考研线性代数总结

合集下载

考研数学线性代数必考的知识点

考研数学线性代数必考的知识点

考研数学线性代数必考的知识点考研数学线性代数必考的知识点漫长的学习生涯中,大家最熟悉的就是知识点吧?知识点就是一些常考的内容,或者考试经常出题的地方。

还在苦恼没有知识点总结吗?以下是店铺帮大家整理的考研数学线性代数必考的知识点,供大家参考借鉴,希望可以帮助到有需要的朋友。

考研数学线性代数必考的知识点篇1考研数学线性代数必考的重点一、行列式与矩阵第一章《行列式》、第二章《矩阵》是线性代数中的基础章节,有必要熟练掌握。

行列式的核心内容是求行列式,包括具体行列式的计算和抽象行列式的计算二、向量与线性方程组向量与线性方程组是整个线性代数部分的核心内容。

相比之下,行列式和矩阵可视作是为了讨论向量和线性方程组部分的问题而做铺垫的基础性章节。

向量与线性方程组的内容联系很密切,很多知识点相互之间都有或明或暗的相关性。

复习这两部分内容最有效的方法就是彻底理顺诸多知识点之间的内在联系,因为这样做首先能够保证做到真正意义上的理解,同时也是熟练掌握和灵活运用的前提。

三、特征值与特征向量相对于前两章来说,本章不是线性代数这门课的理论重点,但却是一个考试重点。

其原因是解决相关题目要用到线代中的大量内容——既有行列式、矩阵又有线性方程组和线性相关,“牵一发而动全身”。

四、二次型本章所讲的内容从根本上讲是第五章《特征值和特征向量》的一个延伸,因为化二次型为标准型的核心知识为“对于实对称矩阵A存在正交矩阵Q使得A可以相似对角化”,其过程就是上一章相似对角化在为实对称矩阵时的应用。

考研数学概率以大纲为本夯实基础从考试的角度,大家看看历年真题就发现比较明显的规律:概率的题型相对固定,哪考大题哪考小题非常清楚。

概率常考大题的地方是:随机变量函数的分布,多维分布(边缘分布和条件分布),矩估计和极大似然估计。

其它知识点考小题,如随机事件与概率,数字特征等。

从学科的角度,概率的知识结构与线性代数不同,不是网状知识结构,而是躺倒的树形结构。

第一章随机事件与概率是基础知识,在此基础上可以讨论随机变量,这就是第二章的内容。

福建省考研数学复习指南线性代数重点知识总结

福建省考研数学复习指南线性代数重点知识总结

福建省考研数学复习指南线性代数重点知识总结线性代数作为数学的重要分支之一,是考研数学的一项重要考点。

本文将针对福建省考研数学复习,总结线性代数的重点知识,以便考生们在备考过程中有针对性地进行复习。

一、向量空间向量空间是线性代数中的重要概念,它是定义了一些运算规则的向量的集合。

首先,向量空间必须满足加法封闭性、数乘封闭性以及满足乘法结合律、交换律和分配律等基本运算规则。

此外,向量空间还必须包含零向量和负向量,即对任意向量u,存在向量-v使得u + (-v)= 0。

常见的向量空间有n维欧氏空间、函数空间等。

二、线性相关与线性无关在向量空间中,若存在向量组V1,V2,...,Vn中存在不全为零的系数c1,c2,...,cn,使得c1V1 + c2V2 + ... + cnVn = 0,那么该向量组是线性相关的。

若不存在这样的系数使得条件成立,那么该向量组是线性无关的。

线性相关与线性无关的概念是判断向量组的重要工具,也是求解线性方程组的基础。

三、矩阵与行列式矩阵作为线性代数的重要工具,在数学中具有广泛应用。

矩阵由m行n列的数构成,记作A=(aij),其中1≤i≤m, 1≤j≤n。

矩阵的加法、数量乘法以及矩阵乘法是矩阵的基本运算。

行列式是由一些数排成一个方阵,并依据一定的规则计算出来的一个确定的数。

行列式在求解线性方程组以及计算矩阵的秩等问题中具有重要作用。

四、特征值与特征向量矩阵的特征值与特征向量是线性代数中的重点内容。

对于n阶方阵A,若存在数λ和非零向量x,使得Ax = λx,那么λ称为矩阵A的特征值,x称为矩阵A对应于特征值λ的特征向量。

特征值与特征向量可以帮助我们分析矩阵的性质,求解线性方程组以及进行对角化等操作。

五、线性变换与线性映射线性变换是指一个向量空间到另一个向量空间的映射,同时保持了向量空间中的向量之间的加法运算和数乘运算。

线性变换应用广泛,可以在几何学、信号处理等领域中找到许多实际应用。

考研数学线性代数重点整理

考研数学线性代数重点整理

考研数学线性代数重点整理一、矢量空间矢量空间是线性代数的基础概念,它描述了一组对象(称为矢量)的性质及其之间的运算规则。

以下是矢量空间的一些重要性质和定义:1. 定义:矢量空间是满足以下8个条件的集合V,其中两个运算(加法和乘法)满足特定的性质。

2. 加法:对于任意的矢量u和v,它们的和u+v也是V中的一个矢量。

3. 加法交换律:对于任意的矢量u和v,有u+v = v+u。

4. 加法结合律:对于任意的矢量u、v和w,有(u+v)+w = u+(v+w)。

5. 加法单位元:存在一个称为零矢量的特殊矢量0,对于任意的矢量v,有v+0 = 0+v = v。

6. 加法逆元:对于任意的矢量v,存在一个称为负矢量的特殊矢量-u,使得v+(-u) = (-u)+v = 0。

7. 乘法定义:对于任意的矢量v和实数c,cv也是V中的一个矢量。

8. 乘法分配律:对于任意的矢量v和实数c和d,有c(dv) = (cd)v。

9. 乘法单位元:对于任意的矢量v,有1v = v。

二、矩阵与线性方程组矩阵是线性代数中另一个重要的概念,它可以用来表示线性方程组和线性变换。

以下是与矩阵和线性方程组相关的一些重要内容:1. 矩阵定义:将数按矩形排列成的矩形数表称为矩阵,其中行数和列数分别称为矩阵的行数和列数。

2. 矩阵运算:矩阵之间可以进行加法和乘法的运算,具体规则如下:- 矩阵加法:对应位置元素相加。

- 矩阵乘法:设A是一个m×n矩阵,B是一个n×p矩阵,那么它们的乘积AB是一个m×p矩阵,乘法规则为A的行乘以B的列。

3. 线性方程组:线性方程组是一组线性方程的集合,矩阵可以用来表示和求解线性方程组。

对于一个m×n矩阵A、一个n×1矩阵X和一个m×1矩阵B,线性方程组可以表示为AX=B。

4. 线性方程组的解:根据矩阵的性质,可以通过高斯消元法、矩阵求逆等方法求解线性方程组。

线性代数考研知识点总结

线性代数考研知识点总结

线性代数考研知识点总结线性代数是数学的一个重要分支,它研究向量空间及其上的线性变换。

在计算机科学、物理学、工程学等领域中,线性代数都有着广泛的应用。

在考研中,线性代数是一个必考的科目,以下是线性代数考研的一些重要知识点总结。

1. 向量空间:向量空间是线性代数的基础概念,它包括一组向量和一些满足特定条件的运算规则。

向量空间中的向量可以进行加法和数乘运算,满足交换律、结合律和分配律。

2. 向量的线性相关性和线性无关性:如果向量可以通过线性组合表示为另一组向量的形式,那么这组向量就是线性相关的;如果向量不满足线性相关的条件,那么它们就是线性无关的。

3. 矩阵:矩阵是线性代数中的另一个重要概念,它是一个由数字排列成的矩形阵列。

矩阵可以用于表示线性变换、解线性方程组等。

常见的矩阵类型有方阵、对称矩阵、对角矩阵、单位矩阵等。

4. 行列式:行列式是一个用于刻画矩阵性质的重要工具。

行列式可以用来计算线性变换的缩放因子,判断矩阵是否可逆,以及计算矩阵的逆等。

5. 矩阵的相似和对角化:两个矩阵A和B,如果存在一个非奇异矩阵P,使得PAP^(-1)=B,那么矩阵A和B就是相似的。

相似的矩阵有着相同的特征值和特征向量。

对角化是指将一个矩阵通过相似变换变成对角矩阵的过程。

6. 线性变换:线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。

线性变换可以用矩阵表示,相应的矩阵称为线性变换的矩阵表示。

线性变换可以进行合成、求逆等操作。

7. 内积空间:内积空间是一个带有内积运算的向量空间。

内积运算满足对称性、线性性、正定性等性质。

内积空间可以用来定义向量的长度、夹角、正交性等概念。

8. 特征值和特征向量:对于一个线性变换,如果存在一个非零向量使得线性变换作用在该向量上等于该向量的某个常数倍,那么这个常数就是该线性变换的特征值,而对应的非零向量就是特征向量。

