SIFT算法详解及应用 讲的很详细
SIFT算法的介绍和应用

SIFT算法的介绍和应用SIFT(Scale-Invariant Feature Transform)算法是一种用于图像特征提取和匹配的算法,由David Lowe于1999年首次提出。
SIFT算法具有尺度不变性和旋转不变性,能够在不同尺度和旋转角度下检测并描述图像中的局部特征。
因此,SIFT算法在计算机视觉领域广泛应用于图像拼接、目标识别、图像检索、三维重建等任务。
尺度空间极值点检测是SIFT算法的关键步骤之一、该步骤通过在不同的尺度下使用高斯差分金字塔来检测图像中的关键点。
SIFT算法使用了DoG(Difference of Gaussians)来近似尺度空间的Laplacian of Gaussian(LoG)金字塔。
通过对高斯金字塔中不同尺度上的图像之间进行差分操作,我们可以得到一组差分图像。
SIFT算法通过在这些差分图像中找到局部最小值和最大值,来检测图像中的关键点。
关键点精确定位是SIFT算法的另一个重要步骤。
在粗略检测到的关键点位置附近,SIFT算法利用高斯曲率空间来精确定位关键点。
具体做法是,在检测到的关键点位置处通过Taylor展开近似曲线,并通过求解偏导数为零的方程来计算关键点的位置。
方向分配是SIFT算法的下一个步骤。
该步骤用于给每个关键点分配一个主方向,以增强特征的旋转不变性。
SIFT算法在关键点周围的像素中计算梯度幅值和方向,然后生成一个梯度方向直方图。
直方图中最大的值对应于关键点的主方向。
特征描述是SIFT算法的另一个核心步骤。
在这个步骤中,SIFT算法根据关键点周围的梯度方向直方图构建一个128维的特征向量,该特征向量描述了关键点的局部特征。
具体做法是,将关键点附近的像素划分为若干个子区域,并计算每个子区域内的梯度幅值和方向,然后将这些信息组合成一个128维的向量。
特征匹配是SIFT算法的最后一步。
在这个步骤中,SIFT算法通过比较特征向量之间的欧氏距离来进行特征匹配。
图像识别中的SIFT算法实现与优化

图像识别中的SIFT算法实现与优化一、SIFT算法介绍SIFT算法(Scale-Invariant Feature Transform)是一种用于图像对比和匹配的局部特征提取算法,由David Lowe于1999年开发提出并持续改良。
SIFT算法可以检测出具有旋转、缩放、光照变化等不变性的图像特征点,被广泛应用于计算机视觉领域,如图像匹配、图像检索、物体识别等。
SIFT算法主要分为四步:尺度空间极值检测、关键点定位、关键点方向确定和描述子生成。
尺度空间极值检测:SIFT算法通过构建高斯金字塔来检测尺度下的极值点。
在高斯金字塔中,首先对原始图像进行下采样,生成一组不同尺度的图像。
然后在每个尺度上利用高斯差分来检测极值点,满足以下条件的点即为极值点:周围像素点中的最大值或最小值与当前像素点的差值达到一定阈值,而且是在尺度空间上达到极值。
关键点定位:对于极值点的定位,SIFT算法采用了一种基于拟合精细的方法来定位真实的关键点。
SIFT算法通过在尺度空间中计算极值点的DoG(高斯差分)的Hessian矩阵,来估计关键点的尺度和位置。
如果Hessian矩阵的行列式和迹符号都满足一定的条件,则认为该点为关键点。
关键点方向确定:在确定关键点的位置和尺度之后,SIFT算法还需要确定关键点的主方向。
该方向是通过计算关键点周围像素点的梯度方向和大小,并在组合后的梯度图像上寻找最大梯度方向得到的。
这个方向是在许多方向中确定的,而描述符是相对于主方向定义的。
描述子生成:最后,SIFT算法采用一个高维向量来描述关键点,并且具有不变性。
该向量的计算是在相对于关键点的周围图像区域内,采集图像梯度方向的统计信息来完成的。
描述符向量包含了关键点的位置、主方向,以及相对于主方向的相对性质。
