浅谈隐函数及其应用
分析方法第十八章隐函数定理及其应用

分析方法第十八章隐函数定理及其应用隐函数定理是微积分中的一个重要工具,用于研究隐含在方程中的函数的性质。
它的应用非常广泛,涉及到物理、经济、生态等领域的多个问题。
本文将对隐函数定理进行分析,并探讨其在实际问题中的应用。
首先,让我们来了解什么是隐函数定理。
隐函数定理是微积分中的一个重要定理,用于研究隐含在方程中的函数的性质。
具体而言,隐函数定理指出,如果一个方程组满足一定条件,那么在该方程组的一些解附近,可以找到一个连续可微的函数来表示其中一个变量,而其他变量可以表示为该函数的函数。
简单来说,通过隐函数定理,我们可以找到一个表达式来表示方程中的其中一变量,而不需要对其他变量进行明确的表达。
隐函数定理的应用非常广泛。
在物理学中,隐函数定理常常用于研究物体的运动轨迹以及力学系统的动力学方程。
例如,当我们考虑一个物体在空气中自由下落的过程时,我们可以建立一个方程组来描述空气摩擦对物体的影响。
通过隐函数定理,我们可以得到物体下落的具体函数表达式,进而研究其速度、加速度等参数的变化规律。
在经济学中,隐函数定理常用于分析供需关系、市场均衡等经济问题。
例如,当我们考虑一个市场中商品供需的关系时,我们可以建立一个供需方程组来描述供给量与需求量的关系。
通过隐函数定理,我们可以找到一个函数来表示市场价格与供给量和需求量之间的关系,从而分析价格的变化对供需的影响。
在生态学中,隐函数定理被应用于研究物种之间的相互作用。
例如,当我们考虑一个食物链系统中物种数量的变化时,我们可以建立一个方程组来描述物种之间的捕食关系。
通过隐函数定理,我们可以找到一个函数来表示物种数量与时间的关系,进而研究物种的数量变化趋势以及物种之间相互作用的影响。
总而言之,隐函数定理是微积分中重要的工具,广泛应用于实际问题的分析中。
通过该定理,我们可以建立方程组,从中找到隐含的函数表示方式,并利用这些函数表达式来研究各种实际问题。
无论是物理、经济还是生态领域,隐函数定理都扮演着重要的角色,帮助我们深入了解和解决各种复杂的问题。
《隐函数定理及应用》课件

对隐函数定理应用的反思与展望
在应用隐函数定理的过程中,我发现理论与实践相结合是非常重要的。通过解决实际问题,我能够更好地理解和掌握隐函数 定理的应用技巧和方法。同时,我也意识到在应用过程中需要注意一些细节问题,如初始条件的设定、参数的取值范围等, 以确保结果的准确性和可靠性。
展望未来,我认为隐函数定理还有很大的应用潜力。随着科学技术的发展,越来越多的领域需要用到隐函数定理来解决实际 问题。因此,我希望能够进一步深入研究隐函数定理的原理和应用技巧,为未来的科学研究和技术创新做出更大的贡献。同 时,我也希望能够将隐函数定理应用到更多的领域中,为解决实际问题提供更加有效的方法和工具。
隐函数定理的数学表达
如果一个方程组满足一定条件,则存在一个 唯一的隐函数,使得方程组的解满足该隐函 数的性质。
隐函数定理的重要性
数学分析的基础
隐函数定理是数学分析中的基础 定理之一,对于研究函数的性质 、极限、连续性等方面具有重要 意义。
应用广泛
隐函数定理在经济学、物理学、 工程学等领域都有广泛的应用, 例如在研究经济均衡、物理场论 、电路分析等方面都需要用到隐 函数定理。
详细描述
在计算某些复杂图形的面积时,有时候需要 将图形转化为更容易处理的形状。利用隐函 数定理,可以证明这种转化是可行的,并且 能够准确地计算出图形的面积。例如,在计 算某些曲线围成的区域的面积时,可以利用 隐函数定理将问题转化为求极坐标系下面积
的问题,从而简化计算过程。
04
隐函数定理的推广与展 望
际问题,提高工程设计的可靠性和安全性。
05
总结与思考
对隐函数定理的理解与思考
隐函数定理是微分学中的重要定理之一,它揭示了函数之间的关系和变化规律。通过学习隐函数定理 ,我深入理解了函数的可微性和连续性的关系,以及如何利用导数研究函数的性质。
数学分析18.1隐函数定理及其应用之隐函数

第十七章 隐函数定理及其定理1隐函数一、隐函数的概念设E ⊂R 2,函数F:E →R 2.如果存在集合I,J ⊂E,对任何x ∈I, 有惟一确定的y ∈J, 使得(x,y)∈E, 且满足方程F(x,y)=0, 则称 F(x,y)=0确定了一个定义在I 上, 值域含于J 的隐函数. 若把它记为 y=f(x), x ∈I, y ∈J, 则有F(x,f(x))≡0, x ∈I.注:由自变量的某个算式表示的函数称为显函数,如:y=x+1.二、隐函数存在性条件的分析隐函数y=f(x)可看作曲面z=F(x,y)与坐标平面z=0的交线, ∴要使隐函数存在,至少要存在点P 0(x 0,y 0), 使F(x 0,y 0)=0, y 0=f(x 0).要使隐函数y=f(x)在点P 0连续,需F 在点P 0可微,且(F x (P 0),F y (P 0))≠(0,0), 即曲面z=F(x,y)在点P 0存在切平面.要使隐函数y=f(x)(或x=g(y))在点P 0可微, 则在F 可微的假设下, 通过F(x,y)=0在P 0处对x 求导,由链式法则得:F x (P 0)+F y (P 0)0x x dxdy ==0.当F y (P 0)≠0时,可得0x x dxdy ==-)(P F )(P F 0y 0x , 同理,当 F x (P 0)≠0时,可得y y dydx==-)(P F )(P F 0x 0y .三、隐函数定理定理18.1:(隐函数存在惟一性定理)若函数F(x,y)满足下列条件:(1)F在以P0(x0,y0)为内点的某一区域D⊂R2上连续;(2)F(x0,y0)=0(通常称为初始条件);(3)F在D内存在连续的偏导数F y(x,y);(4)F y(x0,y0)≠0. 则1、存在点的P0某邻域U(P0)⊂D,在U(P0)上方程F(x,y)=0惟一地决定了一个定义在某区间(x0-α,x0+α)上的(隐)函数y=f(x), 使得当x∈(x0-α,x0+α)时,(x,f(x))∈U(P0), 且F(x,f(x))≡0, y0=f(x0);2、f(x)在(x0-α,x0+α)上连续.证:1、由条件(4), 不妨设F y(x0,y0)>0(若F y(x0,y0)<0,则讨论-F(x,y)=0). 由条件(3)F y在D上连续,及连续函数的局部保号性知,存在点P0的某一闭方邻域[x0-β,x0+β]×[y0-β,y0+β]⊂D, 使得在其上每一点都有F y(x,y)>0. ∴对每个固定的x∈[x0-β,x0+β],F(x,y)作为y的一元函数,必定在[y0-β,y0+β]上严格增且连续.由初始条件(2)可知F(x0,y0-β)<0, F(x0,y0+β)>0. 又由F的连续性条件(1), 知F(x,y0-β)与F(x,y0+β)在[x0-β,x0+β]上也是连续的,由保号性知,存在0<α≤β, 当x∈(x0-α,x0+α)时,恒有F(x,y0-β)<0, F(x,y0+β)>0.如图,在矩形ABB’A’的AB边上F取负值,在A’B’边上F取正值.∴对(x0-α,x0+α)上每个固定值x,同样有F(x,y0-β)<0, F(x,y0+β)>0.又F(x,y)在[y0-β,y0+β]上严格增且连续,由介值性定理知存在唯一的y∈(y0-β,y0+β), 满足F(x,y)=0.又由x在(x0-α,x0+α)中的任意性,证得存在惟一的隐函数y=f(x),它的定义域为(x0-α,x0+α), 值域含于(y0-β,y0+β), 若记U(P0)=(x0-α,x0+α)×(y0-β,y0+β), 则y=f(x)在U(P0)上即为所求.2、对于(x0-α,x0+α)上的任意点x, y=f(x). 则由上述结论可知,y0-β<y<y0+β. ∀ε>0, 且ε足够小,使得y0-β≤y-ε<y<y+ε≤y0+β.由F(x,y)=0及F(x,y)关于y严格递增,可得F(x,y-ε)<0, F(x,y+ε)>0. 根据保号性,知存在x的某邻域(x-δ,x+δ)⊂(x0-α,x0+α), 使得当x∈(x-δ,x+δ)时,同样有F(x,y-ε)<0, F(y,y+ε)>0, ∴存在惟一的y, 使得F(x,y)=0,即y=f(x), |y-y|<ε, 即当|x-x|<δ时, |f(x)-f(x)|<ε,∴f(x)在x连续. 由x的任意性知,f(x)在(x0-α,x0+α)上连续.注:1、定理18.1的条件仅充分,非必要;如:方程y3-x3=0, 在点(0,0)不满足条件(4)(F y(0,0)=0),但仍能确定惟一的连续的隐函数y=x.而双纽线F(x,y)=(x2+y2)2-x2+y2=0, 虽然F(0,0)=0, F与F y均连续,满足条件(1),(2),(3),但F y(0,0)=0, 致使其在原点无论怎样小的邻域内都不可能存在惟一的隐函数.2、条件(3)和(4)可以减弱为“F在P0的某一邻域上关于y严格单调”.3、如果把条件(3),(4)改变F x(x,y)连续,且F x(x0,y0)≠0,则结论是存在惟一的连续隐函数x=g(y).定理18.2:(隐函数可微性定理)设F(x,y)满足隐函数存在惟一性定理的所有条件,又设在D 上还存在连续的偏导数F x (x,y), 则方程F(x,y)=0所确定的隐函数y=f(x)在其定义域(x 0-α,x 0+α)上有连续导函数,且 f ’(x)=-y)(x,F y)(x,F y x . 证:设x,x+△x ∈(x 0-α,x 0+α);y=f(x)与y+△y=f(x+△x)∈(y 0-β,y 0+β), ∵F(x,y)=0,F(x+△x,y+△y)=0, 由F x ,F y 的连续性及二元函数中值定理有, 0=F(x+△x,y+△y)-F(x,y)=F x (x+θ△x,y+θ△y)△x+F y (x+θ△x,y+θ△y)△y, 0<θ<1, ∴x y ∆∆=-y)θy x,θ(x F y)θy x,θ(x F y x ∆+∆+∆+∆+, 右端是连续函数F x ,F y ,f 的复合函数,且在U(P 0)上,F y (x,y)≠0,∴f ’(x)=x y lim 0x ∆∆→∆=-y)(x,F y)(x,F y x , 且f ’(x)在(x 0-α,x 0+α)上连续.注:1、若已知F(x,y)=0存在连续可微的隐函数,则可对其应用复合函数求导法得到隐函数的导数. 即把F(x,f(x))看作F(x,y)与y=f(x)的复合函数时,有F x (x,y)+F y (x,y)y ’=0, 由F y (x,y)≠0可推得f ’(x)=-y)(x,F y)(x,F y x . 2、若函数F 存在相应阶数的连续高阶偏导数,可通过上面同样的方法求得隐函数的高阶导数. 如:对F x (x,y)+F y (x,y)y ’=0继续应用复合函数求导法则,可得F xx +F xy y ’+(F yx +F yy y ’)y ’+F y (x,y)y ’’=0, 就可以得到隐函数的二阶导数:y ”=3yy y2x xx 2y xy y x F F F -F F -F F 2F ; 也可以直接对f ’(x)=-y)(x,F y)(x,F y x 求导得到. 继续求导就可以得到隐函数相应阶数的连续导数.隐函数的极值问题:利用隐函数的求导公式:y ’=-y)(x,F y)(x,F y x 及 y ”=3yy y2x xx 2y xy y x F F F -F F -F F 2F , 求得由F(x,y)=0确定的隐函数y=f(x)的极值:(1)求y ’为0的点(驻点)A ,即方程组F(x,y)=0, F x (x,y)=0的解; (2)∵在A 处F x =0, ∴y ”|A =-yxxF F |A ; (3)由y ”|A <0(或>0),判断隐函数y=f(x)在x A 处取得极大值(极小值)y A .定理18.3:若(1)函数F(x 1,…,x n ,y)在以点P 0(01x ,…,0n x ,y 0)为内点的区域D ⊂R n+1上连续;(2)F(01x ,…,0n x ,y 0)=0;(3)偏导数1x F ,…,nx F ,F y 在D 上存在且连续;(4)F y (01x ,…,0n x ,y 0)≠0. 则1、存在点P 0的某邻域U(P 0)⊂D ,在U(P 0)上方程F(x 1,…,x n ,y)=0惟一地决定了一个定义在Q 0(01x ,…,0n x )的某邻域U(Q 0)⊂R n 上的n 元连续(隐)函数y=f(x 1,…,x n ),使得当(x 1,…,x n )∈U(Q 0)时,(x 1,…,x n ,f(x 1,…,x n ))∈U(P 0), 且F(x 1,…,x n ,f(x 1,…,x n ))≡0, y 0=f(01x ,…,0n x );2、f(x 1,…,x n )在U(Q 0)上有连续偏导数1x f ,…,nx f ,且1x f =-yx F F 1,…,nx f =-yx F F n .四、隐函数求导举例例1:讨论方程F(x,y)=y-x-21siny=0所确定的隐函数的连续性和可导性. 解:∵F, F x =-1, F y =1-21cosy 在平面上任一点都连续,且F(x,y)=0, F y (x,y)≠0, ∴该方程确定了一个连续可导的隐函数y=f(x), 且 f ’(x)=-y)(x,F y)(x,F y x =cosy 21-11=cosy -22.例2:讨论笛卡儿叶形线x 3+y 3-3axy=0 (a>0)所确定的隐函数y=f(x)的一阶与二阶导数,并求隐函数的极值.解:令F=x 3+y 3-3axy (a>0), 当F y =3y 2-3ax=0时,x=y=0, 或x=34a, y=32a; 即,除了(0,0), (34a,32a)外,方程在其他各点附近都确定隐函数y=f(x).∵F x =3x 2-3ay, ∴y ’=-y x F F =-3ax -3y 3ay -3x 22=ax-y x -ay 22. 又F xx =6x, F xy =-3a, F yy =6y,∴2F x F y F xy =-54a(y 2-ax)(x 2-ay), F y 2F xx =54x(y 2-ax)2, F x 2F yy =54y(x 2-ay)2, ∴y ”=3yy y2x xx 2y xy y x F F F -F F -F F 2F =32222222ax)-27(y ay)-54y(x -ax)-54x(y -ay)-ax)(x -54a(y -=3233322ax)-(y )]a y xy(x y 2[-3ax -+++=32322ax)-(y )]a axy 3xy(y 2[-3ax -++=-323ax)-(y xy 2a . 由x 3+y 3-3axy=0和x 2-ay=0得,隐函数y=f(x)的驻点A(32a,34a).∵y ”|A =-323ax)-(y xy 2a |A =-a243<0, ∴y=f(x)在A(32a,34a)取得极大值34a.例3:求由方程F(x,y,z)=xyz 3+x 2+y 3-z=0在原点附近所确定的二元隐函数z=f(x,y)的偏导数及在(0,1,1)处的全微分.解:由F(0,0,0)=0, F z (0,0,0)=-1≠0, F,F x ,F y ,F z 处处连续,知 方程在原点附近能惟一确定连续可微的隐函数z=f(x,y), 且z x =-z x F F =233xyz 1x2yz -+, z y =-z y F F =2233xyz1y 3xz -+. 又z x (0,1,1)=1, z y (0,1,1)=3, ∴dz|(0,1,1)=dx+3dy.例4:(反函数的存在性及其导数)设y=f(x)在x 0的某邻域上有连续的导函数f ’(x)且,且f(x 0)=y 0,f ’(x 0)≠0. 证明在y 0的某邻域内存在连续可微的隐函数x=g(y)(它是函数y=f(x)的反函数),并求其导函数. 证:记方程F(x,y)=y-f(x)=0. ∵F(x 0,y 0)≡0, F y =1, F x (x 0,y 0)=-f ’(x 0)≠0, ∴该方程在y 0的某邻域内能惟一确定连续可微的隐函数x=g(y),且 g ’(y)=-xy F F =-(x )f 1' (即反函数求导公式).例5:设z=z(x,y)由方程F(x-z,y-z)=0确定,其中F 具有二阶偏导数. 试证:z xx +2z xy +z yy =0.证:记u=x-z,v=y-z, 则F x =F u , F y =F v , F z =-(F u +F v ), ∴z x =v u u F F F +, z y =vu v F F F+, 即有z x +z y =1. 上式两边分别对x,y 求偏导,得z xx +z yx =0, z xy +z yy =0. ∵二阶偏导数连续,∴z yx =z xy ,∴z xx +2z xy +z yy =0.习题1、方程cosx+siny=e xy 能否在原点的某邻域内确定隐函数y=f(x)或x=g(y)?解:令F(x,y)=cosx+siny-e xy , 则有F(0,0)=0. ∵F x =-sinx-ye xy ,F y =cosy-xe xy , 又F,F x ,F y 在原点的某邻域内都连续,且F x (0,0)=0, F y (0,0)=1≠0,∴该方程在原点的某邻域内可确定隐函数y=f(x), 不能确定隐函数x=g(x).2、方程xy+zlny+e xz =1在点(0,1,1)的某邻域内能否确定出某一个变量为另外两个变量的隐函数?解:令F(x,y,z)=xy+zlny+e xz -1, 则有F(0,1,1)=0.∵F,F x =y+ze xz ,F y =x+yz, F z =lny+xe xz 在(0,1,1)的某邻域内都连续, 且F x (0,1,1)=2≠0, F y (0,1,1)=1≠0, F z (0,1,1)=0,∴该方程在点(0,1,1)的某邻域内可确定隐函数x=f(y,z)及y=g(x,z).3、求由下列方程所确定的隐函数的导数: (1)x 2y+3x 4y 3-4=0, 求dx dy ;(2)ln 22y x +=arctan x y , 求dxdy ; (3)e -xy +2z-e z =0, 求x z ∂∂,yz ∂∂; (4)a+22y a -=ye u, u=ay -a x 22+(a>0), 求dx dy ,22dx yd ;(5)x 2+y 2+z 2-2x+2y-4z-5=0, 求x z ∂∂,y z ∂∂;(6)z=f(x+y+z,xyz), 求x z ∂∂,y x ∂∂,zy∂∂. 解:(1)解法一:记F=x 2y+3x 4y 3-4,∵F x =2xy+12x 3y 3, F y =x 2+9x 4y 2,∴dx dy =-y x F F =-24233y 9x +x y 12x +2xy =-2332y9x +x y 12x +2y . 解法二:方程两边对x 求导得:2xy+x 2dx dy +12x 3y 3+9x 4y 2dxdy=0, ∴dx dy =-24233y 9x +x y 12x +2xy =-2332y9x +x y 12x +2y .(2)两边对x 求导得⎪⎭⎫ ⎝⎛++⋅+dx dy y 22x y x 21y x 12222=2222xy dx dyxy x x -⋅+, 化简得:x+ydx dy = x dx dy -y, ∴dx dy =y -x y x +(x ≠y). (3)两边对x 求偏导数得-ye -xy+2x z ∂∂-e z x z ∂∂=0, ∴x z ∂∂=z -xye 2ye -.两边对y 求偏导数得-xe -xy+2y z ∂∂-e z y z ∂∂=0, ∴y z ∂∂=z-xye2x e -. (4)令F(x,y)=a+22y a --yeay -a x 22+, 由原方程得:e u=y y -a a 22+,则F y =-22y -a y-e u+ye u22y -a a y =-22y-a y-a y -a x 22+(1-222y -a a y ) =2222222222y -a ay )y -a(a -y -a a -y -a y ,F x =-a y e u =-ay -a a 22+,∴dx dy =-y x F F =a y -a a 22+·)y -a(a y -a a -y -a y y -a ay 2222222222-=-22y-a y.∴22dx y d =⎪⎭⎫ ⎝⎛dx dy dx d =-dx dy y-a 122-dx dy )y -(a y 3222=22y -a y +2223)y -(a y =2222)y -(a ya . (5)两边对x 求关于z 的偏导数得:2x+2z x z ∂∂-2-4x z ∂∂=0, ∴x z ∂∂=2-z x -1. 两边对y 求关于z 的偏导数得:2y+2z y z ∂∂+2-4y z ∂∂=0, ∴y z ∂∂=z-2y 1+. (6)两边对x 求关于z 的偏导数得:x z ∂∂=f 1(1+x z ∂∂)+f 2(yz+xy x z ∂∂), ∴x z∂∂=2121x yf f 1yzf f --+. 两边对y 求关于x 的偏导数得: 0=f 1(y x ∂∂+1)+f 2(xz+yz y x ∂∂), ∴y x ∂∂=-2121yzf f x zf f ++.两边对z 求关于y 的偏导数得: 1=f 1(z y ∂∂+1)+f 2(xy+xz z y ∂∂), ∴zy ∂∂=2121x zf f x yf f -1+-.4、设z=x 2+y 2,而y=f(x)为由方程x 2-xy+y 2=1确定的隐函数,求dx dz及22dxz d .解:x 2-xy+y 2=1两边对x 求导得:2x-y-xdx dy +2y dx dy =0, ∴dx dy =x-2y 2x-y . dx dz =2x+2y dxdy =x -2y 2x -2y 22;22dxz d =⎪⎭⎫⎝⎛dx dz dx d =222x )-(2y )2x -1)(2y -dx dy(2-x )-4x )(2y -dx dy (4y=x -2y 4x -2y +32x)-(2y 2x)-(y 6x .5、设u=x 2+y 2+z 2, z=f(x,y)为由x 3+y 3+z 3=3xyz 确定的隐函数,求u x 及u xx .解:∵3x 2+3z 2z x =3yz+3xyz x , ∴z x =22z -xy yz -x . ∴u x =2x+2zz x =2x+222z-xy 2yz -z 2x . u xx =2+2222x 2x x 2)z -(xy )2yz -z (2x )2zz -y ()z -xy )(4yzz -z 2x (4xz -+ =32333)z -(xy )z x 3xyz -2xz(y ++.6、设F(x,y,z)可以确定连续可微隐数: x=x(y,z), y=y(z,x), z=z(x,y). 试证:xzz y y x ∂∂⋅∂∂⋅∂∂=-1.(偏导数不再是偏微分的商!) 证:∵y x ∂∂=-x y F F ; z y ∂∂=-y z F F ;xz ∂∂=-z x F F ; ∴x z z y y x ∂∂⋅∂∂⋅∂∂=-z x y z x y F F F F F F ⋅⋅=-1.7、求由下列方程所确定的隐函数的偏导数:(1)x+y+z=e -(x+y+z), 求z 对于x,y 的一阶与二阶偏导数;(2)F(x,x+y,x+y+z)=0, 求x z∂∂,y z∂∂,22x z∂∂.解:(1)∵1+z x =-(1+z x )e -(x+y+z), ∴z x =-1, z xx =0; 同理z y =-1, z yy =0.(2)∵F 1+F 2+F 3(1+x z ∂∂)=0, ∴x z∂∂=-3321F FF +F +;又F 2+F 3(1+y z∂∂)=0, ∴y z ∂∂=-332F FF +;22x z ∂∂=⎪⎭⎫ ⎝⎛∂∂∂∂x z x =-3332313323122211211F x z 1)F +F (F +F +F +F F +F +F ⎪⎭⎫⎝⎛∂∂+++ +23333231321F x z 1F +F +F )F +F +(F ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∂∂+ =-3332313321323122211211F )F +F (F F F +F -F +F +F F +F +F ++ +23321333231321F F F +F F -F +F )F +F +(F ⎪⎪⎭⎫⎝⎛ =-3333221231332122121123F F )F F ()F (F )F F 2(F -)F 2F +(F F +++++8、证明:设方程F(x,y)=0所确定的隐函数y=f(x)具有二阶导数,则当F y ≠0时,有F y 3y ”=0F F F F F F F F y x y y y xy xxy xx .证:当F y ≠0时,y ’=-y xF F , y ”=(2F x F y F xy -F y 2F xx -F x 2F yy )F y -3,∴F y -3y ”=2F x F y F xy -F y 2F xx -F x 2F yy =0F F F F F F F F y x y y y xy x xy xx.9、设f 是一元函数,试问应对f 提出什么条件,方程2f(xy)=f(x)+f(y)在点(1,1)的邻域内就能确定出惟一的y 为x 的函数?解:记F(x,y)=f(x)+f(y)-2f(xy)=0, 则F x =f ’(x)-2yf ’(xy), F y =f ’(y)-2xf ’(xy), ∵F y (1,1)=f ’(1)-2f ’(1)=-f ’(1),又当f ’(x)在x=1的某邻域内连续时, F,F x ,F y 在(1,1)的某邻域内连续. ∴只需添加条件:f ’(x)在x=1的某邻域内连续,且f ’(1)≠0,则方程2f(xy)=f(x)+f(y)就能惟一确定y 为x 的函数.。
隐函数求导几何应用

