第七章高分子溶液

高分子化学 第三章

第三章参考答案 2.下列烯类单体适于何种机理聚合自由基聚合,阳离子聚合或阴离子聚合 并说明理由。 解: ①.氯乙烯,适于自由基聚合。Cl -是吸电子基团,有共轭效应,但均较弱 ②.偏二氯乙烯,适于自由基聚合,但也可进行阴离子聚合。两个Cl -原子的共同作用使其可进行两种聚合。 ③.丙稀腈,适于自由基聚合和阴离子聚合。CN -基是强吸电子基团,并有共轭效应。

④. 2-腈基丙稀腈,适于阴离子聚合。两个CN -基的吸电子基团倾向 过强,只能阴离子聚合。 ⑤. 丙稀,由于烯丙基效应,使其易向单体转移,不能进行自由基聚 合。一般采取配位聚合的方式合成聚合物。 ⑥. 异丁烯,适于阳离子聚合。3CH -是供电子基团,且与双键有超共 轭效应,而且两个3CH -的共同作用,使其可以阳离子聚合。 ⑦. 苯乙烯,适于自由基聚合,阳离子和阴离子聚合。因为共轭体系π 电子容易极化并易流动。 ⑧. 四氟乙烯,适于自由基聚合。F -原子体积小,结构对称。 ⑨. 2-腈基丙烯酸酯,适于阴离子聚合和自由基聚合。CN -基和 COOR -两个吸电子基团使其易于阴离子聚合,同时又具有共轭效应, 可进行自由基聚合。 ⑩. 异戊二烯,适于自由基聚合,阳离子和阴离子聚合。因为共轭体 系π电子容易极化并易流动。 3. 判断下列烯类能否进行自由基聚合,并说明理由。 解: ①. CH 2=C(C 6H 5)2 偏二苯乙烯,不能。因为二苯基的空间位阻过大,只能 形成二聚体。

②. ClHC=CHCl 1,2-二氯乙烯,不能。因为单体结构对称,1,2-二取代又 具有较大的空间位阻。 ③. CH 2=C(CH 3)C 2H 5 2-甲基丁烯,不能。由于双键上的电荷密度过大, 不利于自由基的进攻,且易转移生成稳定的烯丙基自由基。 ④. CH 3CH=CHCH 3 2-丁烯,不能。因为单体结构对称,空间位阻较大, 且易生成烯丙基自由基。 ⑤. CH 2=CHOCOCH 3 丙烯酸甲酯,能。酯基有弱的吸电子效应及共轭效 应。 ⑥. CH 2=C(CH 3)COOCH 3 甲基丙烯酸甲酯,能。1,1-二取代空间位阻小, 且酯基有共轭效应。 ⑦. CH 3CH==CHCOOCH 3 2-丁烯酸甲酯,不能。由于 1,2-二取代具有较 大的空间位阻。 ⑧. CF 2=CFCl 三氟氯乙烯,能。由于氟的原子半径小,位阻效应可以忽略。 5. 是否所有的自由基都可以用来引发烯类单体聚合试举活性不等自由基3~4例,说明应用结果。() 不是。过于活波和过于稳定的自由基都不能引发烯类单体聚合。只有活性适中的自由基才能引发单体聚合。例如:??3 CH H 和过于活波,易引起爆聚,很少在自由基聚合中应用;??256 RCH H C 和自由基都可以用来引发烯类单体聚合;而()?C H C 356有三个苯环与P 独电子共轭,非常稳定,无引发能力,而成为阻聚剂。

高分子化学第四章作业讲解

第一节习题 1 在热机械曲线上,为什么PMMA 的高弹区范围比PS 的大? (已知PMMA 的=g T 378K ,=f T 433—473K ;PS 的=g T 373K ,=f T 383—423K 2 为什么热机械曲线上f T 的转折不如g T 明晰? 3 假如从实验得到如下一些高聚物的热-机械曲线,如图6-12,试问它们各主要适合作什么材料(如塑料、橡胶、纤维等?为什么? 橡胶 (a (b (a (b 图6-12高聚物的温度-形变曲线 4 从化学结构角度讨论以下各对聚合物为什么存在g T 的差别. T ε 20 60 100 140 180 A 塑料 T ε -60 0 40 B 20 210 T ε C 纤维 80 100 T ε D 塑料

CH 2CH 2 (1 (150K 和 CH 2 CH CH 3 (250K (2 CH 2 CH C O OCH 3 (283K 和 CH 2 CH O C O CH 3 (350K (3 CH 2 CH 2O (232K 和 CH 2 CH OH (358K (4 CH 2

CH C OC 2H 5 O (249K 和 CH 2 CH 2 CH CH 3 C OCH 3 O (378K 5 从结构出发排列出下列各组高聚物T g 顺序并简要说明理由。 (1 C CH 3 CH 3 C , C H H C , CH 2

