第九章 磁场
第九章第1讲磁场及其对电流的作用-2025年高考物理一轮复习PPT课件
解析
高考一轮总复习•物理
考点 安培力及安培力作用下导体的运动
第25页
1.安培力公式 F=IlB 的理解 (1)B 与 I 垂直. (2)l 是有效长度. 弯曲导线的有效长度 l,等于连接弯曲导线两端点线段的长度(如图所示);相应的电流 沿直线由始端流向末端.
(3)安培力方向:左手定则判断.
高考一轮总复习•物理
A. 3BIR
B. 2BIR
C.BIR
D.0
解析:由几何关系可知,C、D 两点间的距离 L=2Rsin 60°= 3R,由等效思想可知, 导体线圈受到的总安培力的大小 F 安=BIL= 3BIR,故选 A.
解析 答案
高考一轮总复习•物理
第30页
2. [通电导体在安培力作用下的运动]一个可以自由运动的线圈 L1 和一个固定的线圈 L2 互相绝缘垂直放置,且两个线圈的圆心重合,如图所示.当两线圈中通以图示方向的电 流时,从左向右看,线圈 L1 将( )
解析
高考一轮总复习•物理
第29页
1. [安培力的计算]如图所示,将一根同种材料、粗细均匀的导体 围成半径为 R 的闭合导体线圈,固定在垂直线圈平面、磁感应强度大 小为 B 的匀强磁场中.C、D 两点将线圈分为上、下两部分,且 C、D 两点间上方部分的线圈所对应的圆心角为 120°.现将大小为 I 的恒定电 流自 C、D 两点间通入,则线圈 C、D 两点间上、下两部分导线受到 的总安培力的大小为( )
A.不动 C.逆时针转动
B.顺时针转动 D.在纸面内平动
答案
高考一轮总复习•物理
第31页
解析:方法一(电流元法) 把线圈 L1 沿水平转动轴分成上下两部分,每一部分又可以看 成由无数段直线电流元组成,电流元处在 I2 产生的磁场中,根据安培定则可知各电流元所在 处的磁场方向,由左手定则可得,上半部分电流元所受安培力均指向纸外,下半部分电流元 所受安培力均指向纸内,因此从左向右看,线圈 L1 将顺时针转动.
【最新】总复习高中物理课件:第九章+磁场9-1-1-安培定则的应用和磁场的叠加.pptx
直线电流的磁场 环形电流及通电螺 线管的磁场
原因(电流方向) 结果(磁场方向) 大拇指 四指
)两个电流附近的磁场的磁感应强度是两个电流
分别单独存在时产生的磁场的磁感应强度叠加而成
的. (2)若两个磁场在某处产生的磁感应强度B1、B2不 在同一直线上时,则应用平行四边形定则进行矢量 合成可求得该点的磁感应强度B.
题组剖析
1 .下列关于小磁针在磁场中静止时的指向,正确的是 ( ) 解析 根据在磁体外部同名磁极相互排斥可知选项 A错 误; 应用安培定则可知环形电流中心线上的磁场方向由右 向左,小磁针N极受到的磁场力向左,选项B错误; 根据安培定则可知通电螺线管内部磁场向右,内部小 磁针N极受到的磁场力向右,选项C正确; 根据安培定则可知通电直导线右边磁场向 里,小磁针N极应向里,选项D错误。 答案 C
课堂互动
2. 磁感应强度B与电场强度E的比较 对应名称 比较项目 磁感应强度B 电场强度E
描述磁场的力的性质的 描述电场的力的性 物理意义 物理量 质的物理量 B=F/IL,通电导线与B 定义式 E=F/q 垂直 由磁场决定,与检验电 由电场决定,与检 大小决定 流无关 验电荷无关 矢量,电场线切线方 矢量性及 矢量,磁感线切线方向, 向,放入该点的正电 方向 小磁针N极受力方向 荷受力方向 合磁感应强度等于各磁 合电场强度等于各 场的叠加 场的磁感应强度的矢量 电场的电场强度的
a b
备选训练
【跟踪训练】三根平行的长直导线,分别垂直地通过一个等腰直角三角形的三个顶点,三导线 中电流方向相同,A、B 两导线中的电流大小相同,如图 3 所示,已知导线 A 在斜边中点 O 处 所产生的磁场的磁感应强度大小为 B, 导线 C 在斜边中点 O 处所产生的磁场的磁感应强度大小 为 2B,则 O 处的磁感应强度的大小和方向为( A.大小为 B,方向沿 OA 方向 B.大小为 2 2B,方向竖直向下 C.大小为 2B,方向沿 OB 方向 D.大小为 2B,方向沿 OA 方向 )
(统考版)2023版高考物理一轮复习 第九章 磁场 第1讲 磁场及其对电流的作用学生用书
第1讲磁场及其对电流的作用一、磁场、磁感应强度1.磁场(1)基本特性:磁场对处于其中的磁体、电流和运动电荷有________的作用.(2)方向:小磁针的________所受磁场力的方向.2.磁感应强度(1)物理意义:描述磁场的________和________.(2)大小:B=________(通电导线垂直于磁场放置).(3)方向:小磁针静止时________的指向.(4)单位:特斯拉(T).3.匀强磁场(1)定义:磁感应强度的大小________、方向________的磁场称为匀强磁场.(2)特点:疏密程度相同、方向相同的平行直线.二、磁感线通电直导线和通电线圈周围磁场的方向1.磁感线及特点(1)磁感线:在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的____________的方向一致.(2)特点①磁感线上某点的________方向就是该点的磁场方向.②磁感线的________定性地表示磁场的强弱.③磁感线是________曲线,没有起点和终点.④磁感线是假想的曲线,客观上________.三、安培力、安培力的方向匀强磁场中的安培力1.安培力的大小F=ILB sin θ(其中θ为B与I之间的夹角)(1)磁场和电流垂直时:F=________.(2)磁场和电流平行时:F=________.2.安培力的方向左手定则判断:(1)伸出左手,让拇指与其余四指________,并且都在同一个平面内.(2)让磁感线从掌心进入,并使四指指向________方向.(3)________所指的方向就是通电导线在磁场中所受安培力的方向.,教材拓展1.[人教版选修3-1P94T1改编]下面的几个图显示了磁场对通电直导线的作用力,其中正确的是( )2.[人教版选修3-1P90T1改编]把一小段通电直导线放入磁场中,导线受到安培力的作用.关于安培力的方向,下列说法中正确的是( )A.安培力的方向一定跟磁感应强度的方向相同B.安培力的方向一定跟磁感应强度的方向垂直,但不一定跟电流方向垂直C.安培力的方向一定跟电流方向垂直,但不一定跟磁感应强度方向垂直D.安培力的方向一定跟电流方向垂直,也一定跟磁感应强度方向垂直3.[人教版选修3-1P90T3改编](多选)通电螺线管如图所示.A为螺线管外一点,B、C 两点在螺线管的垂直平分线上,则下列说法正确的是( )A.磁感线最密处为A处,最疏处为B处B.磁感线最密处为B处,最疏处为C处C.小磁针在B处和A处N极都指向左方D.小磁针在B处和C处N极都指向右方考点一安培定则的应用和磁场的叠加1.安培定则的应用:在运用安培定则判定直线电流和环形电流的磁场时应分清“因”和“果”.2.磁场的叠加:(1)磁感应强度是矢量,计算时与力的计算方法相同,遵守平行四边形定则,可以用正交分解法进行合成与分解.(2)两个电流附近的磁场的磁感应强度是由两个电流分别独立存在时产生的磁场在该处的磁感应强度叠加而成的.3.磁场叠加问题的一般解题思路:(1)确定磁场场源,如通电导线.(2)定位空间中需求解磁场的磁感应强度的点,利用安培定则判定各个场源在这一点上产生的磁场的磁感应强度.如图所示为M、N在c点产生的磁场的磁感应强度.(3)应用平行四边形定则进行合成,如图中的合磁感应强度.例1. [2021·全国甲卷,16]两足够长直导线均折成直角,按图示方式放置在同一平面内,EO与O′Q在一条直线上,PO′与OF在一条直线上,两导线相互绝缘,通有相等的电流I,电流方向如图所示.若一根无限长直导线通过电流I时,所产生的磁场在距离导线d处的磁感应强度大小为B,则图中与导线距离均为d的M、N两点处的磁感应强度大小分别为( )A.B、0 B.0、2BC.2B、2B D.B、B跟进训练1.[2021·浙江1月,8]如图所示是通有恒定电流的环形线圈和螺线管的磁感线分布图.若通电螺线管是密绕的,下列说法正确的是( )A.电流越大,内部的磁场越接近匀强磁场B.螺线管越长,内部的磁场越接近匀强磁场C.螺线管直径越大,内部的磁场越接近匀强磁场D.磁感线画得越密,内部的磁场越接近匀强磁场2.[2022·山东泰安统考]已知通电的长直导线在周围空间某位置产生的磁感应强度大小与电流大小成正比,与该位置到长直导线的距离成反比.如图所示,现有通有电流大小相同的两根长直导线分别固定在正方体的两条棱dh和hg上,彼此绝缘,电流方向分别由d 流向h、由h流向g,则顶点e和a两处的磁感应强度大小之比为( )A.2∶√3 B.1∶√3C.2∶√2 D.1∶1考点二安培力及安培力作用下导体的平衡问题角度1安培力的分析与计算1.用公式F=BIL计算安培力大小时应注意(1)B与I垂直.(2)L是有效长度.①公式F=BIL中L指的是“有效长度”.当B与I垂直时,F最大,F=BIL;当B与I 平行时,F=0.②弯曲导线的有效长度L等于在垂直磁场平面内的投影两端点所连线段的长度(如图所示),相应的电流方向沿L由始端流向末端.③闭合线圈通电后,在匀强磁场中受到的安培力的矢量和为零.2.安培力方向的判断(1)判断方法:左手定则.(2)方向特点:F既垂直于B,也垂直于I,所以安培力方向一定垂直于B与I决定的平面.例2. [2021·浙江6月,15] (多选)如图所示,有两根用超导材料制成的长直平行细导线a、b,分别通以80 A和100 A流向相同的电流,两导线构成的平面内有一点p,到两导线的距离相等.下列说法正确的是( )A.两导线受到的安培力F b=1.25F aB.导线所受的安培力可以用F=ILB计算C.移走导线b前后,p点的磁感应强度方向改变角度2安培力作用下导体的平衡问题例3. 某兴趣小组制作了一个可以测量电流的仪器,其主要原理如图所示.有一金属棒PQ放在两金属导轨上,导轨间距L=0.5 m,处在同一水平面上,轨道置于竖直向下的匀强磁场中,磁感应强度B=2 T.棒中点两侧分别固定有劲度系数k=100 N/m的相同弹簧.闭合开关S前,两弹簧为原长,P端的指针对准刻度尺的“0”处;闭合开关S后,金属棒PQ 向右移动,静止时指针对准刻度尺1.5 cm处.下列判断正确的是( )A .电源N 端为正极B .闭合开关S 后,电路中电流为1.5 AC .闭合开关S 后,电路中电流为3 AD .闭合开关S 后,将滑动变阻器的滑片向右移动,金属棒PQ 将继续向右移动[思维方法]解决安培力作用下平衡问题的两条主线(1)遵循平衡条件 基本解题思路如下:(2)遵循电磁学规律,受力分析时,要注意准确判断安培力的方向.跟进训练3.一个各边电阻相同、边长均为L 的正六边形金属框abcdef 放置在磁感应强度大小为B 、方向垂直金属框所在平面向外的匀强磁场中.若从a 、b 两端点通以如图所示方向的电流,电流大小为I ,则关于金属框abcdef 受到的安培力的判断正确的是( )A .