隐函数求导几何应用引言隐函数是数学中的一个重要概念,广泛应用于各个领域的问题求解中。
在几何学中,隐函数求导可以用来求解曲线、曲面的切线、法线等问题,为我们理解和解决复杂的几何问题提供了有力工具。
本文将介绍隐函数求导在几何应用中的具体方法和实际应用案例。
什么是隐函数?在代数学中,我们通常使用显式函数来表示一个变量与另一个变量之间的关系。
例如,y=f(x)表示 y 是 x 的函数,我们可以直接通过给定的 x 值计算出 y 的值。
而隐函数则是一种不以显式形式给出的函数,其中的一个变量可能无法直接用其他变量表示出来。
我们通常将这样的函数表示为F(x,y)=0。
隐函数求导的基本思想在几何学中,我们常常遇到一些曲线或曲面,无法用显式函数来表示。
此时,我们可以通过隐函数求导的方法,来求解曲线或曲面上某一点的切线、法线等几何性质。
隐函数求导的基本思想是,通过对隐函数进行偏导数运算,来求出曲线或曲面上的切线方程、法线方程等。
二阶隐函数求导对于一个二元隐函数F(x,y)=0,我们可以通过求取其二阶偏导数,来计算曲线的曲率、凸凹性等几何性质。
1.求一阶偏导数∂F∂x 和∂F∂y;2.判断∂F∂y≠0,如果成立,则二阶偏导数存在;3.求取二阶偏导数∂2F∂x2和∂2F∂x∂y;4.计算曲率k=∂2F∂x∂y(1+(∂F∂x)2)3/2;5.判断曲率正负性,若曲率为正,则为凸曲线;若曲率为负,则为凹曲线。
曲线的切线方程曲线的切线是曲线上某一点的斜率所确定的直线。
通过隐函数求导可以求解曲线的切线方程。
1. 求一阶偏导数 ∂F ∂x 和 ∂F ∂y ;2. 根据已知的点 (x 0,y 0) 求取斜率 k =−∂F ∂x ∂F ∂y (x 0,y 0);3. 利用点斜式方程 y −y 0=k (x −x 0),将 (x 0,y 0) 代入,可求得切线方程。
曲面的法线方程曲面的法线是曲面上某一点的垂直于曲面切线的直线。
通过隐函数求导可以求解曲面的法线方程。
数学分析第十八章隐函数定理及其应用

F (x, y0 ) 0, F (x, y0 ) 0.
A’ +++++++B’
P0
A−−−−−−−B
如图,在矩形ABBA的AB边上F 0, AB上F 0,因此,
x (x0 , x0 ), 唯一y ( y0 , y0 )使F (x, y) 0. 即方程F (x, y) 0唯一地确定了定义在区间(x0 , x0 )
2. 若F在点P0可微,且 (Fx (P0 ), Fy (P0 )) (0,0),
则z F (x, y)在点P0的切平面与z 0相交于直线l. 从而 z F (x, y) 在点P0与z 0相交成平面曲线.
若要求y f (x)可微, 则由链式法则
Fx
(P0
)
Fy
(P0
)
dy dx
定理 18.3 若满足下列条件 :
(i) F (x1,, xn, y)在以P0 (x10,, xn0, y0 )为内点的区域D Rn1上连续, (ii) F (x10,, xn0, y0 ) 0, (iii) 偏导数Fx1,, Fxn , Fy在D内存在且连续, (iv) Fy (x10,, xn0, y0 ) 0, 则在点P0的某邻域U (P0 ) D内,方程F (x1,, xn, y) 0唯一地确定了 一个定义在Q0 (x10,, xn0 )的某邻域U (Q0 ) Rn内的n元连续函数(隐函数), y f (x1,, xn ),使得 1)当 (x1,, xn ) U (Q0 )时, (x1,, xn, f (x1,, xn )) U (P0 ), 且
4z
隐函数的定理及其应用论文原稿

