m法计算弯矩剪力图
弯曲应力及强计算
中性轴
正应力沿截面高度呈线性分布,
中性轴上为零,其最大值发生
在截面的上下边缘处。
横力弯曲正应力
横力弯曲时的正应力,用纯弯曲正应力公式计算 不会引起很大的误差,能够满足工程问题所需的 精度。
等直梁 max
Mmax所在横截面 离中性轴最远处
max
Mmax IZ
ymax
等直梁的最大弯曲正应力公式
8 hb 2
12MPa
6
【例2】一矩形截面的简支梁,梁上作用有均布荷载,已
知:l=4m,b=140mm,h=210mm,q=2kN/m,弯曲时木
材的容许正应力 10MPa ,试校核该梁的强度。
解:作梁的弯矩图
q
h
M max
ql 2 8
2 42 8
4kN.m
l
b
WZ
bh 2 6
z
横截面
(1)中性层是对整个截面而言的,中性轴是对某 个截面而言的。
(2)中性轴通过横截面的形心,是截面的 形心主惯性轴。
三、 弯曲正应力公式
My z
I z
M
M
中性轴
z
m
n
y
o
o
dA
z
mn
y
dx
MZ: 横截面上的弯矩
y: 所求应力点到中性轴的距离 M
M
IZ: 截面对中性轴的惯性矩
上式表面:弯曲横截面上的
M max W
M max h3
9
取 h=300mm 则:b=200mm
小结:
一、 弯曲正应力公式
梁的剪力和弯矩剪力图和弯矩图
2、计算1-1 截面旳内力 FA
3、计算2-2 截面旳内力
M2
F=8kN
FS1
M1 FS1 FA F 7kN M1 FA 2 F (2 1.5) 26kN m
q=12kN/m
FS2
FB
FS2 q 1.5 FB 11kN
M2
FB
1.5 q 1.5 1.5 2
30kN m
2
1
例题
求下图所示简支梁1-1与2-2截面旳剪力和弯矩。
F=8kN
q=12kN/m
A 2m
FA 1.5m
1 1 1.5m
2
B
2
1.5m
3m
FB
解: 1、求支反力
3 M B 0 FA 6 F 4.5 q 3 2 0 FA 15kN
Fy 0 FA FB F q 3 0 FB 29kN
梁任意横截面上旳剪力,等于作用在该截面左边 (或右边)梁上全部横向外力旳代数和。截面左 边向上旳外力(右边向下旳外力)使截面产生正旳 剪力,反之相反。【左上右下为正,反之为负】 梁任意横截面上旳弯矩,等于作用在该截面左 边(或右边)全部外力(涉及外力偶)对该截面 形心之矩旳代数和。截面左边(或右边)向上旳 外力使截面产生正弯矩,反之相反。【左顺右逆 为正,反之为负】
一、梁平面弯曲旳概念
1、平面弯曲旳概念
弯曲变形:作用于杆件上旳外力垂直于杆件旳轴线,使 杆旳轴线由直线变为曲线。
平面弯曲:梁旳外载荷都作用在纵向对称面内时,则梁旳轴 线在纵向对称面内弯曲成一条平面曲线。
q F
Me 纵 向
对称面
B
A
x
y FAy
FBy
以弯曲变形为主旳直杆称为直梁,简称梁。 平面弯曲是弯曲变形旳一种特殊形式。
剪力与弯矩的计算方法
§7-2剪力与弯矩一、剪力和弯矩根据作用在梁上的已知载荷,求出静定梁的支座反力以后,梁横截面上的内力可利用前面讲过的“截面法”来求解,如图7-8a 所示简支梁在外力作用下处于平衡状态,现在讨论距A 支座距离为x 的m m -截面上的内力。
图7-8简支梁指定截面的剪力、弯矩计算根据截面法计算内力的基本步骤“切、代、平”,计算梁的内力的步骤为:①、首先根据静力平衡方程求支座反力Ay F 和By F ,为推导计算的一般过程,暂且用Ay F 和By F 代替。
②、用截面假想沿m m -处把梁切开为左、右两段,如图7-8b、7-8c 所示,取左段梁为脱离体,因梁原来处于平衡状态,所以被截取的左段梁也同样保持平衡状态。
从图7-8b 中可看到,左段梁上有一向上的支座反力Ay F 、向下的已知力1P 作用,要使左段梁不发生竖向移动,则在m m -截面上必定存在一个竖直方向的内力S F 与之平衡;同时,Ay F 、1P 对m m -截面形心O 点有一个力矩,会引起左段梁转动,为了使其不发生转动,在m m -截面上必须有一个力偶矩M 与之平衡,才能保持左段梁的平衡。
