计数资料的统计推断(2)

合集下载

医学统计学---统计推断

医学统计学---统计推断

第一节 常用相对数
例5-1 某医院1998年在某城区随机调查 了8589例60岁及以上老人,体检发现高 血压患者为2823例。 高血压患病率为: 2823 / 8589 100% = 32.87% 。

第一节 常用相对数
二、构成比 构成比:表示事物内部某一部分的个体数 与该事物各部分个体数的总和之比,用来 说明各构成部分在总体中所占的比重或分 布。 通常以100%为比例基数。其计算公式为
表 5-4 甲、乙两种疗法治疗某病的治愈率比较 治愈率(%) 60.0 35.0 53.8 病人数 100 300 400 乙疗法 治愈数 65 125 190 治愈率(%) 65.0 41.7 47.5


普通型 重 型 合 计
病人数 300 100 400
甲疗法 治愈数 180 35 215
第三节 率的标准化法

第三节 率的标准化法
标准化法计算的关键是选择统一的标准构成。 选择标准构成的方法通常有三种: 1.两组资料中任选一组资料的人口数(或人口 构成)作为两者的“共同标准”。这种方法适 用于直接法。 2.两组资料各部分人口之和组成的人口数(或 人口构成)作为两者的“共同标准”。这种方 法适用于直接法。 3.另外选用一个通用的或便于比较的标准作 为两者的“共同标准”,如采用全国、全省或 全地区的数据作为标准。

式中两指标可以是绝对数、相对数或平均 数。
第一节 常用相对数
例5-3 某年某医院出生婴儿中,男性婴儿为370 人,女性婴儿为358人,则出生婴儿性别比例为 370/358×100 = 103,说明该医院该年每出生 100名女婴儿,就有103名男性婴儿出生,它反 映了男性婴儿与女性婴儿出生的对比水平。 据大量观察,出生婴儿男多于女,出生性别比 一般在104~107之间。这个医院的出生性别比 为103,说明该年该医院出生女婴相对较多。

统计描述与统计推断

统计描述与统计推断

统计描述与统计推断统计的主要工作就是对统计数据进行统计描述和统计推断。

统计描述是统计分析的最基本内容,是指应用统计指标、统计表、统计图等方法,对资料的数量特征及其分布规律进行测定和描述;而统计推断是指通过抽样等方式进行样本估计总体特征的过程,包括参数估计和假设检验两项内容。

(一)统计描述1.计量资料的统计描述计量资料的统计描述主要通过编制频数分布表、计算集中趋势指标和离散趁势指标以及统计图表来进行。

(1)集中趋势。

指频数表中频数分布表现为频数向某一位置集中的趋势。

集中趋势的描述指标:1)算术平均数。

直接法:x为观察值,n为个数加权法又称频数表法,适用于频数表资料,当观察例数较多时用。

f为各组段的频数。

2)几何平均数(geometric mean)。

几何平均数用符号G表示。

用于反映一组经对数转换后呈对称分布的变量值在数学上的平均水平。

直接法:加权法又称频数表法,当观察例数n较大时,可先编制频数分布表,用此法算几何平均数:3)百分位数(percentile )与中位数(median )。

百分位数是一种位置坐标,用符号x P 表示常用的百分位数有 2.5P 、5P 、50P 、75P 、95P 、97.5P 等,其中25P 、50P 、75P 又称为四分位数。

百分位数常用于描述一组观察值在某百分位置上的水平,多个百分位结合使用,可更全面地描述资料的分布特征。

中位数是一个特定的百分位数即50P ,用符号M 表示。

把一组观察值按从小到大(或从大到小)的次序排列,位置居于最中央的那个数据就是中位数。

中位数也是反映频数分布集中位置的统计指标,但它只由所处中间位置的部分变量值计算所得,不能反映所有数值的变化,故中位数缺乏敏感性。

中位数理论上可以用于任何分布类型的资料,但实践中常用于偏态分布资料和分布两端无确定值的资料。

其计算方法有直接法和频数表法两种。

直接法:当观察例数n 不大时,此法常用,先将观察值按大小次序排列,选用下列公式求M 。

医学统计学之卡方x2检验

医学统计学之卡方x2检验

举例
买彩票
奖项 中奖概率
T
A
一等 1% 10 0
0
二等 5% 50 0
0
三等 10% 100 20
2%
四等 20% 200 180
18%
五等 64% 640 800
80%
二、基本原理
基本思想是检验实际频数和理论频数的差别是否 由抽样误差所引起的,由样本率来推断总体率。
x2反映了实际频数于理论频数的吻合程度,x2值
α=0.05。
T11 =44(41/70)=25.8 T12=44(29/70)=18.2 T21=26(41/70)=15.2 T22 = 26(29/70)=10.8
(2)求检验统计量值
2 (20 25.8)2 (24 18.2)2 (21 15.2)2 (5 10.8)2 8.40
作χ2检验后所得概率P接近检验水准α,需要
计数资料的统计推断
卡方检验是χ2检验(Chi-square test) 是现代统计学的创始人之一,英国人K . Pearson(1857-1936)于1900年提出的 一种具有广泛用途的统计方法,是分类 计数资料的假设检验方法,可用于两个 或多个率间或构成比之间的比较,计数 资料的关联度分析,拟合优度检验等等。
2 检验的应用
①检验两个样本率之间差别的显著性; ②检验多个样本率或构成比之间差别的
显著性; ③配对计数资料的比较; ④检验两个双向无序分类变量是否存在
关联。
某医生想观察一种新药对流感的预防效 果,进行了如下的研究,问此药是否有 效?
组别 实验组 对照组 合计
发病人数 14 30 44
未 发 病人数 86 90 176
观察例数 100 120 220