隐函数的定理及其应用摘 要:本文主要讨论了隐函数和隐函数组的相关定理,并举例说明其应用.关键词:隐函数 隐函数组 可微性 导数引言我们在初中时就开始接触到函数,在我们眼中,函数就是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素.在之前我们所接触到的函数,其表达式大多是自变量的某个算式,如21,(sin sin sin )xyz y x u e xy yz zx =+=++这种形式的函数即为显函数.然而我们在很多地方也会遇到另一种形式的函数,它的自变量与因变量之间的对应法则是由一个方程式所确定的.简单来说,若能由函数方程(,)0F x y =, ①确定y 为x 的函数()y f x =,即(,())0F x f x ≡,就称y 是x 的隐函数.1.关于隐函数的一些定理1.1 隐函数存在惟一性若(1)函数F 在以000(,)P x y 为内点的某一区域0D R ⊂上连续;(2)00(,)0F x y =(通常称为初始条件);(3)在D 内存在连续的偏导数(,)y F x y ;(4)00(,)0y F x y ≠,则在点0P 的某邻域0()U P D ⊂内,方程(,)0F x y =惟一地确定了一个定义在某区间00(,)x x αα-+内的函数(隐函数)()y f x =,使得(1) 00()f x y =,x ∈00(,)x x αα-+时(,())x f x ∈0()U P 且(,())0F x f x ≡;(2) ()f x 在00(,)x x αα-+内连续.需要注意的是,上述定理中的条件仅仅是充分的.如方程330y x -=在点(0,0)不满足条件(4)((0,0)0y F =),但它仍能确定惟一的连续函数y x =.当然,由于条件(4)不满足,往往会导致定理结论的失效.事实上,条件(3)和(4)只是用来保证存在0P 的某一邻域,在此邻域内F 关于变量y 是严格单调的.因此对本定理的结论来说,可以把后两个条件减弱为:F 在0P 的某邻域内关于y 严格单调.采用较强的条件(3)和(4)只是为了在实际应用中便于检验.如果把定理的条件(3)和(4)改为(,)x F x y 连续,且00(,)0x F x y ≠,这时结论是存在惟一的连续函数()x g y =. 1.2 隐函数的可微性定理设(,)F x y 满足隐函数存在惟一性定理中的条件(1)-(4),又设在D 内还存在连续的偏导数(,)x F x y ,则由方程①所确定的隐函数()y f x =在其定义域00(,)x x αα-+内有连续导函数,且'(,)()(,)x y F x y f x F x y =-. ② 若已知方程①确定存在连续可微的隐函数,则可对方程①应用复合求导法得到隐函数的导数,因为把(,())F x f x 看作(,)F x y 与()y f x =的复合函数时,有'(,)(,)0x y F x y F x y y +=当(,)0y F x y ≠时,由它即可推得与②相同的结果.对于隐函数的高阶导数,可以用和上面一样的方法求得,此时只要假定函数F 存在相应的连续的高阶偏导数.我们可以类似的推出由方程12(,,,,)0n F x x x y =所确定的n 元隐函数的概念.1.3 n 元隐函数的惟一存在与连续可微性定理若(1) 函数12(,,,,)n F x x x y 在以点0000012(,,,,)n P x x x y 为内点的区域1n D R +⊂上连续;(2) 000012(,,,,)0n F x x x y =;(3) 偏导数12,,,n x x x y F F F F 在D 内存在且连续;(4) 000012(,,,,)0y n F x x x y ≠,则在点0P 的某邻域0()U P D ⊂内,方程12(,,,,)0n F x x x y =惟一地确定了一个定义在000012(,,,)n Q x x x 的某邻域0()n U Q R ⊂内的n 元连续函数(隐函数)12(,,,)n y f x x x =,使得 (1) 当120(,,,)()n x x x U Q ∈时,12120(,,,,(,,,))()n n x x x f x x x U P ∈,且 1212(,,,,(,,,))0n n F x x x f x x x ≡, 000012(,,,)n y f x x x =.(2) 12(,,,)n y f x x x =在0()U Q 内有连续偏导数:12,,n x x x f f f ,而且1212,,,n n x x x x x x y y yF F F f f f F F F =-=-=-. 例1 设方程 1(,)sin 02F x y y x y =--= ③ 由于F 及,x y F F 在平面上任一点都连续,且(0,0)0F =,1(,)1cos 02y F x y y =->,故依上述定理,方程③确定了一个连续可导隐函数()y f x =,按公式②,其导数为'(,)12()1(,)2cos 1cos 2x y F x y f x F x y yy =-==--. 上述都是由一个方程所组成的隐函数,下面来讨论由方程组所确定的隐函数组.设(,,,)F x y u v 和(,,,)G x y u v 为定义在区域4V R ⊂上的两个四元函数.若存在平面区域D ,对于D 中每一点分别有区间J 和K 上惟一的一对值,u J v K ⊂⊂,它们与,x y 一起满足方程组(,,,)0(,,,)0F x y u v G x y u v =⎧⎨=⎩④ 则说方程组④确定了两个定义在2D R ⊂上,值域分别落在J 和K 内的函数.我们称这两个函数为由方程组④所确定的隐函数组.若分别记这两个函数为(,)u f x y =,(,)v g x y =,则在D 上成立恒等式(,)y y u x =,(,)v v u x =.为了探索由方程组④所确定隐函数组所需要的条件,不妨假设④中的函数F 和G 是可微的,而且由④所确定的两个隐函数u 与v 也是可微的.那么通过对方程组④关于,x y 分别求偏导数,得到00x u x v x x u x v x F F u F v G G u G v ++=⎧⎨++=⎩ ⑤00y u y v y yu y v y F F u F v G G u G v ++=⎧⎪⎨++=⎪⎩ ⑥ 要想从⑤解出x u 与x v ,从⑥解出y u 与y v ,充分条件是它们的系数行列式不为零,即0u vu v F F G G ≠ ⑦⑦式左边的行列式称为函数F 和G 关于变量u ,v 的函数行列式(或雅可比Jacobi 行列式),亦可记作(,)(,)F G u v ∂∂.条件⑦在隐函数组定理中所起作用与隐函数存在惟一性的条件(4)相当. 1.4 隐函数组定理若(1) V 和(,,,)G x y u v 在以点0()U Q 为内点的区域4V R ⊂内连续;(2) 0000(,,,)0F x y u v =,0000(,,,)0G x y u v =(初始条件);(3) 在V 内F ,G 具有一阶连续偏导数;(4) 0(,)0(,)P F G u v ∂≠∂在0P 点不等于零, 则在点0P 的某一(四维空间)邻域0()U P V ⊂内,方程组④惟一确定了定义在点000(,)Q x y 的某一(二维空间)邻域0()U Q 内的两个二元隐函数000(,)u f x y =,000(,)v g x y =,使得(1) 000000(,);(,)u f x y v g x y ==且当()0,()x y U Q ∈时0(,,(,),(,))()x y f x y g x y U P ∈,(,,(,),(,))0(,,(,),(,))0F x y f x y g x yG x y f x y g x y ≡≡ (2) (,),(,)f x y g x y 在0()U Q 内连续;(3) (,),(,)f x y g x y 在0()U Q 内有一阶连续偏导数,且1(,)(,)v F G x J x v ∂∂=-∂∂,1(,)(,)v F G x J u x ∂∂=-∂∂, 1(,)(,)v F G y J y v ∂∂=-∂∂,1(,)(,)v F G y J u y ∂∂=-∂∂. 应该注意的是,本定理中若将条件(4)改为0(,)0(,)P F G u v ∂≠∂,则方程组④所确定的隐函数组相应是(,),(,)y y u x v v u x ==;其他情形均可类似推得.总之,当我们遇到由方程组定义隐函数组及隐函数组求导的问题时,首先应明确那些变量是自变量,那些变量是因变量,然后再进行有关讨论和运算.2. 隐函数在几何方面的应用2.1 平面曲线的切线与法线设平面曲线由方程①给出,它在点000(,)P x y 的某邻域内满足隐函数定理条件,于是在0P 附近所确定的连续可微隐函数()y f x =或(()x g y =)和方程①在0P 附近表示同一曲线,从而该曲线在点0P 处存在切线和法线,其方程分别为'000()()y y f x x x -=-(或'000()()x x g y y y -=-)与 00'01()()y y x x f x -=--(或00'01()()x x y y g y -=--) 由于'x y F f F =-(或'y xF g F =-),所以曲线①在点0P 处的切线和法线方程分别为 切线: 000000(,)()(,)()0x y F x y x x F x y y y -+-=, ⑧法线: 000000(,)()(,)()0y x F x y x x F x y y y ---=. ⑨例2 求笛卡儿叶形线332()90x y xy +-=在点(2,1)处的切线与法线.解 设33(,)2()9F x y x y xy =+-,于是269x F x y =-,269y F y x =-在全平面连续,且(2,1)150x F =≠,(2,1)120y F =-≠.依次由公式⑧与⑨分别求得曲线在点(2,1)处的切线与法线方程分别为15(2)12(1)0x y ---=即5460x y --=,12(2)15(1)0x y ----=即45130x y +-=.2.2 空间曲线的切线与法平面下面我们讨论由参数方程L :(),(),(),x x t y y t z z t t αβ===≤≤ ⑴表示的空间曲线L 上的某一点0000(,,)P x y z 处的切线和法平面方程,其中00()x x t =,00()y t =,00()z t =,0t αβ≤≤,并假定⑴式中的三个函数在0t 处可导,且'2'2'2000[()][()][()]0x t y t z t ++≠.则曲线L 在0P 处的切线方程为000'''000()()()x x y y z z x t y t z t ---==. ⑵ 由此可见当'0()x t ,'0()y t ,'0()z t 不全为零时,它们是该切线的方向数.过点0P 可以作无数条直线与切线l 垂直,且这些直线都在同一平面上,称这平面为曲线L 在0P 处的法平面n .它通过点0P ,且以为它的法线,所以法平面n 的方程为'''000000()()()()()()0x t x x y t y y z t z z -+-+-=当空间曲线方程L 由方程组L :(,,)0(,,)0F x y z G x y z =⎧⎨=⎩⑶ 给出时,若它在点0000(,,)P x y z 的某邻域内满足隐函数定理条件(这里不妨设条件(4)是0(,)0(,)P F G u v ∂≠∂),则方程组⑴在点0P 附近所能确定惟一连续可微的隐函数组()x z ϕ=,()y z ψ=,使得0000(),()x z y z ϕψ==,且(,)(,)(,)(,)F G dx z y F G dzx y ∂∂=-∂∂,(,)(,)(,)(,)F G dy x z F G dz x y ∂∂=-∂∂.L 在0P 附近的参数方程为(),(),x z y z z z ϕψ===那么由⑵式曲线在0P 处的切线方程为000001P P x x y y z z dx dy dz dz ---== 即 000000(,)(,)(,)(,)(,)(,)P P P x x y y z z F G F G F G y z z x x y ---==∂∂∂∂∂∂. 曲线在0P 处的法平面方程为000000(,)(,)(,)()()()0(,)(,)(,)P P P F G F G F G x x y y z z y z z x x y ∂∂∂-+-+-=∂∂∂ 同理我们可以推得:当(,)(,)F G y z ∂∂或(,)(,)F G z x ∂∂在0P 处不等于零时,曲线在点0P 处的切线与法平面方程仍分别取上述形式.由此可见,当000(,)(,)(,),,(,)(,)(,)P P P F G F G F G y z z x x y ∂∂∂∂∂∂不全为零时,它们是空间曲线⑶在0P 处的切线的方向数.例3 求平面22250x y z ++=与锥面222x y z +=所截出的曲线在点(3,4,5)处的切线与法平面方程.解 设 222(,,)50F x y z x y z =++-, 222(,,)G x y z x y z =+-.它们在点(3,4,5)处的偏导数和雅可比行列式之值为:6F x ∂=∂,8F y ∂=∂,10F z∂=∂, 6G x ∂=∂,8G y ∂=∂,10G z∂=-∂(,)160(,)F G y z ∂=-∂,(,)120(,)F G z x ∂=∂,(,)0(,)F G x y ∂=∂. 所以曲线在点(3,4,5)处的切线方程是:3451601200x y z ---==-,即 3(3)4(4)05x y z -+-=⎧⎨=⎩. 法平面方程为4(3)3(4)0(5)0x y z --+-+-=,即430x y -=.2.3曲面的切平面和法线设曲面由方程(,,)0F x y z = ⑷给出,它在点0000(,,)P x y z 的某邻域内满足隐函数定理条件(不妨设000(,,)0z F x y z ≠).于是方程⑷在点0P 附近确定惟一连续可微的隐函数(,)z f x y =使得000(,)z f x y =,且(,,)(,,)x z F x y z z x F x y z ∂=-∂,(,,)(,,)y z F x y z z y F x y z ∂=-∂. 由于在点0P 附近⑷与(,)z f x y =表示同一曲面,该曲面在0P 处有切平面与法线,分别是000000000000000(,,)(,,)()()(,,)(,,)y x z z F x y z F x y z z z x x y y F x y z F x y z -=---- 与 000000000000000(,,)(,,)1(,,)(,,)x y z z x x y y z z F x y z F x y z F x y z F x y z ---==---. 它们也可写成如下形式:000000000000(,,)()(,,)()(,,)()0x y z F x y z x x F x y z y y F x y z z z -+-+-=与 000000000000(,,)(,,)(,,)x y z x x y y z z F x y z F x y z F x y z ---==. 这种形式对于000(,,)0x F x y z ≠或000(,,)0y F x y z ≠也同样合适.例4 求椭球面222236x y z ++=在()1,1,1处的切平面方程与法线方程. 解 设222(,,)236F x y z x y z =++-.由于2x F x =,4y F y =,6z F z =在全空间上处处连续.在()1,1,1处2x F =,4y F =,6z F =.因此由上面的公式可得出切平面方程2(1)4(1)6(1)0x y z -+-+-=,即 236x y z ++=和法线方程 111123x y z ---==.结语从初中起我们就接触到了简单的函数,在高中时又进一步加深了学习,但我们以前接触到的都是很明显的函数,但我们碰到了不像以前见过的那么一目了然的函数,它就是我们本文所研究的隐函数.历史表明,重要数学概念对数学发展的作用是不可估量的,隐函数概念对数学发展的影响,可以说是作用非凡.隐函数在很多地方有重要的应用,比如上面例题中所举的在各种求值问题中的应用.当然隐函数在其它方面也有很多的用处,本文就不一一举例说明了.参考文献[1] 华东师范大学数学系.数学分析(第三版)[M].北京:高等教育出版社,2001.[2] 毛信实,董延新.数学分析(第一版) [M].北京:北京师范大学出版社,1900.[3] 华东师范大学数学系.数学分析(第二版) [M].北京:高等教育出版社,1900.[4] 北京大学数学系.数学分析(第一版) [M].北京:高等教育出版社,1986.[5] 周性伟,刘立民.数学分析(第一版) [M].天津:南开大学出版社,1986.[6] 何琛,史济怀,徐森林.数学分析(第一版) [M].北京: 高等教育出版社,1983.[7] 沐定夷.数学分析(第一版) [M].上海:上海交通大学出版社,1993.。
毕业论文:隐函数定理及其应用

