正比例函数图象与性质 ppt课件

合集下载

2021秋北师大版八年级数学上册课件:4.3 正比例函数的图象与性质(共27张PPT)

2021秋北师大版八年级数学上册课件:4.3 正比例函数的图象与性质(共27张PPT)

变式 2 若正比例函数的图象经过点(-1,2),则这
个图象必经过点( A )
A.(1,-2)
B.(-1,-2)
C.(2,-1)
D.(1,2)
知识点 3 正比例函数的性质 ☞ 例 3 (教材 P85 习题 4.3 第 3 题)下列正比例函数中, y 的值随着 x 值的增大而减小的有__(2_)(_4)____. (1)y=8x;(2)y=-0.6x;(3)y= 5x;(4)y=( 2- 3)x.
9.正比例函数 y=4x,y=-7x,y=-3x 的共同特 征是( D )
A.图象位于同样的象限 B.y 随 x 的增大而减小 C.y 随 x 的增大而增大 D.图象都过原点
10.若 P1(x1,y1),P2(x2,y2)是正比例函数 y=-x 图象上的两点,则下列判断正确的是( C )
A.y1>y2 B.y1<y2 C.当 x1<x2 时,y1>y2 D.当 x1<x2 时,y1<y2
解析:因为 y=mxm2-8 是正比例函数,所以 m2-8= 1,解得 m=±3.因为其图象在第二、四象限,所以 m< 0.所以 m=-3.
8.已知关于 x 的正比例函数 y=(k-1)xk2-3,当 k 为何值时,y 的值随 x 值的增大而减小?
解:因为函数 y=(k-1)xk2-3 是正比例函数, 所以 k2-3=1,k-1≠0,解得 k=2 或 k=-2. 因为 y 的值随 x 值的增大而减小, 所以 k-1<0,解得 k<1.所以 k=-2. 故当 k 为-2 时,y 的值随 x 值的增大而减小.
变式 3 若函数 y=(a-1)中的 y 值随着 x 值的增大
而增大,则 a 的取值范围是( A )
A.a>1
B.a<1

4.正比例函数的图象和性质-北师大版八年级数学上册课件

4.正比例函数的图象和性质-北师大版八年级数学上册课件
解析:因为函数图象经过第一、三象限,所以k+1>0, 解得k>-1. (2)若函数图象经过点(2,4),则k_=_1___.
解析:将坐标(2,4)带入函数表达式中,得4=(k+1)·2, 解得k=1.
练一练
1.已知正比例函数y=kx (k>0)的图象上有两点(x1,y1),(x2,y2), 若x1<x2,则y1 < y2.
4.已知正比例函数y=(2m+4)x. (1)当m >-2 ,函数图象经过第一、三象限; (2)当m <-2 ,y 随x 的增大而减小; (3)当m =0.5 ,函数图象经过点(2,10).
5. 如图分别是函数y=k1 x,y=k2 x,y=k3 x,y=k4 x的图象.
(1)k1 < k2,k3 < k4(填“>”或“<”或“=”);
3.什么是函数值?函数的图像?
一 正比例函数的图象的画法 例1:画出下面正比例函数y=2x的图象. 画函数图象的一般步骤: 解: ①列表
②描点 ③连线
以表中各组对应值作为点的坐标,在 直角坐标系内描出相应的点
练一练
1.请你画出y=-3x 的图像,并思考以下几个问题. (1)请你列出几个满足y=-3x 的x,y所对应的点(x,y),并 在图像上描出来,视察它们都在y=-3x 的图像上吗?
7. 已知某种小汽车的耗油量是每100km耗油15 L.所使用的汽油 为5元/ L . (1)写出汽车行驶途中所耗油费y(元)与行程 x(km)之间 的函数关系式. (2)在平面直角坐标系内描出大致的函数图象. (3)计算该汽车行驶220 km所需油费是多少.
解:(1)y=5×15x/100,

(2)用不等号将k1, k2, k3, k4及0依次连接起来.