第二章数值型变量的统计描述

第二章数值型变量的统计描述
1
例:某公司五名职员的薪水分别是: 10,100,1000,10000,100000。
10 100 1000 10000 100000 X 22222 5
G 10 100 1000 10000 100000 1000
5
lg 10 lg 100 lg 100000 1 15 G lg ( ) lg ( ) 1000 n 5
统计工作四大步骤之一:分析资料
分析资料:计算有关指标,反映数据的综合特 征, 阐明事物内在联系和规律 (1)统计描述(descriptive statistics):指用统计
指标、统计表、统计图等方法,对资料的数量特 征及其分布规律进行测定和描述 。
(2)统计推断(inferential statistics):指如何根
n 2 n 1 2
2
求:中位数
第1组数:1、4、 3、 2、 3 第2组数: 3、 2、1、 3 第3组数:1、2、 1、 2
(2)频数表法:
适用于样本例数较大的资料(百分位数法)
步骤: ①从小到大计算累计频数和累计频数; ②确定中位数和百分位数所在组段;
③计算中位数M和百分位数PX
i Px= L n x % f L fx
考考你: BUN组段(1)
BUN组段(2)
2.00~2.40 2.40~2.80 2.80~3.20 3.20~3.60
BUN组段(3)
2.00~ 2.40~ 2.80~ 3.20~3.60
2.00~2.30
2.40~2.70 2.80~3.10 3.20~3.50
4、列表划记(数频数):统计各组段内的
例2-3
二、几何均数(geometric mean)

统计方法介绍

统计方法介绍

(4)百分位数:第X百分位数以Px表示,它将 全部观察值分成二个部分,其中有x%个观察 值小于Px, (100-x)%个观察值大于Px。 用途:1.描述一组资料在各个百分位置上 的水平,用一组百分位数如P5 ,P25, P50, P75, P95,可以描述总体或样本的分布特征,如集 中位置、变异度等。 2.确定医学正常值范围。
三. 方差分析
方差分析主要用于检验计量资料中两 个或两个以上样本均数间差别的显著性。 常见的错误是进行各组之间的两两t 检验。这将增加第一类误差的概率。 两组以上均数的比较不能用两两t检验, 而必须用方差分析。如差别有统计学意义, 然后再进一步用SNK等方法作两两比较。
例: 小白鼠给药前后发生咳嗽的推迟时间(秒)
1. 样本均数与总体均数比较的t检验
检验样本是否来自均数为μ0的已知总体 。 如:要研究现在13岁男孩的身高是否比20年 前的13岁男孩高。 20年前的13岁男孩平 均身高为1.30。现测量了13岁男孩100名 平均身高为1.35,标准差为0.12,要检验 现在13岁男孩身高的总体均数是否高于 1.30。
—————————————————————————— 单位组 处理1 处理2 ……... 处理k
—————————————————————————— 1 2 ┇ b X11 X21 ┇ Xb1 X12 X22 ┇ Xb2 ……... ……... ……... X1k X2k ┇ Xbk
——————————————————————————
二个或多个构成比的比较或两个属性之间有无关系:
────────────────────── 血 型 民族 ────────────────── A B O AB 合计 ───────────────────── 傣族 f11 f12 f13 f14 n1+ 佤族 土家族 f21 f31 f22 f32 f23 f33 f24 f34 n2+ n3+

国开形成性考核01337《实用卫生统计学》形考任务(1-4)试题及答案

国开形成性考核01337《实用卫生统计学》形考任务(1-4)试题及答案

国开形成性考核《实用卫生统计学》形考任务(1-4)试题及答案(课程ID:01337,整套相同,如遇顺序不同,Ctrl+F查找,祝同学们取得优异成绩!)形考任务1题目:1、某医院用某种新疗法治疗某病患者,治疗结果见下表,请问该资料的类型是?()治疗效果治愈显效好转恶化死亡治疗人数15 45 6 4 0【A】:数值变量资料【B】:分类变量资料【C】:二分类资料【D】:有序分类变量资料答案:有序分类变量资料题目:2、匹配题1:统计描述2:统计推断答案:1:统计描述用统计图表或计算统计指标的方法表达一个特定群体(这个群体可以是总体也可以是样本)的某种现象或特征。

2:统计推断根据样本资料的特性对总体的特性作估计或推论的方法,常用方法是参数估计和假设检验。

题目:3、匹配题1:随机抽样2:统计量3:参数4:概率5:小概率事件答案:1:随机抽样就是总体中每个个体都有均等机会被抽取,抽到谁具有一定的偶然性。

是指样本指标。

3:参数是指总体指标。

4:概率是指某随机事件发生的可能性大小的数值,常用符号P来表示。

5:小概率事件一般常将P£0.05或P£0.01称为小概率事件,表示某事件发生的可能性很小。

题目:4、下面有关病人的变量中,属于分类变量的是()。

【A】:年龄【B】:性别【C】:血压【D】:脉搏答案:性别题目:5、匹配题1:总体2:总体研究3:样本4:抽样研究答案:1:总体总体是根据研究目的确定的同质观察单位的全体,更确切地说,是同质的所有观察单位某种变量值的集合。