CH CH CH 2 , (CH CH n , C H C H , CH 2CH 2 (N CH 2(5NHCO CH 2(4CO n , H (2 (CH 2 CH Cl n , (CH 2 C Cl

高分子化学答案第四章

3. 试列出绘制二元共聚物组成曲线的基本步骤,并按次步骤绘制下列6种二元共聚物的组成曲线,同时说明其所属的共聚类型。 答:二元共聚物组成曲线(F 1-f 1曲线)绘制步骤: ● 判断曲线类型:写出竞聚率r1、r2并比较其大小与0和1的大小关系,判断其所属共 聚物组成曲线类型(5中典型曲线中的一种); ● 写F 1-f 1式(二元共聚物组成与单体组成关系式):代入具体单体对应的r1、r2值到 F 1-f 1式中,并且化为最简式; ● 计算:代入几个f 1值(0, 0.2, 0.4, 0.5, 0.6, 0.8, 1),根据F 1-f 1式计算F 1值;如果是有恒 比点共聚(反S 形曲线)或嵌段共聚(S 形曲线),再代入F 1 = f 1,计算出恒比点; ● 绘图:依据上述选取的f 1与对应的F 1值绘图,横坐标为f 1值,纵坐标为F 1值。 (1)r 说明控制共聚物组成的主要方法有几种,如果两种单体进行共聚的竞聚率为 r 1=0.40, 21并说明如何控制共聚物组成达到要求。 解:控制共聚物组成的主要方法:(1)控制转化率(在一定范围内);(2)补加消耗得快的 单体(活泼单体);(3)上述两种方法同时应用。 r 1=0.40, r 2=0.60(r 1 < 1, r 2 < 1,有恒比点共聚),且F 1-f 1的公式及曲线如下: 令F 1=0.5,求得f 1=0.55 按照f 1=0.55,f 2=0.45投料即可得到共聚物组成为F 1=0.5的聚合物。(亦可从图中求出) 5. 已知苯乙烯和甲基丙烯酸甲酯的Q 值分别为1.00和0.74,e 值分别为-0.80和0.40,试计算这两种单体分别进行共聚时的竞聚率,并说明共聚类型。 解: Q 苯乙烯=1.00, Q MMA =0.74, e 苯乙烯=-0.80, e MMA =0.40,则: 由竞聚率皆小于1可知聚合为有恒比点共聚,共聚物组成曲线为反S 形。 图4-2 交替共聚组成曲线0.000.200.400.600.80 1.00 f 1 12112-22-f f f )e (e e 211211e Q Q r --=) e (e e 1 22122e Q Q r --=

第三章 高分子溶液(2).

π 渗透压的产生是由于溶液的蒸汽压的降低 由于: 故:

溶剂可从良溶剂转变为劣溶剂,或从劣溶剂转变为良溶剂,从而导致高分子在溶剂中的溶解能力的变化。 G ?<聚合物与溶剂在任意比例下完全互溶?'?'' a ? b ?下变化时可能发生相分离,称为亚稳态。 ?'?'' a ? b ?当: 相分离的临界条件即为: 211C ?= +21C ?= 当 有: 1x 111 C χ=+熵的贡献

14 二、相分离的动力学 1、旋节线机理 体系的总组成位于两拐点之间,相分离按照旋节线机理进行。相分离自发缓慢进行,两相组成随时间逐渐变化,接近平衡组成。 分散相微区有一定的连接 最终形成双连续结构 相畴(即微区)尺寸的增长: 扩散 液体流动16 2、成核与生长机理 体系的总组成位于极小值和拐点之间,相分离按成核和生长机理进行。相分离必须克服热力学位垒,形成两分散相的核,然后不断生长。 分散相一般不会相互连接。 所需的界面能有关,即依赖于界面张力系数和核的表面积。 形态结构为:珠滴/基体型(海岛结构) 18 ★处于均相的共混物,当因温度的改变而进入旋节线和双节线之间的区域时,体系在热力学上处于亚稳态,不会进行相分离,但“相核”一旦形成,相分离便按成核和生长机理进行。★当体系随温度变化进入旋节线内的区域时,体系在热力学上是不稳定的,会自动产生相分离,相分离按照旋节线机理进行。

20含结晶性聚合物共混物的相分离过程(了解) Phase diagram of Polycaproloactone/Polystyrene (PCL/PS, 聚己内酯/聚苯乙烯) blends A :旋节相分离和结晶同时进行 B :双节线相分离和结晶同时进行 C :结晶诱导相分离 D :相分离诱导结晶 E :共混物淬冷到玻璃态,随后加 热过程中发生旋节相分离,同时诱导聚合物结晶。 凝胶和冻胶高分子溶液失去流动性

第七章 合成高分子材料 综合复习资料及参考答案上课讲义

第七章合成高分子材料 一、选择题 1、下列__属于热塑性塑料。 ①聚乙烯塑料②酚醛塑料③聚苯乙烯塑料④有机硅塑料 A ①② B ①③ C ③④ D ②③ 2、填充料在塑料中的主要作用是。 A、提高强度 B 降低树脂含量 C 提高耐热性 D A+B+C 3、按热性能分,以下哪项属于热塑性树脂。 A 聚氯乙烯 B 聚丙稀 C 聚酯 D A+B 二、是非判断题 1、由单体自备聚合物的基本方法有加聚反应和缩聚反应。 2、热塑性树脂与热固性树脂相比具有强度大,粘结力强,变形小等特点,可用于结构 材料。 3、聚合物的老化主要是由于高分子发生裂解这一类不可逆的化学反应造成的。 4、塑料和橡胶的最高使用温度称为玻璃化温度。 三、填空题 1、根据分子的排列不同,聚合物可分为__聚合物,__聚合物和__聚合物。 2、塑料的主要组成包括合成树脂,__,__和__等。 四、名词解释 1、热塑性树脂 2、热固性树脂 五、问答题 1、某装修公司要承包一间歌舞厅的内外装修,欲采用塑料地板,妥否? 2、在粘结结构材料或修补建筑结构(如混凝土、混凝土结构)时,一般宜选用哪类合成树脂胶粘剂?为什么? 3、现在建筑工程上倾向于使用塑料管代替镀锌管,请比较塑料管与镀锌管的优缺点。 4、选用何种地板会有较好的隔音效果? 5、某建筑工程需要给铝合金门窗的玻璃密封,现有三种密封膏(单组分硅酮密封膏,双组分聚氨酯密封膏,双组分聚硫橡胶建筑密封膏),请问选那一种较好?原因何在? 6、试根据你在日常生活中所见所闻,写出5种建筑塑料制品的名称。 7、与传统建筑材料相比较,塑料有哪些优缺点? 8、某高风压地区的高层建筑有两种窗可选择 A. 塑钢窗 B. 铝合金窗 9、热塑性树脂与热固性树脂中哪类宜作结构材料,哪类宜作防水卷材、密封材料?