二、SIFT算法优化思路尽管SIFT算法已经被广泛使用,但是由于算法复杂度和内存消耗等问题,使得在大数据和实时应用场景下,SIFT算法的运行速度和效果表现都有巨大限制。
SIFT算法详解及应用

SIFT算法详解及应用SIFT(Scale-Invariant Feature Transform)是一种图像处理算法,它能够在不同尺度、旋转、光照条件下进行特征点匹配。
SIFT算法是计算机视觉领域的一个重要算法,广泛应用于目标识别、图像拼接、图像检索等方面。
首先,尺度空间极值检测是指在不同尺度上检测图像中的极值点,即图像中的局部最大值或最小值。
这样可以使特征点能够对应不同尺度的目标,使算法对尺度变化有鲁棒性。
为了实现这一步骤,SIFT算法使用了高斯差分金字塔来检测尺度空间中的极值点。
接下来是关键点定位,即确定在尺度空间极值点的位置以及对应的尺度。
SIFT算法通过比较每个极值点与其周围点的响应值大小来判断其是否为关键点。
同时,为了提高关键点的稳定性和准确性,算法还会对关键点位置进行亚像素精确化。
然后是关键点方向的确定,即为每个关键点分配一个主方向。
SIFT算法使用图像梯度方向的直方图来确定关键点的方向。
这样可以使得特征描述子具有旋转不变性,使算法在目标旋转的情况下仍能进行匹配。
最后是关键点的描述。
SIFT算法使用局部图像的梯度信息来描述关键点,即构建关键点的特征向量。
特征向量的构建过程主要包括将关键点周围的图像划分为若干个子区域,计算每个子区域的梯度直方图,并将所有子区域的直方图拼接成一个特征向量。
这样可以使得特征向量具有局部不变性和对光照变化的鲁棒性。
SIFT算法的应用非常广泛。
首先,在目标识别领域,SIFT算法能够检测和匹配图像中的关键点,从而实现目标的识别和定位。
其次,在图像拼接方面,SIFT算法能够提取图像中的特征点,并通过匹配这些特征点来完成图像的拼接。
此外,SIFT算法还可以应用于图像检索、三维重建、行人检测等领域。
总结起来,SIFT算法是一种具有尺度不变性和旋转不变性的图像处理算法。
它通过提取图像中的关键点,并构建关键点的描述子,实现了对不同尺度、旋转、光照条件下的目标识别和图像匹配。
sift算法计算旋转参数

sift算法计算旋转参数SIFT算法是一种常用的图像特征提取算法,它可以用于计算图像的旋转参数。
本文将介绍SIFT算法的原理和计算旋转参数的步骤。
一、SIFT算法原理SIFT(Scale Invariant Feature Transform)算法是由David Lowe于1999年提出的一种图像处理算法,它主要用于图像特征提取和匹配。
SIFT算法通过寻找图像中的关键点,并提取关键点周围的特征描述子,从而实现对图像的特征提取和匹配。
SIFT算法的主要步骤包括:尺度空间极值检测、关键点定位、方向分配、特征描述和特征匹配。
其中,关键点定位和方向分配是计算旋转参数的关键步骤。
二、计算旋转参数的步骤1. 尺度空间极值检测SIFT算法首先对输入图像进行尺度空间的构建,通过高斯金字塔和DOG(Difference of Gaussian)计算得到图像的尺度空间。
然后,在每组DOG图像中寻找极值点,用于标记潜在的关键点。
2. 关键点定位在寻找极值点的基础上,SIFT算法采用了稳定的关键点定位方法,通过比较极值点与周围像素的梯度和曲率信息,筛选出稳定的关键点。
这些关键点具有尺度和旋转不变性,可以在不同尺度和旋转角度的图像中进行匹配。
3. 方向分配为了使关键点具有旋转不变性,SIFT算法为每个关键点分配一个主方向。
具体做法是在关键点周围的区域中计算梯度直方图,找到梯度最大的方向作为主方向。
这样,即使图像发生旋转,关键点的描述子仍然可以进行匹配。
4. 特征描述在确定了关键点的尺度和旋转参数后,SIFT算法采用了局部图像块的特征描述方法。
