分类计数原理和分步计数原理教案1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分类计数原理和分步计数原理教案1 教学目标
正确理解和掌握分类计数原理和分步计数原理,并能准确地应用它们分析和解决一些简单的问题,从而发展学生的思维能力,培养学生分析问题和解决问题的能力.
教学重点和难点
重点:分类计数原理和分步计数原理.
难点:分类计数原理和分步计数原理的准确应用.
教学用具
投影仪.
教学过程设计
(一)引入新课
师:从本节课开始,我们将要学习中学代数内容中一个独特的部分——排列、组合、二项式定理.它们研究对象独特,研究问题的方法不同一般.虽然份量不多,但是与旧知识的联系很少,而且它还是我们今后学习概率论的基础,统计学、运筹学以及生物的选种等都与它直接有关.至于在日常的工作、生活上,只要涉及安排调配的问题,就离不开它.
今天我们先学习两个基本原理.
(这是排列、组合、二项式定理的第一节课,是起始课.讲起始课时,把这一学科的内容作一个大概的介绍,能使学生从一开始就对将要学习的知识有一个初步的了解,并为下面的学习研究打下思想基础)
师:(板书课题)
(二)讲授新课
1.介绍两个基本原理
师:请大家先考虑下面的问题(找出片子——问题1).
问题1:从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船.一天中,火车有4个班次,汽车有2个班次,轮船有3个班次.那么一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法?
师:(启发学生回答后,作补充说明)
因为一天中乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法,每种走法都可以完成由甲地到乙地这件事情.所以,一天中乘坐这些交通工具从甲地到乙地共有
4+2+3=9
种不同的走法.
这个问题可以总结为下面的一个基本原理.
(打出片子——分类计数原理)
分类计数原理:做一件事,完成它可以有几类办法,在第一类办法中有m
1种不同的方法,在第二类办法中有m
2
种不同的方法,……,在第n类办法中有
m n 种不同的方法.那么,完成这件事共有N=m
1
+m
2
+…+m
n
种不同的方法.(教师放慢速度读一遍分类计数原理)
师:请大家再来考虑下面的问题(打出片子——问题2).
问题2:由A村去B村的道路有3条,由B村去C村的道路有2条(见图9
-1),从A村经B村去C村,共有多少种不同的走法?
师:(启发学生回答后加以说明)
这里,从A村到B村,有3种不同的走法,按这3种走法中的每一种走法到达B村后,再从B村到C村又各有2种不同的走法,因此,从A村经B村去C 村共有3×2=6种不同的走法.
一般地,有如下基本原理:
(找出片子——分步计数原理)
分步计数原理:做一件事,完成它需要分成n个步骤,做第一步有m
1
种不
同的方法,做第二步有m
2种不同的方法,……,做第n步有m
n
种不同的方法.那
么,完成这件事共有
N=m
1×m
2
×…×m
n
种不同的方法.
(教师要读一遍分步计数原理)
2.浅释两个基本原理
师:两个基本原理是干什么用的呢?
生:计算做一件事完成它的所有不同的方法种数.
(如果学生不能较准确地回答,教师可以加以提示)
师:比较两个基本原理,想一想,它们有什么区别呢?
(学生经过思考后可以得出:各类的方法数相加,各步的方法数相乘.)
两个基本原理的区别在于:一个与分类有关,一个与分步有关.
师:请看下面的分析是否正确.
(打出片子——题1,题2)
题1:找1~10这10个数中的所有合数.第一类办法是找含因数2的合数,共有4个;第二类办法是找含因数3的合数,共有2个;第三类办法是找含因数5的合数,共有1个.
1~10中一共有N=4+2+1=7个合数.
题2:在前面的问题2中,步行从A村到B村的北路需要8时,中路需要4时,南路需要6时,B村到C村的北路需要5时,南路需要3时,要求步行从A 村到C村的总时数不超过12时,共有多少种不同的走法?
第一步从A村到B村有3种走法,第二步从B村到C村有2种走法,共有
N=3×2=6种不同走法.
生乙:从A村到C村总时数不超过12时的走法共有5种.题2中从A村走北路到B村后再到C村,只有南路这一种走法.
(此时给出题1和题2的目的是为了引导学生找出应用两个基本原理的注意事项,这样安排,不但可以使学生对两个基本原理的理解更深刻,而且还可以培养学生的学习能力)
师:为什么会出现错误呢?
生:题1的分类可能有问题吧,题2都走北路不符合要求.
师:(教师归纳)
进行分类时,要求各类办法彼此之间是相互排斥的,不论哪一类办法中的哪一种方法,都能单独完成这件事.只有满足这个条件,才能直接用分类计数原理,否则不可以.
如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m种不同的方法,那么计算完成这件事的方法数时,就可以直接应用分步计数原理.
也就是说:类类互斥,步步独立.
(在学生对问题的分析不是很清楚时,教师及时地归纳小结,能使学生在应用两个基本原理时,思路进一步清晰和明确,不再简单地认为什么样的分类都可以直接用加法,只要分步而不管是否相互联系就用乘法.从而深入理解两个基本原理中分类、分步的真正含义和实质)
(三)应用举例
师:现在我们已经有了两个基本原理,我们可以用它们来解决一些简单问题了.请看例题1.(板书)
例1书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书.
(1)若从这些书中任取一本,有多少种不同的取法?
(2)若从这些书中,取数学书、语文书、英语书各一本,有多少种不同的取法?