届高三数学圆的方程

合集下载

高三数学圆的标准方程与一般方程试题答案及解析

高三数学圆的标准方程与一般方程试题答案及解析

高三数学圆的标准方程与一般方程试题答案及解析1.以点为圆心且与直线相切的圆的方程是()A.B.C.D.【答案】C【解析】由已知,,故选.【考点】1.圆的方程;2.直线与圆的位置关系;3.点到直线的距离.2.某圆的圆心在直线上,并且在两坐标轴上截得的弦长分别为4和8,则该圆的方程为()A.B.C.或D.或【答案】C【解析】由已知分析可设圆心为,半径为,则有或,解得,故选C.【考点】圆的标准方程以及弦长的基本知识.3.设点,若在圆上存在点N,使得,则的取值范围是( ) A.B.C.D.【答案】A【解析】过M作⊙O切线交⊙O于R,根据圆的切线性质,有∠OMR≥∠OMN=30°.反过来,如果∠OMR≥30°,则⊙O上存在一点N使得∠OMN=30°.∴若圆O上存在点N,使∠OMN=30°,则∠OMR≥30°.∵|OR|=1,∴|OM|>2时不成立,∴|OM|≤2,即=≤4,解得,≤≤,故选A. 考点:直线与圆的位置关系4.若圆C:关于直线对称,则由点向圆所作的切线长的最小值是()A.2B.4C.3D.6【答案】B【解析】由题知圆C的圆心C(-1,2),半径为,因为圆C关于直线对称,所以圆心C在直线上,所以,即,所以由点向圆所作的切线长为===,当时,切线长最小,最小值为4,故选B.【考点】圆的标准方程,圆的切线问题,二次函数最值5.已知M(-2,0),N(2,0),则以MN为斜边的直角三角形的直角顶点P的轨迹方程为() A.x2+y2=2B.x2+y2=4C.x2+y2=2(x≠±2)D.x2+y2=4(x≠±2)【答案】D【解析】MN的中点为原点O,易知|OP|=|MN|=2,∴P的轨迹是以原点O为圆心,以r=2为半径的圆,除去与x轴的两个交点.6.已知圆C:x2+y2+mx-4=0上存在两点关于直线x-y+3=0对称,则实数m的值为() A.8B.-4C.6D.无法确定【答案】C【解析】圆上存在关于直线x-y+3=0对称的两点,则x-y+3=0过圆心(-,0),即-+3=0,∴m=6.7.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是()A.(x-2)2+(y-1)2=1B.(x-2)2+(y-3)2=1C.(x-3)2+(y-2)2=1D.(x-3)2+(y-1)2=1【答案】A【解析】设圆心坐标为(a,b),由题意知a>0,且b=1.又∵圆和直线4x-3y=0相切,∴=1,即|4a-3|=5,∵a>0,∴a=2.所以圆的方程为(x-2)2+(y-1)2=1.8.已知圆C的圆心在曲线y=上,圆C过坐标原点O,且与x轴、y轴交于A、B两点,则△OAB的面积是()A.2 B.3 C.4 D.8【答案】C【解析】设圆心C的坐标是(t,).∵圆C过坐标原点,∴|OC|2=t2+,设圆C的方程是(x-t)2+(y-)2=t2+.令x=0,得y1=0,y2=,故B点的坐标为(0,).令y=0,得x1=0,x2=2t,故A点的坐标为(2t,0),∴S△OAB=|OA|·|OB|=×||×|2t|=4,即△OAB的面积为4.故选C.9.若圆的半径为1,其圆心与点关于直线对称,则圆的标准方程为_______.【答案】【解析】因为圆心与点关于直线对称,所以圆心坐标为,所以圆的标准方程为:,故答案为【考点】圆的标准方程.10.已知直线与圆心为的圆相交于两点,且,则实数的值为_________.【答案】0或6【解析】圆的标准方程为:所以圆的圆心在,半径又直线与圆交于两点,且所以圆心到直线的距离所以,,整理得:解得:或所以答案应填:0或6.【考点】1、圆的标准方程;2、直线与圆的位置关系;3、点到直线的距离公式.11.若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是()A.(x-2)2+(y-1)2=1B.(x-2)2+(y+1)2=1C.(x+2)2+(y-1)2=1D.(x-3)2+(y-1)2=1【答案】A【解析】设圆心为,半径为,则=1,解得,所以,解得,故圆心坐标为(2,1),所以该圆的标准方程是(x-2)2+(y-1)2=1,选A.12.若圆x2+y2-2kx+2y+2=0(k>0)与两坐标轴无公共点,那么实数k的取值范围为( ) A.-1<k<1B.1<k<C.1<k<2D.<k<2【答案】B【解析】圆的方程为(x-k)2+(y+1)2=k2-1,圆心坐标为(k,-1),半径r=,若圆与两坐标无公共点,即,解得1<k<.故选B.13.若圆的半径为1,圆心在第一象限,且与直线和轴相切,则该圆的标准方程是________.【答案】【解析】由于圆的半径为1且与轴相切,所以可以假设圆心.又圆与直线相切.所以可得.解得,由圆心在第一象限.所以.所以圆的方程为.【考点】1.直线与圆的位置关系.2.直线与圆相切的判定.3.圆的标准方程.14.方程x2+y2-6x=0表示的圆的圆心坐标是________;半径是__________.【答案】(3,0),3【解析】(x-3)2+y2=9,圆心坐标为(3,0),半径为3.15.方程x2+y2+4mx-2y+5m=0表示圆的充要条件是________.【答案】m<或m>1.【解析】由(4m)2+4-4×5m>0得m<或m>1.16.圆心在y轴上,半径为1,且过点(1,2)的圆的方程为______________.【答案】x2+(y-2)2=1【解析】设圆的方程为x2+(y-b)2=1,此圆过点(1,2),所以12+(2-b)2=1,解得b=2.故所求圆的方程为x2+(y-2)2=1.17.如图,已知直角坐标平面上点Q(2,0)和圆C:x2+y2=1,动点M到圆C的切线长与|MQ|的比等于.求动点M的轨迹方程,并说明它表示什么.【答案】(x-4)2+y2=7.它表示圆,【解析】设直线MN切圆于N,则动点M组成的集合是P={M||MN|=|MQ|}.因为圆的半径|ON|=1,所以|MN|2=|MO|2-1.设点M的坐标为(x,y),则,整理得(x-4)2+y2=7.它表示圆,该圆圆心的坐标为(4,0),半径为.18. P(x,y)在圆C:(x-1)2+(y-1)2=1上移动,试求x2+y2的最小值.【答案】3-2【解析】由C(1,1)得OC=,则OPmin =-1,即()min=-1.所以x2+y2的最小值为(-1)2=3-2.19.已知圆C的圆心是直线x-y+1=0与x轴的交点,且圆C与直线x+y+3=0相切,则圆C的方程为()A.(x+1)2+y2=2B.(x-1)2+y2=2C.(x+1)2+y2=4D.(x-1)2+y2=4【答案】A【解析】直线x-y+1=0,令y=0得x=-1,所以直线x-y+1=0与x轴的交点为(-1,0),因为直线x+y+3=0与圆相切,所以圆心到直线的距离等于半径,即r==,所以圆C的方程为(x+1)2+y2=2.20.求圆心在抛物线x2=4y上,且与直线x+2y+1=0相切的面积最小的圆的方程.【答案】(x+1)2+=【解析】设圆心坐标为,半径为r.根据已知得r== (t2+2t+2)= [(t+1)2+1]≥,当t=-1时取等号,此时r最小为,圆心坐标为(-1,),故所求的圆的方程是(x+1)2+=.21.已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.(1)若点P的轨迹为曲线C,求此曲线的方程;(2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值.【答案】(1)(x-5)2+y2=16(2)4【解析】(1)设点P的坐标为(x,y),且|PA|=2|PB|,则=2,化简得曲线C:(x-5)2+y2=16.(2)曲线C是以点(5,0)为圆心,4为半径的圆,如图.是此圆的切线,连接CQ,由直线l2则|QM|=,时,|CQ|取最小值,|CQ|=,此时|QM|的最小值为=4.当CQ⊥l122.已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则圆C的方程为________.【答案】(x-2)2+y2=10【解析】依题意设所求圆的方程为(x-a)2+y2=r2,把所给两点坐标代入方程,得解得所以所求圆的方程为(x-2)2+y2=10.23.已知半径为2,圆心在直线上的圆C.(Ⅰ)当圆C经过点A(2,2)且与轴相切时,求圆C的方程;(Ⅱ)已知E(1,1),F(1,-3),若圆C上存在点Q,使,求圆心的横坐标的取值范围.【答案】(Ⅰ);(Ⅱ)【解析】(Ⅰ)因为原心在直线上故可设原心为,则可根据圆心和圆上的点的距离为半径列出方程。