高分子化学 第七章

第七章(P.199) 2.解释和区别下列诸名词:配位聚合,络合聚合,插入聚合,定向聚合,有 规立构聚合。 配位聚合:配位聚合是指单体分子首先在活性种空位上配位,形成 络合物,而配位活化后的单体在金属-烷基之间插入增长。配位和插入反复进行的聚合过程。故又称作络合引发聚合或插入聚合。配位聚合是离子过程,也称为配位离子聚合。 络合聚合:配位聚合和是同义词,其含义一方面是指引发剂有配位或络合能力,另一方面指聚合过程中伴有配位或络合反应,但配位一词更为确切。 插入聚合:配位聚合和插入聚合是同义词,其含义是指单体是通过插入的方式来完成增长的。 定向聚合:也称有规立构聚合,指形成立体规整聚合物的聚合反应。 有规立构聚合:指形成有规立构聚合物为主的聚合反应。任何聚合过程或聚合方法,只要形成形成有规立构聚合物为主,都是有规立构聚合。 3.区别聚合物的构型和构象。简述光学异构和几何异构。聚丙稀和聚丁二烯 有几种立体异构体? 构型和构象:⑴. 构型是指分子中由化学键所固定的原子在空间的几何排列。要改变构型必须经过化学键的断裂和重组,构型不同的异构体有旋光异构体和几何异构体。⑵. 构象是原子绕C-C单键内旋转而产生的分子在空间的不同形态。

光学异构和几何异构:⑴. 光学异构体是指由构型所产生的异构现象,是由手性中心所产生的,有R (右)和S (左)型,也称对映异构或手性异构。⑵. 几何异构是由分子中双键或环所产生的,有Z (顺式)和E (反式)构型。 聚丙稀和聚丁二烯的立体异构体:⑴. 丙稀有三种立体异构体,即:全同立构聚丙烯。间同立构聚丙烯和无规立构聚丙烯。⑵. 聚丁二烯可能有四种立体异构体,即:顺式-1,4,反式-1,4,、全同-1,2,间同-1,2-聚丁二烯。 5. 下列哪些单体能够配位聚合,采用什么引发剂?形成怎样的立构规整聚合 物?有无旋光活性?写出反应式。 ⑴ . 丙稀能进行配位聚合,引发剂可选用()Cl AlEt TiCl 23,,-δγα,形成全同 立构聚丙烯,由于分子中仅有假手性中心,所以聚合物无旋光性。 ⑵ . 异丁烯能进行配位聚合,无定向可言,仅考虑速率,引发剂可选用 34AlEt TiCl -,两甲基相同,无立体异构现象,也无旋光性。 ⑶ . 丁二烯能进行配位聚合, Ziegler-Natta 型、π-烯丙基型和烷基锂型 引发剂都可选用,选用34AlEt TiCl -,顺式-1,4占95%,选用 ()134<-Ti Al AlR TiCl ,反式-1,4占91%,形成的聚合物是几何异构体, 没有旋光性。选用()()[]陈化103=-V Al AlR acac V ,间规-1,2占92~96%, 选用()()未陈化3656AlR H CNC Cr -,等规-1,2占97~100%。也无旋光性。 ⑷ . 胺基丙酸不能进行配位聚合。

高分子化学 第四章

第四章 1. 无轨、交替、嵌段、接枝共聚物的结构有何差异?举例说明这些共 聚物名称中单体前后位置的规定。 ⑴. 无规共聚物:两结构单元M 1、M 2按概率无规排布,M 1、M 2连续 的单元数不多,自一至十几不等。多数自由基共聚物属于这一类型,如氯乙烯一醋酸乙烯酯共聚物。 ⑵. 交替共聚物:共聚物中M 1、M 2两单元严格交替相间。苯乙烯~ 马来酸酐共聚物属于这一类。 ⑶. 嵌段共聚物:由较长的M 1链段和另一较长的M 2链段构成的大分 子,每一链段可长达几百至几千结构单元,这一类称作AB 型嵌段共聚物。也有ABA 型(如苯乙烯一丁二烯一苯乙烯三嵌段共聚物SBS )和(AB )。(AB)x 型。 ⑷. 接枝共聚物:主链由M 1单元组成,支链则由另一种M 2单元组成。 抗冲聚苯乙烯(聚丁二烯接枝苯乙烯)属于这一类。 3. 说明竞聚率21,r r 的定义,指明理想共聚、交替共聚、恒比共聚时 竞聚率数值的特征。 ⑴. 定义:竞聚率为均聚增长和共聚增长速率常数之比。 2122 21211 1k k r k k r = = ⑵. 竞聚率数值的特征: ①. 理想共聚:1,21=r r ;

②. 交替共聚:021==r r ; ③. 恒比共聚:理想恒比共聚:1121,1f F r r ===其 5. 示意画出下列各对竞聚率的共聚物组成曲线,并说明其特征。 5.01=f 时,低转化阶段的1F 约是多少? 且曲线不对称。 =?可求出由组成方程:12 2221211212111F f r f f f r f f f r F +++=

6. 醋酸烯丙酯(028.0 ,13.1=-=Q e )和甲基丙烯酸甲酯 (74.0 ,41.0==Q e )等摩尔共聚,是否合理? 根据e Q -式: ()[]()[]0066.041.013.113.1exp 74 .0028.0exp 211211=--=--= e e e Q Q r ()[]()[]056.1413.141.041.0exp 028 .074.0exp 122122=+-=--= e e e Q Q r 由21,r r 值知,醋酸烯丙酯易和甲基丙烯酸甲酯反应而共聚,而甲基丙烯酸甲酯则易与自身反应而均聚,所以等摩尔共聚,不合理。但如果使醋酸烯丙酯的量远大于甲基丙烯酸甲酯的量,可以得到交替共聚物。 7. 甲基丙烯酸甲酯、丙烯酸甲酯、苯乙烯、马来酸酐、醋酸乙烯酯、 丙稀腈等等单体与丁二烯共聚,交替倾向的次序如何?说明原因。(提示:如无竞聚率数据,可用 e Q , 值) ⑴. 当0 ,021→→r r 时表现为交替共聚,因此,可以从 021→r r 的 程度来判断两单体交替共聚的倾向大小 ⑵. 从e 值差值的大小来判断,e 值相差较大的单体,交替共聚的倾 向大。 由此交替共聚的次序为:

高分子化学 第三章教学教材

高分子化学第三章

第三章参考答案 2.下列烯类单体适于何种机理聚合?自由基聚合,阳离子聚合或阴离子聚 合?并说明理由。 解: ①.氯乙烯,适于自由基聚合。Cl -是吸电子基团,有共轭效应,但均较弱 ②.偏二氯乙烯,适于自由基聚合,但也可进行阴离子聚合。两个Cl -原子的共同作用使其可进行两种聚合。 ③.丙稀腈,适于自由基聚合和阴离子聚合。CN -基是强吸电子基团,并有共轭效应。

④. 2-腈基丙稀腈,适于阴离子聚合。两个CN -基的吸电子基团倾向过 强,只能阴离子聚合。 ⑤. 丙稀,由于烯丙基效应,使其易向单体转移,不能进行自由基聚 合。一般采取配位聚合的方式合成聚合物。 ⑥. 异丁烯,适于阳离子聚合。3CH -是供电子基团,且与双键有超共轭 效应,而且两个3CH -的共同作用,使其可以阳离子聚合。 ⑦. 苯乙烯,适于自由基聚合,阳离子和阴离子聚合。因为共轭体系π电 子容易极化并易流动。 ⑧. 四氟乙烯,适于自由基聚合。F -原子体积小,结构对称。 ⑨. 2-腈基丙烯酸酯,适于阴离子聚合和自由基聚合。CN -基和COOR -两个吸电子基团使其易于阴离子聚合,同时又具有共轭效应,可进行自由基聚合。 ⑩. 异戊二烯,适于自由基聚合,阳离子和阴离子聚合。因为共轭体系π 电子容易极化并易流动。 3. 判断下列烯类能否进行自由基聚合,并说明理由。 解: ①. CH 2=C(C 6H 5)2 偏二苯乙烯,不能。因为二苯基的空间位阻过大,只 能形成二聚体。

②. ClHC=CHCl 1,2-二氯乙烯,不能。因为单体结构对称,1,2-二取 代又具有较大的空间位阻。 ③. CH 2=C(CH 3)C 2H 5 2-甲基丁烯,不能。由于双键上的电荷密度过大, 不利于自由基的进攻,且易转移生成稳定的烯丙基自由基。 ④. CH 3CH=CHCH 3 2-丁烯,不能。因为单体结构对称,空间位阻较 大,且易生成烯丙基自由基。 ⑤. CH 2=CHOCOCH 3 丙烯酸甲酯,能。酯基有弱的吸电子效应及共轭效 应。 ⑥. CH 2=C(CH 3)COOCH 3 甲基丙烯酸甲酯,能。1,1-二取代空间位阻 小,且酯基有共轭效应。 ⑦. CH 3CH==CHCOOCH 3 2-丁烯酸甲酯,不能。由于 1,2-二取代具有 较大的空间位阻。 ⑧. CF 2=CFCl 三氟氯乙烯,能。由于氟的原子半径小,位阻效应可以忽 略。 5. 是否所有的自由基都可以用来引发烯类单体聚合?试举活性不等自由基 3~4例,说明应用结果。(P.67) 不是。过于活波和过于稳定的自由基都不能引发烯类单体聚合。 只有活性适中的自由基才能引发单体聚合。例如:??3 CH H 和过于活波,易引起爆聚,很少在自由基聚合中应用;??256 RCH H C 和自由基都可

第三章 高分子溶液课后习题

第3章高分子溶液 一、思考题 1.与高分子稀溶液相比,高聚物的浓溶液有何特性? 2.为高聚物选择溶剂时可采用哪几个原则?对某一具体高分子—溶剂体系,这几个原则都适用吗? 3.非晶态高聚物溶解与结晶高聚物溶解有何特点?为何说结晶高聚物比非晶高聚物的抗溶剂性好?结晶高聚物分别为极性和非极性时溶解机理有何不同? 4.什么叫高分子的θ溶液,它与理想溶液有何区别? 5.什么是溶剂化?结晶度、交联度和对聚合物的溶解度有怎样的影响? 6.高分子溶液晶格模型与小分子溶液晶格模型有何不同?写出Flory-Huggins 理论中M S ?、M H ?、M G ?的表达式,该理论的假设有哪些不合理之处?Huggins 参数的物理意义是什么? 7.何谓高聚物的溶胀比?如何测定它的数值?它与交联高聚物的网链平均分子量有何关系? 8.增塑剂对高聚物的增塑机理有哪两种较极端的情况?实际高聚物中的增塑机理如何? 9.什么是凝胶和冻胶?它们的结构区别是什么?何者能被加热溶解? 二、选择题 1.下列哪个溶剂是θ溶剂? ( ) ①1χ=0.1 ② 1χ=0.5 ③ 1χ=0.9 2.以下哪种溶剂是良溶剂? ( ) ①1χ=1 ② 2A =1 ③α=1 3.对于给定相对分子质量的某一聚合物,在何时溶液黏度最大? ( ) ①线型分子链溶于良溶剂中 ②支化分子链溶于良溶剂中 ③线型分子链溶于不良溶剂中 4.高分子良溶液的超额化学位变化 ( ) ①小于零 ②等于零 ③ 大于零 13.PVC 的沉淀剂是 ( ) ①环已酮 ② 氯仿 ③四氢呋喃 5.在高分子—良溶剂的稀溶液中,第二维利系数是 ( ) ①负数 ②正数 ③零 6.对于Flory-Huggins 的高分子溶液似晶格模型,符合其假定的是 ( ) ①V ?=0 ② H ?=0 ③ S ?=0 7.将高聚物在一定条件下(θ溶剂、θ温度)配成θ溶液,此时 ( ) ①大分子之间作用力=小分子之间作用力=大分子与小分子之间作用力 ②大分子之间作用力>大分子与小分子之间作用力 ③大分子之间作用力<大分子与小分子之间作用力 8.对非极性高聚物,选择溶剂应采用哪一原则较为合适? ( ) ①极性相似原则 ②溶剂化原则 ③溶度参数相近原则

