函数定义域求法总结

合集下载

8种求定义域的方法

8种求定义域的方法

8种求定义域的方法方法一:直接根据函数的定义进行求解。

这是最基本的一种方法,即根据函数的定义来求解定义域。

例如,对于一个多项式函数f(x),定义为f(x) = 2x^2 + 3x - 1,我们可以直接根据定义域的限制条件来求解。

由于多项式函数的定义域是全体实数,因此该函数的定义域为(-\infty, +\infty)。

方法二:挑选一些特殊的数进行验证。

这是一种常用的方法,即通过挑选一些特殊的数进行验证,看它们是否在函数的定义域内。

例如,对于一个有理函数g(x),定义为g(x) = \frac{1}{x},我们可以挑选x的一些特殊值进行验证。

首先,x不能为0,否则分母为零,函数无定义。

另外,由于有理函数对应的分母不能为零,因此定义域为(-\infty, 0) \cup (0, +\infty)。

方法三:求解不等式得到定义域的范围。

对于一些复杂的函数,可以通过求解不等式来得到定义域的范围。

例如,对于一个开方函数h(x),定义为h(x) = \sqrt{x^2 - 4x},我们可以通过求解不等式x^2 - 4x \geq 0来确定定义域的范围。

首先,将不等式化简为(x-2)(x-2) \geq 0,得到x \leq 2或x \geq 2,因此定义域为(-\infty, 2] \cup [2, +\infty)。

方法四:分段定义域的求解。

对于一些函数是在不同区间有不同定义域的情况,可以采用分段定义域的求解方法。

例如,对于一个分段函数j(x),定义为j(x) = \begin{cases}2, & \text{if } x\leq 0\\\sqrt{x}, & \text{if } x > 0\end{cases}这个函数在x\leq 0时有定义,且在x > 0时也有定义。

因此定义域为(-\infty, 0] \cup (0, +\infty)。

方法五:利用基本函数的定义域性质进行推导。

常见函数解析式定义域值域的求法总结

常见函数解析式定义域值域的求法总结

常见函数解析式定义域值域的求法总结函数的定义域和值域是函数解析式中的两个重要概念。

定义域指的是函数的自变量可能取值的范围,值域则是函数的因变量可能取值的范围。

在解析式中,定义域和值域可以通过不同的方法进行求解。

下面是常见的函数解析式定义域和值域求解方法总结。

一、定义域的求法:1.开方函数的定义域:对于形如y = √(ax + b)的开方函数,考虑开方中的被除数,即ax + b的取值范围,对ax + b >= 0进行求解,得到定义域。

2.分式函数的定义域:对于形如y=f(x)/g(x)的分式函数,需要满足分母不等于0的条件,因此需要解g(x)≠0,将g(x)=0进行求解,得到定义域。

3.对数函数的定义域:对于形如y = logₐ(x)的对数函数,需要满足x > 0的条件,因此定义域为x > 0。

4.指数函数的定义域:对于形如y=aˣ的指数函数,没有特殊定义域的限制,因此定义域为全体实数。

5.三角函数的定义域:对于常见的正弦函数、余弦函数、正切函数等三角函数,它们的定义域为全体实数。

6.反三角函数的定义域:对于反正弦、反余弦、反正切等反三角函数,它们的定义域要满足对应的正弦、余弦、正切函数取值范围的要求。

7.复合函数的定义域:当函数为两个函数的复合函数时,需要满足两个函数的定义域的交集作为复合函数的定义域。

二、值域的求法:1.函数的图像法:通过绘制函数的图像,观察函数在定义域内的取值范围,得到值域的估计。

2.函数的导数法:对函数求导,并观察导数的符号及极限情况,来推断函数的值域。

例如,当导数恒大于0时,函数为增函数,值域为整个实数轴。

3.函数的区间法:对于已知闭区间上连续的函数,可以通过求出函数的最大值和最小值,及极限情况,来确定值域的范围。

4.反函数的值域:如果函数存在反函数,那么反函数的值域即为原函数的定义域。

5.一次函数的值域:对于一次函数y = kx + b,k为斜率,通过观察斜率的正负和直线与坐标轴的交点可以得到值域的范围。

高中数学函数定义域的求法

高中数学函数定义域的求法

高中数学函数定义域的求法
求函数定义域的方法有以下几种:
1. 根据函数的解析式确定:
- 如果函数的解析式为有理式,那么函数的定义域就是使得
有理式的分母不为零的实数值。