特征值和特征向量可以用来分析矩阵的性质,求解线性方程组等。

9. 奇异值分解:奇异值分解是矩阵分解的一种常用方法,它将一个矩阵分解为三个矩阵的乘积,其中一个矩阵是正交矩阵,另两个矩阵是对角矩阵。

2024年考研数学一专题线性代数历年题目归纳

2024年考研数学一专题线性代数历年题目归纳

2024年考研数学一专题线性代数历年题目归纳线性代数是考研数学一科目中的重要内容之一,涉及到矩阵、向量、线性方程组等多个概念和方法。

了解历年考研数学一专题线性代数的题目,可以帮助考生更好地掌握该专题的重点和难点,提高解题能力。

本文将对2024年考研数学一专题线性代数历年题目进行归纳,以供考生参考。

1. 矩阵运算题矩阵的加法、减法、乘法是线性代数的基本内容,考研中常涉及到矩阵的运算性质和运算规律。

如下是一道历年考研数学一专题线性代数中的矩阵运算题目:【例题】已知矩阵A=(a_{ij})_{m×n},矩阵B=(b_{ij})_{n×p},矩阵C=(c_{ij})_{p×k},试证明:(A×B)×C=A×(B×C)。

解析:首先我们需要明确矩阵的乘法运算满足结合律。

对于(A×B)×C,先计算矩阵A和矩阵B的乘积,得到(m×p)的矩阵D。

然后将矩阵D与矩阵C相乘,得到(m×k)的矩阵E,即(A×B)×C=E。

同样地,对于A×(B×C),先计算矩阵B和矩阵C的乘积,得到(n×k)的矩阵F。

然后将矩阵A与矩阵F相乘,得到(m×k)的矩阵G,即A×(B×C)=G。

因此,(A×B)×C=E=A×(B×C)=G,即(A×B)×C=A×(B×C)。

2. 矩阵的秩题矩阵的秩是指矩阵中非零行的最大线性无关组中所含向量的个数。

在考研数学一专题线性代数中,关于矩阵的秩有很多题目,如下所示:【例题】已知矩阵A=(a_{ij})_{m×n},矩阵B=(b_{ij})_{n×p},且秩(A)=r,秩(B)=s。