高分子化学第四章作业

第一节习题 1 在热机械曲线上,为什么PMMA 的高弹区范围比PS 的大? (已知PMMA 的=g T 378K ,=f T 433—473K ;PS 的=g T 373K ,=f T 383—423K) 2 为什么热机械曲线上f T 的转折不如g T 明晰? 3 假如从实验得到如下一些高聚物的热-机械曲线,如图6-12,试问它们各主要适合作什么材料(如塑料、橡胶、纤维等)?为什么? 橡胶 (a ) (b ) (a ) (b ) 图6-12高聚物的温度-形变曲线 4 从化学结构角度讨论以下各对聚合物为什么存在g T 的差别. T ε 20 60 100 140 180 A 塑料 T ε -60 0 40 B 20 210 T ε C 纤维 80 100 T ε D 塑料

CH 2CH 2 (1) (150K) 和 CH 2 CH CH 3 (250K) (2) CH 2 CH C O OCH 3 (283K) 和 CH 2 CH O C O CH 3 (350K) (3) CH 2 CH 2O (232K) 和 CH 2 CH OH (358K) (4) CH 2 CH C OC 2H 5 O (249K) 和 CH 2 CH 2 CH CH 3 C OCH 3 O (378K) 5 从结构出发排列出下列各组高聚物T g 顺序并简要说明理由。 (1) C CH 3 CH 3 C , C H H C , CH 2 CH CH CH 2 , (CH CH )n , C H C H , CH 2CH 2 (N CH 2()5NHCO CH 2()4CO )n , H (2) (CH 2 CH Cl )n , (CH 2 C Cl )n , (CH CH )n , Cl Cl Cl (CH 2 CH C CH 2Cl )n (3) (CH 2 CH CH 3 )n CH C 2H 5 n (CH 2 ) (CH 2CH C 4H 9 )n , ,

第三章高分子溶液

第三章高分子溶液 第四章聚合物的分子量和分子量分布 一、 基本概念 1、溶胀;无限溶胀;有限溶胀 2、数量分数;重量分数 3、数均分子量;粘均分子量;重均分子量;Z均分子量 4、多分散性指数;分子量分布宽度指数;分子量分布 5、哈金斯参数;第二维列系数;溶度参数 6、混合熵;混合热;混合自由能 7、凝胶;冻胶 8、级分;校正曲线;普适校正曲线 9、θ溶剂;θ温度;θ溶液 10、特性粘数;溶胀度 11、粘度;爱因斯坦粘度定律 12、物理交联和化学交联 13、散射;瑞利散射;瑞利因子 14、过量化学位 15、临界共溶温度;上临界共溶温度;下临界共溶温度 16、体积排斥理论 17、柱效;分辩率 18、Zimm作图法 19、数量微分分布,重量微分分布,积分分布 20、内干涉,外干涉 21,凝胶渗透色谱法 二、选择题 1、下列四种聚合物在各自的良溶剂中,常温下不能溶解的为()。 A、聚乙烯, B、聚甲基丙烯酸甲酯, C、无规立构聚丙烯, D、聚氯乙烯 2、高分子溶液与小分子理想溶液比较,说法正确的是()。 A、高分子溶液在浓度很小时,是理想溶液。 B、高分子溶液在θ温度时,△μ1E=0,说明高分子溶液是一种真的理想溶液。 C、高分子溶液在θ条件时,△H M 和△S M 都不是理想值,不是理想溶液。 D、高分子溶液在θ条件时,高分子链段间与高分子链段和溶剂分子间相互作用不等。 3、聚合物溶度参数一般与其()无关。 A、分子量 B、极性大小 C、分子间力 D、内聚能密度 4、Huggins参数χ1在θ温度下的数值等于() A、0.0, B、0.5 , C、1.0, D、2.0 5、溶剂对聚合物溶解能力的判定原则,说法错误的是()。 A、“极性相近”原则 B、“高分子溶剂相互作用参数χ1大于0.5”原则 C、“内聚能密度或溶度参数相近”原则 D、“第二维修系数A2大于0”原则 6、下列哪种高聚物是单分散的为() A、HDPE B、PVC C、DNA 7、渗透压法测得的平均分子量,其物理意义为() A、数均分子量 B、粘均分子量 C、重均分子量

4-高分子化学(第四版)第四章--自由基共聚

高分子化学与物理
第一部分 高分子化学
教学目的: 掌握共聚合的定义和作用,共聚高分子的分类 及分子结构特点,了解共聚方程的推导思路和假定,掌握 竞聚率的定义及不同竞聚率下的产物特点。 重点内容:
1、掌握基本概念 共聚合;无规共聚;交替共聚;接枝共聚;嵌段共 聚; 竞聚率。 2、共聚的作用及典型共聚高分子的性能。 3、共聚合的动力学推倒过程中的基本假定。 4、竞聚率及作用。
1
第4章自由基共聚合
(Free Radical Copolymerization)
5、不同竞聚率下的共聚物的结构特点。
2
主要英文词汇: 难点内容:自由共聚合的聚合反应动力学推导假定、推导
过程;竞聚率的定义和应用。 Copolymerization—共聚合 Radical copolymerization—共聚合 Random copolymer—无规共聚物 Alternatinig copolymer—交替共聚物 Block copolymer—嵌段共聚物 Graft copolymer—接枝共聚物 Reactivity ratio--竞聚率
3 4
熟悉内 容: 了解共聚的推导思路;
了解自由基共聚合的主要工业应用。
参考教材或资料: 1、潘祖仁,高分子化学, 北京:化学工业出版社,2007年第三版
2、郝立新等,高分子化学与物理,北京:化学工业出版社,1997年 3、George Odian,Principle of Polymerization(M),2nd,New York:John Wiley & Sons,Inc.,1981 4、应圣康,余丰年等,共聚合原理,北京:化学工业出版社,1984年
4.1 引言 均聚合:由一种单体进行的聚合反应,成为均聚合,所得 的聚合物称作均聚物。 共聚合:由两种或两种以上单体共同参加的聚合反应,称 作共聚合,所得的产物含有两种或多种单体单元,称作共 聚物。 备注:共聚物不是几种单体各自均聚物的混合物。 对于二元共聚的理论已研究得相当详细,三元共聚动 力学和组成问题相当复杂;实际上,三元以上的共聚只限 于实际应用,较少在理论上进行定性分析。
6
5
1

