题
❖ 解方程(1)5(x-2)-4(2x+1)=-2(2.5-3x)
则该物品进价约是(
)ALeabharlann 105元 D. 118元B. 106元
C. 108元
这节课你学到了什么?
1、去括号的依据是:分配律
2、解一元一次方程的步骤 (1)去括号 (2)移项 (3)合并同类项 (4)系数化成1
列方程解决实际问题的关键是正确 地建立方程中的等量关系。
另外在求出x的值后,一定要检验它 是否合理,虽然不必写出检验过程,但 这一步绝不是可有可无。
解:设船在静水中的平均速度是X千米/小 时,则船在顺水中的速度是__(X_+__3_) 千米/ 小时,船在逆水中的速度是_(_X_-_3_) __千米/ 小时.
2(X+3)=2.5(X-3)
2x 3 2.5x 3
去括号得: 2x 6 2.5x 7.5
移项及合并同类项,得:
0.5x 13.5
解:设有X名工人生产螺钉,则有_(_2_2_-X__) _ 名工人生产螺母;那么螺钉共生产 _1_2_0_0_X___个,螺母共生产_2_0_0_0_(_2_2_-X__) 个.
2000(22-X)=2×1200X
巩固练习
1. 已知关于x的方程3x + a = 0的解
20道去括号解方程题
20道去括号解方程题为了满足你的需求,我将提供20道去括号解方程的题目,并附上解答。
请注意,由于文字排版的原因,本文可能不够1200字。
但我会尽力提供详细的解题步骤,以确保你理解每个问题的解决方法。
1.解方程:3(x+4)=15解答:3(x+4)=153x+12=153x=15-123x=3x=12.解方程:2(3x-5)=4x+10解答:2(3x-5)=4x+106x-10=4x+106x-4x=10+102x=20x=103.解方程:4(2x+3)-6(4-3x)=14解答:4(2x+3)-6(4-3x)=148x+12-24+18x=1426x-12=1426x=14+1226x=26x=14.解方程:3(4x+2)+2(x-5)=5(x+3)解答:3(4x+2)+2(x-5)=5(x+3)12x+6+2x-10=5x+1514x-4=5x+1514x-5x=15+49x=19x=19/95.解方程:5(2x+3)-3(4x-1)=4(3x+2)解答:5(2x+3)-3(4x-1)=4(3x+2)10x+15-12x+3=12x+8-2x+18=12x+8-14x=8-18-14x=-10x=-10/(-14)x=5/76.解方程:2(3x-4)+5(2x+1)=3(6x-5)解答:2(3x-4)+5(2x+1)=3(6x-5)6x-8+10x+5=18x-1516x-3=18x-1516x-18x=-15+3-2x=-12x=-12/(-2)x=67.解方程:3(2x-1)-2(x+3)=4(x-2)解答:3(2x-1)-2(x+3)=4(x-2)6x-3-2x-6=4x-86x-2x-4x=-8+3+60=1(无解)8.解方程:2(3x-2)+3(4-2x)=-4(5x+1)解答:2(3x-2)+3(4-2x)=-4(5x+1)6x-4+12-6x=-20x-48=-20x-420x=-4-820x=-12x=-12/20x=-3/59.解方程:4(x-3)-2(x+5)=5(x-4)解答:4(x-3)-2(x+5)=5(x-4)4x-12-2x-10=5x-202x-22=5x-202x-5x=-20+22-3x=2x=2/(-3)x=-2/310.解方程:5(x+1)+4(2x-3)=3(3x+4)解答:5(x+1)+4(2x-3)=3(3x+4)5x+5+8x-12=9x+1213x-7=9x+1213x-9x=12+74x=19x=19/411.解方程:3(4x+1)-2(3x-2)=5(x+3)解答:3(4x+1)-2(3x-2)=5(x+3)12x+3-6x+4=5x+156x+7=5x+156x-5x=15-7x=812.解方程:2(3x+4)-5(x-1)=4(2x+3)解答:2(3x+4)-5(x-1)=4(2x+3)6x+8-5x+5=8x+12x+13=8x+12x-8x=12-13-7x=-1x=-1/(-7)x=1/713.解方程:3(2x-1)+2(x+3)=-4(x-2)解答:3(2x-1)+2(x+3)=-4(x-2)6x-3+2x+6=-4x+88x+3=-4x+88x+4x=8-312x=5x=5/1214.解方程:5(2x+3)+4(3x-2)=-3(4x+5)解答:5(2x+3)+4(3x-2)=-3(4x+5)10x+15+12x-8=-12x-1522x+7=-12x-1522x+12x=-15-734x=-22x=-22/34x=-11/1715.解方程:4(3x+2)-3(x-5)=-2(5x+3)解答:4(3x+2)-3(x-5)=-2(5x+3)12x+8-3x+15=-10x-69x+23=-10x-69x+10x=-6-2319x=-29x=-29/1916.解方程:3(2x-1)+2(x-3)=-5(x+2)解答:3(2x-1)+2(x-3)=-5(x+2)6x-3+2x-6=-5x-108x-9=-5x-108x+5x=-10+913x=-1x=-1/1317.解方程:5(2x+1)-4(x-3)=-3(3x+4)解答:5(2x+1)-4(x-3)=-3(3x+4)10x+5-4x+12=-9x-126x+17=-9x-126x+9x=-12-1715x=-29x=-29/1518.解方程:4(3x-1)+2(x+5)=-5(2x+4)解答:4(3x-1)+2(x+5)=-5(2x+4)12x-4+2x+10=-10x-2014x+6=-10x-2014x+10x=-20-624x=-26x=-26/24x=-13/1219.解方程:5(x+3)-2(2x-1)=-4(3x+2)解答:5(x+3)-2(2x-1)=-4(3x+2)5x+15-4x+2=-12x-8x+17=-12x-813x=-17-813x=-25x=-25/1320.解方程:2(3x+4)-3(x-5)=-5(2x+3)解答:2(3x+4)-3(x-5)=-5(2x+3)6x+8-3x+15=-10x-153x+23=-10x-153x+10x=-15-2313x=-38x=-38/13。
一元一次方程的解法-去括号
【点睛】对于此类阶梯收费的题目,需要弄清楚各阶段的收费标准,以及 各节点的费用.然后根据缴纳费用的金额,判断其处于哪个阶段,然后列 方程求解即可.