2:总体研究对有限总体中的每个个体都作观察就称总体研究。

3:样本从总体中随机抽取有代表性的一部分个体,其测量值(或观察值)的集合称为样本。

4:抽样研究对从所研究的总体中随机抽取有代表性的一部分个体构成的样本进行的研究称为抽样研究。

题目:6、反映偏态分布资料的平均水平描述末端无确定值资料的离散程度答案2(四分位数间距)描述对称分布分布资料的个体观察值的离散趋势答案3(标准差)描述对称分布或正态分布资料的平均水平答案4(均数)比较8岁男童与18岁男青年的身高的变异程度宜用指标答案5(变异系数)反映等比资料集中趋势的指标答案6(几何均数)描述偏态分布资料个体观察值的离散趋势答案7(四分位数间距)答案:反映偏态分布资料的平均水平→中位数;描述末端无确定值资料的离散程度→四分位数间距;描述对称分布分布资料的个体观察值的离散趋势→标准差;描述对称分布或正态分布资料的平均水平→均数;比较8岁男童与18岁男青年的身高的变异程度宜用指标→变异系数;反映等比资料集中趋势的指标→几何均数;描述偏态分布资料个体观察值的离散趋势→四分位数间距题目:7、关于变异系数,下面哪个说法是错误的?【A】:比较同一人群的身高、体重两项指标的变异度时宜采用变异系数【B】:变异系数就是均数与标准差的比值【C】:两组资料均数相差悬殊时,应用变异系数描述其变异程度【D】:变异系数的单位与原生数据相同答案:变异系数的单位与原生数据相同题目:8、变异系数越大,则以下哪项正确?()【A】:以均数为准变异程度大【B】:平均数越小【C】:标准差越大【D】:以均数为准变异程度小答案:以均数为准变异程度大则均数和标准差分别为?()【A】:6、1.29【B】:38、6.78【C】:6、1.58【D】:6.33、2.5答案:6、1.58题目:10、关于标准差,下面哪个说法是正确的?【A】:标准差可以是负数【B】:标准差必定大于或等于零【C】:同一资料的标准差一定比其均数小【D】:标准差无单位答案:同一资料的标准差一定比其均数小题目:1、匹配题1:变量2:变量值3:同质4:变异答案:1:变量观察单位(或个体)的某种属性或标志称为变量。

实用卫生统计学试题含答案

实用卫生统计学试题含答案

医学统计方法概述l .统计中所说的总体是指: A 根据研究目的确定的同质的研究对象的全体2 •概率P=0,则表示B某事件必然不发生3.抽签的方法属于 D 单纯随机抽样4 .测量身高、体重等指标的原始资料叫:B计量资料5•某种新疗法治疗某病患者41人,治疗结果如下:该资料的类型是:D有序分类资料治疗结果治愈显效好转恶化死亡治疗人数8 23 6 3 16•样本是总体的C有代表性的部分7•将计量资料制作成频数表的过程,属于&not;&not;统计工作哪个基本步骤:C整理资料&统计工作的步骤正确的是C设计、收集资料、整理资料、分析资料9•良好的实验设计,能减少人力、物力,提高实验效率;还有助于消除或减少:B系统误差10•以下何者不是实验设计应遵循的原则D交叉的原则11•表示血清学滴度资料平均水平最常计算 B 几何均数12•某计量资料的分布性质未明,要计算集中趋势指标,宜选择 C M13.各观察值均加(或减)同一数后:B均数改变,标准差不变14.某厂发生食物中毒,9名患者潜伏期分别为:16、2、6、3、30、2、10、2、24+(小时), 问该食物中毒的平均潜伏期为多少小时 C 615•比较12岁男孩和18岁男子身高变异程度大小,宜采用的指标是:D变异系数16•下列哪个公式可用于估计医学95%正常值范围 A X±1.96S17•标准差越大的意义,下列认识中错误的是B观察个体之间变异越小18.正态分布是以E均数为中心的频数分布19•确定正常人的某项指标的正常范围时,调查对象是B排除影响研究指标的疾病和因素的人20•均数与标准差之间的关系是E标准差越小,均数代表性越大21•从一个总体中抽取样本,产生抽样误差的原因是A总体中个体之间存在变异22•两样本均数比较的t检验中,结果为 P<0.05,有统计意义。