试证明:1) 秩(AB)≤min{r,s};2) 如果r=s,且r=min{m,n,p},则秩(AB)=r。

天津市考研数学线性代数重点知识总结

天津市考研数学线性代数重点知识总结

天津市考研数学线性代数重点知识总结线性代数是数学的一个重要分支,也是考研数学的一门重要课程。

对于考研数学线性代数的学习,我们需要掌握一些重点知识。

本文将对天津市考研数学线性代数的重点知识进行总结和讲解。

一、向量空间和线性变换1. 向量空间的定义及性质向量空间是线性代数中最基本的概念之一。

向量空间的定义包括十条性质,分别是封闭性、结合律、零向量、相反元、标量乘法、分配律、单位向量、范数、内积和正交。

掌握这些定义及性质,对于理解向量空间的本质和性质具有重要意义。

2. 线性变换的定义及性质线性变换是指在向量空间中进行的一种特殊的变换方式。

线性变换具有保持加法和标量乘法结构的性质,即线性变换满足线性性质。

线性变换的定义包括保持加法和标量乘法两个性质,同时还有线性变换的矩阵表示、复合和逆变换等重要性质需要掌握。

二、矩阵和行列式1. 矩阵的定义及基本运算矩阵是线性代数中另一个重要的概念,是一个矩形的数表。

矩阵的基本运算包括矩阵的加法、数乘和乘法等。

此外,矩阵的转置、乘法的结合律和分配律等性质也是需要掌握的重点。

2. 行列式的定义及性质行列式是一种用于描述矩阵的重要工具。

行列式的定义包括两种形式,一种是二阶行列式的定义,另一种是n阶行列式的定义。

行列式具有很多性质,如行列式的转置、乘法、行交换和性质不变性等。

掌握行列式的定义及性质对于矩阵的运算及线性方程组的求解非常重要。

三、线性方程组1. 线性方程组的基本概念线性方程组是线性代数中一个重要的研究对象。

线性方程组的基本概念包括齐次线性方程组和非齐次线性方程组的定义及性质。

齐次线性方程组的解空间是一个向量空间,而非齐次线性方程组的解空间则是一个平行于齐次线性方程组解空间的平面。

2. 线性方程组的求解方法线性方程组的求解包括高斯消元法、矩阵的行变换及矩阵的逆等方法。

高斯消元法是线性方程组求解的一种常用方法,它通过矩阵的行变换将线性方程组转化为简化行阶梯形矩阵,然后利用简化行阶梯形矩阵求解线性方程组。

考研数学线性代数知识点总结

考研数学线性代数知识点总结

考研数学线性代数知识点总结线性代数是考研数学中的重要组成部分,对于很多考生来说,它具有一定的难度。

但只要掌握了关键的知识点和方法,就能在考试中取得较好的成绩。

以下是对考研数学线性代数的知识点总结。

一、行列式行列式是线性代数中的基本概念之一。

1、二阶和三阶行列式的计算方法要熟练掌握,通过对角线法则可以轻松计算。

2、 n 阶行列式的定义和性质需要理解清楚。

例如,行列式的某一行(列)元素乘以同一数后,加到另一行(列)的对应元素上,行列式的值不变。

3、行列式按行(列)展开定理也是重点,它可以将高阶行列式转化为低阶行列式来计算。

二、矩阵矩阵是线性代数的核心内容。

1、矩阵的运算,包括加法、数乘、乘法以及矩阵的转置。

要特别注意矩阵乘法的规则和不满足交换律的特点。

2、逆矩阵的概念和求法至关重要。

判断矩阵是否可逆,以及通过伴随矩阵或初等变换来求逆矩阵。

3、矩阵的秩是一个关键概念,它反映了矩阵中线性无关的行(列)向量的个数。

4、分块矩阵的运算和应用也需要掌握,它可以简化一些复杂矩阵的计算。

三、向量向量是线性代数中的重要工具。

1、向量组的线性相关性是常见考点。

判断向量组是线性相关还是线性无关,以及理解相关和无关的性质。

2、向量组的秩与极大线性无关组要弄清楚它们的概念和求法。

3、向量空间的基、维数和坐标等概念也需要了解。

四、线性方程组线性方程组是线性代数的重点应用。

1、线性方程组有解的判定条件,通过系数矩阵的秩和增广矩阵的秩来判断。

2、齐次线性方程组基础解系的求法,要熟练掌握通过初等行变换将系数矩阵化为行最简形。

3、非齐次线性方程组的通解结构,由一个特解加上齐次线性方程组的通解组成。

五、矩阵的特征值和特征向量这部分内容在考研中经常出现。

1、特征值和特征向量的定义和计算方法,通过求解特征方程来得到特征值,再代入方程求解特征向量。

2、相似矩阵的概念和性质,相似矩阵具有相同的特征值。

3、矩阵可对角化的条件,以及如何将矩阵对角化。

线性代数总结知识点

线性代数总结知识点

线性代数总结知识点线性代数是数学的一个分支,主要研究向量、向量空间(也称为线性空间)、线性变换以及线性方程组的理论。

它是现代数学的基础工具之一,广泛应用于物理学、工程学、计算机科学、经济学和社会科学等领域。

以下是线性代数的一些核心知识点总结:1. 向量与向量运算- 向量的定义:向量可以是有序的数字列表,用于表示空间中的点或方向。

- 向量加法:两个向量对应分量相加得到新的向量。

- 标量乘法:一个向量与一个标量相乘,每个分量都乘以该标量。

- 向量的数量积(点积):两个向量的对应分量乘积之和,用于计算向量的长度或投影。

- 向量的向量积(叉积):仅适用于三维空间,结果是一个向量,表示两个向量平面的法向。

2. 矩阵- 矩阵的定义:一个由数字排列成的矩形阵列。

- 矩阵加法和减法:对应元素相加或相减。

- 矩阵乘法:第一个矩阵的列数必须等于第二个矩阵的行数,结果矩阵的每个元素是两个矩阵对应行列的乘积之和。

- 矩阵的转置:将矩阵的行变成列,列变成行。

- 单位矩阵:对角线上全是1,其余位置全是0的方阵。

- 零矩阵:所有元素都是0的矩阵。

3. 线性相关与线性无关- 线性相关:如果一组向量中的任何一个可以通过其他向量的线性组合来表示,则这组向量是线性相关的。

- 线性无关:如果只有所有向量的零组合才能表示为零向量,则这组向量是线性无关的。

4. 向量空间(线性空间)- 定义:一组向量,它们在向量加法和标量乘法下是封闭的。

- 子空间:向量空间的子集,它自身也是一个向量空间。

- 维数:向量空间的基(一组线性无关向量)的大小。

- 基和坐标:向量空间的一组基可以用来表示空间中任何向量的坐标。

5. 线性变换- 定义:保持向量加法和标量乘法的函数。

- 线性变换可以用矩阵表示,矩阵的乘法对应线性变换的复合。

6. 特征值和特征向量- 特征值:对应于线性变换的标量,使得变换后的向量与原向量成比例。

- 特征向量:与特征值对应的非零向量,变换后的向量与原向量方向相同。

考研线性代数 解题方法汇总(非知识点汇总)

考研线性代数 解题方法汇总(非知识点汇总)

考研线性代数解题方法汇总(非知识点汇总)行列式的计算消零化基本形法•思想:通过恒等变形变为基本形求解•恒等变形o消零化▪当列/行元素大致相同时,用第一行倍加▪当列/行元素具有递推性质时,用i行倍加i+1行▪相同优先o互换▪变为分块对角矩阵▪变换主/副对角线(变换次数为(n-1)n/2)o展开定理•常见行列式形状o爪形行列式o行和相等行列式▪求法▪1、所有元素向第一列求和▪2、提出第一列公因式▪3、将第一列归零化,视情况采用相应方法加边法•使用场景:无法通过互换、倍加、倍乘化简的行列式•使用方法:每列元素都含有同一参数的项,且该项系数(可以是其他参数)具有规律性数学归纳法与递推法•使用场景:具有递推性质的n阶行列式的证明•第一类归纳法o1、验证n=1时成立o2、假设n=k时成立o3、证明n=k+1时成立•第二类归纳法o1、验证n=1、n=2时成立o2、假设n<k时成立o3、证明n=k时成立•常见行列式形状o三主对角线行列式▪行和相等▪行和不相等用范德蒙德行列式行列式形式与解法总结•特殊形状行列式o爪形行列式o行和相等行列式o三主对角线行列式•多个行/列元素大致相同•行列元素具有递推性质•零的分布有规律•第一列只有两个元素o消去第二个元素o放置两头采用展开定理•具有递推性质的n阶行列式•所有元素都为齐次式余子式和代数余子式的线性组合计算法1:转化为行列式计算法2:用伴随矩阵计算•1、利用 A=|A|A逆计算A•2、由伴随阵的相应元素得到余子式•要求:需要A逆好求,没啥大用特别:所有代数余子式和的计算抽象行列式的计算|A+B|•知列向量o拆分o将向量的线性组合转化为矩阵乘积o将对矩阵的变换过程转化为矩阵乘积•完全抽象•知部分具体矩阵C 或 C的特征值o向|C|、|C+kE|靠拢▪相似:知A~B,可得|A+kE|=|B+kE|▪特征值性质:A+kE的特征值为 A的特征值+k行列式方程•1、将方程化为待求矩阵为因子的因式方程行列式表示的函数和方程求行列式函数f最高次数•化简行列式计算fo观察有差相同的行列,尽可能化零o多项式行列式化为基本型求解求行列式函数f的复合函数求行列式函数f的根或根的个数由行列式函数f的根特征(二重根)求参数行列式在Ax=0上的应用——克拉默法则注意:在求解|A|=0时,使用展开定理直接求因式乘积,不要先求多项式再因式分解,可能很难因式分解|A|=0的证明充要条件•|A|=k|A|o将关于A一次幂的表达式两边取行列式o特别:正交矩阵相关证明【李线代讲义例2.29】•Ax=0有非零解•反证法•存在零特征值o当题目中提到列向量时使用o题目中有A的多项式函数:同乘å•矩阵的秩注意矩阵方阵的幂通用步骤o对角阵o小三角阵o对角线元素相同的三角阵o零分布规则的阵分解为矩阵乘积•1、若给定矩阵向量成比例,则可分解为两向量乘积•2、利用结合律将两向量交换相乘•原理o行向量*列向量=数o列向量*行向量=各行成比例的矩阵利用递推式•使用场景:给定矩阵无法分解•1、依次求矩阵前几次幂,得递推式o形式:A^m=k*A^s(n>m)o注意•2、由递推式用法化简求值o1)从A^n中提出A^s,将其看作催化剂o2)A^s把A^n剩余部分全部转化为k▪转化为(n-s)/(m-s)个k乘积▪当n-s/m-s不是整数时分类讨论利用对角阵•1、求其相似对角阵代入•2、当对角阵元素相同时,求幂不需要求P两方阵和的幂•通过二项式定理展开•特别:对角线元素相同的三角阵o1、将给定矩阵分解为单位阵E和小三角阵B的和o2、用二项式定理展开,消去零项,再求和o背景知识:小三角阵▪对角元素为0的三角阵▪小三角阵的幂=更小三角阵▪小三角阵的”非零对角线到角的线数+1”次幂=O矩阵乘法的可交换性求与其可交换的矩阵•待定系数法o1、假设同阶矩阵B与其可交换o2、列式AB=BA并化简o3、令对应元素相等得解•拆解单位阵法o应用场景:给定矩阵与单位阵相近o1、将给定矩阵呢拆解为单位阵E和矩阵Bo2、求与矩阵B可交换的矩阵证明两矩阵可交换•利用伴随矩阵公式o应用场景:被证明式中含有伴随阵o1、凑出与伴随阵对应的矩阵o2、用公式进行矩阵交换后恢复•利用可逆矩阵公式o应用场景:给定两被证矩阵关系式o1、将已知条件凑出AB=E,证明可逆o2、由可逆矩阵可交换写出交换乘积等式o3、将乘积展开,消去多余项相关结论•对角矩阵与对角矩阵可交换•(E+A)^(-1)与(E-A)可交换对称矩阵和反对称矩阵相关结论•n阶方阵=对称矩阵+反对称矩阵待定证明A可逆并求A逆求数值矩阵A的逆•分块矩阵法求抽象矩阵的逆•分解成多个可逆矩阵的乘积o将待证矩阵分解为已知可逆矩阵的乘积o相关结论分块矩阵的逆•主对角线分块矩阵的逆•副对角线分块矩阵的逆•待定系数法o1、设出逆矩阵,令其与原矩阵相乘为单位阵o2、由对应块相等列方程可逆矩阵的判别验证•证明可逆o证明|A|≠0o特征值全为0部分+特征值全不为0部分证明A=O证明aij=0证明r(A)=0相关结论抽象矩阵式化简先化简条件,再化简被证式用条件将被证式的不可转化单元表出伴随矩阵低阶阵:定义法一般/抽象阵:公式法记忆方阵的行列式常见恒等变换•交换某项乘积顺序o解法:一边消一边补o例:(E+AB)=A(E+BA)A^(-1)•(A^(-1)+B^(-1))=A^(-1)(A+B)B^(-1)矩阵方程技巧•知A*可直接求|A|、A^(-1)•A逆的逆可乘进括号逆中初等矩阵将左乘初等矩阵看作行变换证明正交阵证明ATA=AAT=E,不能只证一部分矩阵的秩与等价矩阵向量向量组的线性表出计算题转化为线性方程组有没有解证明题构造方程组,证明方程组有解•等价证明r(å1,å2,...,ås)=r(å1,å2,...,ås,ç)找出两个条件•å1,å1,...,ås线性无关•å1,å1,...,ås,ç线性相关证明k≠0反证法向量组的线性相关、无关具体相关性计算转化为Ax=0有没有非零解特别•有零向量•向量数>维数•n维n个向量行列式=0•向量数>矩阵秩抽象相关性证明定义法•1、设k1a1+k2a2+...+knan=0•2、恒等变形证明k1 k2 ... kn=0▪同乘使1项为0,需要多次同乘▪同乘后与原式相加减消元o常用条件▪特征向量:不同特征值特征向量线性无关▪基础解系:基础解系线性无关秩•1、将被证向量组以列排为矩阵A•2、证明r(A)=so A若有A=BCo A若有AB=Co A若有AB=O秩向量组极大无关向量组•含一参向量组求极大【李线代讲义例3.21】o拼矩阵、行变换、由参讨论秩求两向量组矩阵计算证明•思路:分别找到表大于和表小于的两个条件•条件o向量o方程组▪解向量的秩=n-r(A)▪若Ax=b、Ax=0有s个线性无关解向量,则s≤n-r(A)▪若AB=O,则r(B)≤n-r(A)其他•已知r(A)求r(B)等价矩阵和等价向量组分别证明向量组1、11可以相互线性表出r(A)=r(B)=r(A,B)当A B其中一个满秩时不需要求r(A,B)A可由B表出,B不能由A表出1、由r(A)<r(A,B)≤n得|A|=0解未知数2、代入看是否满足r(A)<r(B)=r(A,B)向量空间线性方程组齐次线性方程组具体型求解1、将系数矩阵化为含最大单位阵的矩阵2、非单位阵列的位置填写100;010;0013、在解向量其他位置填写填1列元素相反数抽象型求解1、推断r(A)知解向量个数2、找出n-r(A)个å使得Ax=0证明向量组是Ax=0的基础解系1、验证Açi=02、证明ç 1 ç 2 ... çt无关3、说明t=n-r(A)非齐次线性方程组具体型求解一般步骤•1、将增广矩阵化为含最大单位阵的矩阵•2、自由变量赋值o1/选取剩余非单位矩阵列作为自由变量o2/给通解的自由变量列赋值100;010;001o3/给特解的自由变量列赋值000•3、填写其他元素o1/通解解向量其他位置填写填1列元素相反数o2/特解解向量其他位置填写b向量元素含参注意•首先尽量消去参数•不能对某行同乘/除(可能为零)含参项•不能对某行同除含参项后加到另一行(可能为∞)含两参数的分类讨论•1、令|A|=0求出得唯一解参数范围•2、剩余范围画树状图讨论o三个主分支o次分支标准▪r(A)=?=r([A,b])•3、写情况类别o将每种情况对应的路线取交集,得参数范围o无解情况参数范围可取并集,合并为一种o无穷解情况不可合并抽象型求解1、推断解的结构2、找出n-r(A)个线性无关齐次方程解向量3、找出特解A的行向量与Ax=0的解的关系线性方程组系数矩阵列向量和解的关系求两个方程组的公共解两个方程组联立成大方程组求解抽象方程组:证明大方程组有非零解一个方程组+另一方程组的基础解系1、求出方程组的基础解系2、将公共解用两个基础解系分别表示•其中一个基础解系用负系数表示•移项得两个基础解系的线性组合=03、建立新齐次方程组并求解4、代回2步骤式得公共解同解方程组具体型同解必要条件题目•同未知数不同方程数的两个齐次方程组同解求参数步骤•1、由方程式较多的方程组1非满秩求参数•2、将方程组1求解得基础解系•3、将基础解系代入方程组2中求参数•4、验证两方程组秩相同抽象型1、证明方程组(1)的解是(11)的解2、证明方程组(11)的解是(1)的解方程组的几何应用求矩阵AX=B型•将其看作多个同系数矩阵的方程组•1、设X=[x,y,z],x y z为列向量•2、将A、B组成增广矩阵[A,B]求解f(X)=B型(不可化为AX=B)•1、设未知矩阵为具体矩阵•2、代入条件令对应元素相等转化为方程组特征值与特征向量求特征值/向量数值矩阵特征方程法•1、利用特征方程求解特征根o展开公式法▪找到两行/列相乘加满足o一般方法▪1、合并同类项写成降幂多项式▪2、猜根后通过多项式除法进行因式分解•2、带入特征根解齐次线性方程组求特征向量观察法•秩1矩阵•主对角线ai,其他为b抽象矩阵方法•公式法•定义法o思想:将题目条件转化为Aå=kå形式o常见•相似法o背景知识▪P^(-1)AP~B,特征值相同▪B的特征向量=P^(-1)*A的特征向量▪A的特征向量=P*B的特征向量o思想:构造相似阵,求其特征,公式法求原矩阵特征o题目特征▪题目出现‘å1 å2线性无关’,‘Aå1’,‘Aå2’•同乘å法o步骤▪1、对f(A)=0同乘å转化为f(λ)=0,求λ可能值▪2、由’秩’ + ’可相似对角化’ 确定λ题目•‘å1 å2线性无关’,‘Aå1’,‘Aå2’•多项式f(A)=0两个矩阵是否有相同的特征值判断思路特征多项式是否相等常见判断矩阵与转置阵相似矩阵。