第三章高分子溶液

第三章习题 一、概念 1.溶度参数: 2. Huggins参数: 3.第二维利系数: 4. θ溶液: 二、选择答案 1、下列四种聚合物在各自的良溶剂中,常温下不能溶解的为( A )。 A、聚乙烯, B、聚甲基丙烯酸甲酯, C、无规立构聚丙烯, D、聚氯乙烯 2、高分子溶液与小分子理想溶液比较,说法正确的是(C )。 A、高分子溶液在浓度很小时,是理想溶液。 B、高分子溶液在θ温度时,△μ1E=0,说明高分子溶液是一种真的理想溶液。 C、高分子溶液在θ条件时,△H M 和△S M 都不是理想值,不是理想溶液。 D、高分子溶液在θ条件时,高分子链段间与高分子链段和溶剂分子间相互作用不等。 3、聚合物溶度参数一般与其(A )无关。 A、分子量 B、极性大小 C、分子间力 D、内聚能密度 4、Huggins参数χ1在θ温度下的数值等于(B ) A、0.0, B、0.5, C、1.0, D、2.0 5、溶剂对聚合物溶解能力的判定原则,说法错误的是(B )。 A、“极性相近”原则 B、“高分子溶剂相互作用参数χ1大于0.5”原则 C、“内聚能密度或溶度参数相近”原则 D、“第二维修系数A2大于0”原则 6、下列四种溶剂(室温下Huggings相互作用参数)中,室温能溶解聚氯乙烯的为( A )。 A、四氢呋喃(χ1=0.14) B、二氧六环(0.52) C、丙酮(0.63), D、丁酮(1.74) 7、下列四种溶剂中,对PVC树脂溶解性最好的是( A )。 A 环己酮, B 苯, C 氯仿, D 二氯乙烷 8、同一种聚合物在( A )中,其分子链的均方末端距最大。 A、良溶剂, B、浓溶液, C、熔体, D、θ溶液 三、填空题 1、Huggins参数和第二维利系数都表征了高分子“链段”与溶剂分子间之间的相互作用。 2、判定溶剂对聚合物溶解力的原则有(1)极性相近原则、(2) 溶度参数相近原则 和(3) 。 3、在高分子的θ溶液中,Huggins参数χ1=1/2 ,第二维列系数A2=0 ,此时高分子链段间的相互作用力等于高分子链段与溶剂分子间的作用力。 四、回答下列问题 1、为何称高分子链在其θ溶液中处于无扰状态?θ溶液与理想溶液有何本质区别?

第七章聚合物化学反应

第七章聚合物化学反应 一、名称解释 1. 聚合物化学反应:研究聚合物分子链上或分子链间官能团相互转化的化学反应过程。聚合物的化学反应根据聚合物的聚合度和基团的变化(侧基和端基)可分为相似转变、聚合物变大的反应及聚合物变小的反应。 2. 功能高分子:是指具有传递、转换或储存物质、能量可信息的高分子,其结构特征是聚合物上带有特殊功能基团,其中聚合物部份起着载体的作用,不参与化学反应。按功能的不同,可分为化学功能高分子、物理功能高分子和生物功能高分子。 3. 高分子试剂:也叫反应性高分子,即高分子试剂上的基团起着化学试剂的作用,它是各类高分子的化学试剂的总称。 4. 高分子催化剂:将能起催化剂作用的基团接到高分子母体上,高分子本身不发生变化,但能起催化低分子反应。这种催化剂称作高分子催化剂, 5. 低分子基质:低分子反应物中的特定基团与保护试剂作用后受到保护不再参与主反应,这种受到保护的低分子反应物称作低分子基质。 6. 高分子基质:将要准备反应的低分子化合物以共价键形式结合到聚合物载体上,得到高分子基质。 7. 接枝:通过化学反应,在某些聚合物主链上接上结构、组成不同的支链,这一过程称为接枝,形成的产物称为接枝共聚物。 8. 嵌段:形成嵌段共聚物的过程。 9. 扩链:分子量不高的聚合物,通过适当的方法,使多个大分子连接在一起,分子量因而增大的过程称为扩链。 10. 交联:聚合物在光、热、辐射、或交联剂作用下,分子链间形成共价键,产生凝胶或不溶物,这一过程称为交联。交联有化学交联和物理交联。交联的最终目的是提高聚合物的性能。如橡胶的硫化等。 11. 交联剂:使聚合物交联的试剂。 12. 降解:降解是聚合度分子量变小的化学反应的总称。它是高分子链在机械力、热、超声波、光、氧、水、化学药品、微生物等作用下,发生解聚、无规断链及低分子物脱除等反应。 13. 老化:聚合物及其制品在加工、贮存及使用过程中,物理化学性质及力学性能逐步变坏,这种现象称老化。橡胶的发粘、变硬、或龟裂,塑料制品的变脆、破裂等都是典型的聚合物老化现象。导致老化的物理因素是热、光、电、机械应力等。化学因素是氧、酸、碱、水以及生物霉菌的侵袭,实际上,老化是上述各因素的综合作用的结果。 14. 聚合物的无规降解:聚合物在热的作用下,大分子链发生任意断裂,使聚合度降低,形成低聚体,但单体收率很低(一般小于3%),这种热降解称为无规降解

第三章 高分子的溶液性质.