大小为BIL ,方向垂直ab 边向左B .大小为BIL ,方向垂直ab 边向右C .大小为2BIL ,方向垂直ab 边向左D .大小为2BIL ,方向垂直ab 边向右4.[2022·河北保定调研]如图所示,空间有与竖直平面夹角为θ的匀强磁场,在磁场中用两根等长轻细金属丝将质量为m 的金属棒ab 悬挂在天花板的C 、D 两处,通电后导体棒静止时金属丝与磁场方向平行.已知磁场的磁感应强度大小为B ,接入电路的金属棒长度为l ,重力加速度为g ,以下关于导体棒中电流的方向和大小正确的是( )A .由b 到a ,mg tan θBlB .由a 到b ,mgBlC .由a 到b ,mg sin θBlD .由b 到a ,mg sin θBl考点三 安培力作用下导体运动趋势及运动情况的判断例 4. [2021·广东卷,5]截面为正方形的绝缘弹性长管中心有一固定长直导线,长管外表面固定着对称分布的四根平行长直导线.若中心直导线通入电流I1,四根平行直导线均通入电流I 2,I 1≫I 2,电流方向如图所示.下列截面图中可能正确表示通电后长管发生形变的是( )命题分析跟进训练5.一个可以自由运动的线圈L1和一个固定的线圈L2互相绝缘垂直放置,且两个线圈的圆心重合,如图所示.当两线圈中通以图示方向的电流时,从左向右看,线圈L1将( ) A.不动B.顺时针转动C.逆时针转动 D.在纸面内平动6.[2022·贵阳中学月考]如图所示,一平行于光滑斜面的轻弹簧一端固定于斜面上,一端拉住条形磁铁,条形磁铁处于静止状态,磁铁中垂面上放置一通电导线,导线中电流方向垂直纸面向里且缓慢增大,下列说法正确的是( )A.弹簧弹力逐渐变小B.弹簧弹力先减小后增大C.磁铁对斜面的压力逐渐变小D.磁铁对斜面的压力逐渐变大考点四与安培力相关的STSE问题素养提升情境1 磁式电流表(多选)实验室经常使用的电流表是磁电式电流表,这种电流表的构造如图甲所示,蹄形磁铁和铁芯间的磁场是均匀辐向分布的.若线圈中通以如图乙所示的电流,则下列说法中正确的是( )A.在量程内指针转至任一角度,线圈平面都跟磁感线平行B.线圈转动时,螺旋弹簧被扭动,阻碍线圈转动C.当线圈在如图乙所示的位置时,b端受到的安培力方向向上D.当线圈在如图乙所示的位置时,安培力的作用使线圈沿顺时针方向转动情境2 电子天平(多选)某电子天平原理如图甲所示,E形磁铁的两侧为N极,中心为S极,两极间的磁感应强度大小均为B,磁极宽度均为L,忽略边缘效应,一总电阻为R的均匀导线绕成的正方形线圈套于中心磁极,其骨架与秤盘连为一体,当质量为m的重物放在秤盘上时,弹簧被压缩,秤盘和线圈一起向下运动(骨架与磁极不接触),随后线圈两端C、D与外电路接通对线圈供电,使秤盘和线圈恢复到未放重物时的位置并静止,由此时对应的供电电流可确定重物的质量.为了确定该天平的性能,某同学把该天平与电压可调的直流电源(如图乙)相接,经测量发现,当质量为M的重物放在秤盘上时,直流电源输出电压为U即可使秤盘和线圈恢复到未放重物时的位置并静止,重力加速度为g.则下列说法正确的是( )A.当线圈两端C、D与外电路接通对线圈供电时,线圈的C端应与外电路中的H端相接,D端应与G端相接B.线圈的匝数为MgR2BLUC.当质量为2M的重物放在秤盘上时,直流电源输出电压为2UD.若增加线圈的匝数,则能增大电子天平能称量的最大质量情境3 “电磁炮”“电磁炮”是利用电磁力对弹体加速的新型武器,具有速度快、效率高等优点.如图是“电磁炮”的原理结构示意图.光滑水平加速导轨电阻不计,轨道宽为L=0.2 m;在导轨间有竖直向上的匀强磁场,磁感应强度B=1×102 T;“电磁炮”弹体总质量m=0.2 kg,其中弹体在轨道间的电阻R=0.4 Ω;可控电源的内阻r=0.6 Ω,电源的电压能自行调节,以保证“电磁炮”匀加速发射;在某次试验发射时,电源为加速弹体提供的电流是I=4×103 A,不计空气阻力.求:(1)弹体所受安培力大小;(2)弹体从静止加速到4 km/s,轨道至少要多长?(3)弹体从静止加速到4 km/s过程中,该系统消耗的总能量.第九章磁场第1讲磁场及其对电流的作用必备知识·自主排查一、1.(1)磁场力(2)N极(3)N极2.(1)强弱方向(2)FIL3.(1)处处相等处处相同二、1.(1)磁感应强度(2)切线疏密闭合不存在三、1.(1)BIL(2)02.(1)垂直(2)电流(3)拇指教材拓展1.答案:C2.答案:D3.答案:BC关键能力·分层突破例1 解析:两直角导线可以等效为如图所示的两直导线,由安培定则可知,两直导线分别在M处的磁感应强度方向为垂直纸面向里、垂直纸面向外,故M处的磁感应强度为零;两直导线在N处的磁感应强度方向均垂直纸面向里,故N处的磁感应强度为2B,B正确.答案:B1.解析:根据螺线管内部的磁感线分布可知,在螺线管的内部,越接近中心位置,磁感线分布越均匀,越接近两端,磁感线越不均匀,可知螺线管越长,内部的磁场越接近匀强磁场.故B正确,A、C、D错误.答案:B2.解析:设正方体棱长为L ,其中一根长直导线的电流在e 点产生的磁感应强度为B 0,则e 点的磁感应强度大小为B e =√B 02+B 02=√2B0处于ℎg 边的长直导线到a 点的距离为√2L ,在a 点产生的磁感应强度大小为√2 2B 0;处于dh 边的长直导线到a 点的距离为L ,在a点产生的磁感应强度大小为B 0,所以a 点的磁感应强度大小为B a =√(√22B 0)2+B 02=√6 2B 0,B e ∶B a =2∶√3,A 项正确.答案:A例2 解析:两导线受到的安培力是相互作用力,大小相等,A 错误;导线所受的安培力可以用F =ILB 计算,因为磁场与导线垂直,B 正确;移走导线b 前,b 的电流较大,则p 点磁场方向与b 产生磁场方向同向,向里,移走b 后,p 点磁场方向与a 产生磁场方向相同,向外,C 正确;在离两导线所在的平面有一定距离的有限空间内,两导线在任意点产生的磁场均不在同一条直线上,故不存在磁感应强度为零的位置,D 正确.答案:BCD例3 解析:闭合开关S 后,金属棒PQ 向右移动,根据左手定则可知,电流方向为从P 到Q ,电源的M 端为正极,选项A 错误;静止时,则2k ·Δx =BIL ,解得I =2k Δx BL =3 A ,选项B 错误,C 正确;闭合开关S 后,将滑动变阻器的滑片向右移动,则电路中电阻增大,电流减小,金属棒PQ 所受安培力减小,将向左移动,故选项D 错误.答案:C3.解析:电流从a 点流入金属框后,可认为金属框的ab 与afedcb 部分并联,设ab 边的电阻为R ,则afedcb 部分的电阻为5R ,则通过ab 边的电流为5I 6,通过afedcb 部分的电流为I 6,可将afedcb 部分等效为长度为L 、方向与ab 相同的导线,根据左手定则可知,两部分所受安培力大小分别为5BIL 6、BIL 6,方向均垂直ab 边向左,故金属框受到的安培力为BIL ,方向垂直ab 边向左,选项A 正确,B 、C 、D 错误.答案:A4.解析:对导体棒进行受力分析,导体棒静止,则其受力如图所示.根据左手定则可知,导体棒中的电流方向为由a 到b ,根据平衡条件可知安培力的大小为:F =BIl =mg sin θ,所以感应电流的大小为:I =mg sin θBl ,故A 、B 、D 错误,C 正确.答案:C例4 解析:根据“同向电流相互吸引,异向电流相互排斥”的作用规律可知,左、右两导线与长管中心的长直导线相互吸引,上、下两导线与长管中心的长直导线相互排斥,C 正确.答案:C5.解析:方法一(电流元法) 把线圈L 1沿水平转动轴分成上下两部分,每一部分又可以看成由无数段直线电流元组成,电流元处在I 2产生的磁场中,根据安培定则可知各电流元所在处的磁场方向,由左手定则可得,上半部分电流元所受安培力均指向纸外,下半部分电流元所受安培力均指向纸内,因此从左向右看,线圈L 1将顺时针转动.方法二(等效法) 把线圈L 1等效为小磁针,该小磁针刚好处于环形电流I 2的中心,小磁针的N 极应指向该点环形电流I 2的磁场方向,由安培定则知I 2产生的磁场方向在其中心处竖直向上,而L 1等效成小磁针后,转动前,N 极指向纸内,因此小磁针的N 极应由指向纸内转为向上,所以从左向右看,线圈L 1将顺时针转动.方法三(结论法) 环形电流I 1、I 2之间不平行,则必有相对转动,直到两环形电流同向平行为止.据此可得,从左向右看,线圈L 1将顺时针转动.答案:B6.解析:本题考查安培力作用下的动态平衡问题.磁铁外部的磁感线从N 极出发回到S 极,则此时在导线处磁感线平行于斜面向下,如图所示,根据左手定则可以判断导线受到的安培力方向垂直斜面向上,因电流增大,所以安培力增大,安培力与斜面垂直,根据牛顿第三定律与受力平衡可知磁铁对斜面的压力逐渐变大,弹簧弹力不变,选项A 、B 、C 错误,D 正确.答案:D情境1 解析:指针在量程内线圈一定处于磁场之中,由于线圈与铁芯共轴,线圈平面总是与磁感线平行,故A 正确.电表的调零使得当指针处于“0”刻线时,螺旋弹簧处于自然状态,所以无论线圈向哪一方向转动都会使螺旋弹簧产生阻碍线圈转动的力,故B 正确.由左手定则知,b 端受到的安培力方向向下,a 端受到的安培力方向向上,安培力将使线圈沿顺时针方向转动,故C 错误,D 正确.答案:ABD情境2 解析:线圈两端C 、D 与外电路接通对线圈供电,使秤盘和线圈恢复到未放重物时的位置并静止,说明线圈受到的安培力向上,根据左手定则可知,电流应该从D 端流入线圈,故线圈的D 端应与外电路电源的正极(H 端)相接,C 端应与外电路中的G 端(负极)相接,故选项A 错误;设线圈的匝数为n ,外电路接通使秤盘和线圈恢复到未放重物时的位置并静止时根据平衡条件得:Mg =2nBIL ,其中I =U R ,联立上述两式得Mg =2nB U RL ,解得n =MgR 2BLU ,故选项B 正确;根据Mg =2nB U R L 知,当质量为2M 的重物放在秤盘上时,直流电源输出电压为2U ,选项C 正确;设线圈电阻的电阻率为ρ,导线的横截面积为S ,则R =ρ4nL S ,可得M=BUS 2ρg ,可见增加线圈的匝数,无法增大电子天平能称量的最大质量,故选项D 错误. 答案:BC情境3 解析:(1)由安培力公式F =IBL =8×104 Nmv2(2)方法一由动能定理Fx=12弹体从静止加速到4 km/s,代入数值得x=20 m 方法二由牛顿第二定律F=ma得加速度a=4×105 m/s2由v2−v02=2asv=4 km/s代入数值得x=20 m(3)根据F=ma,v=at知发射弹体用时t=mv=1×10-2 sF发射弹体过程产生的焦耳热Q=I2(R+r)t=1.6×105 J弹体的动能mv2=1.6×106 JE k=12系统消耗的总能量E=E k+Q=1.76×106 J答案:(1)8×104 N (2)20 m (3)1.76×106 J。
第九章医用物理PPT课件
H d l I
L
L内
各向同性的磁介质中高斯定理
SB d S 0
.