S F 和M 即为梁横截面上的内力,其中内力S F 使横截面有被剪开的趋势,称为剪力;力偶矩M 将使梁发生弯曲变形,称为弯矩。
由于外载荷的作用线垂直于梁的轴线,所以轴力为零,通常不予考虑。
剪力S F 和弯矩M 的大小可由左段梁的静力平衡方程来求解。
由0=∑Y 得:10Ay S F P F --=,得1S Ay F F P =-由0o M =∑得:()01=+-+-M a x P x F Ay 得()a x P x F M Ay --=1如图7-8c 所示,如果取右段梁为脱离体,同样可求得m m -截面的剪力S F 和弯矩M 。
根据作用力与反作用力原理,右段梁在m m -截面上的剪力S F 和弯矩M 与左段梁在m m -截面上的剪力S F 和弯矩M 应大小相等,方向相反。
工程力学内力图-剪力图和弯矩图
例题9-6 图a所示简支梁在C点受矩为Me的集中力偶作用。试作梁的剪力图 和弯矩图。
解:1. 求约束力
FA
Me l
,
FB
Me l
2. 列剪力方程和弯矩方程
FS(x)
M x
x
此简支梁的两支座之间无集中 荷载作用,故作用于AC段梁和BC段 梁任意横截面同一侧的集中力相同, 从而可知两段梁的剪力方程相同,即
说明梁跨中横截面上的弯矩值最大,为
M max
ql 2 8
则x l 2
例题9−5 图a所示的简支梁,在C点处受集中力F的作用, 试作梁的剪力图和弯矩图。
F x
(a) A
aC
b
B
FA
l
FB
解: 1. 求支座反力。利用平衡方程求得
FA
b l
F
a FB l F
2.列剪力方程和弯矩方程
对于AC段梁:
; 集中荷载作用处( x=a)横截面上的
弯矩值最大,
FS,m a x
Fb l
。
M max
Fab l
4. 讨论
由剪力图可见,在梁上 的集中力(包括集中荷载和 约 束力)作用处剪力图有突变, 这是由于集中力实际上是将 作用在梁上很短长度x范围 内的分布力加以简化所致。若将分布力看作在x范围内是 均匀的(图a),则剪力图在x范围内是连续变化的斜直线( 图b)。从而也就可知,要问集中力作用处梁的横截面上的 剪力值是没有意义的。
l
3. 作剪力图和弯矩图
FS x
Me l
0 x l
M x Me x
l
0 x a
剪力图与弯矩图的画法_图文_图文
dM(x) = Q(x)
dx
dQ(x) = q(x)
dx
2
d M(x)
2
= q(x)
dx
公式的几何意义
剪力图上某点处的切线斜率等于该点 处荷载集度的大小 弯矩图上某点处的切线斜率等于该点 处剪力的大小。
梁上最大弯矩可能发生在 Q(x) = 0 的截面上 或梁段 边界的截面上。最大剪力 发生在全梁或梁段的界面。
解: 在AC段中 q=0 ,且 QA=RA
q
A
B
CE
D
0.2
1.6
1
2
q
在AC段中 Qc = 80KN,剪力图
A
B
CE
D
为矩形,MA =0
0.2
1.6
1
2
80KN
(b)
+
80KN
q
在CE段中,剪力图为三角形
A
B
CE
D
QC=80KN,MC=16KN.m
0.2
1.6
1
2
80KN
(b)
+
80KN
81KN
CD段: 向右下方的斜直线
DB段:水平直线
最大剪力发生在 CD 和 DB 段的任一横截面上。
1
A C
0.2
1
q
E
1.6 2
2
B D
80KN
+
80KN
MB = 0
全梁的最大2
1
q
E
1.6 2
2
B D
16 16
+
单位:KN.m
例 作梁的内力图
A
剪力以及弯矩剪力图以及弯矩图
剪力图和弯矩图在工程管理中的应用
结构设计:用于计 算结构受力确定结 构尺寸和材料
施工管理:用于 指导施工确保施 工质量和安全
维护管理:用于 评估结构状态制 定维护计划
优化设计:用于 优化结构设计降 低成本和能耗
剪力图和弯矩图的注意 事项
绘制剪力图和弯矩图时应注意的事项
确保数据准确无误 注意单位换算确保单位一致 绘制过程中注意比例尺和坐标轴的设置 绘制完成后检查图例、标题、标注等是否清晰明确
添加副标题