12.2.1正比例函数的图像与性质课件

12.2.1正比例函数的图像与性质课件

解:函数y=2x 的自变量的取值范围是任意实数,列表表示 几对对应值: x … -3 -2 -1 0 1 2 3 …
y …
5 4 3 2 1 -5 -4 -3 -2 -1 0 12345
-6 y
-4
-2
0
2
4
6

y=2x
1 2
3
4
5
x
练习:画出正比例函数y=-2x的图象?
解:列表
y=-2x
y
5 4 3 2 1 1 2 3 4 5
x
x
0
1
y
0
-3
-3 -2 -1 0 12 -3 -
(四)巩固练习:
0 1.正比例 函数 y=-4x的图像是经过( 0,)和
( 1,-4 )两点的一条直线, y随x的————
增大而减小。
2. 正比例函数y=(m-1)x的图象经过一、三象限,则
m的取值范围是 ( B)
A.m=1
B.m>1
C.m<1
D.m≥1
x …
-3 6
-2 4
-1 2
0 0
1 -2
2 -4
3 -6
… …
Y …
-5 -4 -3 -2 -1 0 12345
发现你 画出的 图象与 x y=2x的 图象相 同吗? ?…
比较刚才两个函数的图象的相同点和 观察 不同点,考虑两个函数的变化规律.
思考:经过原点和 5 4 (1,k)的直线是哪个 3 函数的图象?画正比 2 例函数的图象时 ,怎 1 样画最简单 ? 为什么 ? -5 -4 -3 -2 -1 1 2 3
1 1 y x y x 的图象。 在同一坐标系中画出 2 与 2

初中数学北师大版八年级上册《第4章:正比例函数的图象与性质》课件

初中数学北师大版八年级上册《第4章:正比例函数的图象与性质》课件

8.若正比例函数y=(1-2m)x的图象经过点A(x1,y1)
和点B(x2,y2),当x1<x2时,y1>y2,则m的取值范
围是( D )
A.m<0
B.m>0
C.m< 1
2
D.m>1
2
9.对于函数y=-k2x(k是常数,k≠0)的图象,下列说法不
正确的是( )
A.是一条直线
B.过点
1 k
,
k
2.【202X·呼和浩特】二十四节气是中国古代劳动人民 长期经验积累的结晶,它与白昼时长密切相关.当 春分、秋分时,昼夜时长大致相等;当夏至时,白 昼时长最长,根据上图,在下列选项中指出白昼时 长低于11小时的节气是( D ) A.惊蛰 B.小满 C.立秋 D.大寒
3.【202X·长沙】小明家、食堂、图书馆在同一条直线上,小 明从家去食堂吃早餐,接着去图书馆读报,然后回家,如 图反应了这个过程中小明离家的距离y(km)与时间x(min) 之间的对应关系.根据图象,下列说法正确的是( B ) A.小明吃早餐用了25 min B.小明读报用了30 min C.食堂到图书馆的距离为0.8 km D.小明从图书馆回家的速度为0.8 km/min
解:画图略.这两个函数图象关于x轴(或y轴)对称. (2)这两个函数中x每取一个值时,其对应的函 数值y有什么关系?
解:画图略.这两个函数中x每取一个值时,其对应的 函数值y互为相反数.
11.已知y与x成正比例,且当x=3时,y=-9.
(1)求y与x的函数关系式;
解:设y与x的函数关系式为y=kx,则-9=3k,
第1课时
正比例函数的 图象与性质
数学北师大版 八年级上
1A 2D 3B 4A 5C

正比例函数的图象和性质课件

正比例函数的图象和性质课件

们只相交于原点。
06
CHAPTER
03
正比例函数的性质
增减性
01
02
03
增减性
正比例函数在定义域内是 单调的,即随着x的增大 (或减小),y也相应增 大(或减小)。
增减性的判断
根据斜率k的正负来判断 。当k>0时,函数为增函 数;当k<0时,函数为减 函数。
增减性的应用
在解决实际问题时,可以 利用增减性判断函数的值 域或最值。
y=-3/x
提升练习题
01
总结词
深化理解与运用
02
03
04
题目1
已知某物体的速度v与时间t的 关系为v=kt,其中k为常数。 求该物体在t=3时的速度v。
题目2
画出函数y=0.5x和y=-0.2x的 图象,并比较它们的性质。
题目3
已知某物体的位移s与时间t的 关系为s=2t^2,求该物体在
t=5时的位移s。
斜率
1 2 3
斜率定义
正比例函数y=kx(k≠0)的斜率是k。
斜率与函数图像的关系
斜率决定了函数图像的形状和倾斜程度。当k>0 时,图像从左下到右上上升;当k<0时,图像从 左上到右下下降。
斜率的应用
在解决实际问题时,可以利用斜率判断函数的单 调性和变化趋势。
截距
截距定义
正比例函数y=kx(k≠0)的截距是0。
正比例函数的图象和性 质ppt课件
CONTENTS
目录
• 正比例函数的概念 • 正比例函数的图象 • 正比例函数的性质 • 正比例函数的应用 • 练习与思考
CHAPTER
01
正比例函数的概念
正比例函数的定义