30
二、磁介质的分类
分子磁矩:整个分子或原子所包含的所有电子轨道磁矩 和自旋磁矩的矢量和。
1. 顺磁质
B B0 , r 1
2. 抗磁质
B B0 , r 1
3. 铁磁质
的r 数量级可达102~105
.
31
三、超导体及其磁学特性
dB
d B 0 I d l sin 0 I d l
4 r 2
4 r 2
由于对称性,圆电流在P点产生的磁感应强度B,即
B
dB//
dB sin
0I 4r 2
sin
dl
L
.
7
sin
R, r
Ldl
2R,
B
0 IR 2
2r 3
2
0 IR 2
R2 a2
3/2
在圆心处,a=0,磁感应强度为
b
c
d
a
Bdl
L
Bdl
a
Bdl
b
c
Bdl
d B d l 0
I
因为bc和da部分,回路方向与B垂直,故
c
a
b B d l d B d l 0
又因为管外B=0,所以
d
c B d l 0
b
Bdl
L
a B d l 0
I
Blab 0nlab I
B 0nI
.
13
过导线(虚线所示)给这段电阻线各部分提供稳恒电
流I=1.0A,AB段长LAB=1.0m,CD段长为LCD=0.57m,
体育班教案 第九章 磁场
九磁场高考要求高考中长城以带电粒子在有界磁场中运动的临界问题、在复合场或组合场中运动的受力分析、运动分析等为主要考查内容:1.磁感应强度、磁感线、安培力、洛伦兹力的理解及安培定则和左手定则的运用,一般以选择题的形式出现.2.安培力的大小计算,以及带电粒子在磁场中做匀速圆周运动的分析与计算.一般以计算题的形式出现.3.带电粒子在分立场、混合场中的运动问题仍是本章考查的重点内容,极易成为试卷的压轴题.第1讲磁场的描述磁场对电流的作用1.知道磁感应强度的概念及定义式,并能理解与应用.2.会用安培定则判断电流周围的磁场方向.3.会用左手定则分析解决通电导体在磁场中的受力及平衡类问题.教学重点:会用安培定则判断电流周围的磁场方向和会用左手定则分析解决通电导体在磁场中的受力及平衡类问题.教学难点:会用左手定则分析解决通电导体在磁场中的受力及平衡类问题。
课时安排:2课时高效课堂教学模式:四个环节教学教学过程:一、磁场和磁感线(三合一)1、磁场的基本性质:对放入其中的磁铁和电流有力的作用2、磁场的方向(矢量):磁针北极的受力方向,磁针静止时N极指向(如图)。
3、磁感线:切线~~磁针北极~~磁场方向4、典型磁场——磁铁磁场和电流磁场(安培定则(右手螺旋定则))5、磁感线特点:①客观不存在、②外部N极出发到S,内部S极到N极③闭合、不相交、④描述磁场的方向和强弱6.匀强磁场(1)定义:B的大小和方向处处相同,磁感线平行、等距、同向(2)来源:①距离很近的异名磁极之间②通电螺线管或条形磁铁的内部,边缘除外二、磁Ⅱ场对电流的作用——安培力1.安培力的方向——(左手定则)伸开左手,使大拇指与四指在同一个平面内,并跟四指垂直,让磁感线穿入手心,使四指指向电流的流向,这时大拇指的方向就是导线所受安培力的方向。
(向里和向外的表示方法(类比射箭))规律:(1)左手定则(2)F⊥B ,F⊥I ,F垂直于B和I所决定的平面。
但B、I不一定垂直安培力的大小与磁场的方向和电流的方向有关,两者夹角为900时,力最大,夹角为00时,力=0。
磁学
Hm 1500 / m 15A / cm A
励磁电流
ξ 1.4 1.3 1.2 1.1 0 1.0 1.线,得ξ=1.25 I 0.99 IM m 0.56A 2 2 1.25 查比磁损耗数据表得 pFe 0 4.93W / kg
I2
N2 H2 l2 I1 N1 H1 l1
H'3
左边回路
H1l1 H2l2 N1I1 N2 I 2
H4
l4 H"3 l3"
可得
磁通势 有
HI NI
F NI
单位:A
U
M
F
磁路定律 (2)
磁路基尔霍夫第二定律内容: 在磁路任一闭合回路中,各段磁位差的代数和等于各磁通势的代数和。
第九章:磁路和铁心线圈电路
在发电厂与电力系统中,广泛的应用着变压器、各种旋转电 机及其它含有铁心线圈的电气设备,它们不仅存在电路问题,同 时还存在磁路问题。只有同时掌握了电路和磁路的基本理论,才 能对各种电工设备作全面分析。 本章主要内容: 磁场的主要物理量和基本性质 铁磁物质的磁化曲线 磁路和磁路定律 恒定磁通磁路的计算 交流铁心线圈中的波形畸变和功率损耗 交流铁心线圈的电路模型
30
数KFe=0.92,衔铁材料为铸钢。要使电 磁铁空气隙中的磁通为3×10 Wb。 求:⑴所需磁通势;⑵若线圈匝数 N=1000匝,求线圈的励磁电流。
-3
8
解:⑴ 将磁路分成铁心、衔铁、气隙三段。 ⑵ 求各段长度和截面积 l1=(30-6.5)+2(30-3.25)=77cm l2=30-6.5+4×2=31.5cm 2l0=0.1×2=0.2cm A1=6.5×5×0.92=30cm2 A2=8×5=40cm2 A3=ab+(a+b)l0 =5×6.5+(5+6.5) ×0.1=33.65cm2
2019高中物理鲁科版大复习学案第九章 磁场的描述及磁场对电流的作用
基础课1磁场的描述及磁场对电流的作用知识点一、磁场磁感线通电直导线和通电线圈周围磁场的方向1.磁场(1)基本特性:磁场对处于其中的磁体、电流和运动电荷有磁场力的作用.(2)方向:小磁针的N极所受磁场力的方向。
2.磁感线在磁场中画出一些有方向的曲线,使曲线上各点的切线方向跟这点的磁感应强度方向一致.3.几种常见的磁场(1)常见磁体的磁场(如图1所示)图1(2)电流的磁场知识点二、磁感应强度1.磁感应强度(1)物理意义:描述磁场的强弱和方向。
(2)大小:B=错误!(通电导线垂直于磁场)。
(3)方向:小磁针静止时N极的指向。
(4)单位:特斯拉(T)。
2.匀强磁场(1)定义:磁感应强度的大小处处相等、方向处处相同的磁场称为匀强磁场.(2)特点:疏密程度相同、方向相同的平行直线.知识点三、安培力、安培力的方向匀强磁场中的安培力1.安培力的大小(1)磁场和电流垂直时:F=BIL。
(2)磁场和电流平行时:F=0。
2.安培力的方向图2左手定则判断:(1)伸出左手,让拇指与其余四指垂直,并且都在同一个平面内.(2)让磁感线从掌心进入,并使四指指向电流方向。
(3)拇指所指的方向就是通电导线在磁场中所受安培力的方向。
[思考判断](1)磁场中某点磁感应强度的大小,跟放在该点的试探电流元的强弱有关。
()(2)磁场中某点磁感应强度的方向,跟放在该点的试探电流元所受磁场力的方向一致。
()(3)在磁场中磁感线越密集的地方,磁感应强度越大。
() (4)相邻两条磁感线之间的空白区域磁感应强度为零。
()(5)将通电导线放入磁场中,若不受安培力,说明该处磁感应强度为零。
()(6)由定义式B=FIL可知,电流强度I越大,导线L越长,某点的磁感应强度就越小。
()(7)安培力可能做正功,也可能做负功.()答案(1)×(2)×(3)√(4)×(5)×(6)×(7)√磁场及安培定则的应用1.理解磁感应强度的三点注意(1)磁感应强度由磁场本身决定,因此不能根据定义式B=FIL认为B与F成正比,与IL成反比。
第九章 第二节 磁场
复习:在电学中,电流方向是人们规定的,同理,人们也规定了磁场的方向。
(1)规定:在磁场中的任意一点,静止时小磁针北极所指(受力)的方向就是那一点的磁场方向。
确定磁场方向的方法是:将一小磁ቤተ መጻሕፍቲ ባይዱ放入磁场中需测定的位置,当小磁针在该位置静止时,小磁针N级的指向即为该点的磁场方向。
(2)磁场方向的判定
(2)学生已有知识经验分析
7.教学方法
讨论法、实验法、自学讲练结合
8.教与学
教师的教学过程
学生的学习过程
教学过程
(一)引入新课
我国是最早发现磁现象、应用磁场的国家之一,指南针的发明为世界航海做出了巨大贡献。现代,磁已更广泛地应用在我们的生活中,今天我们来研究磁场。
(二)教学过程设计
1.有关磁的几个问题
磁场是一种物质存在,存在于何处?
(1)磁体周围空间存在磁场;
演示实验:磁体对小磁针的作用;电流对小磁针的作用。
推理分析:电流周围空间存在磁场,电流是大量运动电荷形成的,所以运动电荷周围空间也有磁场。静止电荷周围空间没有磁场。
小结:磁场存在于磁体周围的空间。
(3)磁场是物质存在的一种形式
设问:怎样知道磁场的存在?