摘要隐函数定理是数学分析和高等数学中的一个重要定理,它不仅是数学分析和高等代数中许多问题的理论基础,并且它也为许多数学分支,如泛函分析、常微分方程、微分几何等的进一步研究提供了坚实的理论依据. 隐函数定理有着十分广泛的应用,在经济学、优化理论、条件极值等中均有重要作用. 对本课题的研究,可以加深我们对微分学的认识与理解.本文简略地论述了隐函数的概念、隐函数定理的内容及证明方法、以及隐函数定理在各个方面的应用. 本文从隐函数定理出发,给出了推论隐函数组定理和反函数组定理以及他们的证明过程. 这些推论使隐函数定理的应用更加广泛. 并针对隐函数定理在计算导数和偏导数、几何应用、条件极值、以及优化理论这几个方面的应用做了系统的论述.关键词:隐函数定理;应用;优化理论;证明AbstractImplicit function theorem of mathematical analysis and higher mathematics is one of the important theorem, it is not only the mathematical analysis and higher algebra in the theoretical foundation of the many, and it also for many branches of mathematics, such as functional analysis, ordinary differential equation, differential several further research how to provide the solid theoretical basis. Implicit function theorem has a very wide range of application, in ec onomics, optimization theory, such as extreme conditions which is an important role. This topic research, can deepen our understanding of the differential calculus and understanding.This paper briefly discusses the concept of implicit function, the content of the implicit function theorem and prove method, and implicit function theorem in all aspects of the application. This paper, from the implicit function theorem are given, and the corollary of implicit function theorem and the group FanHanShu group theorem and proof of their process. These claims that the application of implicit function theorem and more extensive. And in the light of implicit function theorem in the calculation of the derivative and partial derivative, geometric application, conditional extreme, and the several aspects optimization theory of the application of the system is also discussed in the paper.Key words:implicit function theorem; Application; Optimization theory; proof目录摘要 (I)Abstract .................................................................................................................................... I I绪论 (1)第1章隐函数 (2)1. 1 隐函数 (2)1. 2 隐函数组的概念 (2)1. 3 反函数组的概念 (3)第2章隐函数定理 (4)2. 1 隐函数定理 (4)2. 2 隐函数组定理 (6)2. 3 反函数组定理 (7)第3章隐函数定理的应用 (9)3. 1 计算导数和偏导数 (9)3. 1. 1 隐函数的导数 (9)3. 1. 2 隐函数组的导数 (9)3. 1. 3 对数求导法 (10)3. 1. 4 由参数方程所确定的函数的导数 (10)3. 2 几何应用 (11)3. 2. 1 空间曲线的切线与法平面 (11)3. 2. 2 空间曲面的切平面与法线 (14)3. 3 条件极值 (15)3. 3. 1 无条件极值 (15)3. 3. 2 拉格朗日乘数法 (16)3. 4 最优化问题 (18)3. 4. 1 无约束最优化问题 (18)3. 4. 2 约束最优化问题 (19)结论 (21)参考文献 (22)致谢 (23)绪论通常我们遇到的函数都是因变量用自变量的一个解析式表示的,这种形式的函数我们称之为显函数. 但在许多实际问题中,变量之间的函数关系往往不是用显式形式表示的,而是通过一个或多个方程来确定的,由此便产生了隐函数. 隐函数的产生为许多数学问题的解决带来了极大的方便,本文就隐函数的存在性定理、连续性定理、可微性定理做了系统的研究. 隐函数定理是高等数学和数学分析中的一个非常重要的定理,它不但是高等数学和数学分析中许多问题的理论基础,并且它也为许多数学分支,如微分几何、常微分方程、泛函分析等的进一步研究提供了坚实的理论依据. 隐函数定理的应用范围十分广泛,在数学分析、几何、优化理论、条件极值中均有重要作用. 对隐函数定理及其应用的研究,可以加深我们对微分学的认识与理解.现今国内外很多学者都在研究隐函数定理及其应用这个课题,也把它的有关知识作为一种工具用于证明、计算其它定理. 我国数学家陈文源、范令先教授在1986年出版《隐函数定理》一书,在书中提出许多独到见解,并由隐函数定理得出许多推论. 法国数学家扎芒斯凯在1989年出版《普通数学》一书,其中对隐函数定理进行了更深层次的研究. 我国学者史艳维在2010年发表期刊《关于隐函数定理和Peano定理的一点注记》,其中给出了隐函数定理的另一种证明方法. 我国学者王锋、李蕴洁在2005年发表期刊《隐函数定理在经济学比较静态分析中的应用》,更好的诠释了隐函数定理在其他领域内的应用.本文主要论述了隐函数定理及隐函数定理的一些推论,并给出了隐函数定理在计算导数和偏导数、几何应用、条件极值、最优化问题这四个方面上的应用.第1章 隐函数隐函数与我们以前接触的函数有所不同,它是数学分析中相对于显函数而言的一种函数变现形式. 在这一章里,我们将具体地研究隐函数.1.1 隐函数以前接触的函数)(x f (对应关系)多是用自变量的数学表达式表示的,一般称这样的函数为显函数. 如2)(+=x x f ,)(x f =x cos 等.定义1. 1[1] 若自变量x 与因变量y 之间的对应关系f 是由某个方程0),(=y x F 所确定的,即有两个非空数集A 与B ,对任意A x ∈,通过方程0),(=y x F 对应唯一一个B y ∈,这种对应关系称为由方程0),(=y x F 所确定的隐函数. 记为)(x f y =,A x ∈,B y ∈则成立恒等式0))(,(=x f x F ,A x ∈例如,二元方程02454),(=--=y x y x F 在R 上确定(从中解得)一个隐函数. 隐函数不一定能写成)(x f y =的形式,如122=+y x ,因此隐函数不一定是函数,而是方程. 其实总的来说,函数都是方程,而方程却不一定是函数[2].1.2 隐函数组的概念定义1.2[3] 设),,,(v u y x F 和),,,(v u y x G 为定义在区域∈V 4R 上的两个四元函数,若存在平面区域D ,对于D 中每一点),(y x ,分别在区间J 和K 上有唯一一对值J u ∈,K v ∈,它们与x ,y 一起满足方程组⎩⎨⎧==0),,,(0),,,(v u y x G v u y x F (1-1) 则称方程组(1-1)确定了两个定义在区域D 上,值域分别在J 和K 内的函数,称这两个函数为方程组(1-1)所确定的隐函数组. 若分别记这两个函数为),(y x f u =,),(y x g v =则在D 上成立恒等式0)),(),,(,,(≡y x g y x f y x F ,0)),(),,(,,(≡y x g y x f y x G1.3反函数组的概念定义1.3[4] 设有函数组,(yvu=,)xv=(1-2)),(yxu如果能从此函数组(1-2)中,把x,y分别用u,v的二元函数表示出来,即(vu,yy=(1-3)(v),ux=,)x则称(1-3)为函数组(1-2)的反函数组.第2章 隐函数定理在第一章中我们已经介绍了隐函数的概念,设有方程0),(=y x F ,那么在什么条件下,此方程能确定一个隐函数)(x f y =?在本章里,我们将讨论隐函数的存在性、连续性与可微性,不仅是出于深刻了解这类函数本身的需要,同时又为后面研究隐函数组的存在性问题打好了基础.2.1 隐函数定理定理2. 1[5] 若函数),(y x F 满足下列条件(1)0),(00=y x F(2)在点),(000y x P 的一个邻域⊂)(0P U 2R 中,函数),(y x F 连续(3)0),(00≠y x F y则有下列结论成立:①在点),(000y x P 的某个邻域⊂⊂)()(00P U P V 2R 内, 方程0),(=y x F 唯一确定了一个定义在某区间),(00ρρ+-x x 内的隐函数)(x f y =,满足)(00x f y =且0))(,(≡x f x F ;②)(x f y =在区间),(00ρρ+-x x 内连续;③)(x f y =在区间),(00ρρ+-x x 内具有连续的导数,满足),(),()('y x F y x F dx dy x f y x-== 证 为了不失一般性,不妨设0),(00>y x F y .首先证明隐函数)(x f y =的存在性与惟一性.由0),(00≠y x F y ,我们知道),(y x F y 是连续的,由),(y x F y 的连续性与局部保号性可知,存在闭矩形域=D )(],[],[0'0'0'0'0p U y y x x ⊂+-⨯+-ρρρρ有0),(>y x F y )),((D y x ∈∀所以,对任意的],['0'0ρρ+-∈x x x ,),(y x F 在],['0'0ρρ+-y y 上严格单调增加. 因为0),(00=y x F ,所以可得0),(,0),('00'00>+<-ρρy x F y x F又由于),(),,('0'0ρρ+-y x F y x F 在],['0'0ρρ+-x x 上是连续的,所以存在)(0'ρρρ<>,使得)),((0),(,0),(00'0'0ρρρρ+-∈>+<-x x x y x F y x F 所以,对于每一个固定的),(00ρρ+-∈x x x ,),(y x F 在],['0'0ρρ+-y y 上都是严格单调增加的连续函数,并且有0),(,0),('0'0>+<-ρρy x F y x F因为零点存在定理,存在惟一的],['0'0ρρ+-∈y y y ,使得0),(=y x F . 因此由y 与x 的对应关系就确定了一个函数)(x f y =,其定义域为),(00ρρ+-x x ,值域包含于],['0'0ρρ+-y y ,记为:),(),()('0'0000ρρρρ+-⨯+-=y y x x P V从而结论①得以证明.其次证明隐函数)(x f y =的连续性. 任意取),(00ρρ+-∈x x x ,对于任意给定的充分小的0>ε,可以得到0),(,0),(>+<-εεy x F y x F因为连续函数的保号性可知,存在0>δ,当),(),(00ρρδδ+-⊂+-∈x x x x x 时,有0),(,0),(>+<-εεy x F y x F因此,当),(δδ+-∈x x x 时,由),(y x F 关于y 的单调性,相应于x 的隐函数值)(x f 满足εε+<<-y x f y )(,于是ε<-|)(|y x f ,即ε<-|)()(|x f x f ,所以)(x f y =在),(00ρρ+-x x 连续.最后证明隐函数)(x f y =的可微性.任取x 和x x ∆+都属于),(00ρρ+-x x ,它们相对应的隐函数值为)(x f y =和)(x x f y y ∆+=∆+,那么0),(,0),(=∆+∆+=y y x x F y x F由多元函数微分中值定理,可得y y y x x F x y y x x F y x F y y x x F y x ∆∆+∆++∆∆+∆+=-∆+∆+=),(),(),(),(0θθθθ 在这里, 10<<θ. 因此,当y x ∆∆,充分小时),(),(y y x x F y y x x F x y y x∆+∆+∆+∆+-=∆∆θθθθ. 因为),(y x F x 和),(y x F y 是连续的,取极限0→∆x 可得),(),()('y x F y x F dx dy x f y x-== 且)('x f 在),(00ρρ+-x x 内连续.相应的,我们能够得出由方程0),,,,(21=y x x x F n 所确定的n 元隐函数的存在定理:定理2. 2[6] 如果满足下列条件(1)0),,,,(000201=y x x x F n ; (2)在点),,,,(0002010y x x x P n 的一个邻域⊂)(0P U 1+n R 内,函数),,,,(21y x x x F n 连续; (3) 0),,,(00201≠y x x x F n n y ,那么则有以下结论成立:①在点),,,,(0002010y x x x P n 的某个邻域)()(00P U P V ⊂内, 方程0),,,,(21=y x x x F n 惟一确定了一个定义在点),,,(002010n x x x R 某邻域n R R U ⊂)(0内的隐函数),,,(21n x x x f y =,满足),,,(002010n x x x f y =,且0)),,,(,,,,(2121≡n n x x x f x x x F ;②),,,(21n x x x f y =在邻域n R R U ⊂)(0内连续;③),,,(21n x x x f y =在邻域n R R U ⊂)(0内具有连续的偏导数,满足n i y x x x F y x x x F x y n y n x i i ,,2,1,),,,,(),,,,(2121 =-=∂∂. 例2. 1 验证方程0),(=+=x y e xe y x F 在原点)0,0(的某邻域内确定唯一的连续函数)(x f y =.证 由于),(y x F 与x y y e xe F +='都在2R 上连续,当然在点)0,0(的邻域内连续,且01)0,0(,0)0,0(≠='=y F F由此可知方程0),(=y x F 在点)0,0(的某邻域内确定唯一连续的隐函数)(x f y =.2.2 隐函数组定理下面我们将给出由方程组⎩⎨⎧==0),,,(0),,,(v u y x G v u y x F ,所确定的隐函数组⎩⎨⎧==),(),(y x g v y x f u ,的存在定理.定理2. 3[7] 设),,,(),,,,(v u y x G v u y x F 以及它们的一阶偏导数在以点),,,(00000v u y x P 为内点的某区域⊂V 4R 内连续,且满足(1)0),,,(,0),,,(00000000==v u y x G v u y x F (2)0),(),(0≠=∂∂=P v u vu G G F F v u G F J 则方程组⎩⎨⎧==0),,,(0),,,(v u y x G v u y x F ,在0P 的某邻域)(0P U 内唯一确定两个隐函数),(y x f u =,),(y x g v =,有下列结论成立:①),(),,(000000y x g v y x f u ==,则有⎩⎨⎧≡≡0)),(),,(,,(0),(),,(,,(y x g y x f y x G y x g y x f y x F ②),(),,(y x g v y x f u ==在邻域20)(R R U ⊂内具有连续的一阶偏导数,且),(),(1,),(),(1x u G F J x v v x G F J x u ∂∂-=∂∂∂∂-=∂∂ ),(),(1,),(),(1y u G F J y v v y G F J y u ∂∂-=∂∂∂∂-=∂∂例2. 2[8] 验证方程组⎩⎨⎧=+--=++-42822222v u y x v u y x 在点)1,2,1,3(-的邻域内确定隐函数组,并求x u ∂∂,xv ∂∂. 解 令 82),,,(-++-=v u y x v u y x F ,42),,,(2222-+--=v u y x v u y x G 则:0)1,2,1,3(,0)1,2,1,3(=-=-F GF 与G 以及它们的一阶偏导数都连续 且)(22211),(),(v u v u v u G F +=-=∂∂,06),(),()1,2,1,3(≠=∂∂-v u G F 所以由隐函数组定理可知题设方程组确定隐函数组⎩⎨⎧==),(),(y x v v y x u u 在方程两端同时对x 求导得⎪⎩⎪⎨⎧=∂∂⋅+∂∂⋅-=∂∂+∂∂+022201x v v x u u x x v x u 解得v u u x x u +-=∂∂,vu u x x v ++-=∂∂2.3 反函数组定理定理2. 4[9] 若函数组),(),,(y x v v y x u u ==满足如下条件:(1)),(),,(y x v v y x u u ==均具有连续的偏导数 (2)0),(),(≠∂∂=y x v u J 则函数组),(),,(y x v v y x u u ==可确定唯一的具有连续偏导数的反函数组),(),,(v u y y v u x x ==且有y v J u x ∂∂=∂∂1,y u J v x ∂∂-=∂∂1,x v J u y ∂∂-=∂∂1,xu J v y ∂∂=∂∂1 及),(),(1),(),(y x v u v u y x ∂∂=∂∂或1),(),(),(),(=∂∂⋅∂∂v u y x y x v u 定理2. 5 若函数组⎪⎩⎪⎨⎧==),,(),,(212111n n nn x x x y y x x x y y 满足如下条件:(1)n y y y ,21,均具有连续的偏导数 (2)0),,(),,(2121≠∂∂n n x x x y y y则此函数组可确定唯一的具有连续偏导数的反函数组⎪⎩⎪⎨⎧==),,(),,(212111n n nn y y y x x y y y x x 且有1),,(),,(),,(),,(21212121=∂∂⋅∂∂n n n n x x x y y y y y y x x x例2. 2 [10]在3R 中的一点,其直角坐标),,(z y x 与相应球坐标),,(θϕr 的变换公式为⎪⎩⎪⎨⎧===ϕθϕθϕcos sin sin cos sin r z r y r x 其中πθπϕ20,0,0≤≤≤≤+∞<<r ,则函数组(除去z 轴上的点)可确定反函数组.证 由于0sin 0sin cos cos sin sin cos sin sin sin sin cos cos sin cos ),,(),,(2≠=--=∂∂ϕϕϕϕθϕθϕθθϕθϕθϕθϕr r r r r r r z y x由反函数组定理,函数组(除去z 轴上的点)可确定θϕ,,r 分别是z y x ,,的函数,事实上,函数组的反函数组为222z y x r ++=,x y arctan =ϕ,rzarccos =θ.第3章 隐函数定理的应用3.1 计算导数和偏导数3.1.1 隐函数的导数[11]设方程0),(=y x F 确定一个单值可导函数)(x f y =,将)(x f y =代入方程得恒等式0))(,(≡x y x F ,在恒等式两边对x 求导,便得到一个含有y '的方程,解出y '就求出了隐函数)(x f y =的导数,在恒等式两边对x 求导时,必须注意y 是x 的函数,要利用复合函数求导法.例3. 1 求由方程0103=-+y x 所确定的隐函数y 对x 的导数.解 我们在方程两端对x 求导,注意y 是x 的函数,于是3y 则是x 的复合函数,运用复合函数求导法可得0312='+y y 所以231y y -='. 3.1.2 隐函数组的导数[12]对方程组的各个方程两边对某自变量求导,遇见因变量就把它看作自变量的函数,最后解方程组,就可得到隐函数对各个自变量的导数或偏导数.例3. 2 求函数⎪⎩⎪⎨⎧=+≠++=0,00,),(222222y x y x y x xyy x f 的偏导数.解 (1)当022≠+y x 时,有2222322222)()(2)(),(y x yx y y x x xy y x y y x f x +-=+⋅-+=' 2222322222)()(2)(),(y x xy y y x y xy y x x y x f y +-=+⋅-+=' (2)当022=+y x 时,根据偏导定义有:0lim )0,0()0,(lim)0,0(00=∆-=∆-∆='→∆→∆xx f x f f x x x 000lim )0,0()0,(lim )0,0(00=∆-=∆-∆='→∆→∆y y f y f f x x y综合(1) (2)得:⎪⎩⎪⎨⎧=+≠++-='0,00,)(),(222222223y x y x y x y x y y x f x ⎪⎩⎪⎨⎧=+≠++-='0,00,)(),(222222223y x y x y x xy x y x f y 3.1.3 对数求导法某些显函数的导数直接去求十分繁琐,有时可以通过取对数的方法使其化为隐函数的形式,再用隐函数求导法去求导数,使其变得简单些,这样的求导方法我们称为对数求导法.例3. 3 计算3)3()2)(1(---=x x x y 的导数.解 先在两端取自然对数,得:)3ln 2ln 1(ln 31ln -+-+-=x x x y再应用隐函数求导法,在上式两端对x 求导,得)312111(311-+-+-='x x x y y 所以得)312111()3()2)(1(313-+-+----='x x x x x x y3.1.4 由参数方程所确定的函数的导数设由参数方程⎩⎨⎧==)()(t y t x ϕϕ确定了y 是x 的函数,)(x y y =则称这个函数为有参数方程所确定的函数,其中t 为参数,下面讨论由参数方程所确定的函数求导法:设函数)(t x ϕ=具有单调连续的反函数)(x t t =,且此反函数能与函数)(t y ϕ=复合成复合函数,则由上面参数方程所确定的函数)(x y y =就可以看成是由)(t y ϕ=,)(x t t =复合而成的函数))(()(x t x y y ϕ==,假设)(t x ϕ=,)(t y ϕ=都可导且0)(≠'t ϕ,则由复合函数求导法则和反函数求导公式有:dt dy dx dy =;dtdydx dt =;)()(1t t dtdx ϕϕ''= 即dtdxdt dyt t dx dy =''=)()(ϕϕ若)(),(t y t x ϕϕ==都二阶可导,则有:322))(()()()()()(t t t t t dx dy dx d dx y d ϕϕϕϕϕ''''-'''== 例3. 4已知抛物体的运动轨迹的参数方程为⎪⎩⎪⎨⎧-==22121gt t v y t v x 求抛物体在此时刻t 的运动速度的大小和方向.解 先求速度的大小,由于速度的水平分量为1v dt dx =,垂直分量为gt v dtdy-=2,所以抛物体运动速度大小为222122)()()(gt v v dtdydt dx v -+=+=再求速度的方向,即轨道的切线方向,设α是切线的倾角,则由导数的几何意义有12tan v gtv dtdx dt dydx dy -===α所以抛物体刚射出(即0=t )时1200tan v v dx dyt t ====α当gv t 2=时 0tan 22====gv t gv t dx dyα这说明,这时运动方向是水平的,即抛物体达到最高点.3.2 几何应用3.2.1 空间曲线的切线与法平面[13] 3. 2. 1. 1空间曲线由参数方程给出的情况设空间曲线C 的参数方程为:⎪⎩⎪⎨⎧===)()()(:t z z t y y t x x C []βα,∈t (3-1)取定曲线C 上点))(),(),((),,(0000000t z t y t x z y x P =,设式(3-1)中3个函数都在0t 点可导. 且[][][]0)()()(202020≠'+'+'t z t y t x在0P 的附近取动点C z z y y x x P ∈∆+∆+∆+),,(000,则割线P P 0方程为zz z y y y x x x ∆-=∆-=∆-000 其中)()(00t x t t x x -∆+=∆,)()(00t y t t y y -∆+=∆,)()(00t z t t z z -∆+=∆. 以t ∆除以上式分母得tx x x ∆∆-0=t y y y ∆∆-0=t zz z ∆∆-0当0→∆t 时,0P P →,且)(0t x t x '=∆∆,)(0t y t y '=∆∆,)(0t z tz'=∆∆. 所以曲线C 在0P 处得切线方程为)(00t x x x '-=)(00t y y y '-=)(00t z z z '- 其切向量))(),(),((000t z t y t x l '''=.因为曲线C 在点0P 的法平面是垂直于切线的,所以法平面的法向量与l平行,设法平面的法向量为n ,则n=))(),(),((000t z t y t x '''. 从而过0P 点的法平面方程为0))(())(())((000000=-'+-'+-'z z t z y y t y x x t x特别地,如果空间曲线C 的参数方程以x 为参数,即:⎪⎩⎪⎨⎧===)()(:x z z x y y x x C []βα,∈x 则C 在点),,(0000z y x P 的切线方程为)()(100000z z z z x y y y x x '-='-=- 切向量为))(),(,1(00t z t y l ''=,C 在点0P 处的法平面方程为:0))(())(()(00000=-'+-'+-z z t z y y t y x x如果C 为平面曲线)(x f y =,[]b a x ,∈,则过点),(000y x P 切线方程为:)(1000x f y y x x '-=-或))((000x x x f y y -'=- 切向量为))(,1(0x f l '=.例 3.5[13] 求螺旋线bt z t a y t a x ===,sin ,cos 在30π=t 处的切线方程与法平面方程.解 由b z t a y t a x ==-=',cos ,sin ,则切线方程为:bb z a a y a a x 33cos3sin 3sin3cos πππππ-=-=--即b bz a a y aa x 3223232π-=-=--因此法平面方程为:0)3()23(2)2(23=-+-+--b z b a y a a x a π3. 2. 1. 2 空间曲线为两曲面交线的情况设空间曲线L 由方程组⎩⎨⎧==0),,(0),,(z y x G z y x F (3-2)给出,设它在点),,(0000z y x P 的邻域内满足隐函数组定理的条件(这里不妨设0),(),(0≠∂∂p y x G F ),则由隐函数存在定理可知在方程组(3-2)点0P 附近可确定唯一连续导数的隐函数组)(z x x =,)(z y y =,z z =(亦即L 的参数方程),满足:)(),(0000z y y z x x ==且00),(),(),(),()(0p p y x G F y z G F z x ∂∂∂∂-=' 0),(),(),(),()(0p p y x G F z x G F z y ∂∂∂∂-='故曲线L 在点0P 的切线方程为:),(),(0p z y G F x x ∂∂-=),(),(0p x z G F y y ∂∂-=),(),(0p y x G F z z ∂∂- (3-3)曲线L 在点0P 的法平面方程为:)(),(),(00x x z y G F p -∂∂+)(),(),(00y y x z G F p -∂∂+)(),(),(00z z y x G F p -∂∂=0 (3-4)同理,可证当0),(),(0≠∂∂p z y G F 或0),(),(0≠∂∂p x z G F 时,曲线L 在点0P 的切线方程为(3-3)式,曲线L 在点0P 的法平面方程为仍为(3-4)式.例3. 6 求曲线⎩⎨⎧=+-=++45323222z y x xz y x 在点)1,1,1(P 处的切线与法平面方程.解 令⎩⎨⎧-+-=-++=4532),,(3),,(222z y x z y x G x z y x z y x F ,首先求偏导数,得:32-=x F x ,y F y 2=,z F z 2=,2=x G ,3-=y G ,5=z G 则曲线在点P 的切线方向向量为:)1,9,16(3221,2512,5322,,-=⎪⎪⎭⎫--- ⎝⎛-=⎪⎪⎭⎫ ⎝⎛y x y x x z x z z y z y G G F F G G F F G G F F 故切线方程为1191161--=-=-z y x 法平面方程为24916=-+z y x3.2.2 空间曲面的切平面与法线[14]定义3. 1在空间曲面∑上,过点),,(0000z y x P 的任一曲线在点0P 处的切线都在同一平面上,则此平面称为曲面∑在点0P 的切平面.先讨论曲面∑的方程为0),,(=z y x F 的情形,其次把显式给出的曲面方程),(y x f z =作为它的特殊情形. 设曲面∑由方程0),,(=z y x F 给出,其中F 具有一阶连续的偏导数,在曲面∑上,过点),,(0000z y x P 的任一曲线的参数方程为)(),(),(t z z t y y t x x === βα≤≤t ,其中)(),(),(t z t y t x 均可导,则曲线在点0P 处的切线方向向量为))(),(),((000t z t y t x '''=τ,由于曲线在曲面∑上,故有0))(),(),((≡t z t y t x F ,对上式两端关于t 求导,得:0)()()()()()(000000=''+''+''t z P F t y P F t x P F z y x即 ))(),(),((000t z t y t x '''0))()()((000='+'+'P F P F P F z y x这表明向量))(),(),(((000P F P F P F z y x '''与曲面上过点0P 的任一曲线的切线都垂直,故所有切线都在以向量))(),(),(((000P F P F P F z y x '''为法向量且过点0P 的平面内,从而曲面∑过点0P 的切平面的法向量为:))(),(),(((000P F P F P F n z y x '''=于是过曲面∑上点),,(0000z y x P 处的切平面方程为:0))(())(())((000000=-'+-'+-'z z P F y y P F x x P F z y x过点),,(0000z y x P 处的法线方程为:)(00P F x x x '-=)(00P F y y y '-=)(00P F z z z '- 上述讨论中,都假设)(),(),((000P F P F P F z y x '''不全为零,现在来考虑曲面∑的方程为),(y x f z =的情形,其中f 都有连续的偏导数,令),(),,(y x f z z y x F -=使方程变形为0),,(=z y x F则:1)(),,()(),,()(000000=''-=''-='P F y x f P F y x f P F z o y y x x所以曲面∑在点0P 的法向量为:)1),,(),,((000o y x y x f y x f n '-'-=故曲面∑在点0P 的切平面方程为:0000000))(,())(,(z z y y y x f x x y x f y x -=-'+-'曲面∑在点0P 的法线方程为:),(000y x f x x x '-=),(000y x f y y y '-=10--z z ,其中),(000y x f z =曲面∑:),(y x f z =上的法向量可以是)1,,(y x f f n '-'-= ,也可以是)1,,(-''=y x f f n,但当曲面∑的法向量向上时(即法向量正向与z 轴正向夹角γ满足大于0小于2π时)∑的法向量应为)1,,(y x f f n '-'-=.例3. 7[15] 求球面14222=++z y x 在点)3,2,1(处的切平面及法线方程. 解 设14),,(222-++=z y x z y x F ,则6)3,2,1(,4)3,2,1(2)3,2,1(,2),,(2),,(,2),,(======z y x z y x F F F z z y x F y z y x F x z y x F球面在点)3,2,1(处的法向量为{}6,4,2,所以球面在点)3,2,1(的切平面方程为:0)3(6)2(4)1(2=-+-+-z y x即:01432=-++z y x法线方程为:332211-=-=-z y x .3.3 条件极值3.3.1 无条件极值 3. 3. 1. 1 极值的概念定义3.2 设函数),(y x f z =在点),(000y x P 的某邻域)(0P U 内有定义,如果对)(),(0P U y x ∈∀都有),(),(0o y x f y x f ≤或(),(),(0o y x f y x f ≥)则称),(0o y x f 为函数),(y x f 的一个极大值(或极小值),此时点0P 称为),(y x f 的极大值点(或极小值点),函数的极大值和极小值统称为函数的极值,极大值点和极小值点统称为函数的极值点.3. 3. 1. 2 极值存在的条件(1)极值存在的必要条件定理3.2 设函数),(y x f z =在点),(000y x P 处具有偏导数,且在点),(000y x P 处有极值,则在该点的偏导数为零,即0),(0=o x y x f ,0),(0=o y y x f证 不妨设函数),(y x f z =在点),(000y x P 处有极大值(极小值的情形可类似证明),由极大值定义,在点),(000y x P 的某邻域内异于点),(000y x P 的点),(y x P 都适合不等式),(y x f ﹤),(0o y x f ,特别的,在该邻域内取0y y =,0x x ≠的点,也有),(0y x f ﹤),(0o y x f ,这表明一元函数),(0y x f 在0x x =处取得极大值,因此必有0),(0=o x y x f ,同理,0),(0=o y y x f(2)极值存在的充分条件定理:设函数),(y x f z =在驻点),(00y x 的邻域内具有连续的一阶与二阶偏导数,记:),(0o xx y x f A =,),(0o xy y x f B =,),(0o yy y x f C =,①当AC B -2﹤0时,),(y x f 在点),(00y x 具有极值,且当A ﹤0时有极大值,当A ﹥0时有极小值. ②当AC B -2﹥0时),(y x f 在点),(00y x 没有极值. ③当AC B -2=0时,),(y x f 在点),(00y x 可能有极值,需另作讨论.例3.8[17]求函数22324y xy x x z -+-=的极值.解 方程组⎪⎪⎩⎪⎪⎨⎧=-=∂∂=+-=∂∂02202832y x y z y x x xz ,求得驻点为)0,0(和)2,2(再求出二阶偏导数8622-=∂∂x x z ,22=∂∂∂y x z ,222-=∂∂yz在点)0,0(处,2,2,8-==-=C B A ,0122<-=-AC B ,08<-=A ,故函数在点)0,0(处取得极大值0)0,0(=f ,在点)2,2(处,2,2,4-===C B A ,0122>=-AC B 故点)2,2(不是函数的极值点.3.3.2 拉格朗日乘数法自变量有附加条件限制多元函数的极值称为条件极值,比如函数),(y x f z =在条件0),(=y x ϕ(3-5)下取得的极值就是条件极值. 现在讨论函数),(y x f z =在条件0),(=y x ϕ取得极值的必要条件.设函数),(y x f z =在点),(00y x 的某一邻域内),(y x f ,),(y x ϕ均有连续的一阶偏导数,且0),(0≠o y y x ϕ,则方程0),(=y x ϕ能唯一确定y 是x 的具有连续导数的单值函数)(x y y =,将其代入函数),(y x f z =,得一元函数))(,(x y x f z =,于是二元函数))(,(x y x f z =在点0x 取得极大值的问题,由一元可导函数取得极大值的必要条件知应有:0),(),(00000=+===x x y x x x dxdy y x f y x f dxdz (3-6)又由隐函数求导公式,有:)0000,(),(0y x y x dxdy y x x x ϕϕ-==代入(3-6)式中得:0),(),(),(),(00000000=-y x y x y x f y x f y x y x ϕϕ即:0),(),(),(),(00000000=⋅-y x y x y x f y x f y y x ϕϕ (3-7)(3-5)、(3-7)式就是),(y x f z =在条件0),(=y x ϕ下,在点),(00y x 取得极值的必要条件. 令),(),(0000y x y x f y y ϕλ-=即:0),(),(0000=+y x y x f y y λϕ (3-8) 则(3-7)式变为0),(),(0000=+y x y x f x x λϕ (3-9)由(3-5) (3-8) (3-9)式得函数),(y x f 在),(00y x 取得条件极值的必要条件是:⎪⎩⎪⎨⎧==+=+0),(0),(),(0),(),(000000000y x y x y x f y x y x f o y y x x ϕλϕλϕ (3-10)实际上(3-10)式可看作函数),(),(),,(y x y x f y x F λϕλ+=,在点),,(00λy x 取得无条件极值的必要条件. 因此为了便于记忆,求函数),(y x f z =在条件0),(=y x ϕ下的可能极值点,可以构造辅助函数),(),(),,(y x y x f y x F λϕλ+=,其中λ为某一常数,称为拉格朗日乘数,称函数),,(λy x F 为拉格朗日函数,分别求),,(λy x F 对λ,,y x 的偏导数,并使它们同时为零,得联立方程组⎪⎩⎪⎨⎧===+==+=0),(),,(0),(),(),,(0),(),(),,(y x y x F y x y x f y x F y x y x f y x F y y y x x x ϕλλϕλλϕλλ解此方程组得λ,,y x ,其中y x ,就是可能极值点的坐标,上述方法称为拉格朗日乘数法.例3. 9[18] 求函数222),,(cz by ax z y x f ++=,)0,0,0(>>>c b a 在条件1=++z y x 下的最小值.解 作拉格朗日函数)1(),,,(222-+++++=z y x cz by ax z y x L λλ对L 求偏导并令其为零,得:⎪⎪⎩⎪⎪⎨⎧=++=+=+=+0020202z y x cz by ax λλλ 解得唯一稳定点:acbc ab ab z ac bc ab ac y ac bc ab bc x ++=++=++=,, 故所求最小值为: 2min )()(ac bc ab ab ac bc abc f ++++=3.4 最优化问题在现实中,我们通常要解决“投资最少”“成本最低”“效益最高”等问题,称这样的问题为最优化问题,这类问题在数学上可以归结为求某个函数在一定条件下的最大值或最小值问题. 最优化问题通常可以分为无约束最优化问题和有约束最优化问题.3.4.1 无约束最优化问题无约束最优化问题的数学表达式就是:在自变量的取值范围D 上,求一组n x x x 21,使:),(max ),(21),(2121n D x x x n x x x f x x x f n ∈=或: ),(min ),(21),(2121n D x x x n x x x f x x x f n ∈=这也是一个在D 上求函数),(21n x x x f 的最大值或最小值问题.例3. 10 用铁板做一个体积为22m 的有盖长方体水箱,问当长,宽,高分别为多少时,才能使用料最省?解 设水箱的长为x m,宽为y m ,则高为xy2m 水箱所用材料的面积为:)0,0(),22(2)22(2>>++=++=y x y x xy xy x xy y xy A 这样所给问题就转化为在域{}0,0),(>>y x y x D 上求使此函数达到最小的y x ,用求最大值、最小值的方法即可求得即解方程组:⎪⎪⎩⎪⎪⎨⎧=-==-=0)2(2),(0)2(2),(22yx y x A x y y x A y x得:332,2==y x根据题意可知,水箱所用材料面积A 的最小值一定存在,且在开区域{}0,0),(>>y x y x D 内取得,同时函数在D 内只有唯一驻点)2,2(33,因此可以肯定当332,2==y x ,A 取得最小值,即当水箱长、宽、高分别为32m 、32m 、32m 时,水箱所用材料最省.3.4.2 约束最优化问题在约束最优化问题中,约束条件又可分为等式约束条件和不等式约束条件,在此我们只讨论等式约束条件的情形. 这时对应的最优化问题的数学表达式就是:在自变量的取值范围D 上,求一组满足约束条件0),(21=n x x x ϕ的**2*1,,n x x x ,使),(max ),(21),(**2*121n D x x x n x x x f x x x f n ∈=或),(min ),(21),(**2*121n D x x x n x x x f x x x f n ∈=,这也是一个有条件地求函数),(21n x x x f 在D 上的最大值或最小值问题.求解有约束最优化问题有两种方法:一种方法是利用约束条件,将有约束最优化问题化为无约束最优化问题再求解. 令一种方法是拉格朗日乘数法.例3. 11 求表面积为2a 而体积最大的长方体的体积.解 设长方体的长、宽、高分别为z y x ,,则问题就是求函数yxxyzV=z>,0,0(,>>)0在条件0)(2),,(2=-++=a zx yz xy z y x ϕ下的最大值利用拉格朗日乘数法,构造拉格朗日函数[]2)(2),,,(a zx yz xy xyz z y z F -+++=λλ 对λ,,,z y x 分别求导,并令其同时为零,得方程组:⎪⎪⎩⎪⎪⎨⎧=-++==++==++==++=0222),,(0)(2),,,(0)(2),,,(0)(2),,,(2a xy yz xy z y x y x xy z y x F z x xz z y x F z y yz z y x F z y x ϕλλλλλλ 解此方程组得a z y x 66===,这是唯一可能的极值点,因为由问题本身可知,最大值一定存在,所以最大值就在这个可能的极值点处取得,即表面积为2a 的长方体中,以棱长为a 66的正方体的体积最大,最大体积为3366a V =.结论本篇文章主要介绍的是隐函数定理及其应用,重点在于应用,难点在于如何将理论知识更深刻、更具体、更形象的运用在实际解题中.绪论中主要介绍了隐函数的历史发展、隐函数定理在数学分析中的重要地位,以及在现代生活中人们对隐函数的具体认识及其主要用途.本文介绍了隐函数存在性定理、连续性定理及可微性定理,并予以严谨的证明。
数学分析隐函数定理及应用