1. 对于方程 2( 2x-1 )-( x-3 ) =1 去括号正确的是D( )
A. 4x-1-x-3=1
B. 4x-1-x +3=1
值大6.
解:依题意得 2( x2-1 )-x2-( x2+3x-2 ) =6, 去括号,得2x2-2-x2-x2-3x+2=6, 移项、合并同类项,得-3x=6, 系数化为1,得x=-2.
5.爷爷现在的年龄是孙子的5倍,12年后,爷爷的年龄是孙子的3倍,现在
孙子的年龄是__1__2_岁.
解:设孙子的年龄为x岁,则爷爷的年龄为5x岁,12年后,孙子的年龄为 (x+12)岁,爷爷的年龄为 (5x+12)岁.
解:6去. 括号,得
6x=-6x+10+10
移项,得
6x +6x=10+10
合并同类项,得
12x=20
系数化为1,得 x5 3
(2) -2(x+5)=3(x-5)-
解:去括号,得
-2x-10 =3x-15-6
移项,得
-2x-3x =-15-6+10
合并同类项,得
-5x=-11
系数化为1,得 x 11 5
例2 一艘船从甲码头到乙码头顺流而行,用了 2 h;从乙码头返回甲码头
逆流而行,用了 2.5 h.已知水流的速度是 3 km/h,求船在静水中的平均
【速分度析. 】等量关系:这艘船往返的路程相等,即
顺流速度×___顺流时间=___逆流速度×___逆流时间
解:设船在静水中的平均速度为 x km/h,则顺流速度为(x+3) km/h,逆
人教版解一元一次方程——去括号与去分母
解下列方程(1)
5x12x12 44
(2) x14x22(x1) 25
x1 2x1
(3) 3x 3
2
3
(1)x 2
(2) x 29 17
(3)x 23 25
大家有疑问的,可以询问和交流
可以互相讨论下,但要小
如何求解方程呢?
x 0.3
=1+ 1.2-0.3x 0.2
指出解方程
X-1 2
=
4x+2 5
y=-8
典例解析
例 题 2 : 解 方 程 3 x 1 2 3 x 2 2 x 3
解:去分母,2 得
1 0 5
5(3x +1)-10×2 = (3x -2)-2 (2x +3)
去括号 15x +5-20 = 3x -2-4x -6
移项 15x - 3x + 4x = -2-6 -5+20
❖通过本节课的学习,你认为解一 元一次方程主要有哪些步骤?
❖在这些步骤中你认为在哪些方面 要注意?
课后习题,做一做
作业布置
❖ 课本作业:P98第3题,第7题,第10题 练习册52页
谢谢各位, 再见!
3.3 解一元一次方程——去分母
知识回顾
解含有括号的一元一次方程的步骤:
去括号 要熟记去括号法则
移项
移项要变号。
合并同类项
即化简为方程的标准 形式:ax=b(a≠0)
方程两边同除以未知数前
系数化为1 面的系数,即
你能解决下列古代问题吗?
一个数,它的三分之二,它的一半,它的七 分之一,它的全部,加起来总共是33,求这 个数。
分析:你认为本题用算术方法解方便,还是用 方程方法解方便?
请你列出本题的方程。
解一元一次方程去括号
——去括号
解方程:
6x-7=4x-1
解:移项得:
6x-4x=7-1
合并同类项得:
2x=6
系数化为1得:
x=3
移项,合并同类项,系数化为1, 要注意些什么? 1.移项要变号; 2.合并同类项时系数相加, 字母部分不变; 3.系数化为1时方程两边同 时除以未知数的系数。
例4 解方程:-2(x-1)=4
解法二
解:方程两边同除以-2,得 x-1=-2 移项,得: 即: x=-2+1 x=1
这两种方法你喜欢哪一种?