(2)磁感线特点
磁感线从N极指向S极(内部从S指向N);
磁感线是闭合曲线,且任意两条磁感线不相交;
磁感线的疏密表示磁场强弱。
9.反馈
1.磁场是物质存在的一种形式,磁场的性质是对放入其中的磁体有力的作用。
2.磁感线是形象描述磁场的方法(模型法)。
3.会用磁感线画出各种磁场的分布情况。
10.板书设计
1.课题
第九章第二节磁场
2.课型
新授课
3.辅助工具
磁场说课稿
《磁场》说课稿各位评委老师好!今天我要说课的题目是人教版《物理》八年级下册第九章第二节《磁场》。
一、教材分析1、教材简析。
第九章电与磁的主线就是“磁场”,磁场对放入其中的磁体或者电流有力的作用,磁场能使运动的导体产生感应电流。
所以这一节尤为重要。
“场”是物理学中很重要的一个概念,不仅是本章的重点和难点,也是初中教学的难点。
鉴于八年级学生的认知水平,对磁场只要求有初步的认识。
编者首先从磁针移近磁体附近会发生偏转,得出磁体周围存在一种物质——磁场,接着通过实验来感知磁场是确实存在的,然后通过磁针的指向来规定磁场的方向,引出用磁感线来形象的描述磁场的分布情况,紧接着在介绍地磁场及沈括发现磁偏角,最后利用课后的科学世界《动物罗盘》来扩大学生的知识视野。
教材的这样编排,突出了物理教学以实验探究为基础的特点,激发了学生的学习兴趣和求知欲望,遵循了循序渐进、由浅入深的原则,还充分地利用教学内容增强了学生的民族自豪感。
2、教学目标基于我对教材的理解和分析并根据新课标的要求,我确定该节的教学目标为:知识与技能:(1)知道磁体周围存在磁场。
知道磁在日常生活、工业生产和科研中有着重要的作用。
(2)知道磁感线可用来形象的描述磁场,知道磁感线的方向是如何规定的。
(3)知道地球周围有磁场,知道地磁的南、北极。
过程与方法(1)观察磁体之间的相互作用,感知磁场的存在。
(2)经历实验观察、总结类比的过程。
学习从物理现象和实验中归纳规律,初步认识科学研究方法的重要性。
情感态度价值观:使学生在经历分析、观察的过程中体会到学习探究的乐趣。
3、教学重点难点重点:磁场的存在,用磁感线描述磁场的分布。
难点:如何认识磁场的存在,明确引入磁感线的实际意义。
二、教学方法依照本节的教学任务,结合学科特点以及学生实际,我主要采取以下的教学方法:1、实验探究教学法通过实验探究和学生思考、回答相结合,培养学生的分析概况能力和思维能力。
2、观察法结合实验现象,引导学生观察思考,培养学生的观察能力。
2024年九年级教科版物理教案最新版
2024年九年级教科版物理教案最新版一、教学内容本节课选自2024年九年级教科版物理教材第九章《电与磁》的第1节“磁场与磁感线”。
具体内容包括:磁场的基本概念、磁感线的引入与理解、磁场的方向描述、地磁场及其应用。
二、教学目标1. 让学生理解磁场的基本概念,掌握磁感线的特点及作用。
2. 培养学生运用磁感线描述磁场的能力,提高空间想象力。
3. 使学生了解地磁场的基本知识,激发对物理现象的好奇心和探索欲望。
三、教学难点与重点教学难点:磁感线的引入与理解、磁场方向描述。
教学重点:磁场的基本概念、磁感线的特点及作用、地磁场。
四、教具与学具准备教具:磁铁、铁钉、细线、地球仪、指南针。
学具:直尺、圆规、铅笔、橡皮、画图纸。
五、教学过程1. 实践情景引入:通过展示磁铁吸引铁钉的现象,引导学生思考磁铁周围存在一种特殊物质,即磁场。
2. 知识讲解:(1)磁场概念:磁场是磁体周围的一种特殊物质,具有方向性。
(2)磁感线:用细线模拟磁感线,让学生观察磁感线的分布,理解磁感线的特点及作用。
(3)磁场方向描述:介绍磁场方向的表示方法,引导学生通过指南针判断磁场的方向。
(4)地磁场:展示地球仪,讲解地磁场的分布及特点。
3. 例题讲解:讲解磁场方向描述的例题,引导学生运用所学知识解决问题。
4. 随堂练习:让学生运用磁感线描述磁场的练习,巩固所学知识。
六、板书设计1. 磁场概念2. 磁感线特点及作用3. 磁场方向描述4. 地磁场七、作业设计1. 作业题目:(1)简述磁场的基本概念。
(2)绘制磁铁周围的磁感线分布图。
(3)运用所学知识,分析地磁场对指南针的影响。
2. 答案:(1)磁场是磁体周围的一种特殊物质,具有方向性。
(2)见附图。
(3)地磁场使指南针的磁针指向地球的磁北极。
八、课后反思及拓展延伸1. 反思:本节课学生对磁感线的理解较为困难,需在课后加强巩固。
2. 拓展延伸:引导学生查阅资料,了解地磁场的应用,如磁导航、磁悬浮列车等,激发学生的学习兴趣。
大学物理第九章磁场
第九章磁场Stationary Magnetic Field磁铁和电流周围存在着磁场,磁现象的本质就是电荷的运动, 磁场的基本特性是对位于其中的运动电荷有力的作用.1、磁感应强度的定义;2、毕奥-萨伐尔定律,安培环路定理;3、几种电流产生的磁感应强度的计算;4、磁场对运动电荷、载流导线、载流线圈的作用;5、磁场和磁介质之间的相互作用.第一节磁场磁感应强度磁现象永磁体——磁铁的性质S N(1)具有磁性(magnetism),能吸引铁、钴、镍等物质;(2)永磁体具有磁极(magnetic pole),磁北极和磁南极;(3)磁极之间存在相互作用,同性相斥,异性相吸;(4)磁极不能单独存在.奥斯特实验(1819年)NS I在载流导线附近的小磁针会发生偏转Hans ChristianOersted,1777~1851年丹麦物理学家1820年安培的发现SN F I 放在磁体附近的载流导线或线圈会受到力的作用而发生运动.安培分子电流假说(1822年)一切磁现象的根源是电流!磁性物质的分子中存在着“分子电流”,磁性取定于物质中分子电流的磁效应之和.一、磁场(Magnetic Field)电流~~~磁铁、电流~~~电流运动电荷~~~运动电荷、运动电荷~~~磁铁通过一种特殊物质的形式——磁场来传递的.磁铁周围存在磁场,运动电荷和载流导线周围也存在磁场.磁场对其中的运动电荷和载流导线有力的作用;磁力也能做功,具有能量.电流与电流之间的相互作用I I ++--II ++--磁场对运动电荷的作用S +电子束N运动电荷磁场运动电荷从运动的点电荷在磁场中所受的磁力来定义磁感应强度的大小和方向!B 方向:小磁针在磁场中,其磁北极N 的指向B 二、磁感应强度(Magnetic Induction)磁感应强度:描述磁场性质的物理量B点电荷在磁场中运动的实验+B v F max c 、电荷q 沿磁场方向运动时,F = 0;b 、F 大小随v 变化;d 、电荷q 沿垂直磁场方向运动时,F max .(2)在垂直磁场方向改变速率v ,改变点电荷电量q在磁场中同一点,F max /qv 为一恒量,而在不同的点上,F max /qv 的量值不同.(1)点电荷q 以不同运动v a 、受磁力,;F v磁感应强度的大小:qv F B m ax =单位:T 特斯拉(Tesla)G 高斯(Gauss)T10G 14-=磁感应强度的方向:max F vB a.由小磁针的N 极指向定,b.由到的右手螺旋法则定max F v三、磁感应线用磁感应线来形象地描写磁感应强度这一矢量场在空间的分布:曲线上某点处的切向表示该点的方向;曲线在某处的疏密表示该点的大小.B B 磁感应线的特点★任一条磁感应线是闭合的,或两端伸向无穷远;★磁感应线与载流回路互相套联;★任两条磁感应线不能相交.IB四、磁通量(Magnetic Flux)通过磁场中某给定面的磁感应线的总数.θcos d d m S B Φ=⎰⎰=⋅=S S m S B S B Φd cos d θ 单位:Wb ,1Wb=1T ﹒m 2磁通量:穿过磁场中任意闭合曲面的磁通量为零.磁场是无源场:其磁感应线闭合成环,无头无尾;同时也表示不存在磁单极,无单个的N 或S 极.The total magnetic flux through a closed surface is always zero.d 0S B S ⋅=⎰ 五、磁场的高斯定理(Gauss’s law for magnetism)寻找磁单极子1975 年:美国加州大学,休斯敦大学联合小组报告,用装有宇宙射线探测器气球在40 km 高空记录到电离性特强离子踪迹,认为是磁单极. 为一次虚报.1982年,美国斯坦福大学报告,用d = 5 cm 的超导线圈放入D =20 cm 超导铅筒. 由于迈斯纳效应屏蔽外磁场干扰,只有磁单极进入会引起磁通变化,运行151天,记录到一次磁通突变, 改变量与狄拉克理论相符. 但未能重复,为一悬案.人类对磁单极的探寻从未停止,一旦发现磁单极,将改写电磁理论.1820年实验得到:长直载流导线周围的磁感应强度与距离成反比与电流强度成正比. r I B Laplace 对此结果作了分析整理,得出了电流元产生的磁场的磁感应强度表达式.一、毕奥—萨伐尔定律(Law of Biot and Savart)I B r 第二节毕奥—萨伐尔定律d I l IBd l r d I l02d sin d 4I l B r μθπ=002d d 4I l r B r μπ⨯= μo 为真空中的磁导率:μo = 4 π⨯10-7 T·m·A -1. 整个载流导线在P 点产生的磁感应强度为:002d d 4L LI l r B B r μπ⨯==⎰⎰ P d I l θr d Bnqvs I =0024qv r B r μπ⨯= ++++++I S v d I l 导体中带电粒子的定向运动形成电流I ,并由此可分析得到运动电荷产生的磁场.+v r B ×-v r B·二、运动电荷的磁场圆电流轴线上的磁感应强度02d sin d 4I l B r μθπ=02d sin 90cos d cos 4x I l B B B r μααπ︒===⎰⎰22xR r +=22cos R R x α=+x x P R αr d B d I ld B x d B y 毕奥—萨伐尔定律的应用d I l r ⊥ 注意到,通过对称性分析,可知B y = 0,因此:()()2200323222220d 42RR l IR B R x R x πμμπ==++⎰方向:沿轴线与电流成右手螺旋关系.()2032222IRB R x μ=+定义圆电流磁矩:mp IS ISn == 在圆心处x = 0,B 大小:R IB 20μ=IS m p ()2322m 02x R P B += πμ圆电流轴线上磁场的另一种表达式:例:亥姆霍兹圈:两个完全相同的N 匝共轴密绕短线圈,其中心间距与半径R 相等,通有同向平行等大电流I . 求轴线上O 1、O 2之间的磁场.x I P1o 匝N R ⋅⋅R R 匝N o 2o I x o1o 2B 1B 2o 实验室用近似均匀磁场解20322222P NIR B R R x μ=+⎡⎤⎛⎫++ ⎪⎢⎥⎝⎭⎣⎦20322222NIRR R x μ⎡⎤⎛⎫+- ⎪⎢⎥⎝⎭⎣⎦00.72O NIB Rμ=0120.68O O NIB B Rμ==θ2Oθ1Pa d xx载流长直导线的磁感应强度02d sin d 4I x B rμθπ=tan x a θ=-2d d sin a x θθ=θsin a r =2022sin d sin d 4sin I aB B aμθθθπθ==⎰⎰Iθrd B 210sin d 4I B a θθμθθπ=⎰()012cos cos 4I a μθθπ=-方向:对图中所在的P 点,磁感应强度垂直纸面向外.