第18章 隐函数定理及其应用第1节 隐函数求导法在此之前,咱们所接触的函数,其表达式大多是自变量的某个算式,如)sin sin (sin ,1zx yz xy e u x y xyz ++=+=这种形式的函数称为显函数。
但在很多场合常会碰到另一种形式的函数,其自变量与因变量之间的对应法则是由一个方程式所决定的。
这种形式的函数称为隐函数。
本节将介绍由一个方程0),,(=z y x F 所肯定的隐函数求导法和由方程组⎩⎨⎧==0),,,,(0),,,,(v u z y x G v u z y x F 所肯定的隐函数求导法。
一 一个方程0),,(=z y x F 的情形在《数学分析》上册,第六章 导数与微分(第三节 高阶导数和其它求导法则P149)——曾对形如0),(=y x F 的方程,认定是x y 是的函数,介绍过隐函数求导法)。
不过,那里只是对具体方程未求的.利用偏函数符号, 咱们能够得出一般的结果。
按照复合函数求导法则, 在),(y x F 两边对x 求导, 取得:yX y Y X F F y F y F F -=≠⇒=⋅+''00时, 当方程中的变量多于2个时, 例如, 设方程0),,(=z y x F 肯定了y x z 和是的函数, 而且?,yz x z y x z ∂∂∂∂前,如何求的偏导数都存在,在此,关于 对0),,(=z y x F 求导,利用链式法则:,关于y x0(0);0(0)z z F FF F z z F F z z y x F F F F x z x x x z y yz z∂∂∂∂∂∂∂∂∂∂∂∂+=⇒=-≠+=⇒=-≠∂∂∂∂∂∂∂∂∂∂∂∂说明:(1) 求y z x z ∂∂∂∂,需要假定,0)(≠∂∂z F zF ,这一假设是很重要的;(2) 这里只用到了“链式法则”;(3) 对0),,(=z y x F 求导,只在假定y x z 和是的函数的情形下,求导数,如何肯定),(y x z z =。
《隐函数及几何应用》课件