解一元一次方程的步骤: 去括号 移项
合并同类项
系数化为1
二.解方程: 1. 4 - x = 3(2- x) 2. 4x + 3(2- x) = 12 - (x + 4) 1 1 3.6( x 4) 2 x 7 ( x 1) 2 3
例:一艘船从甲码头到乙码头顺流行驶,
用了2小时;从乙码头返回甲码头逆流行驶, 用了2.5小时。已知水流的速度是3千米/小 时,求船在静水中的平均速度。
分析:
顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度
等量关系:顺流路程=逆流路程
练一练 一架飞机在两城之间飞行,风速为 24千米/小时,顺风飞行需要2小时50分, 逆风飞行需要3小时,求: (1)无风时飞机的航速; (2)两城之间的航程。
去2
例3 解方程:4(x+0.5)+x=7
解:去括号,得: 移项,得: 4x+2+x=7 4x+x=7-2
合并同类项,得: 5x=5 系数化为1,得: x=1
例4 解方程:-2(x-1)=4
去括号解方程练习题
去括号解方程练习题方程是数学中的基础概念,它是一个等式,包含了未知数和已知数之间的关系。
解方程可以帮助我们找到未知数的值。
本文将介绍一些去括号解方程的练习题,并逐步解答这些题目。
练习题一:3(2x + 4) = 18解答:首先,我们需要去掉括号,乘以括号前的系数。
将3乘以2x 和4,得到6x + 12。
方程变为6x + 12 = 18。
接下来,我们要将方程转化为含有未知数的对等方程,也就是去掉常数项。
为此,我们需要从方程的两边同时减去12。
经过简化得到6x = 6。
最后一步是求解未知数x的值,将方程的两边同时除以6,得到x = 1。
所以,练习题一的解是x = 1。
练习题二:2(x - 1) + 3(x + 2) = 7解答:同样地,我们需要先去掉括号。
将2乘以x和-1,以及3乘以x和2,得到2x - 2 + 3x + 6 = 7。
对方程进行简化,得到5x + 4 = 7。
接下来,我们要将方程转化为含有未知数的对等方程,也就是去掉常数项。
为此,我们需要从方程的两边同时减去4。
经过简化得到5x = 3。
最后一步是求解未知数x的值,将方程的两边同时除以5,得到x = 0.6。
所以,练习题二的解是x = 0.6。
练习题三:4(2x + 3) - 2(4x - 1) = 10解答:首先,我们需要去掉括号,乘以括号前的系数。
将4乘以2x 和3,以及-2乘以4x和-1,得到8x + 12 - 8x + 2 = 10。
对方程进行简化,得到14 = 10。
这样的方程是一个矛盾的情况。
左边的14不可能等于右边的10。
所以,这个方程没有解。
所以,练习题三没有解。
练习题四:5(x - 2) + 3x = 2(4 - x) - 1解答:同样地,我们需要先去掉括号。
将5乘以x和-2,以及2乘以4和-x,得到5x - 10 + 3x = 8 - 2x - 1。
对方程进行简化,得到8x - 10 = 7 - 2x。
接下来,我们要将方程转化为含有未知数的对等方程,也就是合并同类项。
一元一次方程的解法(去括号)
2. 方程
$-5(x - 1) + 2 = 0$,求 解$x$的值。
3. 方程
$7 - 3(x + 1) = -5$,求 解$x$的值。
综合练习题
1. 方程
$-2(x - 1) + 3(x + 2) = x + 7$, 求解$x$的值。
2. 方程
$-3(x - 2) + 4(x + 1) = x + 5$, 求解$x$的值。
是多少。
04 练习与巩固
基础练习题
01
02
03
1. 方程
$-2x + 5 = 3$,求解$x$ 的值。
2. 方程
$3(x - 2) = 1$,求解$x$ 的值。
3. 方程
$-4(x + 1) = -2$,求解 $x$的值。
提升练习题
1. 方程
$2(x - 3) - 5 = 4$,求解 $x$的值。
3. 方程
$-4(x - 3) + 2(x - 1) = -6$,求解 $x$的值。
THANKSห้องสมุดไป่ตู้FOR WATCHING
感谢您的观看
一元一次方程的解的概念
01
解:满足一元一次方程的未知数 的值。
02
解一元一次方程,就是求出一元 一次方程的解。
02 去括号的解法
括号前是“+”号的情况
总结词
直接去掉括号,符号不变
详细描述
当括号前是“+”号时,直接去掉括号,括号内的各项符号保持不变。例如,方程 (3 + (x - 5) = 2) 可以化简为 (3 + x - 5 = 2)。
03 实际应用举例
方程去括号的法则
方程去括号的法则方程去括号的法则是解决代数式中含有括号的问题,使其更加简洁明了。
在代数学中,括号是一个非常重要的符号,它可以改变计算顺序和优先级,因此在进行方程运算时必须掌握去括号的方法。
一、去小括号1. 去小括号法则当小括号中没有加减运算时,用分配律将小括号里面的数乘以外面的数即可。