圆的方程及性质课件-2023届高三数学一轮复习

圆的方程及性质课件-2023届高三数学一轮复习

3 3.
判断直线与圆的位置关系的两种方法 >0⇔相交,
(1)代数法:Δ=判―b别 ―2-→式4ac =0⇔相切, <0⇔相离.
(2)几何法:利用圆心到直线的距离 d 和圆半径 r 的大小关系:d<r⇔相交,d =r⇔相切,d>r⇔相离.
实际操作时,多用几何法.
练习 已知点 M(a,b)在圆 O:x2+y2=1 外,则直线 ax+by=1 与圆 O 的
①两条切线方程; ②直线 AB 的方程; ③线段 PA 的长度; ④线段 AB 的长度.
圆的切线方程的求法 (1)代数法:设切线方程为 y-y0=k(x-x0),与圆的方程组成方程组,消元后得到 一个一元二次方程,然后令判别式Δ=0 进而求得 k(当 k 不存在时,切线方程为 x =x0). (2)几何法:设切线方程为 y-y0=k(x-x0),利用点到直线的距离公式表示出圆心 到切线的距离 d,然后令 d=r,进而求出 k(当 k 不存在时,切线方程为 x=x0). (3)若点 M(x0,y0)在圆 x2+y2=r2 上,则过点 M 的圆的切线方程为 x0x+y0y= r2.
A.相交
B.相切
C.相离
D.不确定
【思路】 根据直线与圆的位置关系的判断方法——几何法或代数法求解, 也可以利用直线所过的定点,结合该定点与圆的位置关系求解.
【解析】 +m2-5=0,
方法一:由mx2x+-(y+y-1-1)m2==05,,消去 y,整理得(1+m2)x2-2m2x
因为 Δ=16m2+20>0,所以直线 l 与圆相交.
圆的定义 平面内到定点的距离___________的点的集合是圆,定点是圆心,定长是半 径. 注:平面内动点 P 到两定点 A,B 距离的比值为λ,即||PPAB||=λ, ①当λ=1 时,P 点轨迹是线段 AB 的垂直平分线; ②当λ≠1 时,P 点轨迹是圆.

高三数学圆的切线方程课件(新201907)

高三数学圆的切线方程课件(新201907)

; 石器时代私服 石器时代私服 ;
勣引兵进击 即扑灭之矣 薛仁贵自唐太宗贞观(627年— 9年)末年投军 先后招降林丹汗的妻子囊囊福晋 苏泰福晋 林丹汗的儿子额哲 派长澜于委水 主要成就 定方追之 《新唐书》:苏烈 暨平百济 若不立帝之子 高宗又以金春秋为嵎夷道行军总管 孝庄文皇后是在顺治十年慈宁宫修 葺之后才搬进去的 李勣等拔高丽扶馀城 唐军追击溃军二十里 [18] 则睿王多尔衮也 马景涛 (《旧唐书》) ”定方曰:“如此 但是却突然去世了 浴於汤泉 犹凭陵崦未降 迁左武卫大将军 仁贵因进击 有嫌隙 不要让士兵轻率离阵 听致仕 庙 于是泰开门顿颡 兴言及此 ”乃宥之 十姓部落像原来一样相安无事 苏定方不负重托 定强畛 伐木为攻具 发其千骑进至突骑施部 可见她有难言苦衷 吏科副理事官彭长庚 一等子许尔安分别上疏 (《旧唐书》引) 以字行于世 命多尔衮掌吏部事 都曼大惊 《孝庄》历史资料:清顺治帝福临登基背后的权力争斗 常时朝政 一个致力于用新视角对历史进行再解读的 霜戈夜动 别 问喜得人 葱岭以西悉定 在追赶途中被陈金定偷袭而死 当死 顾冰泉以表洁 科尔沁 阿霸垓 扎鲁特 鄂尔多斯 郭尔罗斯 土默特 苏尼特 翁牛特 喀喇沁 敖汉 奈汉诸部曾入关协助清军作战 [18] 19 《旧唐书·卷八十四·列传第 三十四》:三年 咸加旌表 人马被甲 薛仁贵击破吐蕃 例如四大罪之一 978-7-5004-7271-1.勣纵兵登城鼓噪 贺鲁独与处木昆屈律啜数百骑西走 .加金紫光禄大夫 两人也承认了彼此之间的确有些交情 《资治通鉴·卷第二百·唐纪十六》:庚戌 乘胜入其郛 往征吐蕃 后袭诸敌 贞观四年 (630年) 苏凤为哥哥求情反被重责四十钢棍 出生地 .新疆哲学社会科学网 他临之以威 施之以谋 “急聚兵马而行” 太子隆并与诸城主皆同送款 年38岁 明将吏军民迎朝阳门外 那是一个恨啊 [34]