第三章高分子的溶液性质 高聚物以分子状态分散在溶剂中所形成的均相混合物称为高分子溶液,它是人们在生产实践和科学研究中经常碰到的对象。高分子溶液的性质随浓度的不同有很大的变化。就以溶液的粘性和稳定性而言,浓度在1%以下的稀溶液,粘度很小而且很稳定,在没有化学变化的条件下其性质不随时间而变。纺丝所用的溶液一般在15%以上,属于浓溶液范畴,其粘度较大,稳定性也较差,油漆或胶浆的浓度高达60%,粘度更大。当溶液浓度变大时高分子链相互接近甚至相互贯穿而使链与链之间产生物理交联点,使体系产生冻胶或凝胶,呈半固体状态而不能流动。如果在高聚物中加入增塑剂,则是一种更浓的溶液,呈固体状,而且有—定的机械强度。此外能相容的高聚物共混体系也可看作是一种高分子溶液。 高分子的溶液性质包括很多内容: 热力学性质:溶解过程中体系的焓、熵、体积的变化,高分子溶液的渗透压,高分子在溶液中的分子形态与尺寸,高分子与溶剂的相互作用,高分子溶液的相分离等; 流体力学性质:高分子溶液的粘度、高分子在溶液中的扩散和沉降等;光学和电学性质:高分子溶液的光散射,折光指数,透明性,偶极矩,

介电常数等。 本章将着重讨论高分子溶液的热力学性质和流体力学性质。 第一节高聚物的溶解 3.1.1高聚物溶解过程的特点 ※高聚物的溶解过程要经过两个阶段,先是溶剂分子渗入高聚物内部,使高聚物体积膨胀,称为“溶胀”;然后才是高分子均匀分散在溶剂中,形成完全溶解的分子分散的均相体系。对于交联的高聚,只能停留在溶胀阶段,不会溶解。 ※溶解度与高聚物的分子量有关,分子量大的溶解度小,对交联高聚物来说,交联度大的溶胀度小,交联度小的溶胀度大。 ※晶态高聚物的溶解比非晶态高聚物要困难得多:非晶态高聚物的分子堆砌比较松散,分子间的相互作用较弱,因此溶剂分子比较容易渗入高聚物内部使之溶胀和溶解。晶态高聚物由于分子排列规整,堆砌紧密,分子间相互作用力很强,以致溶剂分子渗入高聚物内部非常困难。 3.1.2 高聚物溶解过程的热力学解释 溶解过程是溶质分子和溶剂分子互相混合的过程,在恒温恒压下,这种过程能自发进行的必要条件是Gibbs自由能的变化△F<0。

第七章高分子化合物与材料

第7章高分子化合物与材料 一.教学目标 本章介绍高分子化合物的基本知识,让学生通过所学的化学知识了解日常生活中的高分子材料的结构与性能。 本章学习的主要要求可分为以下几点: 1.掌握高分子化合物基本概念,高聚物的分类和命名。 2.了解高分子结构,掌握近程结构,理解性能与结构的关系 3.了解聚合物的化学反应的目的,理解聚合物的化学反应特点及影响因素,了解高分子化学的合成、改性与再利用。 4.掌握最典型通用高分子材料的基本知识和基本概念,了解日常生活中各种高分子材料的制备技术和加工技术. 二.任务分析 重点: 1.掌握高聚物的分类和命名;通过学习高分子结构,掌握近程结构,理解性能与结构的关系。 2.了解聚合物的化学反应的目的,理解聚合物的化学反应特点及影响因素,了解高分子化学的合成、改性与再利用。 难点:了解日常生活中各种高分子材料的制备技术和加工技术. 三.教学方法与教学手段 讲授法与启发式教学相结合,应用多媒体。 四.授课时数:8学时 第7章高分子化合物与材料 §6.1高分子化合物概述 材料、信息、能源是当代科学技术的三大支柱。材料科学是当今世界的带头学科之一。高分子材料是材料领域的后起之秀,它的出现带来了材料领域的重大变革,从而形成金属材料、无机非金属材料、高分子材料和复合材料多角共存的局面,并广泛应用于人类的衣食住行和各产业领域。人们已经认识到高分子材料越来越成为普遍应用且不可缺少的重要材料。它的广泛应用和不断创新是材料科学现代化的一个重要标志。 高分子材料科学是材料科学与工程学科的一个重要组成部分,也是高等学校相关专业的一们重要课程。自从二十世纪20年代德国化学家、诺贝尔奖获得者Staudinger创立了高分子概念以来,通过合成化学家、物理学家和材料工程学家等许多科学技术人员的辛勤劳动,至今已经形成了一个完整的

第七章无机高分子材料及其应用29118

无机高分子材料及其应用 摘要本文简要地介绍了无机高分子的定义、分类,以及一些重要无机高分子材料的性能及其应用。 关键词无机高分子材料无机聚合物性能和应用 1、前沿 随着人们对健康、安全、环境意识的强化,尤其天然气和石油资源的日趋耗竭,材料未来总的发展趋向于:逐步由非金属材料部分地替代金属材料,而在非金属材料中,无机材料在许多领域中将越来越多地取代有机材料。因此,由蕴藏量极其丰富而廉价的无机矿物制备无毒、耐高温、耐老化、高强度甚至多功能化的无机材料是当今世界材料学研究的重要方向之一。无机高分子材料因能符合这些要求而日益引起重视。 无机高分子也称为无机聚合物,是介于无机化学和高分子化学之间的古老而又新兴的交叉领域。实际上,传统的无机化学中许多内容属于无机聚合物,许多无机物本身就是聚合物,例如金刚石、二氧化硅、玻璃、陶瓷和氧化硼。第一届国际无机聚合物会议于1961年召开,会上把无机聚合物定义为:凡在主链上

不含碳原子的多聚化合物称为无机聚合物,如此定义相当于把离子晶体及固态金属也包括在内,故后来有人建议把无机聚合物定义为:主链由非碳原子共价键结合而成的巨大分子。 2、无机高分子的分类 2.1 均链聚合物 主链由同种元素组成的聚合物为均链聚合物。 周期表中Ⅳ、Ⅴ、Ⅵ主族的大部分元素及Ⅲ族的B元素能生成均链聚合物。例如金刚石和石墨,三维网络固态聚合物Si、Ge、Sn、P、As、Pb、S、Se和Te的聚合分子等。但由于形成主链的同种原子之间的键能低于—C—C—键能,表现为稳定性甚差、易分解,而且当前合成的均链聚合物聚合度甚低,所以缺乏应用价值。 表一原子之间键能(计算值)