正比例函数 (PPT课件)

正比例函数 (PPT课件)
(3)这只燕鸥飞行一个半月(一个月按30天计算.) 的行程大约是多少千米?
解:当x=45时,y=200×45=9 000 (km).
写出下列问题中的函数关系式:
l (1) 圆 的 周 长 随半径 r变化的关系;
(2)铁块的质量m(单位:g)随它的体积v(单 位:cm3)变化的关系(铁的密度为7.8g/cm3)
(1)l 2r
(2)m=7.8v
(3)每个练习本的厚度为0.5cm,一些练习本叠在一 起的总厚度 h随练习本的本数n变化的关系;
(3)h=0.5n
(4)冷冻一个0℃的物体,使它每分下降2℃,物 体的温度T(单位:℃)随冷冻时间t(单位:分) 变化的关系。
(4)T=-2t
认真观察以上出现的四个函数解析式,分别说出 哪些是常数、自变量和函数.
做一做 下列函数是否是正比例函数?比例系数是多少?
(1) y x (2) y 3 (3) y 1 1
3
x
2x 你能举出一些
(4)y=2x (5)y=x2+1
正比例函数的 例子吗?
(6)y=(a2+1)x-2
应用新知
练习: (1)若y=5x3m-2是正比例函数,m= 1 。
(2)若 y (m 2)xm23 是正比例函数m= -2 。
y=2x
1 2 3 4 5x
y=-2x
正比例 函数y= kx (k≠0) 的图 象是经过 原点(0,0) 点和(1,k) 点的一条 直线。
观察 比较两个函数的相同点与不同点.
归纳
两图象都是经过原点的 直线 .函数 y 2x 的图象
从左向右 上升 ,经过第 一、三 象限;函数 y 2x 的
函数解析式 (1)l=2πr

《正比例函数的图像和性质》 人教版 八年级下册 公开课课件

《正比例函数的图像和性质》 人教版 八年级下册 公开课课件
第二、四象限,求m的值。 m=2
随堂练习
5.函数y=-7x的图象在第 二、四 象限内,经过点(0, 与点(1,-7),y随x的增大而 减少 .
0
)
6.函数y=
3 2
x的图象在第
一、三 象限内,经过点
(0,

)与点(1,
3 2
),y随x的增大而 增大
.
7、正比例函数y=(k+1)x的图像中y随x 的增大而增
x
函数解析式 y=kx(K 0)
函数图象 过(0,0),(1 ,
的形状 k)的一条直线
y
函数 图象
的 位置
K>0 位于第三、一象
限 K<0 位于第二、四象

x
y 1 x 2
函数 性质
K>0 y随x的增大而增大 K<0 y随x的增大而减小
(三)夯实基础:
用你认为最简单的方法画出下列 函数的图象:
(1)y=1.5x
图象相 同吗?
-3
-4
?…
-5
观察
比较刚才两个函数的图象的相同点和 不同点,考虑两个函数的变化规律.
思考:经过原y5点和 (1,k)的直线是4 哪个
y=2x 发现:两个函数 图象都正是比经例过
函数的图象?3画正比 例函数的图象12 时,怎 -样5 -画4 -最3 -简2 单-1 ?为1什么2 ?3 4 5
2、正比例函数y=kx的图象的画法:
3、正比例函数的性质: 1)正比例函数图象是经过原点的一条直线; 2)当k>0时它的图象经过第一、三象限, y随x的增大而增大, 当k<0时它的图象经过第二、四象限, y随x的增大而减小。
(五)小结:

正比例函数(第一课时)课件

正比例函数(第一课时)课件

1 2
物理计算
在物理学中,许多物理量之间的关系可以用正比 例函数来描述,如电流与电压、质量与重力等。
环境监测
在环境监测中,一些污染物浓度与时间、距离等 参数成正比,可以用正比例函数来描述这种关系。
3
生物医学研究
在生物医学研究中,许多生理参数如心率、血压 等与年龄、体重等因素成正比,可以用正比例函 数来描述。
04
正比例函数的应用
生活中的实例
速度与时间的关系
01
当物体以恒定速度运动时,时间与距离成正比,这是正比例函
数的一个常见应用。
物质浓度计算
02
在化学和生物学中,物质浓度与溶液体积成正比,可以通过正
比例函数来描述这种关系。
弹簧伸长与力的关系
03
在弹性限度内,弹簧的伸长量与作用在其上的力成正比,可以
用正比例函数表示。
反比例函数的概念
反比例函数是一种与正比例函数相反的函数,其函数表达 式为y=k/x,其中k为比例常数。
反比例函数的图像
反比例函数的图像位于第一和第三象限,且随着x的增大, y的值逐渐趋近于0。
反比例函数的性质
反比例函数具有一些特殊的性质,如当k>0时,函数图像 位于第一和第三象限;当k<0时,函数图像位于第二和第 四象限。
02
当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小。
正比例函数的图像
图像
正比例函数的图像是一条经过原点的 直线。
图像的画法
图像的性质
正比例函数的图像是一条经过原点的 直线,其斜率为k。当k>0时,图像位 于第一、三象限;当k<0时,图像位 于第二、四象限。
在直角坐标系中,取两点(0,0)和 (1,k),连接两点得到一条直线, 即为正比例函数的图像。

正比例函数的图象与性质课件

正比例函数的图象与性质课件

THANKS
感谢观看
函数值的变化规律
总结词
正比例函数值随自变量的变化而变化
详细描述
对于正比例函数$y=kx$,当自变量 $x$增大或减小时,函数值$y$也会等 比例地增大或减小。
函数的极限状态
总结词
正比例函数的极限状态取决于函数的斜率
详细描述
正比例函数的极限状态是指当自变量$x$趋于无穷大或无穷小时,函数值$y$的极限状态。当$k>0$时,$y$的极 限为无穷大;当$k<0$时,$y$的极限为无穷小。
05
实例分析
实际应用场景
物理学中的速度与时间关系
正比例函数可以描述物体在恒定加速度下速度与时间的关系,即$v = v_0 + at$,其中$v_0$ 是初速度,$a$是加速度,$t$是时间。
经济学中的收入与工作时间关系
在经济学中,正比例函数可以用来描述收入与工作时间的关系,即$y = kx$,其中$y$是收 入,$k$是每小时的工资率,$x$是工作时间。
伸缩变换
正比例函数的图象可以在x轴和y轴方向上进行伸缩,但伸缩 不改变函数的性质。
04
正比例函数的性质
函数的增减性
总结词
正比例函数在定义域内具有单调性
详细描述
正比例函数是指形如$y=kx$($k neq 0$)的函数,当$k>0$时,函数在定义域内 单调递增;当$k<0$时,函数在定义域内单调递减。
正比例函数的图象与性质 课件
• 引言 • 正比例函数的概念 • 正比例函数的图象 • 正比例函数的性质 • 实例分析 • 练习与思考
01
引言
主题简介
01
正比例函数是数学中一种基本的 函数类型,它描述了当一个变量 增加时,另一个变量按固定比例 增加的关系。