例如:3(2x+4) = 6x+122. 去小括号法则当小括号中有加减运算时,先将小括号里面的数与外面的数相乘或相除,再将结果与另一个数相加或相减即可。
例如:5(3x-2)+7 = 15x-3二、去中括号1. 去中括号法则当中括号里面只有一个数时,用分配律将中括号里面的数乘以外面的每个数即可。
例如:[4+(3x-2)]×5 = 15x+102. 去中括号法则当中括号里面有两个或两个以上的数时,需要使用分配律和结合律来计算。
首先将中括号里面的每个数分别乘以外面的数,然后将结果相加或相减。
例如:[3x+(2x-1)]×4 = 20x-4三、去大括号当大括号中只有一个数时,用分配律将大括号里面的数乘以外面的每个数即可。
例如:{2+(3x-1)}×5 = 15x+5四、去混合括号当方程式中含有混合括号时,需要根据不同的情况采取不同的方法。
1. 小括号和中括号混合时,先去小括号再去中括号。
例如:(3x+[2+(4-x)])×2 = 10x+82. 中括号和大括号混合时,先去中括号再去大括号。
例如:[3+(5-{2+3x})]×4 = -20-12x综上所述,掌握方程去括号的法则是进行代数式计算必不可少的基础知识。
通过熟练掌握这些方法,并在实际计算中灵活运用,可以更加高效地解决各种代数式运算问题。
解方程练习题20道去括号
解方程练习题20道去括号一、题目:1)$(2x-3)+4(x+5)=25$2)$3(x-2)-2(3x+1)+4(x+2)=5$3)$2(x-3)-2(3x-1)-5(2-x)=12$4)$3(2x+5)-5(3-4x)-2(7-x)=29$5)$(4x+3)-2(5-x)-3(2-x)=7$6)$2(5x-1)+3(2x-1)=4$7)$(3x+2)-2(x-3)=2(x+1)-5$8)$2(3x-5)-3(4x+1)=1$9)$(5x+2)-(3x-1)=4(x-2)$10)$4(x-3)-3(x-2)=2(x-4)$11)$(2x+3)(x-2)-3(2x-1)=0$12)$(3x-2)(2-3x)-4(x-1)=0$13)$3(x+2)^2-2(3x+1)^2=0$14)$2(4x-1)^2-(x+2)^2=0$15)$(3x+2)^2-(2x-1)^2=0$16)$(x-1)^2-3(x+1)^2=0$17)$2(x-1)(x-2)-3(x+1)(x+2)=0$18)$3(x-1)(x-2)-(x+1)(x+2)=0$19)$(x+2)(x-1)-(2x-1)(x+3)=0$20)$(3x-1)(x+2)-(2x-3)(x+1)=0$二、解答:为了解决这20道解方程练习题,我们首先需要去括号,然后将同类项合并,最后移项整理出方程的标准形式。
下面是每道题的解答过程:1)$(2x-3)+4(x+5)=25$展开括号得到:$2x-3+4x+20=25$合并同类项:$6x+17=25$移项:$6x=25-17$计算:$6x=8$解得:$x=\frac{8}{6}$,简化为$x=\frac{4}{3}$2)$3(x-2)-2(3x+1)+4(x+2)=5$展开括号得到:$3x-6-6x-2+4x+8=5$合并同类项:$x=7$解得:$x=7$3)$2(x-3)-2(3x-1)-5(2-x)=12$展开括号得到:$2x-6-6x+2-10+5x=12$合并同类项:$x=8$解得:$x=8$4)$3(2x+5)-5(3-4x)-2(7-x)=29$展开括号得到:$6x+15-15+20x-35+10-2x=29$合并同类项:$25x-5=29$移项:$25x=29+5$计算:$25x=34$解得:$x=\frac{34}{25}$5)$(4x+3)-2(5-x)-3(2-x)=7$展开括号得到:$4x+3-10+2x-6+3x=7$合并同类项:$9x-13=7$移项:$9x=7+13$计算:$9x=20$解得:$x=\frac{20}{9}$展开括号得到:$10x-2+6x-3=4$合并同类项:$16x-5=4$移项:$16x=4+5$计算:$16x=9$解得:$x=\frac{9}{16}$7)$(3x+2)-2(x-3)=2(x+1)-5$展开括号得到:$3x+2-2x+6=2x+2-5$合并同类项:$x+8=2x-3$移项:$3=x$解得:$x=3$8)$2(3x-5)-3(4x+1)=1$展开括号得到:$6x-10-12x-3=1$合并同类项:$-6x-13=1$移项:$-6x=1+13$计算:$-6x=14$解得:$x=-\frac{14}{6}$,简化为$x=-\frac{7}{3}$展开括号得到:$5x+2-3x+1=4x-8$合并同类项:$2x+3=4x-8$移项:$2x-4x=-8-3$计算:$-2x=-11$解得:$x=\frac{11}{2}$10)$4(x-3)-3(x-2)=2(x-4)$展开括号得到:$4x-12-3x+6=2x-8$合并同类项:$x-6=2x-8$移项:$x-2x=-8+6$计算:$-x=-2$解得:$x=2$11)$(2x+3)(x-2)-3(2x-1)=0$展开括号得到:$2x^2-4x+3x-6-6x+3=0$合并同类项:$2x^2-7x-3=0$12)$(3x-2)(2-3x)-4(x-1)=0$展开括号得到:$6-9x^2-4x+4=0$13)$3(x+2)^2-2(3x+1)^2=0$展开括号得到:$3(x^2+4x+4)-2(9x^2+6x+1)=0$合并同类项:$3x^2+12x+12-18x^2-12x-2=0$合并同类项:$-15x^2=2$解得:$x=\sqrt{\frac{2}{15}}$或$x=-\sqrt{\frac{2}{15}}$ 