它将关键点周围的图像区域分成若干个子区域,并计算每个子区域的梯度直方图。
然后,将这些直方图组合成一个特征向量,形成关键点的描述子。
5. 特征匹配SIFT算法使用特征向量进行特征匹配。
常用的方法是计算两个图像之间的欧氏距离,找到距离最小的匹配对。
通过特征匹配,可以实现对图像的旋转参数的计算。
SIFT特征提取算法

SIFT特征提取算法SIFT(Scale-Invariant Feature Transform)特征提取算法是一种用于图像的局部特征分析的算法。
它能够提取出图像中的关键点,并对这些关键点进行描述,从而可以用于图像匹配、物体识别等应用领域。
本文将详细介绍SIFT算法的原理和过程。
1.尺度空间构建SIFT算法首先通过使用高斯滤波器来构建图像的尺度空间,以便在不同尺度下检测关键点。
高斯滤波器可以通过一系列的高斯卷积操作实现,每次卷积之后对图像进行下采样(降低分辨率),得到不同尺度的图像。
2.关键点检测在尺度空间构建完成后,SIFT算法使用差分运算来检测关键点。
差分运算可以通过对图像进行高斯平滑操作来实现,然后计算相邻尺度之间的差分图像。
对差分图像进行极值检测,即寻找局部最大和最小值的像素点,这些像素点就是图像中的关键点。
3.关键点精确定位关键点的精确定位是通过拟合关键点周围的局部图像来实现的。
SIFT算法使用了一种高度鲁棒的方法,即利用关键点周围梯度的方向和大小来进行拟合。
具体来说,SIFT算法在关键点周围计算图像的梯度幅值和方向,并构建梯度直方图。
然后通过在梯度直方图中寻找局部极值来确定关键点的方向。
4.关键点描述关键点的描述是为了提取关键点周围的特征向量,用于后续的匹配和识别。
SIFT算法使用了一种局部特征描述算法,即将关键点周围的图像区域划分为小的子区域,并计算每个子区域的梯度方向直方图。
然后将这些直方图组合起来,构成一个维度较高的特征向量。
5.特征向量匹配在完成关键点描述之后,SIFT算法使用一种近似的最近邻方法来进行特征向量的匹配。
具体来说,使用KD树或者暴力匹配的方法来寻找两幅图像中最相似的特征向量。
通过计算特征向量之间的距离,可以找到最相似的匹配对。
6.尺度不变性SIFT算法具有尺度不变性的特点,即对于图像的缩放、旋转和视角变化等变换具有较好的鲁棒性。
这是因为在特征提取的过程中,SIFT算法对图像进行了多尺度的分析,并利用了关键点周围的梯度信息进行描述。
SIFT算法详解及应用(课件)

• 高斯模糊具有线性可分的性质,也可以在二维图像上对两个独立的一 维空间分别进行计算。这样可以大大减少了运算的次数。
• 对一幅图像进行多次连续高斯模糊的效果与一次更大的高斯模糊可以 产生同样的效果,大的高斯模糊的半径是所用多个高斯模糊半径平方 和的平方根。例如,使用半径分别为 6 和 8 的两次高斯模糊变换得 到的效果等同于一次半径为 10 的高斯模糊效果, 62 82 10 根据这个关系,使用多个连续较小的高斯模糊处理不会比单个高斯较 大处理时间要少。
SIFT
Scale Invariant Feature Transform
Octave 5 Octave 4 Octave 3
…
8
…
4
…
2
…
Octave 2
…
Octave 1
2013/7/11
17
关键点检测的相关概念
• 高斯图像金字塔共o组、s层, 则有:
SIFT
Scale Invariant Feature Transform
SIFT
Scale Invariant Feature Transform
0.00002292 0.00078633 0.00655965 0.01330373 0.00655965 0.00078633 0.00002292
0.00000067 0.00002292 0.00019117 0.00038771 0.00019117 0.00002292 0.00000067