利用软件求解隐函数
随着计算机技术的发展,利用数学软件 求解隐函数已经成为一种常见的做法。 通过将方程输入到软件中,可以快速得
到隐函数的解析表达式或数值解。
常用的数学软件包括:Matlab、 Maple、Mathematica等。这些软件 具有强大的符号计算和数值计算能力,
可以处理各种复杂的方程和问题。
02
03
单变量隐函数
只包含一个变量 $y$ 的隐 函数,如 $y^2 + x^2 = 1$。
多变量隐函数
包含两个或多个变量 $x$ 和 $y$ 的隐函数,如 $F(x, y) = 0$。
高阶隐函数
含有高阶导数的隐函数, 如 $y'' = f(x, y')$。
02
隐函数的几何意义
隐函数与几何图形的关系
进行选择和应用。
代数法求解隐函数需要一定的数 学基础和计算能力,对于复杂方
程可能需要较长时间和耐心。
几何法求解隐函数
几何法是通过绘制函数的图像来直观地求解隐函数的方法。 通过观察图像的交点和变化趋势,可以得出隐函数的解析表 达式。
几何法适用于一些较为简单的隐函数,可以通过描点法和切 线法等方法进行求解。这种方法直观易懂,但对于复杂隐函 数可能不够精确。
隐函数在微积分中的应用
在求极限、导数和积分等微积分基本运算中,隐函数常常作为重要的中 间变量出现。
在解决微分方程、偏微分方程等复杂数学问题时,隐函数往往提供了一 种简便的表示方式。
在几何应用中,隐函数可以描述曲面、曲线等几何对象,帮助我们更好 地理解空间结构。
微积分中隐函数的求解方法
通过求解方程组来找 到隐函数的表达式, 是微积分中常见的求 解方法。
隐函数定理及其应用

隐函数定理及其应用
隐函数定理是微积分学中的一个重要定理,也是微分几何和微分拓扑等数学分支的基础。
隐函数定理的基本内容是:给定一个多元函数方程组
$f(x_1,x_2,...,x_m,y_1,y_2,...,y_n)=0$,如果在某点
$(x_0,y_0)$处,该方程组满足一定的条件,则在该点附近存在一个函数$y=f(x)$,使得$f(x,f(x))=0$。
这个函数$f(x)$称为隐函数。
隐函数定理的应用非常广泛。
以下是几个常见的应用:
1. 曲线的参数化:对于一个曲线方程$f(x,y)=0$,如果存在一个函数$x=g(t)$和$y=h(t)$,满足$f(g(t),h(t))=0$,则可以用该函数表示原曲线。
这一方法在计算曲线的弧长、曲率等物理量时非常有用。
2. 求解方程:有时候某个方程的显式解法非常困难,可以用隐函数定理将方程转化成隐函数的形式,然后再求解。
3. 函数的导数和高阶导数:由于隐函数和其自变量之间没有显式的表达式,因此难以直接求其导数,但是隐函数定理可以提供求导的一般方法。
在求高阶导数的时候,隐函数定理更是非常重要的工具。
隐函数求导的几何意义与应用

隐函数求导的几何意义与应用隐函数是一种通过等式来定义的函数,其中自变量和因变量之间的关系不是显式地表达出来的。
在数学中,隐函数存在于许多问题中,并且经常需要求取其导数。
隐函数求导在解析几何学、物理学以及工程学等领域中有着重要的几何意义和广泛的应用。
本文将探讨隐函数求导的几何意义以及一些实际应用。
一、隐函数求导的几何意义隐函数求导的几何意义在于揭示了曲线或曲面的切线和法线的性质,以及曲线或曲面上某一点的局部几何特性。
通过对隐函数求导,我们可以了解到曲线的斜率、曲率以及曲面上的切平面和法线。
1. 曲线的切线和斜率对于给定的隐函数,若能求得其导数,即可获得曲线上任一点的切线斜率。
设隐函数为 F(x, y) = 0,其中 y 是 x 的函数。
根据隐函数定理,如果 F(x, y) 在某一点 (a, b) 处连续且具有连续偏导数,且偏导数不同时都不为零,那么在点 (a, b) 处必然存在一条唯一的切线。
这条切线的斜率可以通过对隐函数隐含地对 x 求导而得到。
2. 曲线的曲率除了切线的斜率,我们还可以通过隐函数的二阶导数来求取曲线的曲率。
曲率可以用来衡量曲线的弯曲程度。
通过对隐函数的一阶和二阶求导,我们可以得到曲线上任一点的曲率。
曲率的计算可以帮助我们分析曲线的几何形状,并研究曲线的特性。
3. 曲面的切平面和法线对于二元隐函数 F(x, y, z) = 0,其中 z 是 x 和 y 的函数,我们可以通过隐函数求导来求取曲面上任一点的切平面和法线。
与曲线类似,隐函数的一阶偏导数可以给出切平面的方程,而法线则是切平面的垂线。
二、隐函数求导的应用隐函数求导在许多实际问题中具有重要的应用。
以下是几个常见的应用例子:1. 几何分析通过隐函数求导,我们可以分析曲线和曲面的几何性质。
例如,在解析几何中,通过对平面曲线的隐函数求导,可以求取切线的斜率,从而揭示曲线的切线方向和斜率变化。
一些特殊曲线的求导结果,如圆的导数等,可以帮助我们研究曲线的性质和特征。
隐函数与隐函数微分

隐函数与隐函数微分隐函数是数学中的重要概念,它在许多实际问题中起到了至关重要的作用。
本文将介绍隐函数的定义、特点及其在微分学中的应用。
一、隐函数的定义与特点隐函数是指由一个或多个变量间的方程所决定的函数。
一般来说,我们用x和y来表示变量,其中x作为自变量,y作为因变量。
在某些情况下,我们可以将这个变量间的方程通过代数变换,将y表示为x的函数,那么这个函数就是显函数。
然而,在另一些情况下,我们很难将变量间的方程直接表示为y=f(x)的形式,这时候我们就需要借助隐函数的概念。
一个函数被称为隐函数,需满足以下两个条件:1.变量间的方程中含有至少一个未知函数;2.这个未知函数不能用其他变量表示出来。
例如,对于方程x^2+y^2=1来说,我们无法将y表示为x的显函数,因此y是x的隐函数。
二、隐函数的微分在微积分中,我们经常需要对函数进行微分,以求得函数在某一点的变化率。
而对于隐函数来说,由于它无法直接表示为y=f(x)的形式,所以我们需要通过一些技巧,来进行隐函数的微分。
对于一个由方程F(x,y)=0决定的隐函数y(x),我们想要求它的导数dy/dx。
为了实现这一目的,我们可以对方程两边同时求导。
首先,我们对方程两边关于x求导,得到:F_x(x,y) + F_y(x,y) * dy/dx = 0然后,我们解出dy/dx:dy/dx = -F_x(x,y) / F_y(x,y)通过这个方法,我们就可以求得隐函数的导数。
需要注意的是,由于隐函数的存在,并没有以显函数表达的直观性,所以我们很难对它的微分法则作出明确的判定。
因此,在实际运用中,我们需要根据具体的问题进行分析,并考虑如何合理应用微分法则。
三、隐函数的应用隐函数在许多实际问题中有着广泛的应用。
下面以一些具体的例子来说明其应用领域。
1.物理学中的应用隐函数在物理学中常用于描述各种物理规律。
例如,质点的运动方程可以通过隐函数来表示。
在求解过程中,我们可以利用隐函数的微分法和定积分等方法,求得质点的速度、加速度等物理量。
数学《隐函数定理及其应用》讲义