P愈小则 E愈有理由认为两总体均数不同23.由10对(20个)数据组成的资料作配对 t检验,其自由度等于 C 924• t检验结果,P>0.05,可以认为B两样本均数差别无显着性25.下列哪项不是t检验的注意事项 D分母不宜过小26.在一项抽样研究中,当样本量逐渐增大时B标准误逐渐减少27. tV t0.05(v),统计上可认为C两样本均数,差别无显着性28.两样本均数的t检验中,检验假设(H0)是 B 仁(1229.同一总体的两个样本中,以下哪种指标值小的其样本均数估计总体均数更可靠 A. Sx30.标准差与标准误的关系是:C前者大于后者31在同一正态总体中随机抽取含量为n的样本,理论上有 95%的总体均数在何者范围内 C均数加减1.96 倍的标准误32 .同一自由度下,P值增大C t值减小33.两样本作均数差别的 t检验,要求资料分布近似正态,还要求D两样本总体方差相等34.构成比的重要特点是各组成部分的百分比之和 C 一定等于135 .计算相对数的目的是 C为了便于比较36.某医院某日门诊病人数 1000 人,其中内科病人 400 人,求得 40%,这 40%是 B 构成比 37.四个样本率作比较,x2>x20.01(3),可以认为 A 各总体率不同或不全相同 38.卡方检验中自由度的计算公式是D (行数 -1)(列数 -1)39.作四格表卡方检验,当 N>40 ,且 _______________ 时,应该使用校正公式 E1<T<540 .若 X2> X2 0.05(贝V)A P<0 05 41.相对数使用时要注意以下几点,其中哪一项是不正确的 B 注意离散程度的影响42.反映某一事件发生强度的指标应选用 D 率43.反映事物内部组成部分的比重大小应选用 A 构成比44.计算标化率的目的是 D 消除资料内部构成不同的影响,使率具有可比性45.在两样本率比较的 X2检验中,无效假设(H0)的正确表达应为 C n 1= n2 46.四格表中四个格子基本数字是 D 两对实测阳性绝对数和阴性绝对数47 .比较某地1990~1997年肝炎发病率宜绘制C普通线图48.关于统计资料的列表原贝,错误的是 B 线条主要有顶线,底线及纵标目下面的横线,分析指标后有斜线和竖线49.比较甲、乙、丙三地区某年度某种疾病的发病率情况,可用 A 直条图50.描述某地某地 210 名健康成人发汞含量的分布,宜绘制 B 直方图 l 、统计中所说的总体是指: A 根据研究目的确定的同质的研究对象的全体。

常见的几种统计方法

常见的几种统计方法

注意:
(1)不同类型的资料采用的统计分 析方法不同;
(2)三类资料类型可以相互转化。
例:某地调查高血压的患病情况。
每人的血压:以mmHg计
计量资料
以舒张压≥90mmHg为高血压,结果在1000
人中有10名高血压患者,990名非高血压患
者,整理后的资料
计数
按低血压、正常、高血压分
资料
组所得资料。
等级资料
60年代到80年代,国外医学杂志调查表明:20%~72%的论文有 统计错误。
1984年对《中华医学杂志》、《中华内科杂志》、《中华外科 杂志》、《中华妇产科杂志》、《中华儿科杂志》595篇论文的调查 结果为:
相对数误用占 11.2%,抽样方法误用占15.9%,统计图表误用占 11.7%
1996年对4586篇论文统计(中华医学会系列杂志占6.9%),数 据分析方法误用达55.7%。
2001年《中华预防医学杂志》:中华医学会系列杂志误用约54% (1995)。
伪造统计数据违反科学道德
➢ 1976年New Science 杂志关于科研舞弊 行为的调查
(1)74%的调查表反映有不正当修改数据 的情况
(2)17%拼凑实验结果 (3)7%凭空捏造数据 (4)2%故意曲解结果
二、统计工作的基本步骤
四、统计学中的基本概念
(一)总体与样本
1、总体(population)
根据研究目的所确定的同质的所有
观察单位某项变量值的集合。
有关总体的三个要点:
研究目的、同质的、全体
例如:了解某地2002年正常成人白细胞数 目的:了解某地2002年正常成人白细胞数 观察对象:该地2002年全部正常成人 观察单位:每个人
2

卫生统计学试题(含答案)

卫生统计学试题(含答案)

医学统计方法选择题一:医学统计方法概述l.统计中所说的总体是指:AA根据研究目的确定的同质的研究对象的全体B随意想象的研究对象的全体C根据地区划分的研究对象的全体D根据时间划分的研究对象的全体E根据人群划分的研究对象的全体2.概率P=0,则表示BA某事件必然发生B某事件必然不发生C某事件发生的可能性很小D某事件发生的可能性很大E以上均不对3.抽签的方法属于 DA分层抽样B系统抽样C整群抽样D单纯随机抽样E二级抽样4.测量身高、体重等指标的原始资料叫:BA计数资料B计量资料C等级资料D分类资料E有序分类资料5.某种新疗法治疗某病患者41人,治疗结果如下:治疗结果治愈显效好转恶化死亡治疗人数8 23 6 3 1该资料的类型是: DA计数资料B计量资料C无序分类资料D有序分类资料E数值变量资料6.样本是总体的CA有价值的部分B有意义的部分C有代表性的部分D任意一部分E典型部分7.将计量资料制作成频数表的过程,属于&not;&not;统计工作哪个基本步骤:CA统计设计B收集资料C整理资料D分析资料E以上均不对8.统计工作的步骤正确的是 CA收集资料、设计、整理资料、分析资料B收集资料、整理资料、设计、统计推断C设计、收集资料、整理资料、分析资料D收集资料、整理资料、核对、分析资料E搜集资料、整理资料、分析资料、进行推断9.良好的实验设计,能减少人力、物力,提高实验效率;还有助于消除或减少:BA抽样误差B系统误差C随机误差D责任事故E以上都不对10.以下何者不是实验设计应遵循的原则DA对照的原则B随机原则C重复原则D交叉的原则E以上都不对第八章数值变量资料的统计描述11.表示血清学滴度资料平均水平最常计算 BA算术均数B几何均数C中位数D全距E率12.某计量资料的分布性质未明,要计算集中趋势指标,宜选择CA XB GC MD SE CV13.各观察值均加(或减)同一数后:BA均数不变,标准差改变B均数改变,标准差不变C两者均不变D两者均改变E以上均不对14.某厂发生食物中毒,9名患者潜伏期分别为:16、2、6、3、30、2、lO、2、24+(小时), 问该食物中毒的平均潜伏期为多少小时?CA 5B 5.5C 6D lOE 1215.比较12岁男孩和18岁男子身高变异程度大小,宜采用的指标是:DA全距B标准差C方差D变异系数E极差16.下列哪个公式可用于估计医学95%正常值范围 AA X±1.96SB X±1。