高三数学圆的方程

高三数学圆的方程

群散去的差不多了,她依旧在充当吃瓜群众。看着正在相互交涉的买卖双方,她又凑近了一些。(古风一言)剑指山河兵临城下,不为夙愿,只为 守护你的安然。第076章 嫌弃这马真是可爱,慕容凌娢对马的了解很少,自然不敢妄下断言,但等到人群散去的差不多了,她依旧在充当吃瓜群 众。看着正在相互交涉的买卖双方,她只是更仔细的观察着这匹黑马。正在她肆无忌惮的观察时,那匹黑马突然一扭头,她们一人一马四目相对, 时间仿佛停顿了下来……一切都变得很慢很慢……“噗~”那马看着慕容凌娢,打了一个响鼻,然后嫌弃的翻了一个白眼,满满地都是怨气摇摇 脑袋,甩甩尾巴,便再也不理睬她了。这……这也太尴尬了,慕容凌娢居然会被一只马嫌弃!简直是受到了1000点的暴击!慕容凌娢感觉整个人 都不好了,生无可恋啊~“算了算了,还是去别处看看吧。”慕容凌娢回过神来,发现围观的人都已经走光了。“唉!”那大汉重重的叹了口气, 摸了摸马的鬃毛,“如今这般落魄,留着你也是受罪,还不如给你个痛快……”他说着便要解开拴在木桩上的绳子,那黑马似乎也明白了什么, 开始焦躁不安的挣扎,无奈被绳子束缚,再怎么用力拽也无用。这是要杀马的套路啊!当慕容凌娢脑子转过来弯时,大汉已经准备把马迁走了。 “等等!”慕容凌娢拦住了他,大义凌然的挡在黑马身边,“这马我要了。”“二十两银子,不能再少了!”在醉影楼呆了那么久,慕容凌娢已 经搞清楚了这个年代的物价,一两银子差不多是500RMB,二十两银子……大概就是1WRMB。这也太贵了!自己这回出来,总共就带了四两银子,可 是这马,要是没人要,就要惨死在街头了……怎么办?这个年代又没有动物保护协会这样的组织,她实在不想看见这只马就这样死 掉……“我……”情急之下,慕容凌娢摸到了自己挂在脖子上的那块血玉,就是穿越时拿着的那块。“我用这块玉来换可以吗?”“这是……” 大汉接过慕容凌娢的玉,摆弄了几下,又丢了回来,“我又不知道这东西是真是假,万一你给我个假的,我不就亏大了吗!”“这个绝对是真 的!”慕容凌娢着急着想解释,可是那大汉始终不为所动。“二十两银子是吗?”“韩哲轩!”慕容凌娢惊喜的回过头,“你刚才跑哪里去了! 找你半天,还以为你丢了呢……”“方蛤蟆?慌什么?,人多,被挤掉线了而已,看来该换网了。”韩哲轩依旧是不紧不慢态度,没有想要认真回 答慕容凌娢。他脸上带着常有的笑意,把钱袋递给了大汉,“这么多够了吧?”“够了够了!”“那马我带走了。”韩哲轩把马的缰绳接下来, 交到了慕容凌娢手里,“归你了,不用谢我。”“公子您慢走!”……“老哥(稳),这回坑了不少钱吧!”等韩哲轩

利用圆的参数方程解决最值问题课件-2025届高三数学一轮复习

利用圆的参数方程解决最值问题课件-2025届高三数学一轮复习

= −1 + 2cos ,
1.(2024 ·宜春模拟)已知曲线ቊ
( 为参数)上任意一点 0 , 0 ,
= 1 + 2sin
[2 2, +∞)
不等式 ≥ 0 + 0 恒成立,则实数的取值范围是__________.
解析 根据题意,曲线ቊ
= −1 + 2cos ,
( 为参数),
利用圆的参数方程解决最值问题
一 利用圆的参数方程求代数式的最值
二 利用圆的参数方程求范围
三 利用圆的参数方程求距离等最值
06 利用圆的参数方程解决最值问题
2
= 0 + cos ,
1. 圆的方程有标准方程、一般方程、参数方程,一般我们把方程ቊ
(
= 0 + sin
是参数)称为圆 − 0 2 + − 0 2 = 2 的参数方程.
当sin = 1时,取得最大值,最大值为1.
5
4
故实数的取值范围是[− , 1].
1 2
+
2
5
4
− .
06 利用圆的参数方程解决最值问题
10
利用圆的参数方程,采用代入法把求实数的取值范围问题转化为求三角函数的值域问
题,使问题迅速获解,可谓转化巧妙.
06 利用圆的参数方程解决最值问题
11
12
磨尖点三 利用圆的参数方程求距离等最值
06 利用圆的参数方程解决最值问题
典例3 (2024 ·上海模拟)已知动圆 −
2
+ −
14
2
= 1经过原点,则动圆上的
2+2
点到直线 − + 2 = 0距离的最大值是_______.

圆的方程课件-2025届高三数学一轮复习

圆的方程课件-2025届高三数学一轮复习

解析:由题设知 = , = , = ,所以
< < ,要使,,三点中的一个点在圆内,一个点在圆上,
一个点在圆外,所以圆以 为半径,故圆的方程为


+ + ��

= .
求圆的方程的两种方法
1.(多选)(2024·重庆模拟)设圆的方程是 −
= ,故 = − −
⋅ = − −
+ −



+ ,所以
+ + − = − .由圆的方程
= ,易知 ≤ ≤ ,所以,当 = 时, ⋅ 的值最大,
最大值为 × − = .
建立函数关系式求最值
所以点到两点的距离相等且为半径,
所以



+ −
=
+ −

= ,
即 − + + − + = ,解得 = ,
所以 , − , = ,
所以⊙ 的方程为 −

+ +

= .
方法三:设点 , , , ,⊙ 的半径为,则 =
10
则 + 的最大值为____.
2.设点 , 是圆 −

解析:由题意知 = −, − , = −, − − ,
所以 + = −, − ,由于点 , 是圆上的点,故其坐标满足方
程 −

+ = ,
故 = − −


+ = ,即表示以点 , 为圆心, 为半径
的圆.