- 如果函数的解析式为无理式,那么函数的定义域就是使得
无理式的被开方数不小于零的实数值。

- 如果函数的解析式为指数、对数函数,那么函数的定义域
就是使得指数的底不为零或负数,对数的底大于零且不等于1。

2. 根据函数的图象确定:
- 如果函数的图象是一个连续的曲线,那么函数的定义域就
是曲线所覆盖的所有实数值。

- 如果函数的图象是一个离散的点集,那么函数的定义域就
是这些点的横坐标所组成的集合。

3. 根据问题的实际意义确定:
- 如果函数表示一个实际问题,如时间、长度、面积等,那
么函数的定义域就是使得问题有意义的实数值范围。

需要注意的是,在某些情况下,函数的定义域可能是一个给定的特定集合,如正整数集、实数集等,这时需要根据题目要求进行判断和筛选。

同时,也要留意函数的特殊性质,如间断点、极值点等,可能会对函数的定义域有影响。

常见函数解析式定义域值域的求法总结完整版

常见函数解析式定义域值域的求法总结完整版

常见函数解析式定义域值域的求法总结完整版函数是一个数学概念,描述了一种输入和输出之间的关系。

函数解析式则用代数表达式的形式表示函数的输入和输出之间的关系。

定义域是函数中所有可能的输入值的集合,而值域是函数中所有可能的输出值的集合。

常见的函数解析式包括线性函数、二次函数、指数函数、对数函数、三角函数等。

下面将逐个介绍这些函数解析式的定义域和值域的求法。

1. 线性函数:线性函数的一般形式是y=ax+b,其中a和b是常数。

线性函数的定义域是实数集,即(-∞, +∞),而值域也是实数集。

2. 二次函数:二次函数的一般形式是y=ax^2+bx+c,其中a、b和c是常数。

对于一般的二次函数,定义域是实数集,即(-∞, +∞)。

值域则取决于二次函数的开口方向和开口点的位置。

-当a>0时,二次函数的开口向上,值域为[y0,+∞),其中y0是二次函数的最小值。

-当a<0时,二次函数的开口向下,值域为(-∞,y0],其中y0是二次函数的最大值。

3.指数函数:指数函数的一般形式是y=a^x,其中a是大于0且不等于1的常数。

指数函数的定义域是实数集,即(-∞,+∞)。

值域则取决于底数的大小和正负性。

-当0<a<1时,指数函数的值域为(0,+∞)。

-当a>1时,指数函数的值域为(0,+∞)。

-当a=1时,指数函数的值域为{1}。

4. 对数函数:对数函数的一般形式是y=log_a(x),其中a是大于0且不等于1的常数。

对数函数的定义域是正实数集,即(0, +∞)。

值域则取决于底数的大小和正负性。

-当0<a<1时,对数函数的值域为(-∞,+∞)。

-当a>1时,对数函数的值域为(-∞,+∞)。

5.三角函数:常见的三角函数有正弦函数、余弦函数和正切函数。

三角函数的定义域是实数集,即(-∞,+∞)。

值域则取决于具体的三角函数类型。

-正弦函数的值域为[-1,1]。

-余弦函数的值域为[-1,1]。

函数定义域的几种求法

函数定义域的几种求法

函数定义域的几种求法函数定义域指的是函数的自变量可能取的值的集合,也就是函数的有效输入值集合。

求函数定义域的几种方法有:1、根据函数的表达式或方程求解法这是最常见的求解函数定义域的方法,根据函数表达式或者是方程,计算有效解集,从而求出函数定义域。

例如:函数f(x) = x2 +1 = 0, 求它的定义域;由此等式我们可以得到 x2 = -1,则有x=$$\sqrt{-1}$$, 但是$$\sqrt{-1}$$不存在,从而该函数f(x)的定义域就是空集。

2、根据函数的几何图形特征求解法这是一种不常用的求解函数定义域的方法,简而言之就是通过分析函数的几何图形特征,来求出函数定义域。

例如:如果我们想求函数y= 1/x的定义域,则我们可以发现,当x的值小于0时,y的值会变成负数,而当x的值大于0时,y的值会变成正数;所以我们可以得出结论,这个函数的定义域为 x>0。

3、根据定义求解法例如:求函数g(x) = $$\sqrt{x}$$的定义域,由于x的开平方根√x必须大于等于0,所以该函数的定义域就是[0,+∞)。

4、根据解析学原理求解法对于一般函数,我们还可以运用解析学原理求解函数定义域,这个是一种较为复杂但可以非常准确的求解函数定义域的方法。

例如:求函数h(x) = |x| - 1的定义域;首先,我们使用变量y来表示y = |x| ,并且通过解析学原理可以得到y = x, x≥ 0 或者 y = -x, x < 0 。

根据等式 y - 1 =0 我们可以得到|x| - 1 = 0,即x=1或者x= -1。

所以该函数的定义域为( -∞, -1] U [1,∞)。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)
解:由题意知,此框架围成的面积是由一个矩形和一个半圆组成的图形的面积,如图。
文档大全
实用标准
因为CD=AB=2x,所以CDx,所以
2
L2xxx
y2x

22
LABCDL2xx
AD,
22
(2
)
2
2
x
Lx
根据实际问题的意义知
2x
L
0
2x
2
x
0
0x
L
2
2
故函数的解析式为y(2)xLx
2
五、参数型
,定义域(0,
即为所求的定义域。
2
例3已知f(x)的定义域为[-2,2],求f(x1)
的定义域。
2
解:令2x12
2
,得1x3
2
,即0x3
,因此0|x|3,从而
3x3,故函数的定义域是{x|3x3}。
(2)已知f[g(x)]的定义域,求f(x)的定义域。
其解法是:已知f[g(x)]的定义域是[a,b],求f(x)定义域的方法是:由axb,求
恒成立,解得
3
0k;
4
②当k=0时,方程左边=3≠0恒成立。
综上k的取值范围是
四、实际问题型
3
0k。
4
这里函数的定义域除满足解析式外,还要注意问题的实际意义对自变量的限制,这点要
加倍注意,并形成意识。
例7将长为a的铁丝折成矩形,求矩形面积y关于一边长x的函数的解析式,并求函
数的定义域。
1
解:设矩形一边为x,则另一边长为(a2x)
含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之
一,在求函数的值域中同样发挥作用。

8种求定义域的方法

8种求定义域的方法

8种求定义域的方法定义域是指一个函数中所有可能输入的集合。

具体来说,定义域是指函数中的自变量可以取得的所有值。

在数学中,求定义域是解决一个函数的自变量的取值范围的问题。

下面是八种常见的方法来求定义域。

方法1:显式定义对于一些函数,定义域可以通过其显式定义来确定。

例如,对于函数f(x)=1/x,定义域可以通过注意到除数不能为零来确定,即x不能为0。

因此,定义域就是除去0之后的实数集合:R\{0}。

方法2:关系定义有些函数的定义域可以通过直接观察定义函数的关系来确定。

例如,对于函数f(x)=√(2x-1),注意到根号内的表达式必须大于等于零,即2x-1≥0。

解这个不等式可以得到定义域为x≥1/2方法3:对数函数对于对数函数,定义域必须满足底数必须大于零且不等于1,并且实数必须大于零。

例如,对于函数f(x) = log₂(x + 3),定义域为x + 3 > 0,即x > -3方法4:分式函数对于分式函数,定义域必须使分母不等于零。

例如,对于函数f(x)=1/(x-2),定义域为x≠2方法5:根式函数对于根式函数,定义域必须使根号内的表达式大于等于零。

例如,对于函数f(x)=∛(x-4),根号内的表达式必须大于等于零,即x-4≥0,解不等式可得x≥4、因此,定义域为x≥4方法6:三角函数对于三角函数,定义域是实数的所有值,因为三角函数在整个数轴上都有定义。

例如,对于函数f(x) = sin(x),定义域为所有实数:(-∞, ∞)。

方法7:反三角函数对于反三角函数,定义域必须使其定义范围内的表达式满足相应的条件。

例如,对于函数f(x) = arcsin(x),由于反正弦函数的定义域是[-1, 1],因此定义域必须满足-1 ≤ x ≤ 1方法8:参数化定义对于一些函数,可以通过将函数参数化来求取定义域。