人教版八年级数学下册19.2.1正比例函数正比例函数的图象和性质课件

人教版八年级数学下册19.2.1正比例函数正比例函数的图象和性质课件

学习难点:会运用正比例函数的性质
练习 在同一坐标系中用描点法画 3、在k>0 的情况下,图象是左低右高还是左高右低?当自变量x的值增大时,对应的函数值y怎样变化?
3、在k>0 的情况下,图象是左低右高还是左高右低?当自变量x的值增大时,对应的函数值y怎样变化?
下列图像哪个可能是函数y=-8x的图像( )
19.2.1正比例函数(第2课时)
正比例函数的图象和性质
• 学习目标:会画正比例函数的图象,知道 和运用正比例函数的性质.
• 学习重点:正比例函数的图象和性质 • 学习难点:会运用正比例函数的性质
和运1用正.什比例函么数的是性质正. 比例函数?请你写出两个具体的正比
一般地,形如 y=kx(k为常数,k≠0)的函数,叫做正比例函数,其中k叫做比例系数
我们把正比例函数y=kx的图象叫做直线y=kx;
例函数. 学习重点:正比例函数的图象和性质
1正比例函数(第2课时)
3、在k>0 的情况下,图象是左低右高还是左高右低?当自变量x的值增大时,对应的函数值y怎样变化?
一般地,形如 y=kx(k为常数,k≠0)的函 观察图像,思考以下问题:
下列图像哪个可能是函数y=-8x的图像( )
3.正比例函数研究过程中,你感受最深的是什么?
的增大而增大,则k的取值范围 ( ).
A.k<0
B.k≤0
C.k>0
D.k≥0
3.下列图像哪个可能是函数y=-8x的图像( )
A
B
C
D
1.本节课,我们研究了什么,得到了哪些成果? 2.正比例函数的图象及性质怎样?
1)正比例函数y=kx的图象是一条经过原点的直线;我们把正 比例函数y=kx的图象叫做直线y=kx; 2)当k>0时,它的图象从左向右上升,经过第一、三象限,y 随x的增大而增大; 3) 当k<0时,它的图象从左向右下降,经过第二、四象限,y 随x的增大而减小

《正比例函数的图象与性质》PPT课件

《正比例函数的图象与性质》PPT课件
第一、第三
象限的直线.

01
知识讲解
(2)函数y=-1.5x,y=-4x的图象如下:
y=-4x
y=-1.5x
发现:这两个正比例函数的图象都是经过原点

第二、第四
象限的直线.
01
归纳
正比例函数y=kx (k是常数,k≠0)的图象是一条经过
原点的直线.我们称它为直线y=kx.
y=kx(k≠0)
经过的象限
(1)y=2x,y= ;
(2)y=-1.5x,y=-4x.
解:(1)函数y=2x中自变量x可为任意实数.
①列表如下:
x
y


-3 -2 -1 0
-6 -4 -2 0
1
2
2
4
3 …
6 …
01
知识讲解
y=2x
②描点.
y=
③连线.
1

3
同样可以画出
1
函数y=3 的图象.
发现:这两个正比例函数的图象都是一条经过 原点
k>0
第一、三象限
k<0
第二、四象限
01
思考
画正比例函数的图象时,怎样画最简单?为什么?
因为两点确定一条直线,所以可用两点法画正比
例函数y=kx (k是常数,k≠0) 的图象.
画正比例函数的图象时,我们只需描点(0,0)和
点 (1,k),连线即可.
02
练 一 练
LEARNING
OBJECTIVES
图象必经过的点
图象必经过(0,0)和(1,k)这两个点
谢谢观看!
1
(2)正比例函数y= -2x和y =-4x中,随着x值的增大y的值都减小了,其中
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1) 当k>0时,直线 y=kx的图像经过一、三象限,从 左向右呈上升趋势,自变量x逐渐增大时,y的值也随着 逐渐增大。
(2) 当k<0时,直线y=kx的图像经过第二、四象限, 从左向右呈下降趋势, 自变量x逐渐增大时,y的值则 随着逐渐减小。
看谁反应快
填空 (1)正比例函数 y=kx(k≠0) 的图像是 一条直线 ,它一定经过点 (0,0) 和(1,k).
(3)y 2 x 3
2020/4/13
y二随、x的四增象大而限减小
y 4
y 3x
3
yx
2 1
y 1x 3
y 4
3
2
1
-4 -3 -2 -1
O1 2 3 4
-1
x
-2
-3
-4
-4 -3 -2 -1 O 1
-1
-2
-3
-4
234
xy 1 x 3
yx
y 3 x
正比例函 kx数 (0 ky)的性质:
2020/4/13
1.如图是甲、乙两人的行程函数图,根据图像回答:
⑴谁走得快?
⑵求甲、乙两个函数解析式,并写出自变量的取值范围 ⑶当t= 4时,甲、乙两人行程相差多少?
s( 千 米 )
15
10
5


2020/4/13
0
j1 2
3
t(小时)
已知直线y=(a-2)x+a2-9经过原 点,且y随x的增大而增大,求y 与x的关系式.
(

C
)
2020/4/13
x
A.a>b>c
B.c>b>a
C.b>a>c
D.b>c>a
做 一
已知正比例函数当自变量x等于-4时,函数y 的值等于2。
(1)求正比例函数的解析式和自变量的
做 取值范围;
(2)求当x=6时函y=kx, 设
把 x =-4, y =2 代入上式,得 2 = -4k 代
AB C D
2020/4/13
y
y 3x
yx
y 3x yx
y 1 x 3
1
01
y1x 3
x
补充性质:
当 |k| 越大时,图像越靠近y轴 当 |k| 相等时,图像关于坐标轴对称
y
1
01
x
思考
y ②