考研数学一详细知识点总结

考研数学一详细知识点总结

考研数学一详细知识点总结一、线性代数1. 行列式行列式是线性代数中的一个重要概念,它是一个具有特定数学性质的标量函数,它可以对矩阵进行某种代数计算,得到一个数。

通过行列式的性质和运算法则,我们可以求解线性方程组的解,判断矩阵的逆矩阵是否存在等。

行列式的基本定义、性质和运算法则是线性代数中的重要基础知识点。

2. 矩阵与向量空间矩阵是线性代数中的另一个重要概念,它是一个矩形数组,它是向量空间的一种表达形式。

矩阵的定义、运算法则、转置矩阵、伴随矩阵、特征值和特征向量等都是线性代数中的重要知识点。

3. 线性变换与矩阵的相似变换线性变换是线性代数中的一个重要概念,它是定义在向量空间上的一个运算,将一个向量空间中的一个向量映射到另一个向量空间中的一个向量。

线性变换与矩阵的相似变换在数学和工程中有着广泛的应用,对于理解线性代数的基本概念和运用都具有重要意义。

4. 线性方程组线性方程组是线性代数中的一个重要概念,它是由一系列线性方程构成的方程组。

通过行列式和矩阵的知识可以求解线性方程组的解,判断矩阵的逆矩阵是否存在等。

5. 向量的线性相关性向量的线性相关性是线性代数中的另一个重要概念,它是判断向量空间中向量之间的线性组合是否有零解的一个关键概念。

向量的线性相关性的性质、判断方法和应用是线性代数中的重要知识点之一。

6. 最小二乘法最小二乘法是线性代数中的另一个重要概念,它是一种用于数据拟合和参数估计的数学方法。

通过最小二乘法可以得到一个最优的拟合曲线或者参数估计,它在数学、统计学和工程领域中都有着广泛的应用。

二、概率统计1. 随机事件与概率随机事件是概率统计中的一个重要概念,它是指在一定条件下,结果是不确定的事件。

概率是描述随机事件发生可能性的一种数学方法,它是随机事件发生可能性的度量标准。

随机事件的基本性质和概率的基本性质是概率统计中的基础知识点。

2. 条件概率与独立性条件概率是指在已知一件事情发生的情况下,另一件事情发生的可能性。

考研数学 线性代数(高等代数)重点知识整理总结

考研数学 线性代数(高等代数)重点知识整理总结

考研线性代数(高等代数)重点知识总结一、行列式(一)行列式概念和性质 1.(奇偶)排列、逆序数、对换逆序数:所有逆序的总数。

2、行列式定义:所有两个来自不同行不同列的元素乘积的代数和。

重点:二、三阶行列式的计算公式3. n 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和,121212(..)12(1)...n n nj j j ijj j nj nj j j a a a a τ=-∑.4.行列式的性质(主要用于行列式的化简和求值): (1)行列式行列互换,其值不变。

(转置行列式T D D =) (2)行列式中某两行(列)互换,行列式变号。

推论:若行列式中某两行(列)对应元素相等,则行列式等于零。

(3)常数k 乘以行列式的某一行(列),等于k 乘以此行列式。

(提公因式) 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。

(4)行列式具有分行(列)可加性。

行列式中如果某一行(列)的元素都是 两组数之和,那么这个行列式就等于两个行列式之和。

(5)将行列式某一行(列)的k 倍加到另一行(列)上,值不变。

余子式ij M 、代数余子式ij ji ij M A +-=)1(。

(6)行列式依行(列)展开:余子式ij M 、代数余子式ij ji ij M A +-=)1(。

定理:①任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值; ②行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0.(7)克莱姆法则:① 非齐次线性方程组:当系数行列式0≠D ,有唯一解:,(12)j j D x j n D==⋯⋯其中、;② 齐次线性方程组:当系数行列式0D ≠时,则只有零解。