例如,对于函数f(x)=√(x²-1),我们可以通过取x²-1≥0来求取定义域。

8种求定义域的方法

8种求定义域的方法

8种求定义域的方法在数学领域中,关于定义域的求解方法有许多种。

下面将介绍其中的八种方法。

方法一:根据函数公式求取定义域。

对于一些简单的函数,可以通过函数的公式直接求取定义域。

例如对于一个分式函数,如f(x)=1/(x-2),由于分母不能为0,所以定义域为{x,x≠2}。

方法二:分析函数的基本性质。

有些函数拥有特定的性质,根据这些性质可以求得函数的定义域。

例如对于多项式函数,常数函数和指数函数,它们都定义在实数域上,因此定义域为实数集。

方法三:考虑函数中的根。

对于包含根的函数,定义域不能使这些根使得函数的值出现未定义的情况。

例如对于开方函数f(x)=√(x-3),由于根号下的值不能为负,所以定义域为{x,x≥3}。

方法四:考虑函数的分段定义。

对于分段定义的函数,需要分别考虑每个分段的定义域。

例如对于函数f(x)=,x,分段定义为{x当x>=0时;-x当x<0时},因此定义域为实数集。

方法五:考虑函数的限制条件。

有时函数在定义域上有一些限制条件。

例如对于对数函数f(x) =ln(x),由于对数函数只对正数有定义,所以定义域为{x , x > 0}。

方法六:考虑函数的参数限制。

对于含有参数的函数,需要考虑参数的限制条件。

例如对于双曲正弦函数f(x) = sinh(x),由于双曲正弦函数对所有实数都有定义,所以定义域为实数集。

方法七:考虑函数的复合性质。

对于复合函数,需要分析组成函数的定义域。

例如对于函数f(g(x)),需要保证g(x)的定义域是f(x)的定义域。

例如对于函数f(g(x)) = 1/x,如果g(x) = sin(x) + 2,由于sin(x)的定义域为实数集,所以g(x)的定义域与f(x)的定义域保持一致。

方法八:考虑函数的图像。

对于一些函数,通过画出函数的图像可以直观地确定定义域。

例如对于一个二次函数f(x)=x^2+1,通过函数的图像我们可以看到函数的定义域为实数集。

求定义域的方法总结

求定义域的方法总结

求定义域的方法总结
8种求定义域的方法
可根据不同函数的八种类型,分为以下八种方法来求函数的定义域:
①整式的定义域为R。

整式可以分为单项式还有多项式,单项式比如y=4x,多项式比如y=4x+1。

这时候无论是单项式还是多项式,定义域均为{x|x∈R},就是x可以等于所有实数。

②分式的定义域是分母不等于0。

例如y=1/(x-1),这时候的定义域只需要求让分母不等于即可,即x-1≠0,定义域为{x|x≠1}。

③偶数次方根定义域是被开方数≥0。

例如根号下x-3,这时候定义域就是让x-3≥0,求出来定义域为{x|x≥3}。

④奇数次方根定义域是R。

例如三次根号下x-3,定义域就是{x|x∈R}。

⑤指数函数定义域为R。

比如y=3^x,定义域为{x|x∈R}。

⑥对数函数定义域为真数>0。

比如log以3为底(x-1)的对数,让x-1>0,即定义域为{x|x>1}。

⑦幂函数定义域是底数≠0。

比如y=(x-1)^2,让x-1≠0,即定义域为{x|x≠1}。

⑧三角函数中正弦余弦定义域为R,正切函数定义域为x≠π/2+kπ。

这时候求定义域画个图就可以看出来了,只要记住三角函数图像,即可求出定义域。

这八种类型是常见函数类型,求定义域时首先要分辨清楚它们属于哪个类型的函数,然后根据基本的定义域来求复杂函数定义域。

求函数的定义域与值域的常用方法

求函数的定义域与值域的常用方法

求函数的定义域与值域的常用方法函数的定义域和值域是数学中的重要概念,它们描述了函数的输入和输出的范围。

在不同的数学领域和实际应用中,求解函数的定义域和值域有不同的方法和技巧。

函数的定义域是指函数中自变量的取值范围。

换句话说,定义域是使函数有意义的输入值的集合。

下面介绍一些常用方法来求解函数的定义域:1.分式函数:分式函数的定义域通常要求分母不等于零,因此我们需要找到分母为零的点,并将其排除。

求解分母为零的方程,得到函数的定义域。

2.平方根函数:平方根函数的定义域要求根号内的值大于等于零。

因此,需要将根号内的表达式>=0,并求解方程,得到函数的定义域。

3.指数函数和对数函数:指数函数的定义域通常为全体实数,而对数函数的定义域要求基数和真数都大于零。

因此,对于指数函数,不存在特定的求解方法;而对于对数函数,需要使基数和真数大于零,并求解相应的方程。

4.复合函数:复合函数的定义域由内层函数和外层函数的定义域共同确定。

首先求解内层函数的定义域,将其结果作为外层函数的自变量的定义域。

注意需要将两个函数的定义域进行交集运算,得到复合函数的定义域。

5.根式函数:根式函数的定义域需要满足根号内的表达式大于等于零。

求解根号内的方程,得到函数的定义域。

函数的值域是函数在定义域内所有可能的输出值的集合。

下面介绍一些常用方法来求解函数的值域:1.分析法:通过分析函数的特点、性质和图像,推断出函数的值域。

例如,通过观察函数的单调性、奇偶性、对称性、极值等特点,可以确定函数的值域的范围。

2.等式法:通过解方程求函数的值域。

将函数的表达式等于一个未知数,解方程得到未知数的取值范围,即为函数的值域。

3.代数运算法:通过对函数进行代数运算,得到函数的值域。

例如,对于一次函数,通过对其进行线性变换和平移,可以推导出函数的值域的范围。

4.图像法:通过绘制函数的图像,观察函数的上下界,以及是否存在水平渐近线和垂直渐近线,可以推断出函数的值域。

函数定义域值域求法总结

函数定义域值域求法总结

函数定义域值域求法总结函数的定义域(Domain)和值域(Range)是函数的基本性质之一,它们是通过对函数的规则、图像以及问题的具体要求进行分析和计算得出的。

在数学中,定义域和值域的求法可能会因函数类型的不同而有所不同。

本文将总结一些常见的函数定义域和值域求法方法,并提供一些示例。

一、函数定义域的求法方法1. 使用函数规则:根据函数的定义和规则,确定函数所能接受的变量范围。

例如,对于一个有理函数(Rational Function) f(x) = 1/(x-2),由于分母不能为零,所以定义域为除去 x=2 的所有实数。

2. 图像法:绘制函数的图像,观察函数在整个定义域上是否有意义。

一般来说,如果函数在一些点处没有定义或出现断点,则这个点不属于定义域。

例如,对于一个分段函数(Piecewise Function)f(x) = ,x,其图像是一条 V 型曲线,因此定义域为所有实数。

3.非负实数法:有些函数定义域存在特定的限制,负数、零或者正数。

例如,对于一个以平方根为主的函数f(x)=√(x-3),它的定义域要求x-3≥0,即x≥34. 根式定义域法:对于一些函数,如开方函数、对数函数,可以通过求解不等式来确定函数的定义域。