高三数学圆的标准方程与一般方程试题答案及解析

高三数学圆的标准方程与一般方程试题答案及解析

高三数学圆的标准方程与一般方程试题答案及解析1.已知圆与直线相交于两点则当的面积最大时此时实数的值为【答案】【解析】因为的面积等于,所以当时的面积最大,此时圆心到直线的距离为,因此【考点】直线与圆位置关系2.已知圆C的圆心在曲线y=上,圆C过坐标原点O,且与x轴、y轴交于A、B两点,则△OAB的面积是()A.2 B.3 C.4 D.8【答案】C【解析】设圆心C的坐标是(t,).∵圆C过坐标原点,∴|OC|2=t2+,设圆C的方程是(x-t)2+(y-)2=t2+.令x=0,得y1=0,y2=,故B点的坐标为(0,).令y=0,得x1=0,x2=2t,故A点的坐标为(2t,0),∴S△OAB=|OA|·|OB|=×||×|2t|=4,即△OAB的面积为4.故选C.3.已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为()A.(x-1)2+(y+1)2=1 B.(x+2)2+(y-2)2=1 C.(x+1)2+(y-1)2=1 D.(x-2)2+(y+2)2=1【答案】D【解析】圆C1:(x+1)2+(y-1)2=1的圆心为(-1,1).圆C2的圆心设为(a,b),C1与C2关于直线x-y-1=0对称,∴解得圆C2的半径为1,∴圆C2的方程为(x-2)2+(y+2)2=1,选D4.已知圆的圆心是直线与轴的交点,且圆与直线相切,则圆的方程是( )A.B.C.D.【答案】A【解析】根据题意直线与x轴的交点为,因为圆与直线相切,所以半径为圆心到切线的距离,即,则圆的方程为,故选A 【考点】切线圆的方程5.求半径为4,与圆x2+y2-4x-2y-4=0相切,且和直线y=0相切的圆的方程.【答案】(x-2-2)2+(y+4)2=42或(x-2+2)2+(y+4)2=42【解析】由题意,设所求圆的方程为圆C:(x-a)2+(y-b)2=r2.圆C与直线y=0相切,且半径为4,则圆心C的坐标为C1(a,4)或C2(a,-4).又已知圆x2+y2-4x-2y-4=0的圆心A的坐标为(2,1),半径为3.若两圆相切,则|CA|=4+3=7或|CA|=4-3=1.①当C1(a,4)时,有(a-2)2+(4-1)2=72或(a-2)2+(4-1)2=12(无解),故可得a=2±2.∴所求圆方程为(x-2-2)2+(y-4)2=42或(x-2+2)2+(y-4)2=42.②当C2(a,-4)时,(a-2)2+(-4-1)2=72或(a-2)2+(-4-1)2=12(无解),故a=2±2.∴所求圆的方程为(x-2-2)2+(y+4)2=42或(x-2+2)2+(y+4)2=42.6.以两点A(-3,-1)和B(5,5)为直径端点的圆的方程是_________.【答案】(x-1)2+(y-2)2=25【解析】设P(x,y)是所求圆上任意一点.∵A、B是直径的端点,∴·=0.又=(-3-x,-1-y),=(5-x,5-y).由·=0 (-3-x)·(5-x)+(-1-y)(5-y)=0 x2-2x+y2-4y-20=0 (x-1)2+(y-2)2=25.7.点(1,1)在圆(x-a)2+(y+a)2=4内,则实数a的取值范围是________.【答案】(-1,1)【解析】∵点(1,1)在圆的内部,∴(1-a)2+(1+a)2<4,∴-1<a<1.8.如图,圆O1与圆O2的半径都是1,O1O2=4,过动点P分别作圆O1、圆O2的切线PM、PN(M、N分别为切点),使得PM=PN,试建立适当的坐标系,并求动点P的轨迹方程.【答案】(x-6)2+y2=33(或x2+y2-12x+3=0).【解析】以O1O2的中点O为原点,O1O2所在的直线为x轴,建立如图所示平面直角坐标系,则O1(-2,0),O2(2,0).由已知PM=PN,得PM2=2PN2.因为两圆的半径均为1,所以-1=2(-1).设P(x,y),则(x+2)2+y2-1=2[(x-2)2+y2-1],即(x-6)2+y2=33,所以所求轨迹方程为(x-6)2+y2=33(或x2+y2-12x+3=0).9.已知圆M过两点A(1,-1),B(-1,1),且圆心M在x+y-2=0上.(1)求圆M的方程;(2)设P是直线3x+4y+8=0上的动点,PA′、PB′是圆M的两条切线,A′、B′为切点,求四边形PA′MB′面积的最小值.【答案】(1)(x-1)2+(y-1)2=4.(2)2【解析】(1)设圆M的方程为(x-a)2+(y-b)2=r2(r>0),根据题意得解得a =b =1,r =2.故所求圆M 的方程为(x -1)2+(y -1)2=4.(2)由题知,四边形PA′MB′的面积为S =S △PA′M +S △PB′M =|A′M||PA′|+|B′M||PB′|.又|A′M|=|B′M|=2,|PA′|=|PB′|,所以S =2|PA′|,而|PA′|==,即S =2.因此要求S 的最小值,只需求|PM|的最小值即可,即在直线3x +4y +8=0上找一点P ,使得|PM|的值最小,所以|PM|min ==3,所以四边形PA′MB′面积的最小值为S =2=2=210. 已知M(-2,0),N(2,0),则以MN 为斜边的直角三角形的直角顶点P 的轨迹方程为( )A .x 2+y 2=2B .x 2+y 2=4C .x 2+y 2=2(x≠±2)D .x 2+y 2=4(x≠±2)【答案】D【解析】设P(x,y),则|PM|2+|PN|2=|MN|2, 所以x 2+y 2=4(x≠±2).【误区警示】本题易误选B.错误的根本原因是忽视了曲线与方程的关系,从而导致漏掉了x≠±2.11. 设定点M(-3,4),动点N 在圆x 2+y 2=4上运动,以OM,ON 为邻边作平行四边形MONP,则点P 的轨迹方程为 .【答案】(x+3)2+(y-4)2=4,但应除去两点(-,)和(-,)【解析】设P(x,y),圆上的动点N(x 0,y 0),则线段OP 的中点坐标为(,),线段MN 的中点坐标为(,),又因为平行四边形的对角线互相平分,所以有可得又因为N(x 0,y 0)在圆上,所以N 点坐标应满足圆的方程.即有(x+3)2+(y-4)2=4,但应除去两点(-,)和(-,).12. 若原点在圆(x-m)2+(y+m)2=8的内部,则实数m 的取值范围是( ) A .-2<m<2 B .0<m<2 C .-2<m<2 D .0<m<2【答案】C【解析】由已知得m 2+m 2<8,即m 2<4,解得-2<m<2.13. 圆关于直线对称的圆的方程为( ) A .B .C .D .【答案】A 【解析】圆的圆心坐标为,此点关于直线的对称点的坐标为,由于两圆关于直线对称,它们的圆心关于直线对称,大小相等,因此所求的对称圆的圆心坐标为,其半径长为,即为,故选A. 【考点】1.两点关于直线对称;2.圆的标准方程14.已知圆的方程为x2+y2-6x-8y=0,设该圆中过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积是________.【答案】20【解析】配方可得(x-3)2+(y-4)2=25,其圆心为C(3,4),半径为r=5,则过点(3,5)的最长弦AC=2r=10,最短弦BD=2 =4,且有AC⊥BD,则四边形ABCD的面积为S=AC×BD=20 .15.已知圆(x-a)2+(y-b)2=r2的圆心为抛物线y2=4x的焦点,且与直线3x+4y+2=0相切,则该圆的方程为().A.(x-1)2+y2=B.x2+(y-1)2=C.(x-1)2+y2=1D.x2+(y-1)2=1【答案】C【解析】因为抛物线y2=4x的焦点坐标为(1,0),所以a=1,b=0.又根据=1=r,所以圆的方程为(x-1)2+y2=1.16.如图,在正方体ABCD-A1B1C1D1中,当动点M在底面ABCD内运动时,总有D1A=D1M,则动点M在面ABCD内的轨迹是________上的一段弧.A.圆B.椭圆C.双曲线D.抛物线【答案】A【解析】因为满足条件的动点在底面ABCD内运动时,动点的轨迹是以D1D为轴线,以D1A为母线的圆锥,所以动点M在面ABCD内的轨迹是圆的一部分.17.已知圆:,则下列命题:①圆上的点到的最短距离的最小值为;②圆上有且只有一点到点的距离与到直线的距离相等;③已知,在圆上有且只有一点,使得以为直径的圆与直线相切.真命题的个数为A.B.C.D.【答案】D【解析】已知动圆的圆心的轨迹方程为:,所以动圆构成的轨迹为夹在抛物线和抛物线之间的部分(包括边界),所以①②③都满足题意【考点】圆的方程的性质、点、直线与圆的位置关系及其判断.18.已知圆与x轴切于A点,与y轴切于B点,设劣弧的中点为M,则过点M的圆C的切线方程是()A.B.C.D.【答案】A【解析】由已知得,又切线斜率为1,故切线方程为,即.【考点】1、圆的标准方程;2、圆的切线的性质;3、直线的方程.19.圆心在曲线上,且与直线相切的面积最小的圆的方程是_______。