逆否:若方程组存在非零解,则D 等于零。

③ 如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0。

④ 若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解; 如果方程组有非零解,那么必有0D =。

考研线性代数知识点全面总结

考研线性代数知识点全面总结

《线性代数》复习提纲第一章、行列式1.行列式的定义:用2n 个元素ij a 组成的记号称为n 阶行列式。

(1)它表示所有可能的取自不同行不同列的n 个元素乘积的代数和; (2)展开式共有n!项,其中符号正负各半; 2.行列式的计算一阶|α|=α行列式,二、三阶行列式有对角线法则; N 阶(n ≥3)行列式的计算:降阶法定理:n 阶行列式的值等于它的任意一行(列)的各元素与其对应的代数余子式乘积的和。

方法:选取比较简单的一行(列),保保留一个非零元素,其余元素化为0,利用定理展开降阶。

特殊情况:上、下三角形行列式、对角形行列式的值等于主对角线上元素的乘积;◊行列式值为0的几种情况:Ⅰ 行列式某行(列)元素全为0; Ⅱ 行列式某行(列)的对应元素相同;Ⅲ 行列式某行(列)的元素对应成比例; Ⅳ 奇数阶的反对称行列式。

3.概念:全排列、排列的逆序数、奇排列、偶排列、余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:一个排列中任意两个元素对换,改变排列的奇偶性。

奇排列变为标准排列的对换次数为基数,偶排列为偶数。

n 阶行列式也可定义:n q q q na a a ⋯=∑21t211-D )(,t 为n q q q ⋯21的逆序数4.行列式性质:1、行列式与其转置行列式相等。

2、互换行列式两行或两列,行列式变号。

若有两行(列)相等或成比例,则为行列式0。

3、行列式某行(列)乘数k,等于k 乘此行列式。

行列式某行(列)的公因子可提到外面。

4、行列式某行(列)的元素都是两数之和,则此行列式等于两个行列式之和。

5、行列式某行(列)乘一个数加到另一行(列)上,行列式不变。

6、行列式等于他的任一行(列)的各元素与其对应代数余子式的乘积之和。

(按行、列展开法则)7、行列式某一行(列)与另一行(列)的对应元素的代数余子式乘积之和为0.5.克拉默法则::若线性方程组的系数行列式0D ≠,则方程有且仅有唯一解DD D Dx D D n =⋯==n 2211x ,x ,,。

考研线性代数总结

考研线性代数总结

考研线性代数总结关键信息项:1、线性代数的基本概念行列式矩阵向量线性方程组2、线性代数的核心理论矩阵的秩线性相关性线性变换特征值与特征向量3、考研重点题型行列式的计算矩阵的运算与求逆向量组的线性表示与线性相关性判定线性方程组的求解与解的结构矩阵的特征值与特征向量的计算二次型的标准化与正定判定11 线性代数的基本概念111 行列式行列式是线性代数中的一个基本概念,它是一个数值。