例如,对于对数函数 f(x) = log(x),由于 log 函数的定义域要求 x > 0,所以它的定义域为所有正实数。

5.分式的定义域法:对于一个分式函数,要求分母不为零。

因此,可以根据分式的分母求解不等式来确定函数的定义域。

例如,对于一个分式函数f(x)=2/(x+1),由于分母要求不等于零,所以定义域为除去x=-1的所有实数。

二、函数值域的求法方法1. 观察法:通过观察函数的定义和规则,或者通过观察函数的图像,推测函数的值域。

例如,对于一个二次函数 f(x) = ax^2 + bx + c,如果 a > 0,那么函数的值域是 (−∞, f(v)],其中 f(v) 是顶点的纵坐标。

高一函数定义域和值域讲解

高一函数定义域和值域讲解

函数定义域、值域求法总结(一)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;(二)求函数的值域1、函数的值域即为函数值的集合,一般由定义域和对应法则确定,常用集合或区间来表示;2、在函数f:A→B中,集合B未必就是该函数的值域,若记该函数的值域为C,则C 是B的子集;若C=B,那么该函数作为映射我们称为“满射”;3、分段函数的值域是各个区间上值域的并集;4、对含参数的函数的值域,求解时须对参数进行分类讨论;叙述结论时要就参数的不同范围分别进行叙述;5、若对自变量进行分类讨论求值域,应对分类后所求的值域求并集;6、求函数值域的方法十分丰富,应注意总结一、定义域是函数()y f x =中的自变量x 的范围。

求函数的定义域需要从这几个方面入手:(1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

(6)0x 中x 0≠二、值域是函数()y f x =中y 的取值范围。

8种求定义域的方法

8种求定义域的方法

8种求定义域的方法定义域是数学中常用的一个概念,指函数能够接受的输入值的集合。

求函数的定义域,即要找出函数的全部合法输入。

以下是常见的求解函数定义域的8种方法:方法一:检查函数表达式中的分式,确定分母是否为零。

如果分母为零的取值在实数范围内,那么该取值不属于该函数的定义域。

例子1:对于函数f(x) = 1/(x-1),x-1=0,得到x=1。

所以定义域是R- {1}。

方法二:检查函数表达式中的平方根、立方根等根式,确定根式内的值是否为负数。

如果根式内的值为负数,那么该取值不属于该函数的定义域。

例子2:对于函数g(x) = √(x+2),根式内的x+2≥0,所以定义域是[-2,+∞)。

方法三:检查函数表达式中的对数。

对于以e为底的指数函数来说,取值只能是正数。

对于以其他底数a(a>0 且a≠1)的对数函数来说,取值只能是大于0且底数a不能等于1的数。

例子3:对于函数h(x) = log3(x),x>0且x≠1。

所以定义域是(0, +∞)。

方法四:检查函数表达式中的三角函数。

注意到三角函数是周期性的,并且在某些点处不连续。

所以要考虑到函数在一个周期内的定义域,并将所有周期内的定义域取并集。

例子4:对于函数i(x) = sin(x),它的定义域是R。

方法五:检查函数表达式中的指数。

有些指数函数定义在整个实数集合上,而有些定义域只在实数集合的部分区间上。

例子5:对于函数j(x) = e^x,定义域是R。

方法六:当函数表示为两个函数的复合时,可以分别求出两个函数的定义域,并找出它们的交集作为最后的定义域。

例子6:对于函数k(x) = arcsin(x^2),x^2≤1,即-1≤x≤1。

所以定义域是[-1, 1]。

方法七:设函数为二次函数,可以通过求解一元二次不等式的解集来确定函数的定义域。

例子7:对于函数l(x) = 2x^2 + 3x - 1,由2x^2 + 3x - 1≥0得到x≥(-3+√17)/4 或x≤(-3-√17)/4。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)

实用标准高中函数定义域和值域的求法总结一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。

例 1求函数 y x 22x15| x 3 |8的定义域。

解:要使函数有意义,则必须满足x 22x150①| x 3 |8 0②由①解得x3或 x 5 。

③由②解得x5或 x11④③和④求交集得x3且 x11或x>5。

故所求函数的定义域为{ x | x 3且x11}{ x | x5} 。

例 2求函数 y sin x1的定义域。

16x 2解:要使函数有意义,则必须满足sin x0①16x 20②由①解得2k x2k,k Z③由②解得 4 x4④由③和④求公共部分,得4x或 0x故函数的定义域为(4, ](0, ]评注:③和④怎样求公共部分?你会吗?二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。

( 1)已知f (x )的定义域,求f [ g(x )]的定义域。

( 2)其解法是:已知 f (x) 的定义域是[a,b]求 f [g(x)] 的定义域是解a g(x) b ,即为所求的定义域。

例 3已知 f (x) 的定义域为[-2, 2],求f ( x 21) 的定义域。

解:令 2 x21 2 ,得 1 x2 3 ,即0 x 23,因此0| x | 3 ,从而3 x 3 ,故函数的定义域是{ x | 3 x3} 。

( 2)已知f [g( x)]的定义域,求f(x) 的定义域。

其解法是:已知 f [g(x )] 的定义域是[a,b],求f(x)定义域的方法是:由a x b,求g(x) 的值域,即所求f(x) 的定义域。

例 4已知 f (2x1) 的定义域为[1,2],求f(x)的定义域。

解:因为 1 x2,22x4,32x 1 5 。

即函数 f(x) 的定义域是{ x | 3x5} 。

函数定义域求法总结

函数定义域求法总结

函数定义域求法总结一、具体函数的定义域的问题 1、 求下列函数的定义域。

(1)0y=(2)256x x x =-+。

二、抽象函数的定义域问题(一)已知函数()f x 的定义域,求函数[]()f g x 的定义域。

2、已知函数()f x 的定义域为[0,1],求函数2(2)f x 的定义域。

(二)已知函数[]()f g x 的定义域,求函数()f x 的定义域。

3、 已知函数(21)f x +的定义域为[1,2],求函数()f x 的定义域。

(三)已知函数[]()f g x 的定义域,求函数[]()f h x 的定义域。

求函数解析的方法一、配凑法4、已知22113(1)x f x x x++=+,求()f x 的解析式。

二、换元法5、已知(12f x +=+()f x 的解析式。

三、特殊值法6、已知对一切,x y R ∈,关系式()()(21)f x y f x x y y -=--+都成立,且(0)1f =,求()f x 。

四、待定系数法7、已知()f x 是二次函数,全2(1)(1)244f x f x x x ++-=-+,求()f x 。

五、转化法8、设()f x 是定义在(,)-∞+∞上的函数,对一切x R ∈,均有()(2)0,f x f x ++=当11x -<≤时,()21f x x =-,求当13x <≤时,函数()f x 的解析式。