剪力和弯矩剪力图以及弯矩 图
汇报人:
目录
CONTENTS
01 添加目录标题
02 剪力和弯矩的基本 概念
03 剪力图和弯矩图的 绘制
04 剪力图和弯矩图的 解读
05 剪力图和弯矩图的 应用
06 剪力图和弯矩图的 注意事项
添加章节标题
剪力和弯矩的基本概念
剪力和弯矩的定义
剪力:作用在物体表面上的力使物体发生剪切变形 弯矩:作用在物体表面上的力使物体发生弯曲变形 剪力图:表示剪力在物体表面上的分布情况 弯矩图:表示弯矩在物体表面上的分布情况
剪力和弯矩的计算方法
剪力:作用在物体上的力使物体发生剪切变形 弯矩:作用在物体上的力使物体发生弯曲变形 剪力计算方法:根据力的平衡原理利用剪力公式进行计算 弯矩计算方法:根据力的平衡原理利用弯矩公式进行计算
剪力和弯矩的单位和符号
剪力:单位为牛顿(N) 符号为F
弯矩:单位为牛顿·米 (N·m)符号为M
证结构安全
剪力图和弯矩图在施工中的应用
确定结构受力情况: 通过剪力图和弯矩图 可以了解结构的受力 情况为施工提供依据。
优化施工方案:根据 剪力图和弯矩图可以 优化施工方案提高施 工效率和质量。
梁的剪力和弯矩.剪力图和弯矩图
突变,顺下逆上,大小与M 同,FS图不发生变化。
例题
4.9
作图示梁的内力图
3kN 4.5kN m
2kN m
D
A
C
B
FA 10kN
1m 2m
2m
7
3
x 1.56 2
3
2
2.44 2
E FB 2kN 1m
kN
kNm
例题
4.10
4kN m
6kN
1m
1m
4.5
kN
FL
0 xL 0x L
kNm
例题 4.6
图示外伸梁,,试作剪力图和弯矩图.
20kN 40kN m
X1 A 1m 35kN
15
20
kN
20
10kN m
4m
2.5
FS x1 20kN
X2
B
0 x1 1
25kN
M x1 20x1
0 x1 1
FS x2 25 10x2
2Fl
lC
l
FCs
l
C MC
2Fl
FCs
MC
C
l
F
B D
FCs F FCs F
MC Fl MC Fl
MC 2Fl Fl 0
F
B
D
FDs
MD
F
DB
FDs F MD 0
截开后取左边为示力对象:
❖向上的外力引起正剪力,向下的外力引起负剪力; ❖向上的外力引起正弯矩,向下的外力引起负弯矩; ❖顺时针引起正弯矩,逆时针引起负弯矩。
剪力图是斜直线. 弯矩图是二次抛物线.
剪力图和弯矩图
2 括号里的不等式说明对应的内力方程所使用的区段。
FS(x)qx (0xl) M(x)1qx2 (0xl)
2 剪力图为一斜直线
FS(0) 0 FS(l) ql
弯矩图为二次抛物线
M (0) 0 M ( l 2 ) 1 ql 2
8 M ( l ) 1 ql 2
绘剪力图和弯矩图的基本方法:首先分别写出梁 的剪力方程和弯矩方程,然后根据它们作图。
Fs(x)
o
x
o
x
Fs 图的坐标系
M(x) M 图的坐标系
不论在截面的 左侧 或 右侧 向上的外力均将引起 正值 的弯矩,而向下 的外力则引起 负值 的弯矩。
例题:图示简支梁 ,在全梁上受集度为 q 的均布荷载作用。 试作此梁的剪力图和弯矩图。
FS 称为 剪力
y
FA
m
C
A
xm
FS x
由平衡方程
a
P
m
m C0
MFAx0
A
B
m
可得 M = FAx
x
内力偶 M 称为 弯矩
y
FA
m FS
C
x
A
xm
M
结论
a
P
m
梁在弯曲变形时,
横截面上的内力有
A
B
两个,即,
m x
剪力 FS 弯矩 M
y
FA
m FS
C
x
A
xm
M
取右段梁为研究对象。
y
FA
m FS
-
FS FS
dx
(2)弯矩符号 横截面上的弯矩使考虑的脱离体下边受拉,上边受压时为 正 。
剪力弯矩计算
剪力和弯矩的符号和单位
剪力的符号
用字母F表示,单位为牛顿(N)或千牛顿(kN)。
弯矩的符号
用字母M表示,单位为牛顿·米(N弯矩的关系
1
剪力和弯矩之间的关系可以通过弯曲正应力和 弯曲剪应力来表示。
剪力弯矩对基础的影响
01
02
03
基础沉降