()012cos cos 4I B aμθθπ=-对无限长载流导线θ1= 0 , θ2= π:02I B aμπ=半无限长载流导线θ1= π/2 , θ2 = π:04I B aμπ=若P 点在导线延长线上:B =导线密绕,且长度远大于直径:=外B 实验可知:内部的磁感应强度只有平行于轴线的分量;并且平行于轴的任一直线上各点大小相等.︒⋅⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅BI单位长度上的匝数n载流长直螺线管内部的磁场︒⋅⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅BInIB 0μ=内部为均匀磁场,在长直螺线管的两端点处的磁场为中间的一半:012S B nIμ=0nIμ012nI μ通过对圆电流的磁感应强度的叠加积分,可以求得螺线管中间的磁感应强度大小为:方向由右手螺旋法则确定.恒定磁场是无源场,静电场是有源场;静电场是保守场,是无旋场;对静电场和恒定磁场作类比分析:1d SE S q ε⋅=∑⎰d 0LE l ⋅=⎰d 0SB S ⋅=⎰d ?LB l ⋅=⎰表达了恒定磁场的什么性质?第三节安培环路定理安培环路定理:0d LB l Iμ⋅=∑⎰L 磁场中任一闭合曲线—具有一定绕向的环路是环路上各点的磁感应强度,为空间所有电流产生,包括穿过L 的和不穿过的电流.:B:穿过以L 为边界的任意曲面的电流的代数和.I ∑------对L 包围的电流求代数和,并且规定:与L 绕向成右旋关系的电流I i >0,否则I i <0.以长直电流的磁场为例验证1) 路径选在垂直于长直载流导线的平面内,以导线与平面交点O 为圆心,半径为r 的圆周路径L ,其指向与电流成右手螺旋关系.BIr oL00200cos 0d d =d 22rL L I I B l l l r rIπμμππμ⋅=⋅=⎰⎰⎰BIr oL若电流反向:02000d d 2 =d 2cos L L rI I B l l r I l rππμπμμπ⋅=⋅-=-⎰⎰⎰2) 在垂直于导线平面内围绕电流的任意闭合路径Bθϕd ld rLI 02020000d 2 =d 2 d cos 2d L L I B l r I r r I I l ππμπμϕπμϕπμθ⋅=⋅==⎰⎰⎰⎰同理,在电流反向时------积分结果取负.3) 闭合路径不包围电流ϕ1L 2L I()()[]121200d d d =d d 2 02LL L L L B l B l B l I Iμϕϕπμϕϕπ⋅=⋅+⋅+=+-=⎰⎰⎰⎰⎰4) 空间存在多个长直电流时()12110in d d d d =L LLLiLB l B B l B l B l I μ⋅=++⋅=⋅+⋅+⎰⎰⎰⎰∑安培环路定理揭示磁场是非保守场,是涡旋场.l B L d ⋅⎰穿过的电流:对和均有贡献BL 不穿过的电流:对上各点有贡献;对无贡献BL l B Ld ⋅⎰L 0d LB l Iμ⋅=∑⎰可证对任意的稳恒电流和任意形式的闭合环路均成立.注意:练习:如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述各式中那一个是正确的?⊗∙I 21L 2L 3L 4L I10 ( d )2A L B l I μ⋅=⎰ 20(B) d L B l I μ⋅=⎰30 d (C)L B l I μ⋅=-⎰40(D) d L B l I μ⋅=-⎰Br RB RrP IQ 长直圆柱形载流导线内外的磁场圆柱截面半径为R ,电流I 沿轴流动.过P 点(或Q 点)取半径为r 的磁感应线为积分回路,求出B 矢量的环流:0d 2LB l B r I πμ⋅=⋅=∑⎰r ≥R012I I I B r r μπ==∝∑,r< R20222I r IrI B r R Rπμππ==∝∑,方向沿圆周与电流成右手关系!or LL BoRrr1∝B r∝思考:无限长均匀载流直圆筒,B ~r 曲线?BoRr管外磁场为零.无限长直载流螺线管内磁场︒⋅⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅︒⋅BI单位长度上的匝数n解密绕长螺线管,已知I , n ,计算管内的磁感应强度.dc ab 作矩形安培环路abcd 如图,绕行方向为逆时针.00d d 000=b c d a LabcdB l B l B dl B dl B dlBcd I ncdIμμ⋅=⋅+⋅+⋅+⋅=+++=⎰⎰⎰⎰⎰∑0B nIμ=无限长螺线管磁场为均匀.求螺线环内的磁感应强度I l B L∑=⋅⎰0d μ 02B r NIπμ⋅=rNI B πμ20=2N n rπ=nIB 0μ=Or 1r 2Pr 为平均半径, 考虑到对称性,环内磁场的磁感应线都是同心圆,选择通过管内某点P 的磁感应线L 作为积分环路:方向由电流方向通过右手法则判断.第四节磁场对运动电荷的作用一. 洛仑兹力磁场对运动电荷的作用f qv B=⨯ 大小:θsin qvB F =特点:不改变大小,只改变方向,不对做功.vq v vBf运动正电荷受力方向垂直于和构成的平面,成右手螺旋.v B1、运动方向与磁场方向平行sin F qvB θ=θ= 0 , F = 0带电粒子在均匀磁场中的运动匀速直线运动θBvq+f⊗θBvq-fB+v⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯B 2、运动方向与磁场方向垂直RvmqvB 2=qBmv R =v B f qvB⊥⇒=R22R m T v qBππ==匀速圆周运动周期f+v半径托克马克装置3、沿任意方向方向运动匀速圆周运动与匀速直线运动的合成——轨迹为螺旋线qBmv R θsin =qBm T π2=螺距//2cos m h v T v qBπθ==h +B ⊥v //v θv例有一均匀磁场,B = 1.5 T ,水平方向由南向北. 有一5.0 兆电子伏特的质子沿竖直向下的方向通过磁场,求作用在质子上的力?(m = 1.67⨯10-27 kg )) J (100.8) eV (100.5211362k -⨯=⨯==mv E ) s m (101.31067.1100.822172713k ---⋅⨯=⨯⨯⨯==m E v ︒⨯⨯⨯⨯⨯==-90sin 5.1101.3106.1sin 719θqvB F )N (104.712-⨯=解方向向东F q v 下B 北二、质谱仪(mass spectrograph)R +-⋅⋅⋅P ⋅⋅⋅⋅⋅⋅⋅⋅⋅N ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅B N :粒子源,P :速度选择器 qE qvB v E B ''=⇒=质谱分析:qB mv R x 22==E x B qB m 2'=谱线位置:同位素质量;谱线黑度:相对含量.B’三、霍尔效应(Hall effect)现象:通电流I ,磁场垂直于I ,在既垂直于I ,又垂直于的方向出现电势差∆U. B B m e F qv B F qE =⨯= H I IB U Bb R nqbd d∆==霍尔电势差:解释:载流子q 以漂移,受到磁场力,正负电荷上下两侧积累,形成电场,受力平衡时,有稳定的霍尔电场.v x y zB I b d P 型半导体v q +++++++-+------e F m F I nqvbd =霍尔系数R H 与载流子浓度n 成反比. 在金属中,由于载流子浓度很大,因此霍尔系数很小,相应地霍尔效应也很弱; 而在半导体中,载流子浓度较小,因此霍尔效应也较明显. 霍尔效应是半导体研究的重要手段. 问题:对n 型半导体,霍尔电势差的方向如何?应用:测载流子浓度测载流子电性—半导体类型B 测磁场(霍耳元件)H 1R nq霍尔系数(Hall coefficient):一、安培定律(Ampère Law )磁场对电流元的作用Bl I F ⨯=d d 载流导线所受磁场力d d L L F F I l B ==⨯⎰⎰ 第五节磁场对电流的作用磁矩L I B d I l Fm F qv B =⨯ d F qv BdN qv BnSdl =⨯=⨯载流直导线在均匀磁场中所受的力d L F I l B =⨯⎰ sin d L F IB l θ=⎰θsin ILB F =sin d L IB l θ=⎰安培力的方向由右手螺旋法则可知为垂直纸面向里×IBθFB θd I lLA B C D I 1I 21d I l 2d I l 1B 2B 1d F 2d F 平行长直载流导线间的相互作用力距a 的两无限长直导线,I 1、I 2,导线CD 上的电流元受力:2222d d sin F B I l θ=012 ,22I B a μπθπ==CD 单位长度受力:2012121d d d 2d F I I F l a l μπ==安培:真空中相距为1m 的无限长直细导线,载有相等的电流,若每米导线上受力正好为2⨯10-7N ,则导线内电流定义为1A.例:如图,均匀磁场垂直纸面向外,半径为R 的半圆导线通有电流I ,求作用在导线上的安培力.解R y x Bd θθd I l d F d x F d y F d F =IB d l =IBR d θd d F I l B =⨯ 0d (d )sin 2y y L F F F IBR IBR πθθ====⎰⎰方向为y 轴正向.推广:起点终点相同的载流直导线所受的力?对称性-----各电流元受力水平分量之和为零。
新课标2023版高考物理一轮总复习第九章磁场第2讲带电粒子在磁场中的运动课件
电荷处在电场中
大小
F=qvB(v⊥B)
F=qE
方向
F⊥B且F⊥v
正电荷受力与电场方向相同,负电 荷受力与电场方向相反
可能做正功,可能做负功,也可能 做功情况 任何情况下都不做功
不做功
(二) 半径公式和周期公式的应用(固基点)
[题点全练通]
1.[半径公式、周期公式的理解]
(选自鲁科版新教材)(多选)在同一匀强磁场中,两带电量相等的粒子,仅受磁
[答案] D
类型(二) 平行直线边界的磁场 1.粒子进出平行直线边界的磁场时,常见情形如图所示:
2.粒子在平行直线边界的磁场中运动时存在临界条件,如图a、c、d所示。
3.各图中粒子在磁场中的运动时间: (1)图 a 中粒子在磁场中运动的时间 t1=θBmq,t2=T2=πBmq。 (2)图 b 中粒子在磁场中运动的时间 t=θBmq。 (3)图 c 中粒子在磁场中运动的时间
[答案] BD
[例 3] 如图所示,平行边界区域内存在匀强磁场,比荷相同 的带电粒子 a 和 b 依次从 O 点垂直于磁场的左边界射入,经磁场 偏转后从右边界射出,带电粒子 a 和 b 射出磁场时与磁场右边界 的夹角分别为 30°和 60°,不计粒子的重力,下列判断正确的是( )
A.粒子 a 带负电,粒子 b 带正电 B.粒子 a 和 b 在磁场中运动的半径之比为 1∶ 3 C.粒子 a 和 b 在磁场中运动的速率之比为 3∶1 D.粒子 a 和 b 在磁场中运动的时间之比为 1∶2