14)$2(4x-1)^2-(x+2)^2=0$展开括号得到:$2(16x^2-8x+1)-(x^2+4x+4)=0$合并同类项:$32x^2-16x+2-x^2-4x-4=0$合并同类项:$31x^2-20x-2=0$15)$(3x+2)^2-(2x-1)^2=0$展开括号得到:$(9x^2+12x+4)-(4x^2-4x+1)=0$合并同类项:$9x^2+12x+4-4x^2+4x-1=0$合并同类项:$5x^2+16x+3=0$16)$(x-1)^2-3(x+1)^2=0$展开括号得到:$(x^2-2x+1)-3(x^2+2x+1)=0$合并同类项:$x^2-2x+1-3x^2-6x-3=0$17)$2(x-1)(x-2)-3(x+1)(x+2)=0$展开括号得到:$2(x^2-3x+2)-3(x^2+x+2)=0$合并同类项:$2x^2-6x+4-3x^2-3x-6=0$合并同类项:$-x^2-9x-2=0$18)$3(x-1)(x-2)-(x+1)(x+2)=0$展开括号得到:$3(x^2-3x+2)-(x^2+x+2)=0$合并同类项:$3x^2-9x+6-x^2-x-2=0$合并同类项:$2x^2-10x+4=0$19)$(x+2)(x-1)-(2x-1)(x+3)=0$展开括号得到:$(x^2+x-2)-(2x^2+5x-3)=0$合并同类项:$x^2+x-2-2x^2-5x+3=0$合并同类项:$-x^2-4x+1=0$20)$(3x-1)(x+2)-(2x-3)(x+1)=0$展开括号得到:$(3x^2+5x-2)-(2x^2-1)=0$合并同类项:$3x^2+5x-2-2x^2+1=0$合并同类项:$x^2+5x-1=0$三、总结:通过对这20道解方程练习题进行去括号、合并同类项和移项的处理,得到了每个方程的解。
去括号解方程练习题20道
去括号解方程练习题20道1. 解方程:3x - 5 = 2x + 4解:将方程中的括号去掉:3x - 5 = 2x + 4再将方程中的x合并:3x - 2x = 4 + 5x = 92. 解方程:2(x - 3) = 5x + 4解:将方程中的括号去掉:2x - 6 = 5x + 4再将方程中的x合并:2x - 5x = 4 + 6-3x = 10除以-3后得到:x = -10/33. 解方程:4(2x - 1) = 3(5x + 2)解:将方程中的括号去掉:8x - 4 = 15x + 6再将方程中的x合并:8x - 15x = 6 + 4-7x = 10除以-7后得到:x = -10/74. 解方程:5(x + 2) - 3(x - 4) = 2(x + 1)解:将方程中的括号去掉:5x + 10 - 3x + 12 = 2x + 2再将方程中的x合并:5x - 3x - 2x = 2 - 10 - 120 = -20由于等式左右两边不相等,所以该方程无解。
5. 解方程:3(2x - 1) - 4(x + 2) = 5 - 2(x - 1)解:将方程中的括号去掉:6x - 3 - 4x - 8 = 5 - 2x + 2再将方程中的x合并:6x - 4x + 2x = 5 + 2 + 3 + 84x = 18除以4后得到:x = 18/4x = 9/26. 解方程:2(3x - 1) = 5(x + 4) - 3(x - 2)解:将方程中的括号去掉:6x - 2 = 5x + 20 - 3x + 6再将方程中的x合并:6x - 5x + 3x = 20 + 6 + 24x = 28除以4后得到:x = 28/4x = 77. 解方程:4(x + 3) + 2x = 3(2x - 5) - 7解:将方程中的括号去掉:4x + 12 + 2x = 6x - 15 - 7再将方程中的x合并:4x + 2x - 6x = -15 - 7 - 120 = -34由于等式左右两边不相等,所以该方程无解。
七年级数学上册《解一元一次方程去括号》课件
3.3.1 解一元一次方程
——去括号
解方程:
8x-3=5x+3
解:移项得:
8x-5x=3+3
合并同类项得:
3x=6
系数化为1得:
x=2
同学们还记得如何去括号嘛?请将 下面式子的括号去掉:
• (1) +(3a-5b+4c) =3a-5b+4c • (2) -2(x+2y-2) =-2x-4y+4 • (3) 3(-a+3b-c) =-3a+9b-3c
解:去括号,得 4x-6+3x = 5x-18-2x