剪力弯矩引起的结构变形 可能导致基础不均匀沉降 。
基础承载力
剪力弯矩会增大基础的承 载力,但也可能导致基础 剪切破坏。
基础稳定性
剪力弯矩可能影响基础的 稳定性,导致基础倾覆、 滑动等问题。
04
剪力弯矩的抗震计算
地震作用下的剪力弯矩计算
竖向地震作用
考虑结构自重以及地震加速度沿高度变化的影响,计算剪力 和弯矩。
矩的变化规律。
02
剪力弯矩的力学计算
静定梁的剪力弯矩计算
计算公式
剪力弯矩的计算公式为M=F*x。其中,F为梁所受的剪力,x为梁的跨度。
符号规定
梁的剪力弯矩符号规定为正,即向下为正,向上为负。
静定刚架的剪力弯矩计算
计算公式
静定刚架的剪力弯矩计算公式与静定梁相同,也为M=F*x。
符号规定
刚架的剪力弯矩符号规定为正,即向下为正,向上为负。
目标性能选择
根据建筑使用功能和结构重要性,选择合适的性能目标,如延性、承载力等 。
多方案比较
针对不同的性能目标,设计多种方案,比较其剪力弯矩等指标,选取最优方 案。
基于地震作用的剪力弯矩优化
地震烈度影响
考虑地震烈度对结构的影响,调整地震作用下的剪力弯矩计算方法。
梁的内力 剪力弯矩方程 剪力弯矩图
(3)若某截面处FS=0
dF S dx
q(x)
dM dx
FS
d M dx
2
2
q(x)
则该截面上M取极值:当q>0, M取到极小值 当q<0, M取到极大值 (4)集中力F作用处,FS突变,跳跃值为F,M有尖点; q>0 q<0
集中力偶M作用处,M突变,跳跃值为M, FS不受影响。 F M
例题
例 题 2
2qa
A
§9 变形体静力学概述 及一般杆件内力分析
qa2 q
B C
解: 1.求约束力
FB q 2 a a 2 qa 3 a qa 2a 7 2 qa ( )
2
D
a
3 2 qa
FB a
a
a 2
FD
F D 4 qa
7 2
qa
1 2
qa ( )
D
FD
FD
F Ax 1 2 2 ( kN )( )
A
FAx
FAy
2m
F Ay 5 3 2 kN ( )
例题
例 题 4
5kN B
§9 变形体静力学概述 及一般杆件内力分析
4kN· m C
2.作内力图 D 3kN 轴力图: AB段 F N 2 kN
1m
1m
(F S )
1 qa
2
2.作内力图
1 2 qa
M
7 2
1 4 qa
2
B
2 qa
2
2qa (M)
qa
8
材料力学-5-弯矩图与剪力图
从所得到的剪力图和 弯矩图中不难看出:
在集中力作用点两 侧截面上的剪力是不相 等的,而在集中力偶作 用处两侧截面上的弯矩 是不相等的,其差值分 别为集中力与集中力偶 的数值。
例题5
q
A
4a FAy
梁由一个固定铰链支座和一个辊轴支座所
支承,但是梁的一端向外伸出,这种梁称为外 伸梁(overhanging beam)。梁的受力以及各部 分尺寸均示于图中。
工程中的弯曲构件
工程中可以看作梁的杆件是很多的:
桥式吊车的大梁 可以简化为两端饺支 的简支梁。在起吊重 量(集中力FP)及大梁自 身重量(均布载荷q)的 作用下,大梁将发生弯 曲。
工程中可以看作梁的杆件是很多的:
石油、化工设备中各种直立式反应塔,底部与地面固定 成一体,因此,可以简化为一端固定的悬臂梁。在风力载荷 作用下,反应塔将发生弯曲变形。
Nanjing University of Technology
材料力学 课堂教学(5)
2020年8月12日
第5章 梁的弯曲问题(1)-剪力图与弯矩图
杆件承受垂直于其轴线的外力或位于其轴线所在平面内的 力偶作用时,其轴线将弯曲成曲线,这种受力与变形形式称为 弯曲(bending)。
主要承受弯曲的杆件称为梁(beam)。
得到梁的剪力方程和弯 矩方程分别为:
M(x)
FQ x=FRA qx=ql-qx 0 x 2l
FRA x
M x=qlx-qx2
0 x 2l
2
这一结果表明,梁上的剪力方程是x的线性函数;弯矩方程是x的 二次函数。
载荷集度、剪力、弯矩之间的 微分关系
绘制剪力图和弯矩图有两种方法:
第一种方法是:根据剪力方程和弯矩方程,在FQx和M-x坐标系中绘制出相应的图线,便得到所需要的 剪力图与弯矩图。