(三) 带电粒子在有界匀强磁场中的圆周运动(精研点) 类型(一) 直线边界的磁场
1.粒子进出直线边界的磁场时,常见情形如图所示:
2.带电粒子(不计重力)在直线边界匀强磁场中的运动时具有两个特性: (1)对称性:进入磁场和离开磁场时速度方向与边界的夹角相等。 (2)完整性:比荷相等的正、负带电粒子以相同速度进入同一匀强磁场,则它们运
(统考版)2023版高考物理一轮复习 第九章 磁场 专题七 带电粒子在复合场中的运动学生用书
专题七带电粒子在复合场中的运动考点一带电粒子在组合场中的运动1.组合场电场与磁场各位于一定的区域内,并不重叠;或在同一区域分时间段交替出现.2.“电偏转”或“磁偏转”的比较垂直进入磁场(磁偏转)垂直进入电场(电偏转) F=qv B,F大小不变,方向总指向圆例1.一足够长的条状区域内存在匀强电场和匀强磁场,其在xOy平面内的截面如图所示:中间是磁场区域,其边界与y轴垂直,宽度为l,磁感应强度的大小为B,方向垂直于xOy 平面;磁场的上、下两侧为电场区域,宽度均为l′,电场强度的大小均为E,方向均沿x 轴正方向;M、N为条状区域边界上的两点,它们的连线与y轴平行.一带正电的粒子以某一速度从M点沿y轴正方向射入电场,经过一段时间后恰好以从M点入射的速度从N点沿y轴正方向射出.不计重力.(1)定性画出该粒子在电磁场中运动的轨迹;(2)求该粒子从M点入射时速度的大小;,求该粒子的比荷及其(3)若该粒子进入磁场时的速度方向恰好与x轴正方向的夹角为π6从M点运动到N点的时间.[教你解决问题](1)读题→画轨迹(2)模型建构→求速度[思维方法]解决带电粒子在组合场中运动问题的一般思维模板跟进训练1.[2021·广东卷,14]如图是一种花瓣形电子加速器简化示意图.空间有三个同心圆a、b、c围成的区域,圆a内为无场区,圆a与圆b之间存在辐射状电场,圆b与圆c之间有三个圆心角均略小于90°的扇环形匀强磁场区Ⅰ、Ⅱ和Ⅲ.各区磁感应强度恒定,大小不同,方向均垂直纸面向外.电子以初动能E k0从圆b上P点沿径向进入电场,电场可以反向,保证电子每次进入电场即被全程加速.已知圆a与圆b之间电势差为U,圆b半径为R,圆c半径为√3R,电子质量为m,电荷量为e,忽略相对论效应,取tan 22.5°=0.4.(1)当E k0=0时,电子加速后均沿各磁场区边缘进入磁场,且在电场内相邻运动轨迹的夹角θ均为45°,最终从Q点出射,运动轨迹如图中带箭头实线所示.求Ⅰ区的磁感应强度大小、电子在Ⅰ区磁场中的运动时间及在Q点出射时的动能;(2)已知电子只要不与Ⅰ区磁场外边界相碰,就能从出射区域出射.当E k0=keU时,要保证电子从出射区域出射,求k的最大值.考点二带电粒子在叠加场中的运动1.磁场力、重力并存(1)若重力和洛伦兹力平衡,则带电体做匀速直线运动.(2)若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒,由此可求解问题.2.电场力、磁场力并存(不计重力的微观粒子)(1)若电场力和洛伦兹力平衡,则带电体做匀速直线运动.(2)若电场力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,可用动能定理求解问题.3.电场力、磁场力、重力并存(1)若三力平衡,一定做匀速直线运动.(2)若重力与电场力平衡,一定做匀速圆周运动.(3)若合力不为零且与速度方向不垂直,将做复杂的曲线运动,因洛伦兹力不做功,可用能量守恒或动能定理求解问题.例2.如图所示,平面直角坐标系的第二象限内存在水平向左的匀强电场和垂直纸面向里的匀强磁场,一质量为m、带电荷量为+q的小球从A点以速度v0沿直线AO运动,AO与x 轴负方向成37°角,在y轴与MN之间的区域Ⅰ内加一电场强度最小的匀强电场后,可使小球继续做直线运动到MN上的C点,MN与PQ之间区域Ⅱ内存在宽度为d的竖直向上的匀强电场和垂直纸面向里的匀强磁场,小球在区域Ⅱ内做匀速圆周运动并恰好不能从右边界飞出,已知小球在C点的速度大小为2v0,重力加速度为g,sin 37°=0.6,cos 37°=0.8,求:(1)第二象限内电场强度E1的大小和磁感应强度B1的大小;(2)区域Ⅰ内最小电场强度E2的大小和方向;(3)区域Ⅱ内电场强度E3的大小和磁感应强度B2的大小.[教你解决问题]——读题抓已知条件→模型建构跟进训练2.[2022·广西南宁统考]如图所示,空间中存在水平方向的匀强电场和匀强磁场,电场方向水平向左,磁场方向垂直纸面向里.一带电小球恰能以速度v0沿与水平方向成30°角斜向右下方做匀速直线运动,最后进入一轴线沿小球运动方向且固定摆放的一光滑绝缘管道(管道内径略大于小球直径),下列说法正确的是( )A.小球带负电=√3v0B.电场和磁场的大小关系为EBC.若小球刚进入管道时撤去磁场,小球仍做匀速直线运动D.若小球刚进入管道时撤去电场,小球的机械能不断增大3.如图所示,在竖直平面内的坐标系xOy中,第三象限存在垂直于纸面向外的匀强磁场和沿x轴负方向的匀强电场,第一象限y≥0.35 m的区域有竖直向下的匀强电场和垂直于纸面向里的匀强磁场,两区域磁场的磁感应强度大小均为B=0.5 T,电场的场强大小均为E=2 N/C.一带电荷量为q的油滴从图中第三象限的P点获得一初速度v0,恰好能沿PO做匀速直线运动(PO与x轴负方向的夹角为θ=45°),并从原点O进入第一象限,经过一段时间后再次穿过x轴离开第一象限,重力加速度g取10 m/s2,求:(1)油滴在P点得到的初速度v0的大小;(2)油滴在第一象限运动的时间;(3)油滴再次穿过x轴时的横坐标x1.考点三复合场与现代科技素养提升原理图例3. [2021·河北卷,5]如图,距离为d的两平行金属板P、Q之间有一匀强磁场,磁感应强度大小为B1,一束速度大小为v的等离子体垂直于磁场喷入板间.相距为L的两光滑平行金属导轨固定在与导轨平面垂直的匀强磁场中,磁感应强度大小为B2,导轨平面与水平面夹角为θ,两导轨分别与P、Q相连.质量为m、电阻为R的金属棒ab垂直导轨放置,恰好静止.重力加速度为g,不计导轨电阻、板间电阻和等离子体中的粒子重力.下列说法正确的是( )A.导轨处磁场的方向垂直导轨平面向上,v=mgR sinθB1B2LdB.导轨处磁场的方向垂直导轨平面向下,v=mgR sinθB1B2LdC.导轨处磁场的方向垂直导轨平面向上,v=mgR tanθB1B2LdD.导轨处磁场的方向垂直导轨平面向下,v=mgR tanθB1B2Ld跟进训练4.(多选)如图甲是回旋加速器D形盒外观图,如图乙是回旋加速器工作原理图,微观粒子从S处由静止开始被加速,达到其可能的最大速度v m后将到达导向板处,由导出装置送往需要使用高速粒子的地方.下列说法正确的是( )A.D形盒半径是决定v m的一个重要因素B.粒子从回旋加速器的磁场中获得能量C.高频电源的电压是决定v m的重要因素D.高频电源的周期等于粒子在磁场中的运动周期5.[2022·郑州模拟](多选)某种质谱仪的工作原理示意图如图所示.此质谱仪由以下几部分构成:粒子源N,P、Q间的加速电场,静电分析器,磁感应强度为B的有界匀强磁场、方向垂直纸面向外,胶片M.若静电分析器通道中心线半径为R,通道内有均匀辐射电场,在中心线处的电场强度大小为E;由粒子源发出一质量为m、电荷量为q的正离子(初速度为零,重力不计),经加速电场加速后,垂直场强方向进入静电分析器,在静电分析器中,离子沿中心线做匀速圆周运动,而后由S点沿着既垂直于磁分析器的左边界,又垂直于磁场方向射入磁分析器中,最终打到胶片上的某点.下列说法正确的是( )ERA.P、Q间加速电压为12B.离子在磁场中运动的半径为√mERqC.若一质量为4m、电荷量为q的正离子加速后进入静电分析器,离子不能从S射出D.若一群离子经过上述过程打在胶片上同一点,则这些离子具有相同的比荷情境2 CT扫描机例4. CT扫描是计算机X射线断层扫描技术的简称,CT扫描机可用于对多种病情的探测.图甲是某种CT机主要部分的剖面图,其中X射线产生部分的示意图如图乙所示.图乙中M、N之间有一电子束的加速电场,虚线框内有匀强偏转磁场;经调节后电子束从静止开始沿带箭头的实线所示的方向前进,打到靶上,产生X射线(如图中带箭头的虚线所示),将电子束打到靶上的点记为P点.则( )A.M处的电势高于N处的电势B.增大M、N之间的加速电压可使P点左移C.偏转磁场的方向垂直于纸面向外D.增大偏转磁场磁感应强度的大小可使P点左移[思维方法]解决实际问题的一般过程专题七带电粒子在复合场中的运动关键能力·分层突破例 1 解析:(1)粒子运动的轨迹如图甲所示.(粒子在电场中的轨迹为抛物线,在磁场中为圆弧,上下对称)(2)粒子从电场下边界入射后在电场中做类平抛运动.设粒子从M点射入时速度的大小为v0,在下侧电场中运动的时间为t,加速度的大小为a;粒子进入磁场的速度大小为v,方向与电场方向的夹角为θ(见图乙),速度沿电场方向的分量为v1.根据牛顿第二定律有qE=ma①式中q和m分别为粒子的电荷量和质量.由运动学公式有v1=at②l′=v0t③v1=v cos θ④粒子在磁场中做匀速圆周运动,设其运动轨道半径为R,由洛伦兹力公式和牛顿第二定律得qvB =m v 2R ⑤ 由几何关系得l =2R cos θ ⑥ 联立①②③④⑤⑥式得v 0=2El ′Bl⑦(3)由运动学公式和题中所给数据得v 1=v 0tanπ6⑧联立①②③⑦⑧式得q m=4√3El ′B 2l 2⑨设粒子由M 点运动到N 点所用的时间为t ′,则t ′=2t +2(π2−π6)2πT ⑩式中T 是粒子在磁场中做匀速圆周运动的周期T =2πm qB⑪由③⑦⑨⑩⑪式得t ′=BlE (1+√3πl 18l ′) ⑫答案:(1)图见解析 (2)2El ′Bl(3)4√3El ′B 2l 2Bl E(1+√3πl 18l ′)1.解析:(1)设电子经圆b 的加速电场加速两次后以速度v 1进入Ⅰ区磁场,Ⅰ区的磁感应强度大小为B 1,则由动能定理得2eU =12mv 12-0,由几何知识得,电子在Ⅰ区做匀速圆周运动的半径r 1=R tan θ2=R tan 22.5°=0.4R ,由洛伦兹力提供向心力可得ev 1B 1=m v 12 r1, 联立解得B 1=5√meUeR , 运动时间t 1=360°−135°360°T ,又T =2πmeB 1,联立解得t 1=πR √meU 4eU,电子由P →Q ,由动能定理得8eU =E k ,所以动能E k =8eU .(2)k 最大时,电子进入Ⅰ区时速度v 最大,做匀速圆周运动的半径r 最大,所以当电子轨迹与Ⅰ区磁场的圆弧相切时,半径r 最大,由几何关系知(√3R -r )2=R 2+r 2,解得r =√33R ,根据洛伦兹力提供向心力有evB 1=m v 2r , 解得v =5√3meU3m,电子从P 点进入圆b 到刚进入Ⅰ区,由动能定理得 2eU =12mv 2-E k0,又E k0=keU ,解得k =136. 答案:(1)5√meU eR πR √meU4eU8eU (2)136例2 解析:(1)带电小球在第二象限内受重力、电场力和洛伦兹力作用做直线运动,三力满足如图所示关系且小球只能做匀速直线运动.由图知tan 37°=qE 1mg,得E 1=3mg 4q,cos 37°=mgqv 0B 1,得B 1=5mg4qv 0.