高斯函数
( x xi )2 ( y yi )2 G xi , yi , exp 2 2 2 2 1
L x, y, G x, y, * I x, y
sift特征提取与匹配原理

SIFT特征提取与匹配原理的深入解析一、引言在图像处理和计算机视觉领域,尺度不变特征变换(Scale-Invariant Feature Transform,SIFT)是一种被广泛应用的算法。
SIFT特征提取与匹配原理是图像处理中的重要一环,对于图像识别、图像配准、3D建模、物体跟踪等应用具有重要意义。
本文将深入解析SIFT特征提取与匹配原理,包括其基本概念、算法流程、优缺点以及应用场景。
二、SIFT特征提取原理1. 尺度空间极值检测SIFT算法首先通过构建尺度空间,在不同尺度下搜索所有可能的特征点。
这个过程是通过高斯差分(Difference of Gaussians,DoG)来实现的,它可以有效地检测出图像中的局部极值点,这些点具有尺度不变性,即无论图像被放大或缩小,这些点都能被检测到。
2. 特征点定位在检测到局部极值点后,SIFT算法会进行精确的定位。
这个过程包括去除低对比度的点和边缘点,因为这些点不稳定且对噪声敏感。
通过拟合三维二次函数来精确确定特征点的位置和尺度。
3. 方向分配为了使描述符具有旋转不变性,SIFT算法会为每个特征点分配一个主方向。
这是通过计算特征点周围像素的梯度方向和大小来实现的。
主方向是通过直方图统计梯度方向并找到最大的峰值来确定的。
4. 描述符生成最后,SIFT算法会生成一个描述符,用于描述特征点周围的图像信息。
描述符是通过将特征点周围的区域划分为4x4的子区域,并计算每个子区域的梯度方向和大小直方图来生成的。
描述符是一个128维的向量,具有对尺度、旋转和光照变化的不变性。
三、SIFT特征匹配原理在生成了SIFT描述符后,就可以进行特征匹配了。
这个过程是通过计算两个描述符之间的欧氏距离来实现的。
距离越小,表示两个特征点越相似。
为了提高效率,通常会使用K-D树等数据结构来加速匹配过程。
此外,还可以使用RANSAC等算法来消除误匹配,提高匹配的准确性。
四、优缺点分析SIFT算法的优点主要体现在以下几个方面:1. 尺度、旋转和光照不变性:SIFT描述符具有对尺度、旋转和光照变化的不变性,这使得它在各种场景下都能取得较好的效果。
SIFT算法详解及应用

SIFT算法详解及应用SIFT(Scale-Invariant Feature Transform)是一种在计算机视觉中常用的特征点提取算法,由David Lowe在1999年提出,并在2004年的论文中进行了详细阐述。
SIFT算法可以在不同尺度和旋转下保持图像的特征点不变性,因此在图像拼接、目标识别、图像匹配等领域具有广泛的应用。
1.尺度空间构建:SIFT算法使用高斯差分函数来检测不同尺度下的特征点。
通过在图像中采用不同尺度的高斯滤波,构建尺度空间,从而检测到不同尺度的图像特征。
2.关键点提取:在构建的尺度空间中,SIFT算法通过在每个像素点检测局部极值点来获取关键点。
具体的做法是对每个像素点在尺度空间上进行比较,找出该点与它相邻像素点和尺度上的极值,从而得到关键点。
3. 关键点定位:在关键点提取后,SIFT算法通过利用二阶偏导数的Hessian矩阵来对关键点进行进一步定位。
Hessian矩阵可以描述图像对灰度变化的响应,通过计算关键点周围像素点的Hessian矩阵,可以对关键点进行精确定位。
4.方向分配:在关键点定位后,SIFT算法为每个关键点分配一个主导方向。
通过对关键点周围的图像梯度进行统计,找到梯度方向分布最大的方向作为主导方向,以此来保证关键点对旋转具有不变性。
5.特征描述:在分配了主导方向后,SIFT算法使用局部图像梯度的方向直方图来描述关键点的局部特征。