移项,得 4x+3x-5x+2x = -18+6
合并Байду номын сангаас类项,得
4x = -12
系数化为1,得
x = -3
解一元一次方程的步骤: 去括号 移项
合并同类项 系数化为1
解下列方程 (1) 5 (x+1)=3(3x+1)
X=0.5
(2) 3x-2(10-x)=5
练习
• 一架飞机在两城之间飞行,风速为24千米/时,顺 风飞行需要2小时50分,逆风飞行需要3小时。求 无风时飞机的飞行速度和两城之间的航程。
解方程: (1)x-[2-(5x+1)]=10 (2)3x-7(x-1)=3-2(x+3)
去括号解一元一次方程的步骤
去括号 移项
合并同类项 系数化为1
• (4) -3(2x-y-4) =-6x+3y+12
解方程:
(1)3x-7(x-1)=3-2(x+3)
•解:去括号,得 3x-7x+7=3-2x-6
• 移项,得 3x-7x+2x=3-6-7
人教版解一元一次方程——去括号与去分母
也就是:顺航速度_×__顺航时间=逆航速度_×__逆航时间
解:设船在静水中的平均速度是x千米/时,则船在顺水 中的速度是_(_x_+_3_)_千米/时,船在逆水中的速度是 _(_x_-_3_)__千米/时. 根据往返路程相等,列得
2(x+3)=2.5(x-3) 解得x=27 答:船在静水中的平均速度为27千米/时.
★ 我们在方程6x-7=4x-1上加上一个括号得 6x-7=4(x-1)会解吗?
★ 在前面再加上一个负号得6x-7=-4(x-1) 会解吗?
例1 某工厂加强节能措施,去年下半年与上半年相比,月平均用电量减少2 000度,全年用电15万度,这个工厂去年上半年每月平均用电多少度?
分析:若设上半年每月平均用电x度,
某轮船从A码头到B码头顺水航行3小时,返航时用4.5小时,已知轮船在静水 中的速度为4千米/小时,求水流速度为多少?
顺流航行的路程=逆流航行的路程
解:设水流速度为x千米/时,则顺流速度为 (__x_+_4_)_千米/时,逆流速度为(__4_-_x_)__千米/时,
由题意得: 3(x+4)=4.5(4-x) 解得,x=0.8.
15x-3-6x-4 =6x-6+2.
移项,得
15x-6x-6x=-6+2+3+4.
合并同类项,得
3x=3.
系数化为1,得
x=1.
注:方程中有带括号的式子时,去括号是常用的化简步骤.
2.下列变形对吗?若不对,请说明理由,并改正.
1
解方程 3 2(0.2x 1) x
5
去括号,得 3 0.4x 2 0.2x
一元一次方程的解法(二)——去括号
解下列方程:
(1) 4-x=3(2-x) (2)4x + 3(2x – 3)=12 - (x +4) 1 1 (3)( x-5)-( x-2) = x 2 3 (4)2{-2[y-2(y-2)]}=1
点拨:第4题可以逐层去括号,也可以两边都除以2,
再都除以-2,简化运算.1.方程:x 2 (5 x 1) 10
x 19
系数化为1,得
合并同类项,得
10 x 8
4 x 5
.
x 19
注意:去括号的根据是 分配律
解下列方程 () 3 x 7( x 1) 3 2( x 3) 1 (2 4 x 3( 2 x 3) 12 ( x 4) ) 1 1 ( 3) 6( x 4) 2 x 7 ( x 1) 2 3 (4) 2(y-3)-3(2+y)=0;
问题 2
顾客用540卢布买了两种布料共138俄 尺,其中蓝布料每俄尺3卢布,黑布料每俄 尺5卢布,两种布料各买了多少?
分析: 蓝布料数量
+
黑布数量 =? 138俄尺
蓝布用款
+
黑布用款 =? 540卢布
商品数量× 商品价格=购买商品金额
解一元一次方程的步骤: 去括号 移项
合并同类项
系数化为1
(1)下列去括号正确的是 ( D ) A、2x-(3x+3)=2x-3x+3 B、3-2(3x-2)=3-6x-4 C、-2(-3y+4)+4y=6y+8+4y D、5x-3(-4x-3)=5x+12x+9 (2)下列去括号错误的是 ( C ) A、3-2(-x+3)=3+2x-6 B、-3(-4x+2)-5=12x-6-5 C、4x-3(-4x+2)=4x+12x+6 D、3x-(-3x+4)=3x+3x-4
《解方程去括号》课件
解方程:3x-2(x1)=5
解方程:4(x-1)3(x+2)=1
解方程: 2(x+1)-3(x2)=5
解方程:3(x-1)2(x+2)=1
解方程:3x-2(x1)=5
解方程: 2(x+1)-3(x1)=4
解方程: (x+1)(x-2)=3
解方程: (x+1)(x-2)-2(x1)=5
练习题:解方程去括号
运用乘法分配律,将括号内的每一项分 别与括号前的符号相乘或相减
合并同类项,简化方程式
注意去括号后的符号变化,避免错误
掌握去括号的技巧和方法,提高解题速 度和准确性
添加标题
错误类型:去括号时 漏掉括号内的符号
添加标题
避免方法:注意括号 内的符号,不要漏掉
添加标题
错误类型:去括号时 漏掉括号外的符号
添加标题
添加文档副标题
目录
01.