计数资料的统计描述与统计推断

计数资料的统计描述与统计推断

2 nnARn2C 1
(一) 多个样本率的比较:
表3.8 三种药物治疗高血压的疗效
处理
有效
无效
合计
有效率%
复方哌唑嗪 35
5
40
87.50
复方降压片 20
10
30
66.67
安慰剂
7
25
32
21.88
合计
62
40
102
60.78
38
H0:三种处理方法的有效率相等, 即π1= π2= π3 H1:三种处理方法的有效率不等或不全相等
某类死因构某 成同 年 比年 某死 类亡 死总 因人 死 1数 亡 0% 0人数
8
(二)疾病统计指标
某 病 发病 一率 定 该时 期期 间内 新可 病 发能 的 生 例发 平 的 数生 均 某 某 人 K病
某病患病率 某该时时点点某受病检现人患口病 K数例数


病死同 因率期 某某 病
死亡人数 病病 10人 % 0 数
29
31
(三)四格表χ2检验的专用公式
2
(ad b)c2n
(ab)c(d)a (c)b (d)
两组人群尿棕色素阳性率比较
组别
阳性数
阴性数
合计
铅中毒病人 对照组
29(a) 9(c)
7(b) 28(d)
36(a+b) 37(c+d)
合计
38(a+c)
35(b+d)
73(n)
阳性率(%) 80.56 24.32 52.05
712 142 185
61
1100
4
0.6
9
6.3

统计学习题及答案(完整)2

统计学习题及答案(完整)2

统计学习题及答案(完整)2计量资料的统计描述一、最佳选择题1、描述一组偏态分布资料的变异度,以()指标较好。

A、全距B、标准差C、变异系数D、四分位数间距E、方差2.用均数和标准差可以全面描述()资料的特征。

A.正偏态分布B.负偏态分布C.正态分布D.对称分布E.对数正态分布3.各观察值均加(或减)同一数后()。

A.均数不变,标准差改变B.均数改变,标准差不变C.两者均不变D.两者均改变E.以上都不对4.比较身高和体重两组数据变异度大小宜采用()。

A.变异系数B.方差C.极差D.标准差E.四分位数间距5.偏态分布宜用()描述其分布的集中趋势。

A.算术均数B.标准差C.中位数D.四分位数间距E.方差6.各观察值同乘以一个不等于0的常数后,()不变。

A.算术均数B.标准差C.几何均数D.中位数E.变异系数7.()分布的资料,均数等于中位数。

A.对数正态B.正偏态C.负偏态D.偏态E.正态8.对数正态分布是一种()分布。

(说明:设X变量经Y=lgX变换后服从正态分布,问X变量属何种分布?)A.正态B.近似正态C.左偏态D.右偏态E.对称9.最小组段无下限或最大组段无上限的频数分布资料,可用()描述其集中趋势。

A.均数B.标准差C.中位数D.四分位数间距E.几何均数10.血清学滴度资料最常用来表示其平均水平的指标是()。

A.算术平均数B.中位数C.几何均数D.变异系数E.标准差二、简答题1、对于一组近似正态分布的资料,除样本含量n外,还可计算,S和,问各说明什么?2、试述正态分布、标准正态分布及对数正态分布的某单位1999年正常成年女子血清联系和区别。

甘油三酯(mmol/L)测量结果3、说明频数分布表的用途。

4、变异系数的用途是什么?组段频数5、试述正态分布的面积分布规律。

0.6~ 10.7~ 3 三、计算分析题0.8~ 9 1、根据1999年某地某单位的体检资料,116名正常0.9~ 13 成年女子的血清甘油三酯(mmol/L)测量结果如右表, 1.0~ 19 请据此资料: 1.1~ 25(1)描述集中趋势应选择何指标?并计算之。

统计学简答题汇总

统计学简答题汇总

统计学简答题汇总1、标准正态分布(u分布)与t分布有何异同?相同点:集中位置都为0,都是单峰分布,是对称分布,标准正态分布是t分布的特例(⾃由度是⽆限⼤时)不同点:t分布是⼀簇分布曲线,t 分布的曲线的形状是随⾃由度的变化⽽变化,标准正态分布的曲线的形状不变,是固定不变的,因为它的形状参数为1。