(2)区域Ⅰ中小球做直线运动,电场强度最小,受力如图所示(电场力方向与速度方向垂直),小球做匀加速直线运动.由图知cos 37°=qE 2mg ,得E 2=4mg 5q.方向与x 轴正方向成53°角向上.(3)小球在区域Ⅱ内做匀速圆周运动,所以mg =qE 3,得E 3=mgq ,因小球恰好不从右边界穿出,小球运动轨迹如图所示.由几何关系得r =5d8,由洛伦兹力提供向心力知q ·2v 0B 2=m (2v 0)2r,联立得B 2=16mv 05qd.答案:(1)3mg 4q5mg 4qv 0(2)4mg 5q ,方向与x 轴正方向成53°角向上 (3)mgq16mv 05qd2.解析:带电小球受到竖直向下的重力,垂直速度方向的洛伦兹力,沿水平方向的电场力,根据质点做匀速直线运动的条件可知,小球带正电,选项A 错误;由sin 30°=qE qv 0B可得,电场和磁场的大小关系为EB=v02,选项B 错误;若小球刚进入管道时撤去磁场,重力沿速度方向的分力与电场力沿速度方向的分力大小相等,方向相反,所以小球仍做匀速直线运动,选项C 正确;若小球刚进入管道时撤去电场,只有重力做功,小球的机械能守恒,选项D 错误.答案:C3.解析:(1)如图所示,根据平衡条件可得mg =qE ,qv 0B =√2qE解得v 0=√2EB=4√2 m/s.(2)进入第一象限后,在0≤y ≤0.35 m 区域内,油滴做斜抛运动,根据运动的合成与分解,油滴在水平方向上做匀速直线运动,在竖直方向上做竖直上抛运动,刚到O 点时,有v 0x =v 0cos 45°,v 0y =v 0sin 45°竖直方向上,油滴做竖直上抛运动,有v −y 2v 0y 2=-2g ℎvy =v0y -gt1进入y>ℎ区域后,电场力和重力大小相等,方向相反,油滴在洛伦兹力作用下做匀速圆周运动,则进入到y>ℎ区域时,有v1=√v 0x 2+v y2 根据速度的合成与分解可得tan α=vy v 0x运动时间t 2=2α360°T其中周期T =2πm qB总时间t =2t 1+t 2联立解得t =15 s +37π225 s =0.72 s.(3)进入第一象限后,在0≤y ≤h 区域内,油滴在水平方向上做匀速直线运动,有L 1=v 0x t 1进入y >h 区域后,电场力和重力大小相等,方向相反,油滴在洛伦兹力作用下做匀速圆周运动,有qv 1B =mv 12 R由几何关系得L 2=R sin α由对称性得x 1=2L 1+2L 2, 解得x 1=3.2 m.答案:(1)4√2 m/s (2)0.72 s (3)3.2 m例3 解析:由左手定则可知Q 板带正电,P 板带负电,所以金属棒ab 中的电流方向为从a 到b ,对金属棒受力分析可知,金属棒受到的安培力方向沿导轨平面向上,由左手定则可知导轨处磁场的方向垂直导轨平面向下,由受力平衡可知B 2IL =mg sin θ,而I =UR ,而对等离子体受力分析有q U d=qvB 1,解得v =mgR sin θB 1B 2Ld.故B 正确,A 、C 、D 错误.答案:B4.解析:回旋加速器中的加速粒子最后从磁场中做匀速圆周运动离开,根据半径公式R =mv m qB,可得v m =qBR m,则粒子的最大速度与加速的电压无关,而与D 形盒的半径、磁感应强度以及粒子的电荷量和质量有关,D 形盒半径越大,v m 越大;磁场越强,v m 越大,A 正确,C 错误.回旋加速器是利用电场加速、磁场偏转来加速粒子的,B 错误;粒子在磁场中转动两个半圆的过程,电场的方向变换两次,则T 电=2×T 磁2=T 磁=2πm qB,D 正确.答案:AD5.解析:直线加速过程,根据动能定理得qU =12mv 2,电场中偏转过程,根据牛顿第二定律得qE =m v 2R,在磁场中偏转过程,根据牛顿第二定律得qvB =m v 2r,解得U =12ER ,r =m qB√qER m=1B √mER q,故选项A 正确,B 错误;只要满足R =2UE ,所有粒子都可以在弧形电场区通过,故选项C 错误;由r =1B √mER q可知,打到胶片上同一点的粒子的比荷一定相等,故选项D 正确.答案:AD例4 解析:本题结合CT 扫描机考查带电粒子的加速、偏转问题.电子束在M 、N 之间需要加速,故N 处的电势高于M 处的电势,A 错误;若增大M 、N 之间的加速电压,会使得电子获得的速度变大,电子在磁场中偏转,洛伦兹力提供向心力,有Bvq =m v 2R ,可得电子的偏转轨迹半径R =mvqB ,则电子在磁场中运动轨迹的半径变大,电子出磁场时偏转角减小,P 点向右移,B 错误;电子进入磁场中向下偏转,由左手定则可知,偏转磁场的方向垂直于纸面向里,故C 错误;根据R =mvqB 可知,偏转磁场的磁感应强度越大,电子的运动轨迹半径越小,在偏转磁场中偏转越明显,P 点向左移,故D 正确.答案:D。
大学物理 第九章 稳衡磁场 老师课件
Φm = BS cosθ = BS⊥
Φm = B ⋅ S
dΦm = B ⋅ d S Φm = ∫ B ⋅ d S
S
s⊥
θ
s
v B
θ v B
v dS
v en
v B
v θ B
单位:韦伯 单位 韦伯 1WB=1Tm2
s
3.磁场的高斯定理 磁场的高斯定理
v B
S
v dS1 v θ1 B 1
dΦm1 = B1 ⋅ d S1 > 0
y
v v
o
v F =0
+
v v
x
实验发现带电粒子在 磁场中沿某一特定直线方 向运动时不受力, 向运动时不受力,此直线 方向与电荷无关. 方向与电荷无关.
z
当带电粒子在磁场中垂直于此特定直线运动时 受力最大. 受力最大 带电粒子在磁场中沿其他方向运动时 F垂直 与特定直线所组成的平面. 于v 与特定直线所组成的平面
l
多电流情况
I1
I2
I3
B = B + B2 + B3 1
l
∫ B ⋅ d l = µ (I
0 l
2
− I3 )
以上结果对任意形状的闭合电流( 以上结果对任意形状的闭合电流(伸向无限远 的电流)均成立. 的电流)均成立.
安培环路定理
B ⋅ dl = µ0 ∑Ii ∫
l i =1
N
真空的稳恒磁场中, 真空的稳恒磁场中,磁感应强度 B 沿任一闭合 路径的积分的值,等于µ0乘以该闭合路径所包围 路径的积分的值, 的各电流的代数和. 的各电流的代数和 注意:电流I正负 正负的规定 注意:电流 正负的规定 :I与l成右螺旋时,I 与 成 螺旋时, 之为负 为正;反之为负.
12-磁场-毕-萨定律
2 2 3 2
1)(x=0)圆电流环中心的磁感应强度: 0 I B 2R 2)一段圆弧电流在圆心的磁感应强度 :
0 I 0 I L B 2 R 2 2 R 2R
18
4) x=∞ 轴上无穷远处
引入磁矩
B
0 IR
2x3
2
线圈载流为I,线圈所围面积为 S,线圈平面 的正法向单位矢量为 n
2
1
sin d
0 I (cos 1 cos 2 ) 4 r0
磁感应强度 B 的方向,与电流
成右手螺旋关系,拇指表示电流 方向,四指给出磁场方向。
I
13
0 I B (cos 1 cos 2 ) 4 r0
1)无限长直电流的磁感应强度 :
I
0 I 即 1 0,2 B 2 r0 无限长载流长直导线的磁场
2
L/2
B
1 B 0nI 2
o
L/2
4、运动电荷的磁场
o Idl r dB 2 4 r Idl nqvSdl
Idl
dB
r
在 Idl导线中载流子数dN=nSdl , 所以一个载流子 产生的磁场
o nqv Sdl r o qv r dB 2 2 dN 4 nSdl r 4 r o qv r B 2 4 r
毕奥-萨伐尔定律
9
2、叠加原理 整个电流I 在P点产生的磁感应强度(根据叠加原理)
dB 的方向往往不同, 应 注意:各个电流元产生的 将各个 dB 先分解成分量,再做积分。
注:由于在实验中无法得到电流元,因而毕奥-萨 伐尔定律无法用实验验证。根据它我们可以计算各种 分布电流的磁场,从而间接地证明它的正确性。同时 也证明了磁感应强度也遵从叠加原理。
高考物理总复习第九章磁场第三节带电粒子在复合场中的运动市赛课公开课一等奖省名师优质课获奖PPT课件
3.回旋加速器 (1)组成: 如图所示,两个 D 形盒(静电屏蔽作用), 大型电磁铁,高频振荡交变电压,两缝 间可形成电场. (2)作用:__电__场___用来对粒子(质子、α 粒子等)加速,___磁__场___用来使粒子回 旋从而能反复加速.
8/76
(3)加速原理
①回旋加速器中所加交变电压的频率 f 与带电粒子做匀速圆 周运动的频率相等,f=T1=_2_qπ_Bm_____;
36/76
和电子定向移动速度 v 之间的关系为 I=neSv.实验中导体 板尺寸、电流 I 和磁感应强度 B 保持不变,下列说法正确的 是( ) A.导体内自由电子只受洛伦兹力作用 B.UH 存在于导体的 Z1、Z2 两面之间 C.单位体积内的自由电子数 n 越大,UH 越小 D.通过测量 UH,可用 R=UI 求得导体 X1、X2 两面间的电 阻
32/76
A.金属板 M 上聚集负电荷,金属板 N 上聚集正电荷 B.该发电机的电动势为 100 V C.离子从左侧喷射入磁场的初速度大小为 103 m/s D.每秒钟有 6.25×1018 个离子打在金属板 N 上
33/76
解析:选 BD.由左手定则可知,射入的等离子体中正离子将 向金属板 M 偏转,负离子将向金属板 N 偏转,选项 A 错误; 由于不考虑发电机的内阻,由闭合电路欧姆定律可知,电源 的电动势等于电源的路端电压,所以 E=U= PR=100 V, 选项 B 正确;由 Bqv=qUd 可得 v=BUd=100 m/s,选项 C 错 误;每秒钟经过灯泡 L 的电荷量 Q=It,而 I= RP=1 A,
34/76
所以 Q=1 C,由于离子为一价离子,所以每秒钟打在金属 板 N 上的离子个数为 n=Qe =1.6×110-19=6.25×1018(个), 选项 D 正确.
2024年磁场ppt5-人教版
•
14、给自己一份坚强,擦干眼泪;给自己一份自信,不卑不亢;给自己一份洒脱,悠然前行。轻轻品,静静藏。为了看阳光,我来到这世上;为了与阳光同行,我笑对忧伤。
•
15、总不能流血就喊痛,怕黑就开灯,想念就联系,疲惫就放空,被孤立就讨好,脆弱就想家,不要被现在而蒙蔽双眼,终究是要长大,最漆黑的那段路终要自己走完。
❖但是在磁针附近并未放置磁体,为什么又有 磁场存在呢? ❖在我们的地球周围存在着磁场,我们把这个
磁场叫做地磁场.
答案:
❖ 能在水平面内自由转动的小磁针,静止时总 是一端指北,一端指南,即磁体有指向性, 这种现象说明它一定受到力的作用.
❖ 研究表明:地球本身就是一个巨大的磁体, 其周围存在着地磁场,磁体具有指向性,显 然是受到地磁场的磁力作用所致.地球周围存 在的磁场叫做地磁场.
❖ 地磁N极在地理的南极附近;地磁S极在地理
的北极附近.
二、磁偏角
❖这一现象最早由 我国宋代学者沈 括发现.
❖这一现象现代科 学界叫做“磁偏 角”现象.
沈括在他晚年 所著的《梦溪 笔谈》这一十 几万言的巨著 中,最早准确 的描述了磁偏 角这一现象. 比西方发现这 一现象早了四 百多年.