将关键点周围的16x16邻域划分为4x4的小格子,计算每个小格子内的梯度方向直方图,最终得到一个128维的特征向量来表示关键点的局部特征。
1.尺度不变性:SIFT算法通过在不同尺度下检测特征点,使得算法对于图像缩放具有不变性。
这一特性使得SIFT在目标识别和图像匹配等领域具有广泛应用,可以应对不同尺寸的目标和场景。
2.旋转不变性:SIFT算法通过为每个关键点分配主导方向,使得算法对于图像旋转具有不变性。
这一特性使得SIFT在图像拼接和图像匹配中能够应对图像的旋转变换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0.00000067 0.00002292 0.00019117 0.00038771 0.00019117 0.00002292 0.00000067
• 在实际应用中,在计算高斯函数的离散近似时,在大概3σ距离之外 的像素都可以看作不起作用,这些像素的计算也就可以忽略。
• 通常,图像处理程序只需要计算 (6 1)(6 1)
2012/3/27
14
关键点检测的相关概念
SIFT
Scale Invariant Feature Transform
高斯模板大小的选择
高斯模板
0.00000067 0.00002292 0.00019117 0.00038771 0.00019117 0.00002292 0.00000067
0.00002292 0.00078633 0.00655965 0.01330373 0.00655965 0.00078633 0.00002292
0.00019117 0.00655965 0.05472157 0.11098164 0.05472157 0.00655965 0.00019117
0.00038771 0.01330373 0.11098164 0.22508352 0.11098164 0.01330373 0.00038771
2012/3/27
16
关键点检测的相关概念
4. 高斯金字塔
• 高斯金子塔的构建过程可分为 两步:
8
(1)对图像做高斯平滑; 4
(2)对图像做降采样。
2
为了让尺度体现其连续性,在简单
下采样的基础上加上了高斯滤波。
一幅图像可以产生几组(octave)
图像,一组图像包括几层
(interval)图像。
• 高斯金字塔的组内尺度与组间尺度
s
(s) 0 2 S
组内尺度是指同一组(octave)内的 8 尺度关系,组内相邻层尺度化简为:
4
1
s1 s 2 S
2
组间尺度是指不同组直接的尺度关
系,相邻组的尺度可化为:
sS
o1(s) o 2 S
sS
s
o 2 S 2o 2 S
… …
… …
…
SIFT
Scale Invariant Feature Transform
Octave 5 Octave 4 Octave 3 Octave 2
Octave 1
2012/3/27
17
… …
… …
…
关键点检测的相关概念
• 高斯图像金字塔共o组、s层, 则有:
s
8
(s) 0 2 S
上特征向量的关键点)的两两比较找出相互匹配的若干对特征点,也就建立
了2景012物/3/间27的对应关系。
8
SIFT算法实现细节
SIFT算法实现步骤
SIFT
Scale Invariant Feature Transform
1. 关键点检测 2. 关键点描述 3. 关键点匹配 4. 消除错配点
2012/3/27
所谓关键点,就是在不同尺度空间的图像下检测出的具有方向 信息的局部极值点。 根据归纳,我们可以看出特征点具有的三个特征:
尺度
方向
大小
2012/3/27
10
关键点检测的相关概念
SIFT
Scale Invariant Feature Transform
2. 什么是尺度空间(scale space )?