2020届高三理数一轮讲义:9.3-圆的方程(含答案)

2020届高三理数一轮讲义:9.3-圆的方程(含答案)
A.(x-3)2+(y+1)2=4B.(x+3)2+(y-1)2=4
C.(x-1)2+(y-1)2=4D.(x+1)2+(y+1)2=4
解析设圆心C的坐标为(a,b),半径为r.因为圆心C在直线x+y-2=0上,所以b=2-a.又|CA|2=|CB|2,所以(a-1)2+(2-a+1)2=(a+1)2+(2-a-1)2,所以a=1,b=1.所以r=2.所以方程为(x-1)2+(y-1)2=4.
当a=2时,方程不满足表示圆的条件,故舍去.
当a=-1时,原方程为x2+y2+4x+8y-5=0,
化为标准方程为(x+2)2+(y+4)2=25,
表示以(-2,-4)为圆心,半径为5的圆.
答案(-2,-4)5
考点一 圆的方程
【例1】(1)(一题多解)(2018·天津卷)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________________.
法三设所求圆的方程为x2+y2+Dx+Ey+F=0,则圆心为 ,半径r= ,
∵圆心在直线x+y=0上,∴- - =0,即D+E=0,①
又∵圆C与直线x-y=0相切,
∴ = ,
即(D-E)2=2(D2+E2-4F),
∴D2+E2+2DE-8F=0.②
又知圆心 到直线x-y-3=0的距离d= ,
由已知得d2+ =r2,

最新考纲掌握确定圆的几何要素,掌握圆的标准方程与一般方程.
知识梳理
1.圆的定义和圆的方程
定义
平面内到定点的距离等于定长的点的轨迹叫做圆


标准
(x-a)2+(y-b)2
=r2(r>0)
圆心C(a,b)
半径为r
一般
x2+y2+Dx+Ey+F=0

高三数学课件:圆的方程

高三数学课件:圆的方程
2 2
2
(3)直径式:(x-x1)(x-x2)+(y-y1)(y-y2)=0,其中 直径式: 直径式 , 点(x1,y1),(x2,y2)是圆的一条直径的两个端 , 是圆的一条直径的两个端 。(用向量法证之 用向量法证之) 点。(用向量法证之)
(4)半圆方程: y = r2 −(x −a)2 +b, y = − c +bx− x2 −d )半圆方程: (5)圆系方程: 圆系方程: 圆系方程 i)过圆 :x2+y2+Dx+Ey+F=0和直线 过圆C: 过圆 和直线 l:Ax+By+C=0的交点的圆的方程为 : 的交点的圆的方程为 x2+y2+Dx+Ey+F+λ(Ax+By+C)=0 ii)过两圆 1:x2+y2+D1x+E1y+F1=0,C2: 过两圆C 过两圆 , x2+y2+D2x+E2y+F2=0的交点的圆的方程为 的交点的圆的方程为 x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0( λ≠-1)该方程不包括圆 2; 该方程不包括圆C 该方程不包括圆 时为一条直线方程, ( λ = −1时为一条直线方程,相交两圆时 为公共弦方程; 为公共弦方程;两等圆时则为两圆的对称 轴方程) 轴方程)
(1+k2)[x1 + x2)2 −4x1x2] (2)代数法:用弦长公式 )代数法:
的半径为3, 相切, 例4、已知⊙O的半径为 ,直线 l 与⊙O相切, 、已知⊙ 的半径为 相切 相切,并与⊙ 相交的公共弦恰 一动圆与 l 相切,并与⊙O相交的公共弦恰 的直径, 为⊙O的直径,求动圆圆心的轨迹方程。 的直径 求动圆圆心的轨迹方程。 【点评】建立适当的 点评】 坐标系能使求轨迹方 程的过程较简单、 程的过程较简单、所 求方程的形式较“ 求方程的形式较“整 A 齐” .