行列式的定义基于排列的逆序数。

行列式的计算方法包括按行(列)展开、利用行列式的性质化简等。

行列式在求解线性方程组、判断矩阵可逆性等方面有重要应用。

112 矩阵矩阵是线性代数的核心概念之一,它是一个数表。

矩阵的运算包括加法、数乘、乘法、转置等。

矩阵的逆是一个重要概念,只有方阵且行列式不为 0 时可逆。

矩阵的秩反映了矩阵的内在结构和性质。

113 向量向量可以看作是具有方向和大小的量。

向量组的线性相关和线性无关是重要的性质。

向量空间是由向量构成的集合,具有特定的运算和性质。

114 线性方程组线性方程组可以用矩阵形式表示,通过系数矩阵和增广矩阵来研究。

线性方程组有解的条件、解的结构是重要的考点。

12 线性代数的核心理论121 矩阵的秩矩阵的秩是矩阵的一个重要指标,它表示矩阵中行向量或列向量的线性无关组数。

通过初等变换可以求矩阵的秩。

秩在判断线性方程组解的情况、向量组的线性相关性等方面起关键作用。

122 线性相关性向量组的线性相关性判断方法包括定义法、行列式法、秩法等。

线性相关和线性无关的性质和应用需要熟练掌握。

123 线性变换线性变换是将一个向量空间映射到另一个向量空间的函数,且保持线性运算。

可以通过矩阵来表示线性变换,研究其性质和作用。

124 特征值与特征向量特征值和特征向量反映了矩阵在特定方向上的缩放比例和方向。

求特征值和特征向量的方法和步骤需要熟练掌握,在矩阵对角化等方面有重要应用。

13 考研重点题型131 行列式的计算常见的行列式类型包括上(下)三角行列式、爪型行列式、范德蒙德行列式等。

考研数学中的线性代数知识点总结

考研数学中的线性代数知识点总结

考研数学中的线性代数知识点总结在考研数学中,线性代数是一个重要的知识领域。

掌握线性代数的基本概念和方法对于考研数学的学习至关重要。

本文将对考研数学中的线性代数知识点进行总结,并分析其在考试中的应用。

**1. 矩阵与向量**矩阵和向量是线性代数的基础概念之一。

矩阵是由数域上的元素排成的矩形阵列,向量是一个包含有限个数目元素的组合。

在考研数学中,矩阵和向量常常用于表示线性方程组、线性变换等问题。

**2. 矩阵运算**矩阵具有加法、数乘和乘法等运算。

加法和数乘是矩阵的基本运算,而矩阵乘法是一种重要的组合运算,它具有结合律和分配律。

在考研数学中,矩阵运算常常用于求解线性方程组、矩阵的特征值与特征向量等问题。

**3. 行列式**行列式是矩阵的一个重要性质,它可以用于判断矩阵是否可逆、计算线性变换的缩放因子等。

行列式的性质包括交换行列式的两行(列)、某一行列乘以一个非零常数等,这些性质在求解行列式的值时十分实用。

**4. 线性方程组**线性方程组是线性代数的核心内容之一,它可以用矩阵和向量的形式表示。

求解线性方程组的方法包括高斯消元法、矩阵的初等变换法等,这些方法在考研数学中经常会用到。

**5. 特征值与特征向量**特征值与特征向量是矩阵的一个重要性质,它们可以用于描述线性变换的特征。

求解特征值与特征向量可以通过求解矩阵的特征方程组来实现,在考研数学中,特征值与特征向量常常用于矩阵的对角化等问题。

**6. 矩阵的对角化**矩阵的对角化是线性代数中的一个重要概念,它可以将一个矩阵转化为对角矩阵的形式。

对角化的条件是矩阵具有线性无关的特征向量,通过对角化可以简化矩阵的运算,提高求解问题的效率。

**7. 线性空间与子空间**线性空间是线性代数的一个重要概念,它可以用来描述向量的集合。

线性空间具有加法和数乘等运算,子空间是线性空间的一个重要概念,它可以用来描述线性方程组的解空间等。

**8. 线性变换与矩阵表示**线性变换是线性代数中的一个核心概念,它可以用矩阵来表示。

考研数二知识点总结

考研数二知识点总结

考研数二知识点总结一、线性代数1. 行列式行列式是矩阵的一个重要性质,它可以用于求解线性方程组的解。

行列式的定义是一个数学函数,用来将一个矩阵转换为一个标量。

行列式的计算方法有代数余子式法、拉普拉斯展开法和行列式性质法等。

2. 矩阵矩阵是线性代数中的一个重要概念,它是由数域上的元素组成的矩形阵列。

矩阵有加法、数量乘法和矩阵乘法的运算法则。

矩阵的转置、逆矩阵、行列式以及特征值和特征向量都是矩阵的重要性质。

3. 向量向量是线性代数中的另一个重要概念,它是一个具有方向和大小的量。

向量的基本运算有加法、数量乘法和点积。

向量的线性相关性、线性无关性以及向量的表示都是考研数学中的重要知识点。

4. 矩阵的特征值和特征向量矩阵的特征值和特征向量是矩阵运算中的重要概念,它们可以用来描述矩阵的性质和特征。

特征值和特征向量在物理学、工程学和经济学等领域都有重要的应用。

5. 矩阵的相似性矩阵的相似性是指对于两个矩阵A和B,如果存在一个非奇异矩阵P,使得P^-1AP=B成立,则称矩阵A与B相似。

相似矩阵具有相同的特征值,但不一定有相同的特征向量。

6. 线性空间线性空间是线性代数的一个重要概念,它是指一个集合,它满足一些线性运算的性质。

线性空间中的向量可以进行线性组合和线性相关的运算。

7. 线性变换线性变换是指一个向量空间到另一个向量空间的映射,它保持了向量空间的线性运算性质。

线性变换可以用矩阵来描述,它在计算机图形学、物理学和工程学中都有重要的应用。

二、概率论1. 概率空间概率空间是概率论的一个重要概念,它由一个样本空间和一个事件的集合组成。

概率空间中的事件有概率分布,它描述了事件发生的可能性大小。

2. 随机变量随机变量是描述随机现象的数学变量,它可以是离散型随机变量或连续型随机变量。

随机变量的分布函数、密度函数以及期望和方差都是概率论中的重要知识点。

3. 事件的独立性事件的独立性是指两个事件的发生不受到另一个事件的影响。

考研数学《线性代数》考点知识点总结

考研数学《线性代数》考点知识点总结

第一章行列式二元线性方程组:a x11ax21a12a22yyb1b2aa1112D,aa2122ba112D,1ba222ab111D2ab212xD1D,yD2D排列的逆序数:ttn1ti〔t为排列p1p2p n中大于p i且排于p i前的元素个数〕it为奇数奇排列,t为偶数偶排列,t0标准排列。

a 11 a12a1nn阶行列式:Daaa21222ndet(a)=ij(1)t为列标排列的逆序数.t aaa1p12p np2na n1 an2ann定理1:排列中任意两个元素对换,排列改变奇偶性推论:奇〔偶〕排列变为标准排列的对换次数为奇〔偶〕数定理2:n阶行列式可定义为tD(1)a1a2a=pppn12n (1).t aaat aaa1p12p np2nT 1.D=DT,D为D转置行列式.(沿副对角线翻转,行列式同样不变)推论:两行(列)完全一样的行列式等于零.2.互换行列式的两行(列),行列式变号.记作:r i r〔c i c j〕DD.j 记作:r i r〔c i c j〕DD0.j推论:某一行(列)所有元素公因子可提到行列式的外面.3.行列式乘以k等于某行(列)所有元素都乘以k.记作:kDr i k〔kDc i k〕.记作:kDrki〔kDc i k〕.4.两行(列)元素成比例的行列式为零.记作:r j r i k〔c j c i k〕D0.行列式的性质:a11a12(a1ia1i) a1na11a12a1ia1na11a12a1ia1n5.D a21a22(a2ia2i) a2n Da21a22a2ia2na21a22a2ia2na n1 an2(aniani) annan1an2aniannan1an2aniann上式为列变换,行变换同样成立.6.把行列式的某一列(行)的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式不变.记作:c i ckc(r i r i kr j),D不变.ij注:任何n阶行列式总能利用行运算r i+kr j化为上(下)三角行列式.对角行列式上D〔下DT〕三角形行列式00a11011212nn(n1)2 2,n(1)12aa2122Da11a22ann00nn an1an2anna 11 a1ka11a1kabD1det(aij)假设对Dak1c11akkc1kb11b1k设ak1bakkb,假设2nabD2,n11 1n 阶行列式cdc k1 ckkbk1bkkD2det(bij)bn1bnncd2n那么有D=D1D2.有D2n=(ad-bc)n.n.ij余子式:n 阶行列式中把a ij 所在的第i 行和第j 列去掉后,余下n-1阶行列式.代数余子式:ijA ij (1)M引理:n 阶行列式D 中,假设第i 行所有元素除a ij 外都为零,那么有Da ij A ij .行列式等于它的任一行(列)的各元素与其对应的代数余子式乘机之和.定理3:推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘机之和等于零. (代数余子式性质) D,ij,当n aAD ki 当kjijk10,ij;或 D,当j i naAD ikjkij 当 k 10,ij, ; 其中 ij1, 0, 当 当 i ij , j.1111X 德蒙德 行列式:xxxx123n2222Dxxxx =n123nnij ( 1x i x).证明用数学归纳法.jn x11n x21n x 31n nx1设方程组a x111ax211a12a22x2x2a xnxn1na2nb,1b,2aa111n,假设0D ,那么方程组有惟一解:克拉默法ax n11a n2 x 2a nnx nbna n1 ann那么:DDD12nx,x,,x1,其中2nDDDD ja 11 a n1 a 1,a n ,j j 1 1 b 1 b n a 1,a n,j j 1 1a 1nann(j1,2,,n).定理4:假设上线性方程组的系数行列式D0,那么方程组一定有惟一解;假设无解或有两个不同解,那么D0.定理5:假设齐次线性方程组(b n =0)的系数行列式D0,那么齐次线性方程组无非零解;假设有非零解,那么D0.第二章矩阵及其运算对角矩阵(对角阵):n 阶单位矩阵(单位阵):纯量阵:100 λ000λ1E0100Λλ00 λ2E00100 λ0n0 λEAAEA.另可记作diag(,,,)Λ.12n(E)AA,A(E)A.矩阵与矩假设(a)Α是一个ms矩阵,B(b ij)是一个sn矩阵,且CAB,那么C(c ij)是一个mn矩阵,ij阵相乘:且cabababimij1122(1,2,,;j1,2,,n).假设ABBA ,称A与B是可交换的.ijijissjT矩阵转置:假设Α(a ij),那么(a)ΑjiTTTTTT(AB)AB,(AB)BA假设TA,A为对称阵A方阵的行列式:n阶方阵A元素构成的行列式,记A或det A.方阵行列式的运算规律:A 11 A21An1A为行列式A中对应元素的ijT;1.AA伴随矩阵:A* A12A22An2代数余子式.n;2.AAA 1n A2nAnnAA**A A A E 13.ABAB,1AA.逆矩阵:假设ABBAE,那么A可逆,且称B为A的逆矩阵,记B=A-1,A的逆阵是唯一的.定理1:假设矩阵A可逆,那么A0.定理2:假设A0,那么矩阵A可逆,且A1 1.*AA奇异矩阵:当A0时,A称为奇异矩阵.矩阵A可逆的充要条件:A0,即矩阵A是非奇异矩阵。

考研线性代数重点内容与题型总结

考研线性代数重点内容与题型总结

考研线性代数重点内容与题型总结篇1:考研线性代数重点内容与题型总结考研线性代数重点内容与题型总结考研阶段大致有依次下面几个阶段:基础阶段、强化阶段、冲刺阶段,前面每个阶段假如走的更好更快,那么将为以后的阶段供应足够空间,反之可能打乱复习进程。

越是到后面,考生越是要坚持两条腿走路,即学问点总结和题型总结。

也就是要把书由厚读到薄,把学问转化成自己的东西,这样才会越学越轻松。

线性代数在考研数学中占有重要地位,必需予以高度重视。

和高数与概率统计相比,由于线性代数的学科特点,同学们更应当要注意对学问点的总结。

线性代数试题的特点比较突出,以计算题为主,证明题为辅,因此,同学们必需注意计算力量。

线性代数在数学一、二、三中均占22%,所以考生要想取得高分,学好线代也是必要的。

下面,就将线代中重点内容和典型题型做总结,盼望对同学们复习有关心。

一行列式行列式在整张试卷中所占比例不是很大,一般以填空题、选择题为主,它是必考内容,不只是考察行列式的概念、性质、运算,与行列式有关的考题也不少,例如方阵的行列式、逆矩阵、向量组的线性相关性、矩阵的秩、线性方程组、特征值、正定二次型与正定矩阵等问题中都会涉及到行列式。