六、消去法9、已知函数()f x 21()x f x x ⎛⎫-= ⎪⎝⎭,求()f x ,并证明()f x >。

求函数值域的方法一、配方法10、求二次函数256(32)y x x x =-+-≤≤的值域。

二、图象法 11、求244([2,3])3y x x =-+∈-的值域。

三、分离常数法12、求定义域在区间[-1,1]上的函数(0)a bxy a b a bx+=>>-的值域。

四、换元法13、求函数y x =五、叛别式法14、求22221x x y x x -+=++函数的值域。

函数定义域值域求法总结

函数定义域值域求法总结

函数定义域、值域求法总结一、定义域是函数()y f x =中的自变量x 的范围; 求函数的定义域需要从这几个方面入手: 1分母不为零2偶次根式的被开方数非负; 3对数中的真数部分大于0;4指数、对数的底数大于0,且不等于15y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等; 6 0x 中x 0≠二、值域是函数()y f x =中y 的取值范围;常用的求值域的方法: 1直接法 2图象法数形结合 3函数单调性法4配方法 5换元法 包括三角换元 6反函数法逆求法 7分离常数法 8判别式法 9复合函数法 10不等式法 11平方法等等这些解题思想与方法贯穿了高中数学的始终;三、典例解析 1、定义域问题例1 求下列函数的定义域:① 21)(-=x x f ;② 23)(+=x x f ;③ xx x f -++=211)( 解:①∵x-2=0,即x=2时,分式21-x 无意义,而2≠x 时,分式21-x 有意义,∴这个函数的定义域是{}2|≠x x .②∵3x+2<0,即x<-32时,根式23+x 无意义,而023≥+x ,即32-≥x 时,根式23+x 才有意义,∴这个函数的定义域是{x |32-≥x }.③∵当0201≠-≥+x x 且,即1-≥x 且2≠x 时,根式1+x 和分式x-21同时有意义,∴这个函数的定义域是{x |1-≥x 且2≠x }另解:要使函数有意义,必须: ⎩⎨⎧≠-≥+0201x x ⎩⎨⎧≠-≥21x x例2 求下列函数的定义域:①14)(2--=x x f ②2143)(2-+--=x x x x f③=)(x f x11111++④xx x x f -+=0)1()(⑤373132+++-=x x y解:①要使函数有意义,必须:142≥-x 即: 33≤≤-x ∴函数14)(2--=x x f 的定义域为: 3,3-②要使函数有意义,必须:⎩⎨⎧≠-≠-≤≥⇒⎩⎨⎧≠-+≥--13140210432x x x x x x x 且或 ∴定义域为:{ x|4133≥-≤<--<x x x 或或}③要使函数有意义,必须: 011110110≠++≠+≠⎪⎪⎪⎩⎪⎪⎪⎨⎧xx x 2110-≠-≠≠⎪⎩⎪⎨⎧x x x∴函数的定义域为:}21,1,0|{--≠∈x R x x 且④要使函数有意义,必须: ⎩⎨⎧≠-≠+001x x x ⎩⎨⎧<-≠⇒01x x∴定义域为:{}011|<<--<x x x 或⑤要使函数有意义,必须: ⎩⎨⎧≠+≥+-073032x x ⎪⎩⎪⎨⎧-≠∈⇒37x Rx即 x<37- 或 x>37- ∴定义域为:}37|{-≠x x例3 若函数aax ax y 12+-=的定义域是R,求实数a 的取值范围 解:∵定义域是R,∴恒成立,012≥+-aax ax∴⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于例4 若函数)(x f y =的定义域为1,1,求函数)41(+=x f y )41(-⋅x f 的定义域解:要使函数有意义,必须:∴函数)41(+=x f y )41(-⋅x f 的定义域为:⎭⎬⎫⎩⎨⎧≤≤-4343|x x 例5 已知fx 的定义域为-1,1,求f2x -1的定义域;分析:法则f 要求自变量在-1,1内取值,则法则作用在2x -1上必也要求2x -1在 -1,1内取值,即-1≤2x -1≤1,解出x 的取值范围就是复合函数的定义域;或者从位置上思考f2x -1中2x -1与fx 中的x 位置相同,范围也应一样,∴-1≤2x -1≤1,解出x 的取值范围就是复合函数的定义域;注意:fx 中的x 与f2x -1中的x 不是同一个x,即它们意义不同; 解:∵fx 的定义域为-1,1, ∴-1≤2x -1≤1,解之0≤x ≤1, ∴f2x -1的定义域为0,1;例6已知已知fx 的定义域为-1,1,求fx 2的定义域;答案:-1≤x 2≤1⇒ x 2≤1⇒-1≤x ≤1练习:设)(x f 的定义域是3,2,求函数)2(-x f 的定义域解:要使函数有意义,必须:223≤-≤-x 得: 221+≤≤-x ∵ x ≥0 ∴ 220+≤≤x 2460+≤≤x ∴ 函数)2(-x f 的定域义为:{}2460|+≤≤x x例7已知f2x -1的定义域为0,1,求fx 的定义域因为2x -1是R 上的单调递增函数,因此由2x -1, x ∈0,1求得的值域-1,1是fx 的定义域;已知f3x -1的定义域为-1,2,求f2x+1的定义域;[2,25-提示:定义域是自变量x 的取值范围 练习:已知fx 2的定义域为-1,1,求fx 的定义域若()y f x =的定义域是[]0,2,则函数()()121f x f x ++-的定义域是A.[]1,1- B⎥⎦⎤⎢⎣⎡-21,21C.⎥⎦⎤⎢⎣⎡1,21D.10,2⎡⎤⎢⎥⎣⎦已知函数()11xf x x+=-的定义域为A,函数()y f f x =⎡⎤⎣⎦的定义域为B,则A.A B B = B.B A ∈ C.A B B = D. A B =2、求值域问题利用常见函数的值域来求直接法一次函数y=ax+ba ≠0的定义域为R,值域为R ;反比例函数)0(≠=k xk y 的定义域为{x|x ≠0},值域为{y|y ≠0}; 二次函数)0()(2≠++=a c bx ax x f 的定义域为R, 当a>0时,值域为{ab ac y y 4)4(|2-≥};当a<0时,值域为{ab ac y y 4)4(|2-≤}. 例1 求下列函数的值域① y=3x+2-1≤x ≤1 ②)(3x 1x32)(≤≤-=x f③ xx y 1+=记住图像 解:①∵-1≤x ≤1,∴-3≤3x ≤3,∴-1≤3x+2≤5,即-1≤y ≤5,∴值域是-1,5 ②略③ 当x>0,∴xx y 1+==2)1(2+-xx 2≥,当x<0时,)1(xx y -+--==-2)1(2----xx -≤∴值域是 ]2,(--∞2,+∞.此法也称为配方法 函数xx y 1+=的图像为: 二次函数在区间上的值域最值:例2 求下列函数的最大值、最小值与值域:①142+-=x x y ; ②;]4,3[,142∈+-=x x x y ③]1,0[,142∈+-=x x x y ; ④]5,0[,142∈+-=x x x y ;解:∵3)2(1422--=+-=x x x y ,∴顶点为2,-3,顶点横坐标为2. ①∵抛物线的开口向上,函数的定义域R,∴x=2时,ymin=-3 ,无最大值;函数的值域是{y|y ≥-3 }.②∵顶点横坐标2∉3,4,当x=3时,y= -2;x=4时,y=1;∴在3,4上,min y =-2,m ax y =1;值域为-2,1.③∵顶点横坐标2∉ 0,1,当x=0时,y=1;x=1时,y=-2, ∴在0,1上,min y =-2,m ax y =1;值域为-2,1.④∵顶点横坐标2∈ 0,5,当x=0时,y=1;x=2时,y=-3, x=5时,y=6,∴在0,1上,min y =-3,m ax y =6;值域为-3,6.注:对于二次函数)0()(2≠++=a c bx ax x f ,⑴若定义域为R 时,①当a>0时,则当a b x 2-=时,其最小值ab ac y 4)4(2min -=;②当a<0时,则当a b x 2-=时,其最大值ab ac y 4)4(2max -=. ⑵若定义域为x ∈ a,b,则应首先判定其顶点横坐标x0是否属于区间a,b. ①若0x ∈a,b,则)(0x f 是函数的最小值a>0时或最大值a<0时, 再比较)(),(b f a f 的大小决定函数的最大小值.②若0x ∉a,b,则a,b 是在)(x f 的单调区间内,只需比较)(),(b f a f 的大小即可决定函数的最大小值.注:①若给定区间不是闭区间,则可能得不到最大小值;②当顶点横坐标是字母时,则应根据其对应区间特别是区间两端点的位置关系进行讨论.