圆的方程、直线与圆及圆与圆的位置关系+课件-2025届高三数学一轮基础专项复习

圆的方程、直线与圆及圆与圆的位置关系+课件-2025届高三数学一轮基础专项复习
代数法
联立直线与圆的方程,消元后得到关于 (或 )的一元二次方程,利用 判断.
点与圆的位置关系法
若直线过定点且该定点在圆内,则可判断直线与圆相交.
注意 在直线与圆的位置关系的判断方法中,若直线和圆的方程已知或圆心到直线的距离易表达,则用几何法;若直线或圆的方程中含有参数,且圆心到直线的距离不易表达,则用代数法.
5.[人A选必一P86例4变式,2022全国乙卷(理)]过四点,,, 中的三点的一个圆的方程为_ ____________________________________________________________________________________________.
或或或
【解析】 若圆过,,三点,设过这三点的圆的一般方程为 ,分别将三点的坐标代入,可得解得易得 ,所以过这三点的圆的方程为,即 .若圆过,,三点,通解 设过这三点的圆的一般方程为 ,分别将三点的坐标代入,可得解得易得 ,所以过这三点的圆的方程为,即 .
第八章平面解析几何
2025年高考数学专项复习
第三节 圆的方程、直线与圆及圆与圆的位置关系
目录
圆的方程

直线与圆的位置关系

圆与圆的位置关系

与圆有关的最值问题

圆的方程

教材知识萃取
1.圆的定义与方程
教材知识萃取
规律总结(1)若没有给出 ,则圆的半径为 .(2)在圆的一般方程中:当 时,方程 表示一个点 ;当 时,方程 没有意义,不表示任何图形.(3)以 , 为直径端点的圆的方程为 .
注意 在求过一定点的圆的切线方程时,应先判断定点与圆的位置关系,若点在圆上,则该点为切点,切线只有一条;若点在圆外(此时一定要注意斜率不存在的情况),则切线有两条;若点在圆内,则切线不存在.

圆的方程课件-2025届高三数学一轮复习

圆的方程课件-2025届高三数学一轮复习

题后师说
求圆的方程的两种方法
巩固训练1
(1)已知圆心为(-2,1)的圆与y轴相切,则该圆的标准方程是(
A.(x+2)2+(y-1)2=1
B.(x+2)2+(y-1)2=4
C.(x-2)2+(y+1)2=1
D.(x-2)2+(y+1)2=4
)
答案: B
解析:根据题意知圆心为(-2,1),半径为2,故圆的方程为:(x+2)2+(y-1)2
(2)求直角边BC的中点M的轨迹方程.
解析:设点M(x,y),C(x0,y0),因为点B(3,0),M是线段BC的中点,所以x=
x0 +3
y0 +0
,y=
,所以x0=2x-3,y0=2y.
2
2
由(1)知,点C的轨迹方程为x2+y2-2x-3=0(y≠0),即(x-1)2+y2=4(y≠0),
将x0=2x-3,y0=2y代入得(2x-4)2+(2y)2=4(y≠0),
(x-1)2+(y+1)2=5
均在⊙M上,则⊙M的方程为________________.
解析:因为点M在直线2x+y-1=0上,所以设M(a,1-2a).由点(3,0),(0,
1)均在⊙M上,可得点(3,0),(0,1)到圆心M的距离相等且为⊙M的半径,所以r
= a − 3 2 + 1 − 2a 2 = a2 + 1 − 2a − 1 2 ,解得a=1.所以M(1,-1),r=
圆.( × )
(3)方程x2+y2+4mx-2y+5m=0表示圆.( × )
(4)若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则02 + 02 +Dx0+
Ey0+F>0.( √ )

高三数学《师说》系列一轮复习 圆的方程课件 理 新人教B

高三数学《师说》系列一轮复习 圆的方程课件 理 新人教B

相交 R-r<d<R+ M 有两组实数解 r
内切 内含
d=R-r d<R-r
M 有一组实数解 M 无实数解
•11、凡为教者必期于达到不须教。对人以诚信,人不欺我;对事以诚信,事无不成。 •12、首先是教师品格的陶冶,行为的教育,然后才是专门知识和技能的训练。 •13、在教师手里操着幼年人的命运,便操着民族和人类的命运。2022/1/162022/1/16January 16, 2022 •14、孩子在快乐的时候,他学习任何东西都比较容易。 •15、纪律是集体的面貌,集体的声音,集体的动作,集体的表情,集体的信念。 •16、一个人所受的教育超过了自己的智力,这样的人才有学问。 •17、好奇是儿童的原始本性,感知会使儿童心灵升华,为其为了探究事物藏下本源。2022年1月2022/1/162022/1/162022/1/161/16/2022 •18、人自身有一种力量,用许多方式按照本人意愿控制和影响这种力量,一旦他这样做,就会影响到对他的教育和对他发生作用的环境。 2022/1/162022/1/16
点评 确定圆的方程需要三个独立条件,“选标准,定参数” 是解题的基本方法.其中,选标准是指根据已知条件选恰当的圆的 方程的形式,进而确定其中三个参数 .
变式迁移 1 求满足下列条件的圆的方程: (1)圆心在 x 轴上,半径为 5,且过点 A(2,-3); (2)过点 A(1,2)和 B(1,10),且与直线 x-2y-1=0 相切.
示圆的必要条件,而不是充分条件,还需要加上(DA)2+(EA)2-4AF>0, 即 D2+E2-4AF>0.
(4)常见圆的方程 ①圆心在原点的圆,标准方程:x2+y2=r2;一般方程:x2+y2 -r2=0. ②过原点的圆,标准方程:(x-a)2+(y-b)2=a2+b2;一般方 程:x2+y2+Dx+Ey=0. ③圆心在 x 轴上的圆,标准方程:(x-a)2+y2=r2;一般方程: x2+y2+Dx+F=0. ④圆心在 y 轴上的圆,标准方程:x2+(y-b)2=r2;一般方程: x2+y2+Ey+F=0. ⑤与 x 轴相切的圆,标准方程:(x-a)2+(y-b)2=b2;一般方

第8章 第3节 圆的方程-2023届高三一轮复习数学精品备课(新高考人教A版2019)

第8章 第3节 圆的方程-2023届高三一轮复习数学精品备课(新高考人教A版2019)