假如试卷中没有独立的行列式的试题,必定会在其他章、节的试题中得以体现。

所以要娴熟把握行列式常用的计算方法。

1重点内容:行列式计算(1) 降阶法这是计算行列式的主要方法,即用绽开定理将行列式降阶。

但在绽开之前往往先用行列式的性质对行列式进行恒等变形,化简之后再绽开。

(2) 特别的行列式有三角行列式、范德蒙行列式、行和或列和相等的行列式、三线型行列式、爪型行列式等等,必需娴熟把握相应的计算方法。

2常见题型(1) 数字型行列式的计算(2) 抽象行列式的计算(3) 含参数的.行列式的计算。

二矩阵矩阵是线性代数的核心,是后续各章的基础。

矩阵的概念、运算及理论贯穿线性代数的始终。

这部分考点较多。

涉及伴随矩阵的定义、性质、行列式、逆矩阵、秩及包含伴随矩阵的矩阵方程是矩阵试题中的一类常见试题。

考研数学一大纲详解线性代数部分重要知识点梳理

考研数学一大纲详解线性代数部分重要知识点梳理

考研数学一大纲详解线性代数部分重要知识点梳理线性代数作为数学的一个重要分支,是考研数学一科目中不可或缺的一部分。

在考研备考的过程中,对线性代数的重要知识点进行详细梳理,对于提高考生的备考效果具有重要意义。

本文将详解考研数学一大纲中线性代数部分的重要知识点,并对其进行逐一讲解。

一、行列式及其性质行列式是线性代数中的基础知识,掌握行列式的性质对于解题至关重要。

行列式的性质包括:行列式的定义、行列式的性质、行列式的计算方法等。

行列式的定义是关于n阶行列式的,其中n表示行列式的阶数。

行列式的定义较为复杂,但我们只需熟记其定义即可。

行列式的性质包括:行列式相等的条件、行列式的值与其元素的关系等。

这些性质在解题过程中经常用到,熟悉这些性质不仅可以帮助我们更好地理解行列式的本质,还能够简化计算过程。

行列式的计算方法是解决行列式问题的基础。

行列式的计算采用展开法、按行(列)展开法等多种方法。

我们需要熟练掌握这些计算方法,并灵活运用于解答各类行列式题目。

二、矩阵及其运算矩阵是线性代数中的另一个重要概念,学习矩阵及其运算对于解题具有重要作用。

矩阵的概念包括:矩阵的定义、矩阵的运算等。

矩阵的定义是关于m行n列的矩阵的,其中m表示矩阵的行数,n表示矩阵的列数。

矩阵的定义较为简单,但需要我们掌握其基本概念和术语。

矩阵的运算包括:矩阵的加法、矩阵的乘法等。

矩阵的加法和乘法是两种基本的矩阵运算,我们需要熟练掌握其定义和运算法则,并能够应用到实际问题中。

三、向量及其运算向量是线性代数中的重要概念,其运算方法也是考研数学一大纲中的重点内容。

向量的概念包括:向量的定义、向量的运算等。

向量的定义是关于n维向量的,其中n表示向量的维数。

向量的定义较为简单,但需要我们理解其本质和特点。

向量的运算包括:向量的加法、向量的数乘、向量的内积和外积等。

掌握这些运算方法对于解题非常重要,需要注意运算规则和性质。

四、线性相关与线性无关线性相关与线性无关是线性代数中的一个重要概念,其在解决线性方程组和矩阵求逆等问题时经常用到。

上海市考研数学线性代数重点知识总结

上海市考研数学线性代数重点知识总结

上海市考研数学线性代数重点知识总结线性代数是数学中的一门重要学科,在上海市考研数学中也占据了重要的地位。

本文旨在总结上海市考研数学线性代数的重点知识,帮助考生更好地备考。

一、矩阵及其运算1. 矩阵的定义:矩阵是一个按照行和列排列的数表。

2. 矩阵的运算:包括矩阵的加法、数乘、乘法等。

3. 矩阵的乘法规则:满足结合律,但不满足交换律。

二、矩阵的行列式1. 行列式的定义:是一个标量,是一个与矩阵相关的函数。

2. 行列式的性质:包括行列式的展开、行列式的性质等。

三、线性方程组1. 线性方程组的定义:由多个线性方程组成,未知数是线性方程组的解。

2. 线性方程组的解的存在性和唯一性:需要满足一定的条件。

3. 线性方程组的求解方法:包括矩阵消元法、克拉默法则等。

四、向量空间1. 向量空间的定义:是一个集合,其中包含满足一定性质的向量。

2. 向量空间的性质:包括加法性质、数乘性质等。

五、线性变换1. 线性变换的定义:是指在向量空间之间的一种变换关系。

2. 线性变换的矩阵表示:线性变换可以通过矩阵来表示。

六、特征值与特征向量1. 特征值与特征向量的定义:特征向量是指在线性变换下方向不变的向量,特征值是指特征向量对应的标量。

2. 特征值与特征向量的性质:包括特征值与特征向量的计算方法等。

七、内积空间1. 内积的定义:是指向量之间的一种二元运算。

2. 内积空间的性质:包括内积的线性性质、共轭对称性等。

八、正交与子空间1. 正交的定义:是指两个向量的内积为零。

2. 正交子空间的性质:两个正交子空间的交集为零向量。

九、矩阵的相似与对角化1. 相似矩阵的定义:是指两个矩阵之间可以通过某种变换得到。

2. 矩阵的对角化:存在一个可逆矩阵P,使得P逆乘以A乘以P等于对角矩阵。

以上是上海市考研数学线性代数的重点知识总结,学生们在备考过程中可重点关注这些知识点,并进行深入学习和理解。

通过不断巩固和练习,相信大家一定能够在考试中取得好成绩。

考研数学历年真题线性代数的考点总结

考研数学历年真题线性代数的考点总结

考研数学历年真题线性代数的考点总结线代部分对很多备考的学子来说,最深刻感觉就是,抽象、概念多、定理多、性质多、关系多。

为大家精心准备了考研数学历年真题线性代数的要点,欢迎大家前来阅读。

?线性代数章节总结第一章行列式本章的考试重点是行列式的计算,考查形式有两种:一是数值型行列式的计算,二是抽象型行列式的计算.另外数值型行列式的计算不会单独的考大题,考选择填空题较多,有时出现在大题当中的一问或者是在大题的处理问题需要计算行列式,题目难度不是很大。

主要方法是利用行列式的性质或者展开定理即可。

而抽象型行列式的计算主要:利用行列式的性质、利用矩阵乘法、利用特征值、直接利用公式、利用单位阵进展变形、利用相似关系。

06、08、10、12年、13年的填空题均是抽象型的行列式计算问题,14年选择考了一个数值型的矩阵行列式,15、16年的数一、三的填空题考查的是一个n行列式的计算,今年数一、数二、数三这块都没有涉及。

第二章矩阵本章的概念和运算较多,而且结论比较多,但是主要以填空题、选择题为主,另外也会结合其他章节的知识点考大题。

本章的重点较多,有矩阵的乘法、矩阵的秩、逆矩阵、伴随矩阵、初等变换以及初等矩阵等。

其中06、09、11、12年均考查的是初等变换与矩阵乘法之间的相互转化,10年考查的是矩阵的秩,08年考的那么是抽象矩阵求逆的问题,这几年考查的形式为小题,而13年的两道大题均考查到了本章的知识点,第一道题目涉及到矩阵的运算,第二道大题那么用到了矩阵的秩的相关性质。