3、简述直线回归与直线相关的区别。

1资料要求上不同:直线回归分析适⽤于应变量是服从正态分布的随机变量,⾃变量是选定变量;直线相关分析适⽤于服从双变量正态分布的资料。

2 两种系数的意义不同:回归系数是表明两个变量之间数量上的依存关系,回归系数越⼤回归直线越陡峭,表⽰应变量随⾃变量变化越快;相关系数是表明两个变量之间相关的⽅向和紧密程度的,相关系数越⼤,两个变量的关联程度越⼤。

第⼀章医学统计中的基本概念2、抽样中要求每⼀个样本应该具有哪三性?从总体中抽取样本,其样本应具有“代表性”、“随机性”和“可靠性”。

(1)代表性: 就是要求样本中的每⼀个个体必须符合总体的规定。

(2)随机性: 就是要保证总体中的每个个体均有相同的⼏率被抽作样本。

(3)可靠性: 即实验的结果要具有可重复性,即由科研课题的样本得出的结果所推测总体的结论有较⼤的可信度。

由于个体之间存在差异, 只有观察⼀定数量的个体⽅能体现出其客观规律性。

每个样本的含量越多,可靠性会越⼤,但是例数增加,⼈⼒、物⼒都会发⽣困难,所以应以“⾜够”为准。

需要作“样本例数估计”。

3、什么是两个样本之间的可⽐性?可⽐性是指处理组(临床设计中称为治疗组)与对照组之间,除处理因素不同外,其他可能影响实验结果的因素要求基本齐同,也称为齐同对⽐原则。

实习⼀统计研究⼯作的基本步骤1、什么叫医学统计学?医学统计学与统计学、卫⽣统计学、⽣物统计学有何联系与区别?医学统计学:是运⽤统计学原理和⽅法研究⽣物医学资料的搜索、整理、分析和推断的⼀门学科统计学:是研究数据的收集、整理、分析与推断的科学。

计数资料统计推断X2检验-预防医学-课件-12

计数资料统计推断X2检验-预防医学-课件-12

4、可认为居室朝向不同,儿童的佝偻病患病率不同。
2020/3/22
行×列表X2检验资料合并示意
某厂在冠心病普查中研究冠心病与眼底动脉硬
化的关系,资料如下,问两者之间是否存在一定的 关系?
眼底动脉 硬化级别
冠心病诊断结果
正常
可疑
冠心病
合计
0
340
11

73
13

97
18

3
2
合计
513
44
6
357
6
38
未治愈 5( 7.7 ) 12( )
17
合计 25 30 55
2020/3/22
一、准备工作
(二)判断能否作检验,是否需要校正
1、计算理论数:
30×17 T= 55 = 9.3
疗法 甲药 乙药 合计
治愈 20(17.3) 18(20.7)
38
未治愈 5( 7.7 ) 12( )
17
合计 25 30 55
92
18
133
1
6
31
588
计算理论数,有两格T<1,一格1<T<5,其他T均>5。
2020/3/22
行×列表X2检验资料合并示意
某厂在冠心病普查中研究冠心病与眼底动脉硬
化的关系,资料如下,问两者之间是否存在一定的 关系?
眼底动脉
冠心病诊断结果
硬化级别
正常
可疑
冠心病
0
340
11
6

73
13
6
Ⅱ与ⅡⅢ
行×列表X2检验
1、H0:居室朝向不同 佝偻病患病率相同
居室朝向 南

医学统计学第3章

医学统计学第3章

均数的抽样示意图
X1 S1
μσ
X2 S2 XI Si Xn Sn
σx
X服从什么分布?
例3-1 若某市1999年18岁男生身高服从均数 =167.7cm、标准差 =5.3cm的正态分布。从该正态分布N(167.7,5.32)总体中随机抽样 100次即共抽取样本g=100个,每次样本含量nj=10人,得到每个样 本均数 及标准差Sj 如图3-1和表3-1所示。
95%CL 175.72 173.44 174.31 170.90 171.04 170.83 173.11 171.90 172.52 172.00 169.40 171.56 171.53 172.94
171.21 170.33 169.03 167.63 168.66 168.84 169.31 168.46 168.60 168.47 165.68 165.68 168.03 169.37
171.00 170.10 170.47 175.98 169.97 171.91 173.37
样本号 61 62 63 64 65 66 67 68 69 70 71 72 73 74
x
j
Sj 6.30 4.34 7.38 4.58 3.33 2.78 5.31 4.81 5.48 5.05 5.19 8.22 4.89 5.00 166.70 167.23 163.75 164.36 166.27 166.85 165.51 165.02 164.88 164.86 161.97 159.80 164.53 165.79
抽样误差:样本统计量与参数之间的差异, 称抽样误差。 样本统计量是一个随机变量,在随机的原则 下从同一总体抽取不同的样本,即使每个样 本的样本含量n相同,它们的结果也会不同。