练习:1、求函数y =3+√2-3x 的值域解:由算术平方根的性质,知√2-3x ≥0,故3+√2-3x ≥3;∴函数的值域为 [)+∞,3 .2、求函数[]5,0,522∈+-=x x x y 的值域解: 对称轴 []5,01∈=x例3 求函数y=4x -√1-3xx ≤1/3的值域;解:法一:单调性法设fx=4x,gx= -√1-3x ,x ≤1/3,易知它们在定义域内为增函数,从而y=fx+gx= 4x -√1-3x在定义域为x ≤1/3上也为增函数,而且y ≤f1/3+g1/3=4/3,因此,所求的函数值域为{y|y ≤4/3};小结:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值域;练习:求函数y=3+√4-x 的值域;答案:{y|y ≥3} 法二:换元法下题讲例4 求函数x x y -+=12 的值域解:换元法设t x =-1,则)0(122≥++-=t t t y点评:将无理函数或二次型的函数转化为二次函数,通过求出二次函数的最值,从而确定出原函数的值域;这种解题的方法体现换元、化归的思想方法;它的应用十分广泛;练习:求函数y=√x-1 –x 的值域;答案:{y|y ≤-3/4} 例5 选求函数x x y -+-=53 的值域 解:平方法函数定义域为:[]5,3∈x 例6 选不要求求函数21x x y -+=的值域解:三角换元法 11≤≤-x ∴设[]πθθ,0cos ∈=x 小结:1若题目中含有1≤a ,则可设2若题目中含有122=+b a 则可设θθsin ,cos ==b a ,其中πθ20<≤3若题目中含有21x -,则可设θcos =x ,其中πθ≤≤0 4若题目中含有21x +,则可设θtan =x ,其中22πθπ<<-5若题目中含有)0,0,0(>>>=+r y x r y x ,则可设θθ22sin ,cos r y r x ==其中⎪⎭⎫⎝⎛∈2,0πθ 例7 求13+--=x x y 的值域解法一:图象法可化为 ⎪⎩⎪⎨⎧>-≤≤---<=3,431,221,4x x x x y 如图,观察得值域{}44≤≤-y y可得;解法三:选不等式法414114)1(134)1()3(13-=+--+≥+--+=+--=+--≤+--x x x x x x x x x x 同样可得值域练习:1y x x =++的值域呢 )[∞+,1三种方法均可例8 求函数[])1,0(239∈+-=x y x x 的值域解:换元法设t x =3 ,则 31≤≤t 原函数可化为[][]8,28,3;2,13,121,2max min2值域为时时对称轴∴====∴∉=+-=y t y t t t t y例9求函数xx y 2231+-⎪⎭⎫ ⎝⎛= 的值域解:换元法令1)1(222+--=+-=x x x t ,则)1(31≤⎪⎭⎫⎝⎛=t y t由指数函数的单调性知,原函数的值域为⎪⎭⎫⎢⎣⎡+∞,31 例10 求函数 )0(2≤=x y x 的值域 解:图象法如图,值域为(]1,0 例11 求函数21+-=x x y 的值域 -1 0 3解法一:逆求法{}1121,≠-+=y y yyx x 原函数值域为观察得解出 解法二:分离常数法由1231232≠+-=+-+=x x x y ,可得值域{}1≠y y 小结:已知分式函数)0(≠++=c dcx bax y ,如果在其自然定义域代数式自身对变量的要求内,值域为⎭⎬⎫⎩⎨⎧≠c a y y ;如果是条件定义域对自变量有附加条件,采用部分分式法将原函数化为)(bc ad dcx c adb c a y ≠+-+=,用复合函数法来求值域;例12 求函数133+=x xy 的值域解法一:逆求法10013<<∴>-=y yyx ()1,0原函数的值域为∴小结:如果自变量或含有自变量的整体有确定的范围,可采用逆求法; 解法二:换元法设t x =+13 ,则()111131113113>-=+-=+-+=t t y x xx 练习:y =1212+-x x ;y ∈-1,1.例13 函数1122+-=x x y 的值域解法一:逆求法110112<≤-∴≥-+=y yyx解法二:换元法设t x =+12 ,则解法三:判别式法原函数可化为 010)1(2=++⋅+-y x x y 1) 1=y 时 不成立2) 1≠y 时,110)1)(1(400≤≤-⇒≥+--⇒≥∆y y y0 11 0 1综合1、2值域}11|{<≤-y y 解法四:三角换元法∴∈Rx 设⎪⎭⎫⎝⎛-∈=2,2tan ππθθx ,则∴原函数的值域为}11|{<≤-y y 例14 求函数34252+-=x x y 的值域 解法一:判别式法化为0)53(422=-+-y yx yx10=y 时,不成立 20≠y 时,0≥∆得综合1、2值域}50|{≤<y y解法二:复合函数法令t x x =+-3422,则ty 5=50≤<∴y 所以,值域}50|{≤<y y例15 函数11++=xx y 的值域解法一:判别式法原式可化为 01)1(2=+-+x y x 解法二:不等式法1当0>x 时,321≥∴≥+y xx 2) 0<x 时综合12知,原函数值域为(][)∞+-∞-,31,例16 选 求函数)1(1222->+++=x x x x y 的值域 解法一:判别式法原式可化为 02)2(2=-+-+y x y x解法二:不等式法原函数可化为当且仅当0=x 时取等号,故值域为[)∞+,2例17 选 求函数)22(1222≤≤-+++=x x x x y 的值域解:换元法令t x =+1 ,小结:已知分式函数)0(2222≠+++++=d a fex dx c bx ax y ,如果在其自然定义域内可采用判别式法求值域;如果是条件定义域,用判别式法求出的值域要注意取舍,或者可以化为 选)(二次式一次式或一次式二次式==y y 的形式,采用部分分式法,进而用基本不等式法求出函数的最大最小值;如果不满足用基本不等式的条件,转化为利用函数)0(≠+=x xa x y 的单调性去解; 练习:1 、)0(9122≠++=x x x y ; 解:∵x ≠0,11)1(91222+-=++=x x x x y ,∴y ≥11. 另外,此题利用基本不等式解更简捷:11929122=+≥++=x x y 或利用对勾函数图像法2 、34252+-=x x y 0<y ≤5.3 、求函数的值域 ①x x y -+=2; ②242x x y --= 解:①令x u -=2≥0,则22u x -=, 原式可化为49)21(222+--=+-=u u u y ,②解:令 t=4x 2x ≥0 得 0≤x ≤4在此区间内 4x 2x m ax =4 ,4x 2x m in =0 ∴函数242x x y --=的值域是{ y| 0≤y ≤2}4、求函数y=|x+1|+|x-2|的值域.解法1:将函数化为分段函数形式:⎪⎩⎪⎨⎧≥-<≤--<+-=)2(12)21(3)1(12x x x x x y ,画出它的图象下图,由图象可知,函数的值域是{y|y ≥3}.解法2:∵函数y=|x+1|+|x-2|表示数轴上的动点x 到两定点-1,2的距离之和,∴易见y 的最小值是3,∴函数的值域是3,+∞. 如图5、求函数x x y -+=142的值域解:设 x t -=1 则 t ≥0 x=12t代入得 t t t f y 4)1(2)(2+-⋅==4)1(224222+--=++-=t t t∵t ≥0 ∴y ≤46、选求函数66522-++-=x x x x y 的值域 方法一:去分母得 y12x +y+5x6y6=0 ①当 y1时 ∵xR ∴△=y+52+4y1×6y+1≥0由此得 5y+12≥0检验 51-=y 有一个根时需验证时 2)56(2551=-⋅+--=x 代入①求根 ∵2 定义域 { x| x2且 x3} ∴51-≠y再检验 y=1 代入①求得 x=2 ∴y1综上所述,函数66522-++-=x x x x y 的值域为 { y| y1且 y 51-} 方法二:把已知函数化为函数36133)3)(2()3)(2(--=+-=+---=x x x x x x x y x2 由此可得 y1,∵ x=2时51-=y 即 51-≠y ∴函数66522-++-=x x x x y 的值域为 { y| y1且 y 51-}。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数定义域求法总结一、定义域是函数y=f(x)中的自变量x 的范围。