再见
再见
•
9、欲戴王冠,必承其重。哪有什么好命天赐,不都是一路披荆斩棘才换来的。
•
10、放手如拔牙。牙被拔掉的那一刻,你会觉得解脱。但舌头总会不由自主地往那个空空的牙洞里舔,一天数次。不痛了不代表你能完全无视,留下的那个空缺永远都在,偶尔甚至会异常挂念。适应是需要时间的,但牙总是要拔,因为太痛,所以终归还是要放手,随它去。
而假想的曲线,是我们模拟出的, 实际并不存在,但磁场是客观存在 的。
2.磁感线布满磁体周围的整个空间
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 ⎪⎪⎪ 磁 场[全国卷5年考情分析]通电直导线和通电线圈周围磁场的方向(Ⅰ)洛伦兹力、洛伦兹力的方向(Ⅰ)洛伦兹力公式(Ⅱ)以上3个考点未曾独立命题 第1节 磁场的描述 磁场对电流的作用一、磁场、磁感应强度1.磁场基本性质:磁场对处于其中的磁体、电流和运动电荷有磁场力的作用。
2.磁感应强度(1)物理意义:描述磁场的强弱和方向。
(2)大小:B=FIL。
[注1](3)方向:小磁针的N极所受磁场力的方向,也就是小磁针静止时N极的指向。
(4)单位:特斯拉(T)。
3.匀强磁场(1)定义:磁感应强度的大小处处相等、方向处处相同的磁场称为匀强磁场。
(2)特点:磁感线疏密程度相同、方向相同。
二、磁感线通电直导线和通电线圈周围磁场的方向1.磁感线及其特点(1)磁感线:在磁场中画出一些曲线,使曲线上每一点的切线方向都跟这点的磁感应强度的方向一致。
(2)特点[注2]①磁感线上某点的切线方向就是该点的磁场方向。
②磁感线的疏密定性地表示磁场的强弱。
③磁感线是闭合曲线,没有起点和终点。
④磁感线是假想的曲线,客观上不存在。
2.电流的磁场三、安培力、安培力的方向匀强磁场中的安培力1.安培力的大小(1)磁场和电流垂直时:F=BIL。
(2)磁场和电流平行时:F=0。
2.安培力的方向左手定则判断:[注3](1)伸出左手,让拇指与其余四指垂直,并且都在同一个平面内。
(2)让磁感线从掌心进入,并使四指指向电流方向。
(3)拇指所指的方向就是通电导线在磁场中所受安培力的方向。
【注解释疑】[注1] B的大小和方向由磁场本身决定,与该处放不放通电导线无关,在定义式中一定要强调通电导线垂直于磁场。
[注2] 磁场是客观存在的特殊物质,磁感线是假想的曲线;磁感线是闭合的曲线,而电场线是不闭合的曲线。
[注3] 安培力方向一定垂直电流与磁场方向决定的平面,即同时有F A⊥I,F A⊥B。
而磁场与电流的方向可以不垂直。
[深化理解]1.电流不受安培力或运动电荷不受洛伦兹力,都不能说明该处没有磁场,这一点与电场不同,电荷在电场中一定受电场力作用。
2.安培力可以做功,而洛伦兹力永不做功。
3.安培力的冲量I=BLq。
[基础自测]一、判断题(1)磁场中某点磁感应强度的大小,跟放在该点的试探电流元的情况无关。
(√)(2)磁场中某点磁感应强度的方向,跟放在该点的试探电流元所受磁场力的方向一致。
(×)(3)垂直磁场放置的线圈面积减小时,穿过线圈的磁通量可能增大。
(√)(4)小磁针N极所指的方向就是该处磁场的方向。
(×)(5)在同一幅图中,磁感线越密,磁场越强。
(√)(6)将通电导线放入磁场中,若不受安培力,说明该处磁感应强度为零。
(×)(7)1820年,丹麦物理学家奥斯特发现电流可以使周围的小磁针发生偏转,称为电流的磁效应。
(√)二、选择题1.[粤教版选修3-1 P84T1]把一小段通电直导线放入磁场中,导线受到安培力的作用。
关于安培力的方向,下列说法中正确的是()A.安培力的方向一定跟磁感应强度的方向相同B.安培力的方向一定跟磁感应强度的方向垂直,但不一定跟电流方向垂直C.安培力的方向一定跟电流方向垂直,但不一定跟磁感应强度方向垂直D.安培力的方向一定跟电流方向垂直,也一定跟磁感应强度方向垂直解析:选D根据左手定则可知,安培力的方向一定跟电流方向垂直,也一定跟磁感应强度方向垂直,故D正确。
2.[教科版选修3-1 P83T3](多选)如图为通电螺线管。
A为螺线管外一点,B、C两点在螺线管的垂直平分线上,则下列说法正确的是()A.磁感线最密处为A处,最疏处为B处B.磁感线最密处为B处,最疏处为C处C.小磁针在B处和A处N极都指向左方D.小磁针在B处和C处N极都指向右方解析:选BC根据安培定则可知,A、B两处磁场方向向左,C处磁场方向向右;根据通电螺线管周围的磁感线分布情况可知,B处磁感线最密,C处磁感线最疏。
3.(多选)一小段长为L的通电直导线放在磁感应强度为B的磁场中,当通过它的电流为I时,所受安培力为F。
以下关于磁感应强度B的说法正确的是()A.磁感应强度B一定等于FILB.磁感应强度B可能大于或等于FILC.磁场中通电直导线受安培力大的地方,磁感应强度一定大D.在磁场中通电直导线也可以不受安培力答案:BD4.[人教版选修3-1 P94T3改编]如图所示,用天平测量匀强磁场的磁感应强度。
下列各选项所示的载流线圈匝数相同,边长MN相等,将它们分别挂在天平的右臂下方。
线圈中通有大小相同的电流,天平处于平衡状态。
若磁场发生微小变化,天平最容易失去平衡的是()解析:选A由安培力F=BIL可知,线圈在磁场中的有效长度越大,天平越容易失去平衡,故A正确。
高考对本节内容的考查,主要集中在安培定则和磁场叠加、安培力作用下导体运动情况的判断与平衡问题,对三个考点的考查,主要以选择题的形式呈现,难度一般,而对安培力作用下的平衡问题有时考查计算题,难度中等。
考点一 安培定则的应用和磁场的叠加[基础自修类][题点全练]1.[安培定则的应用]如图所示,圆环上带有大量的负电荷,当圆环沿顺时针方向转动时,a 、b 、c 三枚小磁针都要发生转动,以下说法正确的是( )A .a 、b 、c 的N 极都向纸里转B .b 的N 极向纸外转,而a 、c 的N 极向纸里转C .b 、c 的N 极都向纸里转,而a 的N 极向纸外转D .b 的N 极向纸里转,而a 、c 的N 极向纸外转解析:选B 由于圆环带负电荷,故当圆环沿顺时针方向转动时,等效电流的方向为逆时针,由安培定则可判断环内磁场方向垂直纸面向外,环外磁场方向垂直纸面向内,磁场中某点的磁场方向即是放在该点的小磁针静止时N 极的指向,所以小磁针b 的N 极向纸外转,a 、c 的N 极向纸里转。
故B 正确。
2.[两电流产生磁场的叠加](多选)(2018·全国卷Ⅱ)如图,纸面内有两条互相垂直的长直绝缘导线L1、L 2,L 1中的电流方向向左,L 2中的电流方向向上;L 1的正上方有a 、b 两点,它们相对于L 2对称。
整个系统处于匀强外磁场中,外磁场的磁感应强度大小为B 0,方向垂直于纸面向外。
已知a 、b 两点的磁感应强度大小分别为13B 0和12B 0,方向也垂直于纸面向外。
则( )A .流经L 1的电流在b 点产生的磁感应强度大小为712B 0 B .流经L 1的电流在a 点产生的磁感应强度大小为112B 0C .流经L 2的电流在b 点产生的磁感应强度大小为112B 0 D .流经L 2的电流在a 点产生的磁感应强度大小为712B 0 解析:选AC 外磁场、电流的磁场方向如图所示,由题意知在b 点:12B 0=B 0-B 1+B 2 在a 点:13B 0=B 0-B 1-B 2 由上述两式解得B 1=712B 0,B 2=112B 0,故A 、C 正确。
3.[多个电流产生磁场的叠加]四根相互平行的通电长直导线a、b、c、d电流均为I,如图所示放在正方形的四个顶点上,每根通电直导线单独存;在时,正方形中心O点的磁感应强度大小都是B,则四根通电导线同时存在时O点的磁感应强度的大小和方向为()A.22B,方向向左B.22B,方向向下C.22B,方向向右D.22B,方向向上解析:选A根据安培定则判断四根导线在O点产生的磁感应强度的方向分别为:a 导线产生的磁感应强度方向为Od方向;c导线产生的磁感应强度方向为Od方向;同理,b 导线产生的方向为Oa方向,d导线产生的方向为Oa方向,则根据平行四边形定则进行合成可知,所以四根导线同时存在时O点的磁感应强度大小为22B,方向水平向左。
故A 正确。
[名师微点]1.安培定则的应用在运用安培定则判定直线电流和环形电流及通电螺线管的磁场时应分清“因”和“果”。
磁感应强度为矢量,合成与分解遵循平行四边形定则。
考点二安培力作用下导体运动情况的判断[师生共研类] 1.判定导体运动情况的基本思路判定通电导体在安培力作用下的运动或运动趋势,首先必须弄清楚导体所在位置的磁感线分布情况,然后利用左手定则准确判定导体的受力情况,进而确定导体的运动方向或运动趋势的方向。
2.五种常用判定方法[典例] 如图所示,把一重力不计的通电直导线水平放在蹄形磁铁两极的正上方,导线可以自由转动,当导线通入图示方向电流I 时,导线的运动情况是(从上往下看)( )A .顺时针方向转动,同时下降B .顺时针方向转动,同时上升C .逆时针方向转动,同时下降D .逆时针方向转动,同时上升[解析] 如图甲所示,把直线电流等效为无数小段,中间的点为O 点,选择在O 点左侧S 极右上方的一小段为研究对象,该处的磁场方向指向左下方,由左手定则判断,该小段受到的安培力的方向垂直纸面向里,在O 点左侧的各段电流元都受到垂直纸面向里的安培力,把各段电流元受到的力合成,则O 点左侧导线受到垂直纸面向里的安培力;同理判断出O 点右侧的导线受到垂直纸面向外的安培力。
因此,由上向下看,导线沿顺时针方向转动。
分析导线转过90°时的情形,如图乙所示。
导线中的电流向外,由左手定则可知,导线受到向下的安培力。
由以上分析可知,导线在顺时针转动的同时向下运动。
选项A 正确。
[答案] A[题点全练]1.[等效法]如图所示,在固定放置的条形磁铁S 极附近悬挂一个金属线圈,线圈与水平磁铁位于同一竖直平面内,当在线圈中通入沿图示方向流动的电流时,将会看到( )A.线圈向左平移B.线圈向右平移C.从上往下看,线圈顺时针转动,同时靠近磁铁D.从上往下看,线圈逆时针转动,同时靠近磁铁解析:选C把通电线圈等效成小磁针,等效小磁针的N极垂直于纸面向外,根据同名磁极相互排斥,异名磁极相互吸引可知:从上往下看,线圈顺时针转动,同时靠近磁铁,C正确。
2.[结论法与电流元法组合]如图所示,一通电金属环固定在绝缘的水平面上,在其左端放置一可绕中点O自由转动且可在水平方向自由移动的竖;直金属棒,中点O与金属环在同一水平面内,当在金属环与金属棒中通有图中所示方向的电流时,则()A.金属棒始终静止不动B.金属棒的上半部分向纸面外转,下半部分向纸面里转,同时靠近金属环C.金属棒的上半部分向纸面里转,下半部分向纸面外转,同时靠近金属环D.金属棒的上半部分向纸面里转,下半部分向纸面外转,同时远离金属环解析:选B由通电金属环产生的磁场特点可知,其在金属棒的上半部分产生有水平向左的磁场分量,由左手定则可判断金属棒上半部分受到方向垂直纸面向外的安培力,故向纸面外转;同理可判断金属棒的下半部分向纸面里转。
当金属棒转动到平行水平面时,由同向电流相吸,反向电流相斥可知,金属棒在靠近金属环,B正确。
3.[一题多法]一个可以自由运动的线圈L1和一个固定的线圈L2互相绝缘垂直放置,且两个线圈的圆心重合,如图所示。