数理统计自考复习资料

数理统计自考复习资料

复习资料(资料总结,仅供参考)判断题1.研究人员测量了100例患者外周血的红细胞数,所得资料为计数资料。

X 2.统计分析包括统计描述和统计推断。

3.计量资料、计数资料和等级资料可根据分析需要相互转化。

4.均数总是大于中位数。

X 5.均数总是比标准差大。

X 6.变异系数的量纲和原量纲相同。

X 7.样本均数大时,标准差也一定会大。

X 8.样本量增大时,极差会增大。

9.若两样本均数比较的假设检验结果P 值远远小于,则说明差异非常大。

X 10.对同一参数的估计,99%可信区间比90%可信区间好。

X 11.均数的标准误越小,则对总体均数的估计越精密。

12. 四个样本率做比较,2)3(05.02χχ> ,可认为各总体率均不相等。

X 13.统计资料符合参数检验应用条件,但数据量很大,可以采用非参数方法进行初步分析。

14.对同一资料和同一研究目的,应用参数检验方法,所得出的结论更为可靠。

X 15.等级资料差别的假设检验只能采用秩和检验,而不能采用列联表χ2检验等检验方法X 。

16.非参数统计方法是用于检验总体中位数、极差等总体参数的方法。

X 17.剩余平方和SS 剩1=SS 剩2,则r 1必然等于r 2。

X 18.直线回归反映两变量间的依存关系,而直线相关反映两变量间的相互直线关系。

19.两变量关系越密切r 值越大。

X 20.一个绘制合理的统计图可直观的反映事物间的正确数量关系。

21.在一个统计表中,如果某处数字为“0”,就填“0”,如果数字暂缺则填“…”,如果该处没 有数字,则不填。

X 22.备注不是统计表的必要组成部分,不必设专栏,必要时,可在表的下方加以说明。

23.散点图是描写原始观察值在各个对比组分布情况的图形,常用于例数不是很多的间断性分组资料的比较。

24.百分条图表示事物各组成部分在总体中所占比重,以长条的全长为100%,按资料的原始顺序依次进行绘制,其他置于最后。

X 25.用元参钩藤汤治疗80名高血压患者,服用半月后比服用前血压下降了,故认为该药有效( X )。

统计学复习题

统计学复习题

《医学统计学》复习资料广西医科大学流行病与卫生统计学教研室2013.1.52012年留学生总复习练习题Part A理论考试题型一、单选题(每题1.5分,共45分。

请在答题卡上将正确答案对应的字母涂黑二、辨析题(每题3分,共15分。

判断对错,并给出理由)三、简答题(每题5分,共10分)四、分析应用题(共30分+10分)Part B练习题一、单选题(每题1.5分,共45分。

请在答题卡上将正确答案对应的字母涂黑)(一)计量资料统计描述1.卫生统计工作的步骤为________。

A.统计研究调查、搜集资料、整理资料、分析资料B.统计资料收集、整理资料、统计描述、统计推断C.统计研究设计、搜集资料、整理资料、分析资料D.统计研究调查、统计描述、统计推断、统计图表2.某病患者5人的潜伏期(天)分别为6,8,5,10,>13,则平均潜伏期为________。

A.5天B.8天C.6~13天D.11天3.算术均数与中位数相比,。

A.抽样误差更大B.不易受极端值的影响C.更充分利用数据信息D.更适用于分布不明及偏态分布资料值为。

4.标准正态分布中,单侧u0.05A.1.96B.0.05C.1.64D.0.0255.统计分析的主要内容有________。

A.统计描述和统计学检验B.区间估计与假设检验C.统计图表和统计报告D.统计描述和统计推断E.统计描述和统计图表6.统计资料的类型包括________。

A.频数分布资料和等级分类资料B.多项分类资料和二项分类资料C.正态分布资料和频数分布资料D.数值变量资料和等级资料E.数值变量资料和分类变量资料7.抽样误差是指________。

A.不同样本指标之间的差别B.样本指标与总体指标之间由于抽样产生的差别C.样本中每个体之间的差别D.由于抽样产生的观测值之间的差别E.测量误差与过失误差的总称8.统计学中所说的总体是指________。