(1)分母不为(2)偶次根式的被开方数 。

(3)对数中的真数 。

(4)指数、对数的底数(5)y=tanx 中 ;y=cotx 中 等等。

( 6 )0x 中 。

二、抽象函数的定义域1.已知)(x f 的定义域,求复合函数()][x g f 的定义域由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。

2.已知复合函数()][x g f 的定义域,求)(x f 的定义域方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。

3.已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由()][x g f 定义域求得()x f 的定义域,再由()x f 的定义域求得()][x h f 的定义域。

4.已知()f x 的定义域,求四则运算型函数的定义域若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。

一、 求函数的定义域1、 求下列函数的定义域:⑴y =⑵y =⑶01(21)111y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为 ;函数f x ()-2的定义域为 ;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ; 函数1(2)f x+的定义域为 。

4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。

5、若函数()f x = 3442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( )A 、(-∞,+∞)B 、(0,43]C 、(43,+∞)D 、[0, 43)6、若函数()f x =的定义域为R ,则实数m 的取值范围是( ) (A)04m << (B) 04m ≤≤(C) 4m ≥ (D) 04m <≤ 7.已知函数()f x 的定义域为[]15-,,求(35)f x -的定义域.8.若函数)(x f y =的定义域为⎥⎦⎤⎢⎣⎡2,21,则)(log 2x f 的定义域为 。

9.已知函数2(22)f x x -+的定义域为[]03,,求函数()f x 的定义域.10.已知函数的定义域为,则的定义域为________。

11. 函数定义域是,则的定义域是( )A.B.C.D.12.已知函数f(2x)的定义域是[-1,1],求f(log 2x)的定义域.13.若()f x 的定义域为[]35-,,求()()(25)x f x f x ϕ=-++的定义域.14.已知函数的定义域是,求的定义域。