02.
03.
04.
05.
方程的定义:含有未知数的等式 方程的形式:线性方程、二次方程、三次方程等 方程的解:使方程成立的未知数的值 解方程的方法:代入法、加减法、乘法法等
原理:通过改变括号内的符号, 使方程式更加简洁明了
作用:简化方程,便于理解和 计算
应用:广泛应用于数学、物理、 化学等领域
方法
解决方法:通 过练习题,让 学生掌握去括 号的技巧和方
法
难点:解决实 际问题中的去
括号问题
解决方法:通 过实际案例, 让学生解决实 际问题中的去
括号问题
解方程:3x-2(x-1)=5 解方程:4(x+2)-3(x-1)=10 解方程:2(x+1)-3(x-2)=1 解方程:3(x-1)-2(x+2)=-1
去括号解方程
去括号解方程
去括号解方程是一种常见的数学方法,主要用于求解包含括号和未知数的方程。
以下是去括号解方程的详细步骤:
1.观察方程:首先,仔细观察方程,了解未知数、已知数和方程的形式。
特别注意括号内的项和它们与括号外的项的关系。
2.去掉括号:使用去括号法则去掉方程中的括号。
括号前面是“+”号时,
去掉括号后,括号内的各项都不变号;如果括号前面是“-”号,去掉括号后,括号内的各项都要变号(即正变负,负变正)。
3.移项:将方程中移到等号一边的项移到另一边。
如果一项既包含未知数
又包含常数,那么它和与它符号相反的项移到等号两边后要抵消。
4.合并同类项:将方程中的同类项合并。
合并同类项时,系数相加,字母
及其指数不变。
5.化系数为1:如果方程中未知数的系数不是1,那么两边都除以未知数的
系数,将未知数的系数化为1。
下面是一个例子:
例:解方程 2x - (3x - 5) = 6
分析:这是一个包含括号的简单一元一次方程。
目标是去掉括号并求解x的值。
解:
1.观察方程,我们看到方程中有一个括号“(3x - 5)”。
2.使用去括号法则去掉括号:2x - (3x - 5) = 6 可变为 2x - 3x + 5 =
6。
3.移项:将-3x移到等号右边,5移到等号左边,得到2x = 6 - 5,即2x
= 1。
4.合并同类项:在这个方程中,2x和1是同类项,合并后得到x = 1/2。
5.化系数为1:由于原始方程中未知数的系数是2,所以两边都除以2,得
到x = 1/4。
答案:x = 1/4。
七年级数学上册知识讲义-3 去括号、去分母解方程-人教版
精讲精练1. 去括号方程中含有括号时,解方程过程中把括号去掉的过程叫去括号。
去括号的目的是把方程化简,便于解方程。
去括号的依据:乘法分配律和去括号法则。
去括号的方法:由内向外去括号,即先去小括号,再去中括号,最后去大括号;也可以由外向内去括号。
注意:(1)不要漏乘括号内的项;(2)去括号后要注意各项(原括号内)的符号变化情况,特别是括号前为负号时,括号内部各项都要变号。
如:3(x+2)+1=103x+6+1=103x=3x=12. 去分母。
去分母的方法:在方程的两边同乘以各分母的最小公倍数,使未知数的系数和常数都变为整数。
去分母的依据:等式两边乘同一个数,或除以同一个不为 0 的数,结果仍相等。
注意:(1)不要漏乘不含分母的项;(2)分数线有括号作用,去掉分母后,如果分子是多项式或者是负数,要加括号。
如:()()1212331622336241x x x x x x x -++=-+=+-+=+=例题1 (武汉模拟)解方程:10y+2(7y -2)=5(4y+3)+3y 。
思路分析:解此方程可依据乘法分配律和乘法法则,以及去括号法则整理,即可解此一元一次方程。
答案:去括号,得10y+14y-4=20y+15+3y,移项,得10y+14y-20y-3y=15+4,合并同类项,得y =19。
例题2(拱墅区期末)解方程:。
思路分析:此方程含有多重括号,一般应先去小括号,再去中括号,但此题中与均得到整数,且计算简捷,因此可先去中括号,再去小括号。
答案:去中括号,得x-+3=-2,去小括号,得x-+1+3=-2,移项,得x-=-2-1-3,合并,得x=-6,系数化为1,得x =-8。
例题3(漳州期末)解方程思路分析:本方程是带分母的方程,所以要先去分母,再去括号,最后移项,化系数为1,从而得到方程的解,再选择即可。
易错点是常数项“2”忽略乘以6。
答案:去分母,得2(x-1)-(x+2)=3(4-x)+2×6,去括号,得2x-2-x-2=12-3x+12,移项,得2x-x+3x=12+2+2+12,合并同类项,得4x=28,系数化为1得,x=7。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:设上半年每月平均用电x度,则下半年每月平均 用电(x-2000)度,上半年共用电6x度,下半年共 用电 6(x-2000)度。 去括号法则: 依题意,得:
6x+ 6(x-2000)=150000 ⑴ 去括号,得: 6x+6x-12000=150000 6x+6x=150000+12000 移项,得: 12x=162000 合并同类项,得:
3.3 解一元一次方程(1) ------去括号
知识回顾
解方程:9-3x=-5x+5
1、一元一次方程的解法我们学了哪几步?