第十八章 隐函数定理及其应用§1 隐函数一、隐函数概念设X R ⊂,Y R ⊂, 函数:F X Y R ⨯→, 对方程(,)0F x y =,若存在集合I X ⊂,J Y ⊂,使得对任何x I ∈,存在唯一的y J ∈满足方程(,)0F x y =,则称(,)0F x y =确定了一个隐函数:f I J →, 记为()y f x =,x I ∈.此时, (,())0F x f x ≡,x I ∈恒成立. 相对地, 形如()y f x =的函数称为显函数.我们说隐函数的产生也是很自然的, 如函数73()y g x x x x ==++严格增, 因而其有反函数, 但不易求出显函数1()x g y -=, 此时只能说方程730y y y x ++-=能确定隐函数1()()dy g x f x -==. 当然, 显函数也可以写成隐函数的形式(,)()0F x y y f x =-=. 显函数的几何意义就是平面上的曲线. 而方程(,)0F x y =确定的隐函数()y f x =在几何意义上就是曲面(,)z F x y =与平面0z =相交得到一条曲线(()y f x =), 此曲线投影到x 轴, 投影为I , 而对每个x I ∈,有唯一的点(,)x y 在该曲线上.注 并不是每一个方程都可以确定一个隐函数,如2210x y ++=.关于隐函数, 我们主要关心两个问题: 1) 隐函数的存在性;2) 隐函数的性质(如连续和可微性等). 二、隐函数存在的直观分析从几何上看, 方程(,)0F x y =确定函数()y f x =.相当于曲线(,)0F x y =与直线0x x =有且仅有一个交点, 这就要求0(,)0F x y =恰好有一个解, 当然至少要有一个解, 即1︒ 00(,)x y ∃, 使得00(,)0F x y =.其次, 若要求曲线(,)0F x y =连续, 则需要假设2︒ 在00(,)x y 的某邻域内, F 连续.最后, 从隐函数的定义, 对一个x , 只能有一个y 满足(,)0F x y =. 这相当于F 作为y 的函数是单射. 因而我们要求F 关于y 严格单调, 或者条件3︒00(,)0y F x y ≠, 且y F 连续 (此时在00(,)x y 的某邻域内,F 关于y 严格单调).如果要求确定的隐函数可微, 则当F 可微时, 由链式法则有0x y F F y '+⋅=, 此时/x y y F F '=-, 即隐函数()y f x =可微. 而要保证F 可微, 一般需假设4︒x F 连续. 三、一元隐函数定理下面我们给出一元隐函数定理. 定理 若下列条件满足1) 函数(,)F x y 在000(,)P x y 为内点的某一区域2D R ⊂上连续; 2) 00(,)0F x y =(初始条件);3) 在D 内存在连续的偏导数(,)y F x y , 且00(,)0y F x y ≠,则在点0P 的某邻域0()U P D ⊂内, 方程(,)0F x y =唯一地确定了一个定义在某区间00(,)x x αα-+上的隐函数()y f x =, 满足1︒ 00()f x y =,00(,)x x x αα∈-+时, 0(,())()x f x U P ∈, 且(,())0F x f x =; 2︒ ()f x 在00(,)x x αα-+上连续.进一步, 若F 在D 上还存在连续的偏导数(,)x F x y , 则方程(,)0F x y =所确定的隐函数3︒ ()y f x =在00(,)x x αα-+内有连续导函数, 且(,)()(,)x y F x y f x F x y '=-.注 a) 为证1︒,2︒, 只需条件: 1) 00(,)0F x y =; 2) 在00(,)x y 的某邻域内F 连续; 3) F 关于y 严格单调.b) 定理中的条件充分而不必要. 如330y x -=在(0,0)不满足(0,0)0y F ≠,但仍确定函数y x =.c) 若条件改为00(,)0x F x y ≠, 则可确定函数()x g y =. 又若00(,)0x F x y ≠与00(,)0y F x y ≠同时成立, 则方程(,)0F x y =将同时确定函数()y f x =和()x g y =,使(,())((),)0F x f x F g y y ==,由于,x y 的对应关系唯一,故它们互为反函数, 且x y F dydx F =-将不变号(如果变号,dy dx 将有零点,在该点dx dy 不存在,与g 可微矛盾), 即隐函数严格单调.例1 反函数存在性定理及其导数.例2 设(,)sin 0F x y y y x ε=--=, 01ε<<. 求dy dx , 22d ydx.例3 讨论Descartes 叶形线3330x y axy +-=所确定的隐函数()y f x =的一阶与二阶导数.例4 设2212z y x =-, 其中()y f x =为方程3330x y xy +-=所确定的隐函数. 求dz dx ,22d z dx.例5 证明: 1) 在(0,0)附近方程2sin()0x y xy ++=可确定函数()y f x =;2) 求f 的导数; 3) (0)f 为极大值.四、n 元隐函数定理下面我们来讨论n 元隐函数定理.定理 设1) 函数12(,,,,)n F x x x y ⋅⋅⋅在以点0000012(,,,,)n P x x x y ⋅⋅⋅为内点的区域1n D R +⊂上连续;2) 000012(,,,,)0n F x x x y ⋅⋅⋅=; 3) 偏导数12,,,,n x x x y F F F F ⋅⋅⋅在D 内存在且连续;4) 000012(,,,,)0y n F x x x y ⋅⋅⋅≠,则在点0P 的某邻域0()U P D ⊂内方程12(,,,,)0n F x x x y ⋅⋅⋅=唯一地确定了一个定义在000012(,,,)n Q x x x ⋅⋅⋅的某邻域0()n U Q R ⊂内的n 元连续函数(隐函数) 12(,,,)n y f x x x =⋅⋅⋅,使得1︒.当120(,,,)()n x x x U Q ⋅⋅⋅∈时, 12120(,,,,(,,,))()n n x x x f x x x U P ⋅⋅⋅⋅⋅⋅∈; 2︒.12(,,,)n y f x x x =⋅⋅⋅在0()U Q 内有连续偏导数12,,,n x x x f f f ⋅⋅⋅, 且11,x x yF f F =-22,,n n x x x x yyF F f f F F =-⋅⋅⋅=-.即若F 关于某个变量偏导数不等于0, 则存在以之为因变量的隐函数.例6 讨论方程323(,,)0F x y z xyz x y z =++-=在原点附近所确定的二元隐函数(,)z f x y =及其偏导数.例7 设方程(,,)0F x x y x y z +++=确定(,)z f x y =.求,x y z z .例8 求由方程(,,)0F x y y z z x ---=所确定的函数(,)z z x y =的微分.例9 设(,)u f x ut y ut =+-,求,,x y t u u u .例10 证明: 由方程()()y x z z ϕψ=+所确定的函数(,)z z x y =满足方程2222222()2()0z z z z z z z y x y x y x x y∂∂∂∂∂∂∂⋅-⋅⋅⋅+⋅=∂∂∂∂⋅∂∂∂∂.§2 隐函数组给出线性方程组111122220a xb yc ud v a x b y c u d v +++=⎧⎨+++=⎩ 何时可从中解出(,)u f x y =, (,)v g x y =? 给定一般形式方程组(,,,)0(1)(,,,)0(2)F x y u vG x y u v =⎧⎨=⎩何时可从中解出(,)u f x y =, (,)v g x y =?一、隐函数组定理定理 1 设2,A B R ⊂, ,:F G A B R ⨯→. 00000(,,,)P x y u v =.若1) 00()()0F P G P ==;2) 在0P 的某邻域内, 1,F G C ∈; 3) Jacobi 行列式(,)(,)F G J u v ∂=∂在0P 处值不为0,则存在00(,)x y 的邻域U 及U 上的唯一一组1C 类函数,f g , 使得(,)u f x y =, (,)v g x y =满足1︒ 000(,)u f x y =,000(,)v g x y =,(,,(,),(,))0F x y f x y g x y ≡, (,,(,),(,))0G x y f x y g x y ≡, (,)x y U ∀∈,2︒ 1(,)(,)x F G u J x v ∂=-⋅∂,1(,)(,)y F G u J y v ∂=-⋅∂,1(,)(,)x F G v J u x ∂=-⋅∂,1(,)(,)y F G v J u y ∂=-⋅∂. [()11(,)()(,)xx v xvx v x v x vvF G G F F G u F G G F J J J x v F ψψ+⋅-∂=-==⋅-=-⋅∂]注 若定理条件3) 改为(,)0(,)P F G y v ∂≠∂, 则方程(1), (2)可确定的隐函数组为(,)(,)y y x u v v x u =⎧⎨=⎩. 更一般地, 可先求出,,,x y u v F F F F ,,,,x y u v G G G G , 如0u v uvF FG G ≠, 则可对(,,,)0(,,,)0F x y u vG x y u v =⎧⎨=⎩, 两边关于,x y 求偏导. 如对x 求偏导, 则x u x v x x u x v x F F u F v G G u G v +⋅+⋅=⎧⎨+⋅+⋅=⎩,从而u x v x xu x v x xF u F v FG u G v G ⋅+⋅=-⎧⎨⋅+⋅=-⎩⇒(,)(,)(,)(,)x u x u x u v u vF F FG G G x v u F G F F u v G G -∂-∂==-∂∂, (,)(,)(,)(,)x F G u x v F G u v ∂∂=-∂∂, 类似可以求出,y y u v .例1 讨论方程组222(,,,)0(,,,)10 F x y u v u v x y G x y u v u v xy ⎧=+--=⎨=-+-+=⎩, 在点0(2,1,1,2)P 附近能确定怎样的隐函数组, 并求其偏导数.例2 1) 已知01xu yv yu xv +=⎧⎨+=⎩, 求x u , y u , x v , y v ;2) 设2(,)(,)u f ux v y v g u x v y =+⎧⎨=-⎩, 求,u ux y ∂∂∂∂.3) 设函数(,)u u x y =由方程(,,,)(,,)0 (,)0 u f x y z t g y z t h z t =⎧⎪=⎨⎪=⎩确定. 求,u u x y∂∂∂∂.二、反函数组定理给定(,)(,)u f x y v g x y =⎧⎨=⎩, 何时有(,)(,)x u v y u v ϕψ=⎧⎨=⎩?设(,,,)(,)0(,,,)(,)0 F x y u v f x y u G x y u v g x y v =-=⎧⎨=-=⎩,00000(,,,)P x y u v =, 由隐函数组定理条件为1) 00()()0F P G P ==, 即000(,)u f x y =, 000(,)v g x y =;2) 在0P 的某邻域内, 1,F G C ∈, 由于1u v F G ==-, 0v u F G ==连续, 故条件2)为在00(,)x y 的某邻域内1,f g C ∈.3)0000(,)(,)(,)(,)0(,)(,)x y x yx y x y f f F G u v g g x y x y ∂∂==≠∂∂.因而我们可得到下面的反函数组定理. 定理2 若1) 000(,)u f x y =, 000(,)v g x y =;2) 在00(,)x y 的某邻域内1,f g C ∈; 3)00(,)(,)0(,)x y u v x y ∂≠∂,则存在00(,)u v 的邻域U 及唯一的一组1C 函数(,)x u v ϕ=,(,)y u v ψ=.((,)u v U ∈), 使得1︒ ((,),(,))u f u v u v ϕψ=, ((,),(,))v g u v u v ϕψ=, 000000(,),(,)x u v y u v ϕψ==; 2︒(,)(,)1(,)(,)u v x y x y u v ∂∂⋅=∂∂. [(,)/(,)x v u v u y x y ∂∂∂=∂∂∂, (,)/(,)x u u v vy x y ∂∂∂=-∂∂∂, (,)/(,)y u u v u x x y ∂∂∂=-∂∂∂, (,)/(,)y u u v v x x y ∂∂∂=∂∂∂.]例3 设sin cos u ux e u vy e u v ⎧=+⎨=-⎩, 求,,,x y x y u u v v .例4 求cos sin x r y r θθ=⎧⎨=⎩的反函数组.例5 求sin cos sin sin cos x r y r z r θϕθϕθ=⎧⎪=⎨⎪=⎩的反函数组.例6 利用sin cos x r θϕ=, sin sin y r θϕ=, cos z r θ=变换2221u u x u y u z ∆=++.例6 已知经过代换2u x yv x ay =-⎧⎨=+⎩后, 方程60zz xy yy z z z +-=化为方程0uv z =,求a 的值.§3 几何应用一、平面曲线的切线与法线平面曲线()y f x =, 在000(,)P x y 处的切线方程000()()y y f x x x '-=-. 若平面曲线由方程(,)0F x y =给出, (,)F x y 在点000(,)P x y 的某邻域内满足隐函数定理条件, 故其在0P 附近可确定连续可微函数()y f x =(或()x g y =). 注意到()y f x =与(,)0F x y =表示的是同一曲线, 故曲线(,)0F x y =在0P 处的切线和法线方程分别为000()()y y f x x x '-=-与0001()()y y x x f x -=--' (或000()()x x g y y y '-=-与0001()()x x y y g y -=--') 又()xy F f x F '=-(或()y xF g y F '=-), 则曲线(,)0F x y =在000(,)P x y 处的切线方程: 000000(,)()(,)()0x y F x y x x F x y y y -+-=, 法线方程: 000000(,)()(,)()0y x F x y x x F x y y y ---=.例1 求Descartes 叶形线 332()90x y xy +-= 在(2,1)处的切线与法线方程.二、空间曲线的切线与法平面 1、 曲线由参数方程给出.设 :(),(),()L x x t y y t z z t ===, ()t αβ≤≤. (1) 下面求L 在其上某点0000(,,)P x y z 处的切线与法线方程, 这里00()x x t =,00()y y t =,00()z z t =,0()t αβ≤≤.假设(1)中三个函数均在0t 处可导且222000(())(())(())0x t y t z t '''++≠,在L 上0P 附近任取一点(,,)P x y z =000(,,)P x x y y z z +∆+∆+∆, 从而连接0P 与P 的割线方程为000x x y y z z x y z---==∆∆∆, 其中00()()x x t t x t ∆=+∆-, 00()()y y t t y t ∆=+∆-, 00()()z z t t z t ∆=+∆-, 又000x x y y z z x y z t t t---==∆∆∆∆∆∆, 令0t ∆→, 则0P P →, 且曲线L 在0P 处的切线方程为000000()()()x x y y z z x t y t z t ---=='''. 进而曲线L 在0P 处的法平面方程为000000()()()()()()0x t x x y t y y z t z z '''-+-+-=.2、曲线由两曲面给出设曲线L 的方程为 (,,)0(,,)0F x y z G x y z =⎧⎨=⎩ (2)设1,F G C ∈, 且0(,)0(,)P F G J x y ∂=≠∂. 则由隐函数组定理, 在0P 附近能确定唯一的连续可微函数()x z ϕ=, ()y z ψ=使得1)00()x z ϕ=, 00()y z ψ=,2)1(,)(,)dx F G dz J z y ∂=-⋅∂, 1(,)(,)dy F G dz J x z ∂=-⋅∂. 故曲线L 在0P 处的切线方程为000001P P x x y y z z dx dy dz dz ---==, 即 000000(,)(,)(,)(,)(,)(,)P P P x x y y z z F G F G F G y z z x x y ---==∂∂∂∂∂∂,而L 在0P 处的法平面方程为000000(,)(,)(,)()()()0(,)(,)(,)P P P F G F G F G x x y y z z y z z x x y ∂∂∂-+-+-=∂∂∂.例 2 求曲线22250x y z ++=与锥面222x y z +=所截得的曲线在点(3,4,5)处的 切线与法平面方程.三、曲线的切平面与法线方程设曲面方程由 (,,)0F x y z = (3)给出, 其在0000(,,)P x y z 的某邻域内满足隐函数定理条件. 设000(,,)z F x y z 0≠, 则方程(3)在0P 附近确定唯一1C 函数(,)z f x y =使得000(,)z f x y =且x z F z x F ∂=-∂, y zF zy F ∂=-∂, 从而该曲面在0P 处有切平面与法线其方程分别为000000000000000(,,)(,,)()()(,,)(,,)y x z z F x y z F x y z z z x x y y F x y z F x y z -=----,即 000000()()()()()()0x y z F P x x F P y y F P z z -+-+-= 与000000()()()x y z x x y y z z F P F P F P ---==. 例3 求椭球面222236x y z ++=在(1,1,1)处的切平面方程与法线方程.例4 =(0)a >的切平面在坐标轴上截距之和为常数.§4 条件极值一、条件极值极值问题↔定义域↔条件的限制例 1 设计一个容量为V 的长方形开口水箱, 试问水箱的长x , 宽y , 高z 分别为多少时其表面积最小.(,,)2()S x y z xz yz xy =++ (0,0,0)x y z >>>满足条件 xyz V = ———— 条件极值问题条件极值问题 求(目标)函数()u f x =, 12(,,,)n n x x x x D R =⋅⋅⋅∈⊂在 (约束)条件()0i g x =, 1,2,,i m =⋅⋅⋅, m n <下的极值.设{,()0,1,2,,}i E x D g x i m =∈==⋅⋅⋅, a E ∈. 若存在开球(,)B a r D ⊂,使(,)x E B a r ∈⋂时,()()f x f a ≥(或()()f x f a ≤), 则称f 在a 达到(满足条件()0i g x =)的条件极小(极大)值.例1的解二、条件极值的必要条件 (3n =,2m ≥来讨论)设3D R ⊂为开域, 12,,:f g g D R →为1C 函数, 123(,,)x x x x D =∈. 若f 在点123(,,)a a a a =处达到条件极值, 且111123222123rank 2ag g g xx x g g g x x x ∂∂∂⎛⎫ ⎪∂∂∂⎪= ⎪∂∂∂ ⎪∂∂∂⎝⎭,(1grad ()g a ,2grad ()g a 线性无关). 则存在12,R λλ∈, 使得1212()()()0j j jg g fa a a x x x λλ∂∂∂++=∂∂∂, 1,2,3j =. 即a 是Lagrange 函数1122L f g g λλ=++的驻点.三、Lagrange 乘法求()u f x =, 1(,,)n n x x x D R =⋅⋅⋅∈⊂在条件()0i g x =, (1,2,,)i m =⋅⋅⋅下的极值.方法为1︒ 作Lagrange 函数1111(,,,,,)()()()n m m m L x x f x g x g x λλλλ⋅⋅⋅⋅⋅⋅=++⋅⋅⋅+, x D ∈.2︒ 令0 (1,,)iLi n x ∂==⋅⋅⋅∂, 0 (1,,)j L j m λ∂==⋅⋅⋅∂, 求驻点. (m n +个方程, m n +个未知量)3︒ 求D 中使1,,,m f g g ⋅⋅⋅不为1C 的点, 及使1rank(grad ,,grad )m g g m ⋅⋅⋅<的点.(这些点与驻点成为可能的极值点).4︒ 用无条件极值方法判断上述可能点是否为极值点. 例2 重解例1.例3 求抛物面22x y z +=被平面1x y z ++=截成一个椭圆, 求该椭圆到原点的最长和最短距离.例4 求(,,)f x y z xy yz =+在条件222x y +=, 2y z +=下的极值.例5 求平面一点00(,)x y 到直线0Ax By C ++=的最短距离.例6 求(,,)f x y z xyz =在条件1111x y z r++= (,,,)x y z r R +∈下的极小值, 并证明11113()a b c-++≤, ,,a b c R +∀∈.例7 求目标函数222000(,,)()()()f x y z x x y y z z =-+-+-在约束条件Ax By ++0Cz D +=下的最小值.例8 求1212(,,,)n n f x x x x x x ⋅⋅⋅=⋅⋅⋅在12n x x x a ++⋅⋅⋅+=约束条件下的最大值.例9 已知12(,,),(,,),(,)G x y z G x y z f x y 都是可微的,(,)(,,(,))i i g x y G x y f x y =, 1,2i =.求证:121112221(,)(,)x y xy z xyzf fg g G G G x y G G G --∂=∂.例11 183P , 5.例10 183P 11二次型, 特征值问题.例12 183P , 12.例13 184P , 14.若函数组(,),(,)u u x y v v x y ==有连续的偏导数, 而(,),(,)x x s t y y s t ==有连续偏导数, 则(,)(,)(,)(,)(,)(,)u v u v x y s t x y s t ∂∂∂=⋅∂∂∂. [设(),()y f x x t ϕ==, 则dy dy dx dt dx dt=⋅.]Jacobi 行列式的几何意义一元 ()y f x =, 0x , 0x x x =+∆, 00()()y f x x f x ∆=+∆-称||||y x ∆∆为f 在0x 到0x x +∆的平均伸缩系数.若0x ∆→, 极限00000()()||limlim |()|||x x f x x f x y f x x x∆→∆→+∆-∆'==∆∆, 则称0|()|f x '为映射f 在0x 处的伸缩系数. (导数的几何意义)若函数组(,),(,)u u x y v v x y ==在开区域G 存在连续的偏导数且(,)x y G ∀∈,(,)(,)0(,)u v J x y x y ∂=≠∂. 函数组将xy 平面的开区域G 变换成uv 平面上的开区域1G ,点00(,)x y G ∈映为点10000((,),(,))u x y v x y G ∈, 则包含点00(,)u v 的面积微元d σ'与对应的包含点00(,)x y 的面积微元d σ之比为00|(,)|J x y . 即0000(,)(,)|(,)|(,)x y d u v J x y d x y σσ'∂==∂.。
隐函数求导方法及应用

隐函数求导方法及应用隐函数求导作为微积分中的重要概念之一,在解决实际问题中起到了重要的作用。
本文将介绍隐函数求导的方法以及其在实际应用中的具体案例。
一、隐函数求导的基本概念和方法隐函数是一类无法用显式表达式表示的函数,其自变量和因变量之间的关系以隐含的形式存在。
在进行隐函数求导时,我们可以利用链式法则和隐函数定理来完成。
1. 链式法则链式法则是求导中的一个基本原理,用于处理复合函数的求导问题。
对于一个由两个函数构成的复合函数,求导时可以分别对其内外两个函数进行求导,然后相乘得到最终的导数。
2. 隐函数定理隐函数定理是隐函数求导的基础,它通过求偏导数的方式将隐函数的导数转化为已知的函数导数。
对于一个由两个变量构成的隐函数,根据隐函数定理,可以通过求解偏导数的方程组得到隐函数的导数。
二、隐函数求导的实际应用隐函数求导在实际问题中具有广泛的应用,包括物理、经济、生物等领域。
下面将以物理学中的匀变速直线运动问题为例,来说明隐函数求导的应用过程。
假设一个物体在水平方向上做匀变速直线运动,位置与时间的关系可以表示为 x = f(t),速度与时间的关系可以表示为 v = g(t)。
根据运动学的知识,速度的定义是位移对时间的导数,即v = dx/dt。
根据隐函数求导的方法,我们可以将速度表示为 v = dx/dt = dx/dt * dt/dt = dx/dt * dt/dx。
由于 x = f(t),所以 dx/dt = d(f(t))/dt。
同理,将 v = dx/dt * dt/dx 带入到 dx/dt = d(f(t))/dt 中,可以得到 v = d(f(t))/dt * dt/dx。
进一步推导可得 v = dx/dt = d(f(t))/dt * dt/dx = d(f(t))/dx。
通过这个例子,我们可以看到隐函数求导的应用在物理学问题中的价值。
三、结论隐函数求导是微积分中的重要概念,通过应用链式法则和隐函数定理,我们可以求解无法用显式表达式表示的函数的导数。
第 十 八 章 隐 函 数 定 理 及 其 应 用 - 河南教育学院

2o f ( x ) 在 ( x0 − α , x0 + α ) 上连续. 上连续.
前页 后页 返回
既是充分条件, 注1 定理 18.1 的条件 (i) ~ (iv) 既是充分条件 又 是一组十分重要的条件. 例如: 是一组十分重要的条件 例如: ① F ( x , y ) = y 3 − x 3 = 0 , F y ( 0,0 ) = 0 , 在点 ( 0 , 0 ) 虽 不满足条件 (iv),但仍能确定惟一的隐函数 y = x . , 双纽线), ② F ( x , y ) = ( x 2 + y 2 ) 2 − x 2 + y 2 = 0 (双纽线 在 双纽线 点 ( 0 , 0 ) 同样不满足 如图18- 条件 (iv); 如图 -3
x 2 + y 2 + 1 = 0 显然不能确定任何隐函数. 例如 显然不能确定任何隐函数.
注3 隐函数一般需要同时指出自变量与因变量的
x 2 + y 2 = 1 可确定如下两 取值范围. 取值范围.例如由方程
个函数: 个函数:
前页 后页 返回
y = f1 ( x ) ( =
1 − x2 ),
x ∈ [−1 , 1 ], y ∈ [ 0 , 1 ] ;
Fx ( x , y ) f ′( x ) = − , ( x, y) ∈ I × J . Fy ( x , y )
( 注: 其中
I = ( x0 − α , x0 + α ) 与 J = ( y0 − β , y0 + β )
(2)
示于定理18.1 的证明 (d) ). 示于定理
前页 后页 返回
存在二阶连续偏导数时, 注1 当 F ( x , y ) 存在二阶连续偏导数时,所得隐函 数也二阶可导.应用两次复合求导法, 数也二阶可导.应用两次复合求导法,得
《隐函数定理及应用》课件