• 高斯金字塔的初始尺度
当图像通过相机拍摄时,相机的镜 头已经对图像进行了一次初始的模 8 糊,所以根据高斯模糊的性质:
4
0 init init pre pre
2
init ——第0层尺度
pre ——被相机镜头模糊后的尺度
• 高斯金字塔的组数
O log2 min M , N 3
SIFT算法的实质可以归为在不同尺度空间上查找特征点(关键点)的问题。
原图像 目标图像
特征点 检测
特征点 描述
SIFT
特征点 检测
特征点 描述
SIFT
目标的特 征点集
目标的特 征点集
特征点匹 配
匹配点矫 正
SIFT算法实现物体识别主要有三大工序,1、提取关键点;2、对关键点附加
详细的信息(局部特征)也就是所谓的描述器;3、通过两方特征点(附带
2012/3/27
6
SIFT简介
SIFT
Scale Invariant Feature Transform
SIFT算法可以解决的问题
目标的自身状态、场景所处的环境和成像器材的成像特性等因 素影响图像配准/目标识别跟踪的性能。而SIFT算法在一定程度上可解决:
• 目标的旋转、缩放、平移(RST)
• 图像仿射/投影变换(视点viewpoint)
• 光照影响(illumination)
• 目标遮挡(occlusion)
• 杂物场景(clutter)
• 噪声
Back
2012/3/27
7
SIFT算法实现细节
SIFT
Scale Invariant Feature Transform
SIFT算法实现步骤简述
我们要精确表示的物体都是通过一定的尺度来反映的。现实世界的 物体也总是通过不同尺度的观察而得到不同的变化。
尺度空间理论最早在1962年提出,其主要思想是通过对原始图像进 行尺度变换,获得图像多尺度下的尺度空间表示序列,对这些序列进行 尺度空间主轮廓的提取,并以该主轮廓作为一种特征向量,实现边缘、 角点检测和不同分辨率上的特征提取等。
SIFT
Scale Invariant Feature Transform
3. 高斯模糊
高斯模糊是在Adobe Photoshop等图像处理软件中广泛使用的处理 效果,通常用它来减小图像噪声以及降低细节层次。这种模糊技术生成 的图像的视觉效果是好像经过一个半透明的屏幕观察图像。
2012/3/27
13
2012/3/27
3
SIFT简介
SIFT
Scale Invariant Feature Transform
SIFT提出的目的和意义
David G. Lowe Computer Science Department
2366 Main Mall University of British Columbia
尺度空间中各尺度图像的模糊程度逐渐变大,能够模拟人在距离目 标由近到远时目标在视网膜上的形012/3/27
11
关键点检测的相关概念
SIFT
Scale Invariant Feature Transform
根据文献《Scale-space theory: A basic tool for analysing structures at different scales》我们可知,高斯核是唯一可以产生 多尺度空间的核,一个图像的尺度空间,L(x,y,σ) ,定义为原始图像 I(x,y)与一个可变尺度的2维高斯函数G(x,y,σ) 卷积运算。
2012/3/27
15
关键点检测的相关概念
高斯模糊的性质
SIFT
Scale Invariant Feature Transform
• 高斯模糊具有圆对称性。
• 高斯模糊具有线性可分的性质,也可以在二维图像上对两个独立的一 维空间分别进行计算。这样可以大大减少了运算的次数。
• 对一幅图像进行多次连续高斯模糊的效果与一次更大的高斯模糊可以 产生同样的效果,大的高斯模糊的半径是所用多个高斯模糊半径平方 和的平方根。例如,使用半径分别为 6 和 8 的两次高斯模糊变换得 到的效果等同于一次半径为 10 的高斯模糊效果, 62 82 10 根据这个关系,使用多个连续较小的高斯模糊处理不会比单个高斯较 大处理时间要少。
Vancouver, B.C., V6T 1Z4, Canada
E-mail: lowe@cs.ubc.ca
• 1999年British Columbia大学大卫.劳伊(David G.Lowe)教授总结了现有 的基于不变量技术的特征检测方法,并正式提出了一种基于尺度空间的、对 图像缩放、旋转甚至仿射变换保持不变性的图像局部特征描述算子-SIFT (尺度不变特征变换),这种算法在2004年被加以完善。
2012/3/27
4
SIFT简介
SIFT
Scale Invariant Feature Transform
Original image courtesy of David Lowe
将一幅图像映射(变换)为一个局部特征向量集;特征向量具有 平移、缩放、旋转不变性,同时对光照变化、仿射及投影变换也有一定 不变性。
9
关键点检测的相关概念
SIFT
Scale Invariant Feature Transform
1. 哪些点是SIFT中要查找的关键点(特征点)?
这些点是一些十分突出的点不会因光照条件的改变而消失,比如角点、 边缘点、暗区域的亮点以及亮区域的暗点,既然两幅图像中有相同的景物, 那么使用某种方法分别提取各自的稳定点,这些点之间会有相互对应的匹配 点。
BEIJING INSTITUTE OF TECHNOLOGY
尺度不变特征变换匹配算法 Scale Invariant Feature Transform (SIFT)
2012/3/27
1/60
提纲
SIFT
Scale Invariant Feature Transform
1. SIFT简介 2. SIFT算法实现细节 3. SIFT算法的应用领域 4. SIFT算法的扩展与改进