移项 合并同类项
系数化为1
2、移项、合并同类项、系数化为1,要注意什么? ①移项时要变号。(变成相反数) ②合并同类项时,只是把同类项的系数相加 作为所得项的系数,字母部分不变。 ③系数化为1,也就是说方程两边同时除以未 知数前面的系数。
系数化为1,得: x=13500 答:这个工厂去年上半年每月平均用电13500度。
解一元一次方程的步骤: 去括号 移项 合并同类项
系数化为1
例1
解下列方程
(1) 2x -(x+10)= 5x+2(x-1)
解: 去括号,得: 2x-x-10=5x+2x-2 移项,得:
2x-x-5x-2x=-2+10
所以,可列方程 6x+ 6(x-2000)=150000 。
6x+ 6(x-2000)=150000
问题:这个方程有什么特点,和以前我们学过的 方程有什么不同?怎样使这个方程向x=a转化?
去括号
移项
合并同类项
系数化为1
某工厂加强节能措施,去年下半年与上半年相比,月平均用 电量减少2000度,全年用电15万度,这个工厂去年上半年每月平 均用电多少度?
知识回顾
1、 解方程 9-3x=-5x+5
解:移项,得
移项要变号
3x 5 x 5 9 合并同类项,得 2 ① 32 y 5 ② 3x 2 y
3x 2 y ③ (3x 5) 3x 5 ④ 21 3ab 2 6ab
X=2
17 x 11
X=0
1 1 (3)6( x 4) 2 x 7 ( x 1) X=6 2 3
本节课学习了什么?
本节课学习了用去括号的方法解一元一次方程。 需要注意的是: (1)如果括号外的因数是负数时,去括号后, 原括号内各项的符号要改变符号; (2)乘数与括号内多项式相乘时,乘数应乘括 号内的每一项,不要漏乘。
去 括 号 移项 合并同类项 系数化为1
注意符号,防止漏乘;
移项要变号,防止漏项; 计算要准确,防止合并出错; 分子、分母不要颠倒了;
思考:下列变形对吗?若不对,请说明理由,并改正:
1 解方程: 3 2(0.2 x 1) x 5
去括号变形错,有一项 没变号,改正如下:
解:去括号,得3 0.4x 2 0.2x 去括号,得3-0.4x-2=0.2x 移项,得 0.4x 0.2x 3 2
6 y 15
解对了吗?
某工厂加强节能措施,去年下半年与上半 年相比,月平均用电量减少2000度,全年用电 15万度,这个工厂去年上半年每月平均用电多 少度? 分析:设上半年每月平均用电 x 度, 则下半年每月平均用电 (x-2000) 度 上半年共用电 度, 6x 下半年共用电 6(x-2000)度 等量关系:上半年用电+下半年用电=全年用电15万度
移项,得 -0.4x-0.2x=-3+2 合并同类项,得 -0.6x=-1
合并同类项,得
系数化为1,得
0.2 x 5
x 25
5 系数化为1,得x 3
练习:解下列方程 (练习95页)
(1)2(x+3)=5x (2) 4x + 3(2X-3) = 12- (x+4) (4)2-3(x+1)=1-2(1+0.5x)
解对了吗?
合并同类项,得: -6x = 8 系数化为1,得:
4 x 3
(2) 3x-7(x-1)=3-2(x+3) 解: 去括号,得: 3x-7x+7=3-2x-6
移项,得:
3x-7x+2x=3-6-7
合并同类项,得:-2x = -10 系数化为1,得:
X=5
解一元一次方程的一般步骤
变形名称 注 意 事 项
解一元一次方程的一般步骤
变形名称 注 意 事 项
去 括 号 移项 合并同类项 系数化为1
注意符号,防止漏乘;
移项要变号,防止漏项; 计算要准确,防止合并出错; 分子、分母不要颠倒了;
作业
1、课本P98页第 1、2题 2、数学练习册P80-81页
的《课堂练习》