剪力图和弯矩图的画法
Q = - 3KN
F点剪力为零,令 其距A点为x
X=5m
A
c
D
BE
4m
4m
7KN
3KN
+
1KN
F X =5m
4m
3m
2KN
+
-
3KN
弯矩图 AC:( ) CD:( )
DB:( )
BE:()
A
c
D
BE
4m
4m
7KN
3KN
+
1KN
F X =5m
4m
3m
2KN
+
-
3KN
A
cF
D
BE
4m
4m
4m
3m
6
0.2
1.6
1
2
80KN
(b)
+
80KN
例题 用简易法作 所示组合梁旳
剪力图和弯矩图。
解:
已求得支座反力为 RA=81KN RB=29KN
P=50KN
mA
A EC D
M=5KN.m
K
B
mA
1 0.5 1
3
RA
将梁分为AE,EC,
CD,DK,KB五段。
1
RB
剪力图 AE段:水平直线
QA右= QE左 = RA = 81KN
最大剪力发生在DB段中旳 任一横截面上
1P2
A C
P3
B D
200
115
1265
23.6
+
1.7 27
弯矩图
1P2
P3
每段梁旳弯矩图均为斜直线。且 A
C
梁上无集中力偶。故只需计算A、
静定结构的内力—绘制剪力图和弯矩图(建筑力学)
CB段:
Fs
x2
FBy
a l
F
a<x2<l
M
x2
FBy
l
x2
a l
F
l
x2
a x2 l
实作训练
(3)画剪力图和弯矩图
剪力图:FS 为常数,剪力图为平行于横坐标
轴的两段水平直线
弯矩图:
x1 0时,M A 0
x1
a时,MC
ab l
F
x2
a时,MC
ab l
F
x2 l时,MB 0
实作训练
弯矩图如图(c)所示。
例题:2:用列方程法作出图示梁的剪
力与弯矩图。
ql 解:由对称性可知,支座反力 FAy FBy 2
取距左端为x的任一横截面n-n,此横截面
的剪力方程和弯矩方程分别为
l Fs ( x) FAy qx q( 2 x)
(0 x l)
xq M ( x) FAy x qx 2 2 x(l x)
➢ 实作训练:
例题1:试列出图示梁的剪力方程与弯矩方程, 并作出剪力图与弯矩图。
解:(1)建立剪力方程和弯矩方程 以梁的左端为坐标原点,沿横截面n-n 将梁截开,取左段梁为分离体,应用求内力的直 接计算法得
FS x F 0<x<l a M x Fx 0 x l b
式(a)与(b)分别为剪力方程与弯矩方程。
x
F
x
l 3
3ql
2
4qlx
l/3 l
l/3 FBy
DB 段 FS x FAy F 4ql
M
x
FAy
x
F
x
l 3
Me
4ql 2
剪力图和弯矩图(史上最全面)
极轴,q表示截面m–m的位置。
R
P
A
q
B
O
x
M(q) Px P(R Rcosq) PR(1 cosq) (0 q )
Q(q ) P1 Psinq (0 q )
N(q ) P2 Pcosq (0 q )
35
R
P
A
q
B
A
O
x
2PR
O
+ Q图
M图
B N图
–
+
O
P
O
P
M(q) Px P(R Rcosq) PR(1 cosq) (0 q )
起的内力的代数和。
Q(P1P2 Pn) Q1(P1) Q2(P2) Qn(Pn)
M(P1P2 Pn) M1(P1) M2(P2) Mn(Pn)
四、对称性与反对称性的应用: 对称结构在对称载荷作用下,Q图反对称,M图对称;对称结构在反对称载荷作
用下,Q图对称,M图反对称。
39
五、剪力、弯矩与外力间的关系
解:
q — 均布力
10
一、弯曲内力:
§4–2
[举例]已知:如图,P,a,l。 求:距A端x处截面上内力。
解:①求外力
梁的剪力和弯矩
a A
l
X 0, XA 0
mA 0 ,
RB
Pa l
Y
0,
YA
P(l a) l
XA A YA
P B
P B
RB
11
②求内力——截面法
Y
0,
Q YA
P(l a) l
步骤: ①分别作出各项荷载单独作用下梁的弯矩图; ②将其相应的纵坐标叠加即可(注意:不是图形的简单拼凑)。