15.若函数f (x +1)的定义域为[-21,2],求f (x 2)的定义域.巩固训练1. 设函数的定义域为,则(1)函数的定义域为________。

(2)函数的定义域为__________。

2、已知函数的定义域为,则的定义域为__________3、已知函数的定义域为,则y=f(3x-5)的定义域为________。

4、设函数y=f(x)的定义域为[0,1],求y=f()31()31-++x f x 定义域。

.5、若函数aax ax y 12+-=的定义域是R ,求实数a 的取值范围1、(1){|536}x x x x ≥≤-≠-或或 (2){|0}x x ≥ (3)1{|220,,1}2x x x x x -≤≤≠≠≠且 2、[1,1]-; [4,9] 3、5[0,];2 11(,][,)32-∞-+∞ 4、11m -≤≤DB 7.41033⎡⎤⎢⎥⎣⎦, 8.{}42|≤≤x x 9.[]15,.10.11.选A12.[2,4]13.[]40-,.14.15.{x |-3<x<-<x <3}.巩固训练 1.(1)定义域为(2)定义域为2.3.5/3≤x ≤2.4. 定义域为⎥⎦⎤⎢⎣⎡32,31.5.⎪⎩⎪⎨⎧≤<⇒≤⋅-=∆>2001402a a a a a 等价于函数定义域的求法(习题)一、含分式的函数在求含分式的函数的定义域时,要注意两点:(1)分式的分母一定不能为0;(2)绝对不能先化简后求函数定义域。

例1 求函数f(x)=211x x -+的定义域.二、含偶次根式的函数注意(1)求含偶次根式的函数的定义域时,注意偶次根式的被开方数不小于0,通过求不等式来求其定义域;(2)在研究函数时,常常用到区间的概念,它是数学中常用的术语和符号,注意区间的开闭情况. 例1 求函数y =3-ax (a 为不等于0的常数)的定义域.三、复合型函数注意 函数是由一些基本初等函数通过四则运算而得到的,则它的定义域是各基本函数定义域的交集,通过列不等式组来实现.例1 求函数y =23-x +3323-+x x )(的定义域.练习1、求下列函数的定义域。

⑴y=xx -||1⑵y=3102++x x(3)y=||11x -(4)y=2121---x x(5)2143)(2-+--=x x x x f四、抽象函数 (一)、已知的定义域,求的定义域,其解法是:若的定义域为,则中,从中解得的取值范围即为的定义域。

例1. 设函数的定义域为,则(1)函数的定义域为________。

(2)函数的定义域为__________。

练习1已知f(x)的定义域为[1,3],求f(x-1)的定义域.2已知函数)x (f 的定义域为(0,1),则函数)1x 21(f -的定义域是________。

3设函数)x (f y =的定义域为),4[A +∞=,给出下列函数:)4x (f y ),4x 2(f y 2=-=,)x16(f y ),x 2(f y -==,其定义域仍是A 的有( )A. 1个B. 2个C. 3个D. 4个4.(江西卷3)若函数()y f x =的定义域是[0,2],则函数(2)()1f xg x x =-的定义域是BA .[0,1]B .[0,1)C . [0,1)(1,4]D .(0,1)(二)、已知的定义域,求的定义域。

其解法是:若的定义域为,则由确定的范围即为的定义域。

例2. 已知函数的定义域为,则的定义域为________。

练习1已知函数)4x 2(f +的定义域为(0,1),则函数)x (f 的定义域是________。

2已知f(2x-1)的定义域为[-1,1],求)x (f 的定义域(三)、已知的定义域,求的定义域。

其解法是:可先由定义域求得的定义域,再由的定义域求得的定义域。

例3. 函数定义域是,则的定义域是( )A. B.C.D.练习1函数f(2x-1)的定义域为[1,3],求函数f(x 2+1)的定义域.2已知f(2x-1)定义域为[0,1],求f(3x)的定义域注f(x)定义域−−−−−−−←−−−→−∈∈的范围求根据解)()(1x g D x Dx g f[g(x)]的定义域为D 1(四)、运算型的抽象函数求由有限个抽象函数经四则运算得到的函数的定义域,其解法是:先求出各个函数的定义域,再求交集。

例4. 已知函数的定义域是,求的定义域。

练习 1.若函数)(x f y =的定义域为[-1,1],求函数)41(+=x f y )41(-⋅x f 的定义域。

2.(2006年湖北卷)设()xxx f -+=22lg,则⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛x f x f 22的定义域为 (B ) A. ()()4,00,4 - B. ()()4,11,4 -- C. ()()2,11,2 -- D. ()()4,22,4 --五、对于实际问题中函数的定义域例5 用长为L 的铁丝弯成下部为矩形,上部为半圆形的框架(如图),若矩形底边长为2x ,求此此框架围成图形的面积y 关于x 的函数关系式.解:因为半圆的半径为x ,所以矩形的另一边长为2π2L x x--.所以2π2π222L x x y x x --=+=2π+42x L x -+⋅. 由201(2π)02x L x x ⎧⎪⎨--⎪⎩>,>,得0<x <2πL +.故所求的函数关系式为y=2π+42x L x -+⋅,x ∈( 0 ,2πL +). 【点评】定义域不但要使函数的解析式有意义,还要对实际问题有意义;对于实际问题,即使题目没有明确要求写出定义域,也要注意注明.函数定义域求法总结一、定义域是函数y=f(x)中的自变量x 的范围。

(1)分母不为零(2)偶次根式的被开方数非负。

(3)对数中的真数部分大于0。

(4)指数、对数的底数大于0,且不等于1(5)y=tanx 中x ≠k π+π/2;y=cotx 中x ≠k π等等。

( 6 )0x 中x 0≠二、抽象函数的定义域1.已知)(x f 的定义域,求复合函数()][x g f 的定义域由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。

2.已知复合函数()][x g f 的定义域,求)(x f 的定义域方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。

3.已知复合函数[()]f g x 的定义域,求[()]f h x 的定义域结合以上一、二两类定义域的求法,我们可以得到此类解法为:可先由()][x g f 定义域求得()x f 的定义域,再由()x f 的定义域求得()][x h f 的定义域。

4.已知()f x 的定义域,求四则运算型函数的定义域若函数是由一些基本函数通过四则运算结合而成的,其定义域为各基本函数定义域的交集,即先求出各个函数的定义域,再求交集。

二、 求函数的定义域1、 求下列函数的定义域:⑴33y x =+-⑵y =⑶01(21)111y x x =+-+-2、设函数f x ()的定义域为[]01,,则函数f x ()2的定义域为 ;函数f x ()-2的定义域为 ;3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ; 函数1(2)f x+的定义域为 。

相关文档
最新文档