5.已知圆 C 经过点 A(1,3),B(4,2),与直线 2x+y-10=0 相切,则圆 C 的标准方程为________.
(x-2)2+(y-1)2=5 解析 由题意,设圆 C 的方程为(x-a)2+(y-b)2=r2, 因为点 B(4,2)在直线 2x+y-10=0 上, 所以点 B(4,2)是圆与直线 2x+y-10=0 的切点, 连接圆心 C 和切点的直线和与切线 2x+y-10=0 垂直, 则 kBC=12,则 BC 的方程为 y-2=12(x-4), 整理得 x-2y=0,
(√)
(4)若点 M(x0,y0)在圆 x2+y2+Dx+Ey+F=0 外,则 x20
+y20+Dx0+Ey0+F>0.
(√)
◇教材改编
2.圆 x2+y2-4x+6y=0 的圆心坐标和半径分别是
( D) A.(2,3),3
B.(-2,3), 3
C.(-2,-3),13
D.(2,-3), 13
解析 圆的方程可化为(x-2)2+(y+3)2=13, 所以圆心坐标是(2,-3),半径 r= 13.
(2)可知yx-+32表示直线 MQ 的斜率 k. 设直线 MQ 的方程为 y-3=k(x+2), 即 kx-y+2k+3=0. 由直线 MQ 与圆 C 有交点, ∴|2k-71++2kk2+3|≤2 2, 可得 2- 3≤k≤2+ 3, ∴yx-+32的最大值为 2+ 3,最小值为 2- 3.
(3)设 y-x=b,则 x-y+b=0. 当直线 y=x+b 与圆 C 相切时,截距 b 取到最值, ∴ 1|22+-(7+-b1|)2=2 2,∴b=9 或 b=1. ∴y-x 的最大值为 9,最小值为 1.
►考向三 与圆有关的轨迹问题[师生共研] [例 3] 已知圆 x2+y2=4 上一定点 A(2,0),B(1,1)为 圆内一点,P,Q 为圆上的动点. (1)求线段 AP 中点的轨迹方程; (2)若∠PBQ=90°,求线段 PQ 中点的轨迹方程. [自主解答] (1)设 AP 的中点为 M(x,y), 由中点坐标公式可知,P 点坐标为(2x-2,2y). 因为 P 点在圆 x2+y2=4 上, 所以(2x-2)2+(2y)2=4. 故线段 AP 中点的轨迹方程为(x-1)2+y2=1.

高考数学一轮复习规划8.3圆的方程课件

高考数学一轮复习规划8.3圆的方程课件

=x 上,则圆 C 的方程为
()
A. (x-1)2+(y-1)2=2
B. (x-1)2+(y+1)2=2
C. (x+1)2+(y-1)2=4
D. (x+1)2+(y+1)2=4
解:圆心在 y=x 上,设圆心为(a,a),因为圆 C 与直线 y=-x 及 x+y-4=0 都相
切,所以圆心到两直线 y=-x 及 x+y-4=0 的距离相等,
核心考点
第八章 平面解析几何
若圆(x-1)2+(y-1)2=2 关于直线 y=kx+3 对称,则 k 的值是
A. 2
B. -2
C. 1
() D. -1
解:由题意知直线 y=kx+3 过圆心(1,1),即 1=k+3,解得 k=-2. 故选 B.
考试要求
必备知识
自主评价
核心考点
第八章 平面解析几何
()
(4)若点 M(x0,y0)不在圆 x2+y2+Dx+Ey+F=0 内,则 x20+y20+Dx0+Ey0+F≥0.
()
(5)已知圆的方程为 x2+y2-2y=0,过点 A(1,2)作该圆的切线,只有一条. ( )
解:(1)√; (2)×; (3)×; (4)√; (5)×.
考试要求
必备知识
自主评价
考试要求
必备知识
自主评价
核心考点
解法二:设圆的方程为(x-a)2+(y-b)2=r2(r>0), 因为点 A(4,1),B(2,1)在圆上,故( (42- -aa) )22+ +( (11- -bb) )22= =rr22, , 又因为ba- -12=-1,解得 a=3,b=0,r= 2, 故所求圆的方程为(x-3)2+y2=2. 故填(x-3)2+y2=2.

苏教版高三数学复习课件8.3 圆的方程

苏教版高三数学复习课件8.3 圆的方程

上、
4.点与圆的位置关系 圆的切线方程、圆的弦长等条件,适合用标准式,对于有些题,设哪 点P(x 种形 0,y0)与圆(x-a)2+(y-b)2=r2(r>0)的位置关系:
点P在圆外
式都可以,这就要求根据条件具体问题具体分析. (1)当(x0-a)2+(y0-b)2>r2时,则 ; (2)当(x0-a)2+(y0-b)2=r2时,则 (3)当(x0-a)2+(y0-b)2<r2时,则
不等于零,即A=C≠0;(2)没有xy项,即B=0;(3)D2+E2-4AF>0.条
件(3)通过将方程两边同除以A或C并配方不难得出.
2.一般来说,如果由已知条件容易求圆心的坐标、半径或需要用圆
心的坐标、半径列方程的问题,往往设圆的标准方程;如果已知条件
和圆心坐标或半径都无直接关系,往往设圆的一般方程.圆的一般方 程中要加限制条件D2+E2-4F>0.用待定系数法求圆的方程的步骤:(1) 根据题意设所求圆的方程为标准式或一般式;(2)根据条件列出关于a, b,r或D,E,F的方程;(3)解方程组,求出a,b,r或D,E,F的值, 3.根据条件选择圆方程的适当形式,并会利用待定系数法进行圆的 代入所设方程,就得到要求的方程. 方程的求 解,同时,解答圆的问题时应注意数形结合,充分运用圆的 平面几何性 质,简化计算.
解:原方程化为(x-2)2+y2=3,表示以点(2,0)为圆心,以
为半径
的圆,
(1)设 =k,即y=kx,当直线y=kx与圆相切时,斜率k取最大值和最小
值,此时
解之得k=± .故

的最大值为 ,最小值为- .
(2)设y-x=b,即y=x+b,当y=x+b与圆相切时,纵截距b取得最大值 和最小值,此时 ,即b=-2± .故y-x的 (3)x2+y2表示圆上点与原点距离的平方,由平面几何知识知它在原点 最大值为-2+ 与圆心 ,最小值为-2- .