如图,三个正比例函数的图像
分别对应的解析式是 ①
y=ax② y=bx ③ y=cx,
则a、b、c的大小关系是
思考
通过以上学习,画正比例函数图象有无简便 的办法?
y
y= 1 x 2
y= 1 x y
1
2
2
01
x
2020/4/13
01
x
1
2
如何画正比例函数的图像? 因为正比例函数的图像是一条直线,而两 点确定一条直线 画正比例函数的图像时,只需描两个点, 然后过这两个点画一条直线
2020/4/13
结论
正比例函数图象经过点(0,0)和点(1,k)
(4) y
3 x
不是
(5)y=x2+1 不是 (6) y 1 1 不是 2x
2020/4/13
应用
例1 (1)若 y =5x 3m-2 是正比例函数, 则m= 1 。
(2)若 y(m2)xm23 是正比例函数,
则 m = -2 。
(3)若 yxm23(m2)是正比例函数, 则m= 2 。
2020/4/13
正比例函数的图象和性质
2020/4/13
1.正比例函数的定义
一般地,形如 y=kx(k为常数,k≠0) 的函数,叫做正比例函数,其中k叫做 比例系数
2.画函数图象的步骤
列表、描点、连线
2020/4/13
认一认
下列函数中哪些是正比例函数?
(1)y =2x 是
(2)y = x+2
不是
(3) y x 是 3
(2)函数 y=4x 经过 一、三 象限, yy 随 xx的的增减大小而而增减大小 .
2020/4/13
(3)如果函数 y= - ax 的图像经过
一、三象限,那么y = ax 的图像经
过 二、四象限
.
(4)已知ab,0则函数
哪些象限?
y的图b 像x 经过
a
二、四象限
2020/4/13
3.下列图像哪个可能是函数 y=-8x的B图像( )
2020/4/13
a>4
例2.已知正比例函数y=(m+1)xm2 ,它的 图像经过第几象限?
解: ∵该函数是正比例函数
{ m10 m2=1
m1
m=±1,
m1
比例系数k=m+1=2>0
根据正比例函数的性质,k>0可得
该图像经过一、三象限。
2.已知:正比例函数y= (2-k)x的图像 经过第二.四象限,则函数y=-kx的图 像经过哪些象限?
y y= kx (k>0)
y
y= kx
k
(k<0)
01
x
2020/4/13
01
x
k
口答:看谁反应快
1.由2.正由比函例数函解数解析析式式,(请根你据说k的出正下、列负函)数, 来的判变断化其情函况数图像分布在哪些象限
(1) y 2 x 3
y一随、x的三增象大而限增大
(2)y 2x
y一随、x的三增象大而限增大
解得
k= -
1 2

∴所求的正比例函数解析式是y= -x2

x 为任何实数
(2)当 x=6 时, y = -3 待定系数法
2020/4/13
例1. 如果正比例函数y=(8-2a)x的图像 经过二、四象限,求a的取值范围。
解:∵该函数图像经过二、四象限
∴比例系数k=8-2a<0
∴a>4 问: 如果正比例函数y=(8-2a)x,y的值随 x的值增大而减少,求a的取值范围。
经过原点
X=0且Y=0
2020/4/13
1.已知正比例函数 y mxm2
它的图像除原点外在二、四 象限内,求m值.
2.已知正比例函数y=(1+2m)x, 若y随x的增大而减小,则m的取 值范围是什么?
2020/4/13
4.已知:正比例函数 ym 2x m 2 1
那么它的图像经过哪个象限?
2020/4/13
二、四象限
3.如果 y(1m)xm22是正比例函数,且y 随x的增大而减小,试求m的值
3
点燃蜡烛,蜡烛长度按照与时间成正比变短, 长为21厘米的蜡烛,已知点燃6分钟后,蜡烛 变短3.6厘米,设蜡烛点燃x分钟后变短y厘米, 求
(1)用x表示函y数的解析式; (2)自变量x的取值范围;
(3) 此蜡烛几分钟燃烧完?
相关文档
最新文档