抽象空间的隐函数定理
总结词
介绍了抽象空间中隐函数定理的概念、证明方法和应用实例 。
详细描述
抽象空间的隐函数定理是数学分析的一个重要成果,它突破 了传统欧几里得空间的限制,允许函数在更广泛的抽象空间 中定义和讨论。该定理在实变函数、复变函数和微分几何等 领域有着广泛的应用。
隐函数定理的进一步研究
总结词
05
隐函数定理的应用实例
在几何学中的应用实例
曲面绘制
利用隐函数定理,可以将一个方 程组转化为曲面,从而绘制出复 杂的几何图形。
曲线拟合
在数据分析和机器学习中,隐函 数定理常用于曲线拟合,通过最 小化误差平方和来找到最佳拟合 曲线。
几何变换
隐函数定理可以用于研究几何变 换,例如平移、旋转和缩放等, 帮助我们更好地理解图形之间的 变换关系。
100%
预备知识的回顾
回顾相关的导数和微积分基础知 识,为证明提供理论支持。
80%
符号约定Biblioteka 统一符号和记号,确保证明过程 中的表述准确无误。
定理证明的主要步骤
02
01
03
设定定理条件
明确隐函数定理的条件,为证明提供前提。
推导关键公式
根据条件推导出关键公式,如雅可比矩阵、全微分等 。
证明定理结论
利用关键公式,逐步推导证明隐函数定理的结论。
展望了隐函数定理未来的研究方向和可能的发展趋势。
详细描述
随着数学和其他学科的不断发展,隐函数定理的应用范围也在不断扩大。未来对于隐函数定理的研究,可能会涉 及到更复杂的多元函数和抽象空间,以及与其他数学分支的交叉研究。同时,随着计算机科学的发展,数值计算 和符号计算在隐函数定理的应用中也将发挥越来越重要的作用。
隐函数求导的方法与应用

隐函数求导的方法与应用隐函数求导是微积分中的重要内容之一,它在解决实际问题中具有广泛的应用。
本文将介绍隐函数求导的基本方法和一些常见的应用实例。
一、基本方法在解析函数、显式函数和隐函数的区别之前,我们先来了解一下隐函数的定义。
隐函数是指由两个或多个变量之间的方程所确定的函数,其中其中一个变量无法通过显式的表达式表示出来。
1. 隐函数的求导公式对于一个具有两个变量的隐函数 f(x, y) = 0,我们可以通过求导来计算隐函数的导数。
首先,我们将隐函数对 x 进行求导,然后对于 y,我们使用链式法则。
举个例子,设有一个隐函数方程 x^2 + y^2 - 25 = 0,我们希望求出y 对 x 的导数。
首先,对 x 进行求导,我们得到 2x + 2y * dy/dx = 0。
接着,根据链式法则,我们可以得到 dy/dx = -2x / 2y = -x / y。
2. 隐函数求导的步骤为了更好地理解和应用隐函数求导的方法,我们可以遵循以下步骤:步骤一:确定隐函数的方程。
步骤二:对隐函数方程两边同时求导。
步骤三:将导数项整理至一边,将原函数项整理至另一边。
步骤四:解出导数,即得到隐函数的导数。
二、应用实例隐函数求导在实际问题中有着广泛的应用。
下面,我们将介绍几个常见的应用实例。
1. 隐函数求切线方程在平面几何中,通过求导可以得到隐函数的切线方程。
例如,设有一个隐函数方程 x^2 + y^2 - 25 = 0,我们希望求出曲线在点(3,4)处的切线方程。
首先,根据隐函数求导的方法,我们得到 dy/dx = -x / y。
将点(3,4)代入方程,我们可以求得该点的斜率 m = -3 / 4。
进一步,我们可以通过点斜式公式 y - y1 = m(x - x1) 得到切线的方程。
2. 隐函数求极值点隐函数求导也可以应用于寻找隐函数的极值点。
以一个典型的例子来说明这一应用。
设有隐函数方程 y^3 + x^2 - 16 = 0,我们希望找出函数的最小值点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈隐函数及其应用分类号:学校代码:11460学号:11201910南京晓庄学院本科生毕业论文浅谈隐函数及其应用On the implicit function and its application所属院(部):信息工程学院学生姓名:王林林指导教师:马圣容研究起止日期:二○一四年十一月至二○一五年五月【摘要】本文从隐函数定理的内容、隐函数的概念、证明方法,以及隐函数定理的应用几个方面进行了简单的介绍。
首先从隐函数定理出发,介绍并证明隐函数组定理和反函数组定理。
通过这些推论,我们知道了隐函数定理的在很多方面都有着广泛的用途。
最后讨论了隐函数定理在计算偏导数和导数、几何应用这几个方面的应用并做了具体的论述.【关键词】隐函数定理;应用;导数;证明【Abstract】 In this paper, the contents of the implicit function theorem, the concept ofimplicit function, the proof method, and the application of the implicit function theorem are briefly introduced.. From the implicit function theorem, we introduce and prove the implicit function theorem and inverse function group theorem.. Through these inferences, we know that the implicit function theorem is widely used in many aspects.. At last, the application of the implicit function theorem in the calculation of partial derivative and derivative, and its application in geometrical application are discussed.【Key words】implicit function theorem; Application; Optimization theory; proof目录摘要 (I)Abstract (II)绪论 (1)第1章隐函数 (2)1. 1 隐函数 (2)1. 2 隐函数组的概念 (2)1. 3 反函数组的概念 (3)第2章隐函数定理 (4)2. 1 隐函数定理 (4)2. 2 隐函数组定理 (6)2. 3 反函数组定理 (7)第3章隐函数定理的应用 (9)3. 1 计算导数和偏导数 (9)3. 1. 1 隐函数的导数 (9)3. 1. 2 隐函数组的导数 (9)3. 1. 3 对数求导法 (10)3. 1. 4 由参数方程所确定的函数的导数 (10)3. 2 几何应用 (11)3. 2. 1 空间曲线的切线与法平面 (11)3. 2. 2 空间曲面的切平面与法线 (13)结论 (18)参考文献 (19)致谢 (20)绪论我们平时所遇到的大多是显函数,但是在实际问题中,有些问题显函数是无法解决的。
隐函数的产生为现实生活中的很多问题带来了便捷。
本论文就隐函数的定理做了一些研究,并列举了一些实例,对此进行了有效的验证。
通过对隐函数的几个方面的研究,使我对加深了对隐函数的认识。
文章主要介绍了隐函数定理等相关推论,并给出了隐函数定理在计算偏导数和导数、几何应用这两个方面上的应用.第一章 隐函数1.1 隐函数函数)(x f (对应关系)大多是用自变量的数学表达式来表示的,通常称这样的函数为显函数. 例如2)(+=x x f ,)(x f =x cos .定义1.1 如果方程f (x ,y )=0能确定y 是x 的函数,那么称这种方式表示的函数是隐函数例如,01=-+y xy 能确定一个定义在(-∞,-1)∪(-1,+∞)上的隐函数y=f(x),如果从方程中把y 解出,这个函数也可以用表示为隐函数形式xy +=11 不是所有的隐函数都能写成)(x f y =的形式,如122=+y x ,所以隐函数不一定是函数,而是方程. 换句话说,方程不一定是函数,但函数都是方程。
1.2 隐函数组的概念定义1.2设有方程组⎩⎨⎧==. 0),,,(, 0),,,(v u y x G v u y x F 其中),,,(),,,,(v u y x G v u y x F 为定义在4R V ⊂上的4元函数,若存在平面区域D ,2RE ⊂,对于D 中每一点(x,y),有唯一的E v u ∈),(,使得V v u y x ∈),,,(,且满足方程组,则称由方程组确定了隐函数组,),(,),(),,(),,(E v u D y x y x g v y x f u ∈∈⎩⎨⎧== 并在D 上成立恒等式.),(,0)),(),,(,,(,0)),(),,(,,(D y x y x g y x f y x G y x g y x f y x F ∈⎩⎨⎧==第二章 隐函数定理2.1隐函数定理定理2.1 定理2. 1 若函数),(y x F 满足下列条件(1)F 在),(000y x P 以内点的某一区域2R D ⊂上连续,(2)0),(00=y x F (通常成为初始条件)(3)F 在内存在连续的偏导数),(y x F y(4)0),(00≠y x F y 则有下列结论成立:①)(x f y =在区间),(00ρρ+-x x内连续; ②存在点0P 的某领域 ,)(0D P U ⊂ 在 )(0P U . 上方程0),(=y x F 唯一地决定了一个定义在某区间),(0αα+-x x 上的(隐)函数 )(x f y = 使得当),(00αα+-∈x x x 时, )())(,(0P U x f x ∈且00)(,0))(,(y x f x f x F == 证 先证明隐函数f 的存在性与惟一性. ∵0),(00≠y x F y ,∴),(y x F y是连续的, ∵我们知道),(y x F y的连续性与局部保号性, 且闭矩形域=D )(],[],[0'0'0'0'0p U y y x x ⊂+-⨯+-ρρρρ有0),(>y x F y )),((D y x ∈∀∴,对任意的],['0'0ρρ+-∈x xx ,),(y x F 在],['0'0ρρ+-y y 上严格单调增加. ∵0),(00=y x F ,∴可得),(,0),('00'00>+<-ρρy x F y x F又由于),(),,('0'0ρρ+-y x F yx F 在],['0'0ρρ+-x x上是连续的,∴存在)(0'ρρρ<>,使得)),((0),(,0),(00'0'0ρρρρ+-∈>+<-x x x y x F y x F∴对每一个固定的),(00ρρ+-∈x xx ,),(y x F 在],['0'0ρρ+-y y上都是单调递增的连续函数,),(,0),('0'0>+<-ρρy x F y x F∵零点存在定理,存在惟一的],['0'0ρρ+-∈y yy ,使得),(=y x F . 因此由y 与x 的对应关系就确定了一个函数)(x f y =,其定义域为),(00ρρ+-x x,值域包含于],['0'0ρρ+-y y ,记为:),(),()('0'0000ρρρρ+-⨯+-=y y x x P V从而结论①得以证明.再证明)(x f 的连续性. 对于 ),(00αα+-x x上的任意点 )(,___x f y x =,则由上述结论可知 .0_βεβ+--y y y<< 任给 0>β且ε 足够小,使得βεεβ+≤+-≤-0___y y y y y<<由0),(__=y x F 及 ),(y x F 关于y 严格递增,可得),0),(____>(,<εε+-y x F y x F ,根据保号性,知存在_x 的某领域 ),(),(00__ααδδ+-⊂+-x xx x ,使得当 ),(__δδ+-∈x x x 时同样有,>,<0),(0),(__εε+-y x F y x F因为存在唯一的y ,使得 0),(=y x F , 即ε<_),(y y x f y -=这就证明了当δ<_x x - 时,ε<_)()(x f x f - ,即)(x f 在_x 连续,由 _x 得任意性,可得 )(x f 在 ),(00αα+-x x 上连续最后证明隐函数)(x f y =的可微性. 任取x 和x x ∆+都属于),(00ρρ+-x x,它们相对应的隐函数值为)(x f y =和)(x x f y y ∆+=∆+,那么),(,0),(=∆+∆+=y y x x F y x F由多元函数微分中值定理,可得yy y x x F x y y x x F y x F y y x x F y x ∆∆+∆++∆∆+∆+=-∆+∆+=),(),(),(),(0θθθθ在这里, 10<<θ. 因此,当y x ∆∆,充分小时),(),(y y x x F y y x x F x yy x ∆+∆+∆+∆+-=∆∆θθθθ.因为),(y x F x和),(y x F y是连续的,取极限0→∆x 可得),(),()('y x F y x F dx dyx f y x -==且)('x f在),(00ρρ+-x x内连续.相应的,我们能够得出由方程0),,,,(21=y x x x F n所确定的n 元隐函数的存在定理:定理2.2如果f(x)满足下列几个条件 (1)0),,,,(000201=y x x xF n ;(2)在点),,,,(00021y x x x P n的一个邻域⊂)(0P U 1+n R 内,函数),,,,(21y x x x F n 连续;(3) 0),,,(00201≠y xx x F n ny,那么则有以下结论成立:①),,,(21nx x x f y =在邻域nR R U ⊂)(0内连续;②),,,(21nx x x f y =在邻域nR R U ⊂)(0内具有连续的偏导数,满足n i y x x x F y x x x F x yn y n x i i ,,2,1,),,,,(),,,,(2121 =-=∂∂.例 2. 1 验证方程0),(=+=x ye xey x F 在原点)0,0(的某邻域内确定唯一的连续函数)(x f y =.证明 由于),(y x F 与xyye xeF +='都在2R 上连续,当然在点)0,0(的邻域内连续,且01)0,0(,0)0,0(≠='=yF F由此可知方程0),(=y x F 在点)0,0(的某邻域内确定唯一连续的隐函数)(x f y =.例2.22.2隐函数组定理定理 2.3设),,,(),,,,(v u y x G v u y x F 以及它们的一阶偏导数在以点),,,(0v u y x P 为内点的某区域⊂V 4R 内连续,且满足(1)0),,,(,0),,,(0==v u y x G v u y x F(2)0),(),(0≠=∂∂=P vuvu G G F Fv u G F J则⎩⎨⎧==0),,,(0),,,(v u y x G v u y x F ,在0P 的某邻域)(0P U 内唯一确定两个隐函数),(y x f u =,),(y x g v =,结论如下: ①),(),,(000000y x g v y x f u==,则有⎩⎨⎧≡≡0)),(),,(,,(0),(),,(,,(y x g y x f y x G y x g y x f y x F②),(),,(y x g v y x f u ==在邻域2)(R R U ⊂内具有连续的一阶偏导数,且),(),(1,),(),(1x u G F J x v v x G F J x u ∂∂-=∂∂∂∂-=∂∂),(),(1,),(),(1y u G F J y v v y G F J y u ∂∂-=∂∂∂∂-=∂∂例 2. 2验证方程组⎩⎨⎧=+--=++-42822222vu y xv u y x 在点)1,2,1,3(-的邻域内确定隐函数组,并求x u ∂∂,xv∂∂. 解 令82),,,(-++-=v u y x v u y x F ,42),,,(2222-+--=v u y x v u y x G则:)1,2,1,3(,0)1,2,1,3(=-=-F GF与G 以及它们的一阶偏导数都连续且)(22211),(),(v u vu v u G F +=-=∂∂,06),(),()1,2,1,3(≠=∂∂-v u G F所以由隐函数组定理可知题设方程组确定隐函数组⎩⎨⎧==),(),(y x v v y x u u在方程两端同时对x 求导得⎪⎩⎪⎨⎧=∂∂⋅+∂∂⋅-=∂∂+∂∂+022201x v v x u u x x v x u解得v u u x x u +-=∂∂,vu ux x v ++-=∂∂2.3反函数组定理定理2. 4若函数组),(),,(y x v v y x u u ==满足如下条件:(1)),(),,(y x v v y x u u ==均具有连续的偏导数(2)0),(),(≠∂∂=y x v u J 则函数组),(),,(y x v v y x u u ==可确定唯一的具有连续偏导数的反函数组),(),,(v u y y v u x x ==且有yvJ u x ∂∂=∂∂1,y u J v x ∂∂-=∂∂1,x v J u y ∂∂-=∂∂1,xu J v y ∂∂=∂∂1 及),(),(1),(),(y x v u v u y x ∂∂=∂∂或1),(),(),(),(=∂∂⋅∂∂v u y x y x v u定理2. 5 若函数组⎪⎩⎪⎨⎧==),,(),,(212111n n nn x x x y y x x x y y 满足如下条件: (1)ny yy ,21,均具有连续的偏导数(2)0),,(),,(2121≠∂∂nn x x x y y y 则此函数组可确定唯一的具有连续偏导数的反函数组⎪⎩⎪⎨⎧==),,(),,(212111n n nn y y y x x y y y x x且有1),,(),,(),,(),,(21212121=∂∂⋅∂∂n n n n x x x y y y y y y x x x例:设平面上点P 的直角坐标),(y x 与极坐标),(θr 之间的坐标变换公式为 θθsin ,cos r y r x ==求反函数组解:由于θθθθθcos sin sin cos ),(),(r r r y x -=∂∂r =∴反函数组是22y x r +=,⎪⎩⎪⎨⎧+0,arctan 0,arctan <>x x yx x y πθ第三章 隐函数定理的应用3.1计算导数和偏导数 3.1.1隐函数的导数 例 求由方程0cos 23=+-+y xy e xx 所确定的函数)(x f y =的导数y.解 将方程两端对x 求导数,由于方程中的y cos 是y 的函数,从而y cos 是x 的复合函数。