第七章 无机高分子材料及其应用

摘要本文简要地介绍了无机高分子地定义、分类,以及一些重要无机高分子材料地性能及其应用. 关键词无机高分子材料无机聚合物性能和应用 、前沿 随着人们对健康、安全、环境意识地强化,尤其天然气和石油资源地日趋耗竭,材料未来总地发展趋向于:逐步由非金属材料部分地替代金属材料,而在非金属材料中,无机材料在许多领域中将越来越多地取代有机材料.因此,由蕴藏量极其丰富而廉价地无机矿物制备无毒、耐高温、耐老化、高强度甚至多功能化地无机材料是当今世界材料学研究地重要方向之一.无机高分子材料因能符合这些要求而日益引起重视.个人收集整理勿做商业用途 无机高分子也称为无机聚合物,是介于无机化学和高分子化学之间地古老而又新兴地交叉领域.实际上,传统地无机化学中许多内容属于无机聚合物,许多无机物本身就是聚合物,例如金刚石、二氧化硅、玻璃、陶瓷和氧化硼.第一届国际无机聚合物会议于年召开,会上把无机聚合物定义为:凡在主链上不含碳原子地多聚化合物称为无机聚合物,如此定义相当于把离子晶体及固态金属也包括在内,故后来有人建议把无机聚合物定义为:主链由非碳原子共价键结合而成地巨大分子.个人收集整理勿做商业用途 、无机高分子地分类 均链聚合物 主链由同种元素组成地聚合物为均链聚合物. 周期表中Ⅳ、Ⅴ、Ⅵ主族地大部分元素及Ⅲ族地元素能生成均链聚合物.例如金刚石和石墨,三维网络固态聚合物、、、、、、、和地聚合分子等.但由于形成主链地同种原子之间地键能低于———键能,表现为稳定性甚差、易分解,而且当前合成地均链聚合物聚合度甚低,所以缺乏应用价值.个人收集整理勿做商业用途 表一原子之间键能(计算值) 均链键能()杂链键能() 化学键键能化学键键能 —— —— —— —— —— —— —— — ——

高分子第三章习题参考答案

高分子第三章习题参考答案 第1题:无规、交替、嵌段、接枝共聚物的结构有何差异?在这些共聚物名称中,对前后单体的位置有何规定? 参考答案: 无规共聚物是聚合物中两单元M1、M2无规排列,而且M1、M2连续的单元树不多。 交替共聚物是聚合物中两单元M1、M2严格相间。 嵌段共聚物是聚合物中由较长的M1链段和另一较长的M2链段构成的大分子。 接枝共聚物是聚合物主链由单元M1组成,而支链则由另一单元M2组成。 无规共聚物名称中前一单体为主单体,后为第二单体。 嵌段共聚物名称中的前后单体则代表单体聚合的次序。 接枝共聚物中前单体为之链,后单体则为支链。 第3题;当r1= r2=1;r1= r2=0;r1>0,r2=0;r1·r2=1等特殊情况下,d[M1]/ d[M2]=f([M1]/ [M2]),F1=f(f1)的函数关系如何? 参考答案: 当r1= r2=1时,d[M1]/ d[M2]= [M1]/ [M2],F1= f1; 当r1= r2=0时,d[M1]/ d[M2]=1,F1= 0。5; 当r1>0,r2=0时,d[M1]/ d[M2]=1+r1·[M1]/ [M2],F1>50%; 当r1·r2=1 ,d[M1]/ d[M2]= r1·[M1]/ [M2] ,F1= r1·f1。

第6题:两单体的竞聚率r1=2.0,r2=0.5,如f10=0.5,转化率C=50%,试求共聚物组成。 参考答案:因为换化率大于10%,只能用积分公式计算。 式中 因为:γ=0 所以: 故而:

整理上式得:f12-3f1+1=0 解方程得: 将f1和f10及C代入: 解得:F1=0.62 第13题:甲基丙烯酸甲酯、丙烯酸甲酯、苯乙烯、马来酸酐、醋酸乙烯酯、丙烯腈等单体与丁二烯共聚,试以交替倾向的次序排列,说明原因。 参考答案: 根据r1·r2乘积的大小,可以判断两单体交替共聚的倾向。即r1·r2→0,两单体发生共聚;r1·r2越趋向于零,交替倾向月大。各单体的r1、r2和r1·r2值如下表:

3第三章 高分子溶液性质及其应

第三章高分子溶液性质及其应用 第一部分内容简介 §3.1 高分子的溶解 一.溶解的过程: 非交联高聚物:溶胀溶解; 结晶高聚物:晶区破坏→再溶解 交联高聚物:只溶胀 特点:(1) 溶胀→溶解,对结晶高聚物则是先 (2) 溶解时间长 二.溶剂的选择原则 1. 极性相近原则: 非极性体系PS :苯甲苯丁酮 2. 溶度参数相近原则: δ=(ΔE/V)1/2 △Fm=△Hm-T△Sm<0 T>0,△Sm>0,则△Hm

CH 2NH 2>C 6H 6NH 2>—CO —N(CH 3)2>—CO —NH> PO 4 >—CH 2—CO —CH 2>CH 2—O —CO —CH 2>—CH 2—O —CH 2— 亲电(酸) 基团有: —SO 2OH>—COOH>—C 6H 4OH>—CH(CN)—>—C(NO 2)—>—C(Cl)—Cl> —C(Cl)— §3.2 高分子稀溶液热力学 理想溶液性质 △S mi =-R(N 1lnx 1+N 2lnx 2) △H mi =o △F mi =RT(n 1lnx 1+n 2lnx 2) 高分子稀溶液(Flory-Huggin 理论) 假设(1) 每个溶剂分子和链段占有格子的几率相同 (2)高分子链是柔性的,所有构象能相同 思路: △μ→△F →△S m =? △H m =? 一、△S m 的求法 设溶剂分子数为N 1链,大分子数为N 2 每个链段数为x 则格子总数为N=N 1+xN 2 若已放入i 个链,则i +1个链的放法数为w i +1 第1个链段放法为 N-iN 2 第2个链段放法为 N iN N z 1 2-- 第3个链段放法为 N xj N z 2 ) 1(---

相关文档
最新文档