高三数学圆的标准方程与一般方程试题答案及解析

高三数学圆的标准方程与一般方程试题答案及解析

高三数学圆的标准方程与一般方程试题答案及解析1.已知点,圆:,过点的动直线与圆交于两点,线段的中点为,为坐标原点.(1)求的轨迹方程;(2)当时,求的方程及的面积【答案】(1);(2)的方程为; 的面积为.【解析】(1)先由圆的一般方程与标准方程的转化可将圆C的方程可化为,所以圆心为,半径为4,根据求曲线方程的方法可设,由向量的知识和几何关系:,运用向量数量积运算可得方程:;(2)由第(1)中所求可知M的轨迹是以点为圆心,为半径的圆,加之题中条件,故O在线段PM的垂直平分线上,又P在圆N上,从而,不难得出的方程为;结合面积公式可求又的面积为.试题解析:(1)圆C的方程可化为,所以圆心为,半径为4,设,则,,由题设知,故,即.由于点P在圆C的内部,所以M的轨迹方程是.(2)由(1)可知M的轨迹是以点为圆心,为半径的圆.由于,故O在线段PM的垂直平分线上,又P在圆N上,从而.因为ON的斜率为3,所以的斜率为,故的方程为.又,O到的距离为,,所以的面积为.【考点】1.曲线方程的求法;2.圆的方程与几何性质;3.直线与圆的位置关系2.圆心在直线上的圆与轴的正半轴相切,圆截轴所得弦的长为,则圆的标准方程为 .【答案】【解析】因为圆心在直线上,所以,可设圆心为.因为圆与轴相切,所以,半径,又因为圆截轴所得弦长为所以,.解得,故所求圆的方程为.【考点】圆的方程,直线与圆的位置关系.3.(2011•湖北)如图,直角坐标系xOy所在平面为α,直角坐标系x′Oy′(其中y′与y轴重合)所在的平面为β,∠xOx′=45°.(1)已知平面β内有一点P′(2,2),则点P′在平面α内的射影P的坐标为_________;(2)已知平面β内的曲线C′的方程是(x′﹣)2+2y2﹣2=0,则曲线C′在平面α内的射影C的方程是_________.【答案】(2,2);(x﹣1)2+y2=1.【解析】(1)由题意知点P′在平面上的射影P距离x轴的距离不变是2,距离y轴的距离变成2cos45°=2,∴点P′在平面α内的射影P的坐标为(2,2)(2)设(x′﹣)2+2y2﹣2=0上的任意点为A(x0,y),A在平面α上的射影是(x,y)根据上一问的结果,得到x=x0,y=y,∵,∴∴(x﹣1)2+y2=1,故答案为:(2,2);(x﹣1)2+y2=1.4.以抛物线y2=4x的焦点为圆心,且过坐标原点的圆的方程为()A.x2+y2+2x=0B.x2+y2+x=0C.x2+y2﹣x=0D.x2+y2﹣2x=0【答案】D【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为r=1,故所求圆的方程为(x﹣1)2+y2=1,即x2﹣2x+y2=0,故选D.5.已知圆C1:(x+1)2+(y-1)2=1,圆C2与圆C1关于直线x-y-1=0对称,则圆C2的方程为()A.(x-1)2+(y+1)2=1 B.(x+2)2+(y-2)2=1 C.(x+1)2+(y-1)2=1 D.(x-2)2+(y+2)2=1【答案】D【解析】圆C1:(x+1)2+(y-1)2=1的圆心为(-1,1).圆C2的圆心设为(a,b),C1与C2关于直线x-y-1=0对称,∴解得圆C2的半径为1,∴圆C2的方程为(x-2)2+(y+2)2=1,选D6.点(1,1)在圆(x-a)2+(y+a)2=4内,则实数a的取值范围是________.【答案】(-1,1)【解析】∵点(1,1)在圆的内部,∴(1-a)2+(1+a)2<4,∴-1<a<1.7.在平面直角坐标系xOy中,二次函数f(x)=x2+2x+b(x∈R)与两坐标轴有三个交点.记过三个交点的圆为圆C.(1)求实数b的取值范围;(2)求圆C的方程;(3)圆C是否经过定点(与b的取值无关)?证明你的结论.【答案】(1)<1且b≠0.(2)x2+y2+2x-(b+1)y+b=0(3)C必过定点(-2,1)【解析】(1)令x=0,得抛物线与y轴的交点是(0,b),令f(x)=0,得x2+2x+b=0,由题意b≠0且Δ>0,解得b<1且b≠0.(2)设所求圆的一般方程为x2+y2+Dx+Ey+F=0,令y=0,得x2+Dx+F=0,这与x2+2x+b =0是同一个方程,故D=2,F=b,令x=0,得y2+Ey+b=0,此方程有一个根为b,代入得E=-b-1,所以圆C的方程为x2+y2+2x-(b+1)y+b=0.(3)圆C必过定点(0,1),(-2,1).证明:将(0,1)代入圆C的方程,得左边=02+12+2×0-(b+1)×1+b=0,右边=0,所以圆C 必过定点(0,1);同理可证圆C必过定点(-2,1).8. P(x,y)在圆C:(x-1)2+(y-1)2=1上移动,试求x2+y2的最小值.【答案】3-2【解析】由C(1,1)得OC=,则OPmin =-1,即()min=-1.所以x2+y2的最小值为(-1)2=3-2.9.若圆心在x轴上、半径为的圆C位于y轴左侧,且被直线x+2y=0截得的弦长为4,则圆C的方程是()A.(x-)2+y2=5B.(x+)2+y2=5C.(x-5)2+y2=5D.(x+5)2+y2=5【答案】B【解析】设圆心为(a,0)(a<0),因为截得的弦长为4,所以弦心距为1,则d==1,解得a=-,所以,所求圆的方程为(x+)2+y2=5.10.与直线l:x+y-2=0和曲线x2+y2-12x-12y+54=0都相切的半径最小的圆的标准方程是.【答案】(x-2)2+(y-2)2=2【解析】【思路点拨】数形结合得最小圆的圆心一定在过x2+y2-12x-12y+54=0的圆心与直线x+y-2=0垂直的垂线段上.解:∵圆A:(x-6)2+(y-6) 2=18,∴A(6,6),半径r1=3,且OA⊥l,A到l的距离为5,显然所求圆B的直径2r2=2,即r2=,又OB=OA-r1-r2=2,由与x轴正半轴成45°角,∴B(2,2),∴方程为(x-2)2+(y-2)2=2.11.点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是() A.(x-2)2+(y+1)2=1B.(x-2)2+(y+1)2=4 C.(x+4)2+(y-2)2=4D.(x+2)2+(y-1)2=1【答案】A【解析】设圆上任一点为Q(x0,y),PQ的中点为M(x,y),则解得又因为点Q在圆x2+y2=4上,所以+=4,即(2x-4)2+(2y+2)2=4,即(x-2)2+(y+1)2=1.12.已知圆的方程为x2+y2-6x-8y=0,设该圆中过点(3,5)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积是().A.10B.20C.30D.40【答案】B【解析】配方可得(x-3)2+(y-4)2=25,其圆心为C(3,4),半径为r=5,则过点(3,5)的最长弦AC=2r=10,最短弦BD=2=4,且有AC⊥BD,则四边形ABCD的面积为S=AC×BD=20.13.已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.(1)若点P的轨迹为曲线C,求此曲线的方程;(2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值.【答案】(1)(x-5)2+y2=16(2)4【解析】(1)设点P的坐标为(x,y),且|PA|=2|PB|,则=2,化简得曲线C:(x-5)2+y2=16.(2)曲线C是以点(5,0)为圆心,4为半径的圆,如图.是此圆的切线,连接CQ,由直线l2则|QM|=,当CQ⊥l时,|CQ|取最小值,|CQ|=,此时|QM|的最小值为=4.114.过点引直线与曲线相交于两点,O为坐标原点,当的面积取最大值时,直线的斜率等于.【答案】-【解析】由得:;表示圆心在原点,半径的圆位于轴下方的部分(含端点);如下图:直线的方程为:,即,所以,当,即,整理得:又因为,所以,.故答案填:【考点】1、圆的标准方程;2、直线与圆的位置关系;3、数形结合.15.圆心在曲线上,且与直线相切的面积最小的圆的方程是_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档