14的第一道大题的第二问延续了13年第一道大题的思路,考查的仍然是矩阵乘法与线性方程组结合的知识,但是除了这些还涉及到了矩阵的分块。

16年只有数二了矩阵等价的判断确定参数。

第三章向量本章是线代里面的重点也是难点,抽象、概念与性质结论比较多。

重要的概念有向量的线性表出、向量组等价、线性相关与线性无关、极大线性无关组等。

复习的时候要注意构造和从不同角度理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 m +1
τ 1 = ( −1) τ 1 ,故原命题成立。
n 阶行列式的 6 大性质 部分证明请看p教材9 性质 1:行列式与它的转置行列式相等 性质 2:互换任意行(列)式的两行列行列式变号。推论:如果有两行(列)相同,行列式为 0 性质 3:行列式的某一行(列)中所有的元素都乘以同一数 k ,等于用 k 乘以行列式 推论:行列式的某一行(列)的所有元素的共因子可以提到行列式的外面。 性质 4:行列式中如果有两行(列)元素成比例,则此行列式等于零。 性质 5:任意行列式可按某行(列)分解为两个行列式之和。 性质 6:把行列式的某一行(列)的各元素乘以同一数然后再加到另一行(列)上,行列式不变。
n n n n 再把 n 个方程依次相加,得 ∑ ak1 Akj x1 + L + ∑ akj Akj x j + L + ∑ akn Akj xn = ∑ bk Akj , k =1 k =1 k =1 k =1
由代数余子式的性质可知, 上式中x j的系数等于D, 而其余xi ( i ≠ j )的系数均为0; 又等式右端为D j . 于是 Dx j = D j ( j = 1, 2, L, n ) . x1 =
矩阵的乘法 A = ( aij ) m×s ; B = bij
( )
s× n
; C = ( cij ) ; C = AB ( A 的列数必须等于 B 的行数)
s
⇒ cij = ( ai1 ai 2 L ais ) ( b1 j b2 j L bsj ) = ai1b1 j + ai 2bij + L + aisbsj = ∑ aik bkj
c1 a1 0 L 0
a0 b1 b2 L bn
cn 0 0L an
ü
三对角 行列式的计算方法 先按第一列展开,可得通用递推公式 Dn = a11 Dn−1 − a12 a21Dn−2
递推法常常要用到常系数二阶差分方程: 常系数二阶差分方程的一般式: Dn = pDn −1 + qDn − 2 p, q为常数 c1λ1n + c2 λ2n ⇒ λ 2 − pλ − q = 0 ⇒ λ1 , λ2 ⇒ Dn = c cn n ( 1 + 2 ) λ
概念、性质、定理、公式必须清楚,解法必须熟练,计算必须准确
一、 行列式与矩阵
a11 a21 M an1 a12 L a1n a22 L a2 n = M M an 2 L ann
n τ ( i1i2 ...in )
行列式的定义
Dn =
j1 j2 L jn

(−1)τ ( j1 j2 L jn ) a1 j1 a2 j2 L anjn = ∑ ( −1)
评 注
√ 关于 e1 , e2 , ⋅⋅⋅, en : ①称为 ¡ n 的标准基, ¡ n 中的自然基,单位坐标向量 p教材87 ; ② e1 , e2 , ⋅⋅⋅, en 线性无关; ③ e1 , e2 , ⋅⋅⋅, en = 1 ; ④ trE = ∑ aii = n ; ∑ aii (即主对角元素之和)
( 2 ) 当 D ≠ 0 时,方程组 ( 2 ) 有唯一的一个解
D1 D D D , x2 = 2 , x3 = 3 ,L , xn = n . D D D D
评 注 克莱姆法则的应用范围
①只适用于方程的个数与未知数个数相等的情形; ② D = 0 ⇒ ,克莱姆法则失效,方程可能有解,也可能无解; ③齐次方程组总是有解,当 D = 0 ⇒ 无穷多个解(有非零解) ; D ≠ 0 ⇒ 只有唯一的零解。
2
n ( n −1) 2
p教材27
行列式按某一行或一列元素的代数余子式展开定理: 拉普拉斯定理 D = ∑ M i Ai
i =1
Cn k
按第 i 行展开 按第 j 行展开
克莱姆法则
p教材53
∑ aij Akj = Dδ ik
j =1
n
1, i = k 其中:δ ik = 0, i ≠ k 1, j = k 其中:δ jk = 0, j ≠ k
( a11 x1 + a12 x2 + L + a1n xn ) A1 j = b1 A1 j 证明: ( a21 x1 + a22 x2 + L + a2 n xn ) A2 j = b2 A2 j LLLLLLLLLLLL ( an1 x1 + an 2 x2 + L + ann xn ) Anj = bn Anj
Ø
如 a1 a2 L an 中没有零元素,则从 a22 开始逐一提出主对角元素,然后,上三角化,便得到一个上三 角行列式了。
4
评 注 爪形行列式的通用公式:
n n cb c2 0 a2 L 0 = (∏ a j ) ⋅ a0 − ∑ i i 其中ai ≠ 0 i =1 ai j =1 LLLLL
n ( n −1) 2
将 D 上、下翻转或左右翻转,所得行列式为 D1 ,则 D1 = (−1)
D; D
将 D 顺时针或逆时针旋转 90 o ,所得行列式为 D2 ,则 D2 = (−1) 将 D 主副角线翻转后,所得行列式为 D3 ,则 D3 = D 将 D 主对角线翻转后(转置),所得行列式为 D4 ,则 D4 = D
ü
自相似型 行列式的计算方法 分为行和(或列和)相等型和不等型。对相等型,可用多行加和提出公因式,再用三角降阶求之;也 可先按第一列展开,得到递推公式。对不等型,先需要分别从末到第二行和第二列逐一对换,使之成 为两类特殊的拉普拉斯型而求之。
üü抽象型 行列式的计 Nhomakorabea方法 参数型 行列式的计算方法 对特征参数型先看看是否具有行和相等的特点(其实大多数具备这个特点) ,如果没有则要找使行列
i ,⋅⋅⋅in
ai11ai2 2 ⋅⋅⋅ ainn
A可逆 r ( A) = n A 的列(行)向量线性无关 A 的特征值全不为0 Ax = ο 只有零解 ⇔ ∀x ≠ ο,Ax ≠ ο n ∀β ∈ R , Ax = β 总有唯一解 A ≠0⇔ T A A是正定矩阵 A≅ E A = p1 p2 ⋅⋅⋅ ps pi是初等阵 存在n阶矩阵B, 使得AB = E 或 AB = E A的列(行)向量是R n的一组基 n A是R 的某两组基的过渡矩阵
i i =1 n n
⑤任意一个 n 维向量都可以用 e1 , e2 , ⋅⋅⋅, en 线性表示.
逆序数: 一个排列中所有逆序的总数叫做这个排列的逆序数,
逆序数为奇数叫做奇排列。为偶数叫做偶排列。奇排列变成偶排列对换次数为奇数。反之相同 一个排列中任意两个元素对换,排列改变奇偶性(即 τ 2 = ( −1)τ 1 ) 设排列为 a1 L al ab1 L bmbc1 L cn ,作 m 次相邻对换后,变成 a1 L al abb1 L bm c1 L cn ,再作 m + 1 次相 邻对换后,变成 a1 L al bb1 L bm ac1 L cn ,共经过 2m + 1 次相邻对换,而对不同大小的两元素每次 相邻对换逆序数要么增加 1 ,要么减少 1 ,相当于 τ 2 = ( −1)τ 1 ,也就是排列必改变改变奇偶性, 2m + 1 次相邻对换后 τ 2 = ( −1)
式为零的试探解 λ0 (一般以 λ0 = ± 1,± 2 试探原行列式是否为零。 ) ,依之为出发点利用行列式性质凑出公 因式 ( λ − λ0 ) 。
5
a11 a12 L a1n a a22 L a2 n 21 称为 m × n 矩阵.记作: A = ( a ) 或 A 矩阵的定义 由 m × n 个数排成的 m 行 n 列的表 A = ij m×n m×n M M M am1 am 2 L amn
3
√ 行列式的计算: ①行列式按行(列)展开定理:行列式等于它的任一行(列)的各元素与其对应的代数余子式的乘 积之和. 推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零. A O A ∗ A O = = = A B O B O B ∗ B O ∗ A = = (−1)mn A B B O B O A
评 注 全体 n 维实向量构成的集合 R 叫做 n 维向量空间.
n
A不可逆 r ( A) < n A = 0 ⇔ A的列(行)向量线性相关 0是A的特征值 Ax = ο 有非零解,其基础解系即为A关于λ = 0的特征向量 r (aE + bA) < n aE + bA = 0 ⇔ (aE + bA) x = 0 有非零解 a λ = - , λ为A的特征值 b 向量组等价 矩阵等价( ≅ ) 具有 → 反身性、对称性、传递性 矩阵相似( ~ ) ~ 矩阵合同( )
∑ aij Aik = Dδ jk
i =1
n
n 元非齐次线性方程组: a11 a12 L a1n a11 x1 + a12 x2 + L + a1n xn = b1 a a22 L a2 n a21 x1 + a22 x2 + L + a2 n xn = b2 ⇒ D = 21 D ≠ 0 ⇒ 方程组有唯一解: L L L L L an1 an 2 ann an1 x1 + an 2 x2 + L + ann xn = bn D D D x1 = 1 , x2 = 2 , L , xn = n 。其中 D j ( j = 1, 2,L , n) 是将 D 中的第 j 列元素换成常数 b1 , b2 , L , bn , D D D 其余元素不变而得到的行列式。如果 b1 = b2 = L = bn = 0 ,对应方程组叫齐次线性方程组。 用D中第j列元素的代数余子式A1 j , A2 j , L, Anj依次乘方程组 (1)的n个方程, 得
相关文档
最新文档