A.任意想象的研究对象的全体B.根据研究目的确定的研究对象的全体C.根据地区划分的研究对象的全体D.根据时间划分的研究对象的全体E.根据人群划分的研究对象的全体9.描述一组偏态分布资料的变异度,宜用________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专用公式: x2 =( b-c)2/ b+c b+c40时,校正公式: x2 =(|A-T|-0.5)2/T
x2 =( lb-cl-1)2/ b+c
自由度:=(2-1) x (2-1)=1
第四步:确定P值 第五步:判断结果
(3)行x列表的x2检验
四格表是指只有2行2列,当行数或列数超过2时,
统称为行x列表。行x列表的x2检验是对多个样本
差的存在,造成的不同,这种差别在统计上叫 差别无统计学意义。 2. P1 , P2所代表的总体率不同,即两个样本 来不同的总体,其差别有统计学意义。 现在就是要用统计学的方法进行判断到底 属于那种情况。
1.总体率(或构成比)的u检验
目的: 公式:
其中符号的含义
适用条件: 已知π0 nP>5, n(1-P)>5 例题P58
例题
上例:问此药是否有效。 第一步:建立假设 H0 : 1=2 =20%
H1 : 1 ‡ 2 第二步:确定显著性水平 =0.05 第三步:计算统计量: n =200>40,每格的T值大于5,
可选用公式??(计算过程) 第四步:确定P值 第五步:判断结果
15
(2)配对计数资料的x2检验
第八讲 计数资料的统计推断
统计推断
用样本信息推论总体特征的过程。
包括: 参数估计: 运用统计学原理,用从样本计算出来的统计指
标量,对总体统计指标量进行估计。
假设检验:又称显著性检验,是指由样本间存在的差别对
样本所代表的总体间是否存在着差别做出判断。
2
主要内容
一、率(或构成比)的抽样误差和标准误 二、总体率(或构成比)的估计:点估计、区间估计 三、总体率(或构成比)的假设检验
1.率(或构成比)的 检验 2. x2检验
四、假设检验的注意事项 五、非参数检验
1.参数统计和非参数统计优缺点
2.秩和检验
一、率(或构成比)的抽样误差和标准误
均数的标准差和标准误(复习)。
抽样误差产生的原因、概念 标准误的计算公式 与样本量的关系:成反比。
例题:56页 某市为了解已婚育龄妇女子宫颈癌 的患病情况,进行了抽样调查,随机抽取2000人, 患者80例。试求此患病率的标准误。
x2 =(A-T)2/T A:表示实际频数,即实际观察到的例数。 T:理论频数,即如果假设检验成立,应该观察
到的例数。 :求和符号 自由度:=(R-1)x(C-1)
R行数, C列数 注意:是格子数,而不是例数。
10
基本原理
x2 =(A-T)2/T 如果假设检验成立,A与T不应该相差太大。
理论上可以证明 (A-T)2/T服从x2分布, 计算出x2值后,查表判断这么大的x2是否为 小概率事件,以判断建设检验是否成立。
阳性
a c a+c
阴性
b d b+d
合计
a+b c+d a+b+c+d
理论频数与自由度的计算:A是实际频数,T是根据假设检验来确定的, 当H0成立时,计算出的格子中的数。每个格子中的理论频数计算公式为:
TRC=NRxNC/N, NR所在的行合计,NC所在的列合计,代入公式中求 x2值。
(求上例的4个T值)
四格表资料的专用公式:
13
四格表资料的专用公式
x2 =(ad-bc)2 xN/
(a+b)(c+d)(a+c)(b+d) 该公式从基本公式推 导而来,结果相同。 计算较为简单。
适用条件: N>40且 T5 当不满足时用校正公式。
x2 =(|A-T|-0.5)2/T 或
x2 =(|ad-bc|-n/2)2 xN (a+b)(c+d)(a+c)(b+d) 见62页。
7
2. x2检验
是一种假设检验的方法,当样本量不大, 或几个率进行比较时可用x2检验。
某医生想观察一种新药对流感的预防效果,进行了如下的 研究,问此药是否有效?
组别 实验组 对照组 合计
发病人数 14 30 44
未 发 病人数 86 90 176
观察例数 100 120 220
发病率(%) 14 25 20
8
x2分布规律
自由度一定时,P值越小, x2值越 大。
当P 值一定时,自由 度越大, x2 越大。
=1时, P=0.05, x2 =3.84 P=0.01, x2 =6.63
P=0.05时, =1, x2 =3.84 =2, x2 =5.99
当自由度取1时, u2= x2
9
x2检验的基本公式
率(或构成比)的检验。 基本公式:x2 =(A-T)2/T 专用公式:x2 =n x ( A2 /nR x nC -1) 自由度:=(R-1)x(C-1) 适用条件:表中不宜有1/5以上格子的理论频数小 于5,或有一个格子的理论频数小于1。
18
四、注意事项
1、计量资料的注意事项同 样适用(见下张幻灯片)
2、公式的适用条件n 、T 3、多组率经x2检验有显著性
时,只能说明不全相同,但不 能确定哪两个不同。需要进一 步证明时,用行x列表的x2分割 法。
19
20
练习
书上作业。67页
21
五、参数统计和非参数统计
参数:总体的统计指标称为参数( 、、) 统计量:样本的统计指标叫统计量(X、s、p)
什么是配对资料?P64
甲乙两种培养基的生长情况
乙种
甲种
合计
+
-
+
11 ( a )
7 (b)
18-3 (c)来自7 (d)10
合计
14
14
28
16
例:问两种培养基的效果是否不同
第一步:建立假设 H0 : B=C=b+c/2 H1 : B‡C 第二步:确定显著性水平 =0.05 第三步:计算统计量: b+c>40时,基本公式:x2 =(A-T)2/T,
二、总体率(或构成比)的估计
点估计:将样本率直接作为总体率的估计值. 区间估计(对照总体均数的区间估计)
公式: P±Uα .SP 条件: nP>5, n(1-P)>5 例题: 意义:
三、总体率(或构成比)的假设检验
当两个样本率不同时,有两种可能: 1. P1 , P2所代表的总体率相同,由于抽样误
11
(1)四格表资料的x2检验
什么是四格表资料?凡是两个率或构成比资料都
可以看做四格表资料。举例。
组别 实验组 对照组 合计
发病人数 14 30 44
未 发 病人数 86 90 176
观察例数 100 120 220
发病率(%) 14 25 20
14 86 30 90
四格表的一般形式
组别
1 2 合计
相关文档
最新文档