热处理检验方法和规范
热处理件表面检验验收标准
热处理件表面质量检验验收标准一、目的为保障产品的质量,建立和规范热处理件表面质量的检验方法,对热处理件产品生产、出厂或外购的外观检验提供科学、客观的依据,以保证检验结果一致性、全面性及准确性,同时防止材料表面缺陷影响后道工序的生产及品质,特制定本标准。
二、适用范围本标准适用于湘重公司生产及外购或委外加工的热处理件表面质量检验及验收三、规范性引用文件下列文件中的条款通过本标准的引用而成为本标准的条款。
凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。
凡是不注日期的引用文件,其最新版本适用于本标准。
GB/T15822 磁粉探伤方法GB/T226 钢的低倍组织及缺陷酸蚀检验法GB/T3721 磁粉探伤机JB/T9218 渗透探伤GB/T 231 《布氏硬度试验方法》GB/T 230 《金属洛氏硬度试验方法》GB/T 17394 《金属里氏硬度试验方法》GB/T4340 《金属维氏硬度试验方法》GB/T4341 《金属肖氏硬度试验方法》GB/T18449 《金属努氏硬度试验方法》GB/T 6402 《超声波探伤标准》四、表面质量检验项目及验收标准4.1对于生产或购买的热处理件,表面质量具体检验项目及标准如表1:表一表面质量检验项目及验收标准4.2热处理件有上述缺陷,允许清理,但表面清理深度不得大于5mm,清理处应圆滑无棱角,清理宽度和长度分别不得小于清理深度6和8倍,清理处的残存钢渣应予以铲除。
4.3其它未尽事宜,可由供方与需方协商解决处理。
五、热处理件表面质量检验方法5.1 对于生产或购买的热处理件,表面质量具体检验方法如表2:表二表面质量检验方法5.2 热处理件尺寸检验5.2.1 长度尺寸检验可用直尺、卡钳、卡尺或游标卡尺等通用量具进行测量。
5.2.2 高度(或横向尺寸)与直径检验一般情况用卡钳或游标卡尺测量,如批量大,可用专用极限卡板测量。
标准件热处理检验要求
标准件热处理检验要求
标准件热处理检验要求通常包括以下内容:
1. 原材料检验:对原材料进行化学成分分析和金相组织分析,以确定其质量和适用性。
2. 加热温度控制:在进行热处理过程中,需要控制加热温度,以确保零件可以达到所需的组织和性能。
3. 保温时间控制:热处理过程中的保温时间也要进行控制,以确保零件中的相变和组织转变充分进行。
4. 冷却速率控制:冷却速率对零件的组织和性能有重要影响,需要根据零件材料的要求,控制冷却速率。
5. 硬度测试:对热处理后的标准件进行硬度测试,以检验其硬度是否符合要求。
6. 金相组织检查:通过金相显微镜对标准件进行组织检查,以确定其金相组织是否满足要求。
7. 剥离试验:对热处理后的标准件进行剥离试验,以检验热处理过程中是否存在剥离问题。
8. 厚度测量:对热处理后的标准件进行厚度测量,以确保热处理过程中没有出现不均匀变形或厚度变化。
9. 化学成分分析:对热处理后的标准件进行化学成分分析,以检测是否存在杂质或成分偏差。
以上是标准件热处理检验的一般要求,具体要求还取决于标准件的材料及用途,需要根据相关行业标准和规范来进行具体的检验。
热处理硬度检测标准
热处理硬度检测标准热处理是一种常见的金属材料加工工艺,通过对金属材料进行加热和冷却的过程,可以改变其组织结构和性能,从而达到一定的硬度和强度要求。
而硬度检测则是评定材料是否符合热处理标准的重要手段之一。
本文将介绍热处理硬度检测的相关标准和方法。
1. 硬度检测的标准。
热处理后的材料硬度检测需要遵循一定的标准,以确保检测结果的准确性和可靠性。
常见的硬度检测标准包括国际上广泛应用的洛氏硬度(Rockwell Hardness)标准、巴氏硬度(Brinell Hardness)标准和维氏硬度(Vickers Hardness)标准等。
这些标准都有相应的检测方法和设备,用于评定材料的硬度值。
2. 硬度检测的方法。
硬度检测的方法根据不同的标准和要求而有所不同。
洛氏硬度检测主要通过在材料表面施加一定载荷,然后测量材料表面的残留印痕深度来确定硬度值。
巴氏硬度检测则是通过在材料表面施加一定载荷,然后测量压痕的直径来计算硬度值。
而维氏硬度检测则是通过在材料表面施加一定载荷,然后测量压痕的对角线长度来计算硬度值。
这些方法都有各自的优缺点,需要根据具体的情况选择合适的方法进行硬度检测。
3. 硬度检测的设备。
进行硬度检测需要使用相应的硬度检测设备。
常见的硬度检测设备包括硬度计、洛氏硬度计、巴氏硬度计和维氏硬度计等。
这些设备根据不同的检测方法和标准,具有不同的测量范围和精度。
在进行硬度检测时,需要根据具体的要求选择合适的设备,并严格按照设备操作说明进行操作,以确保检测结果的准确性。
4. 硬度检测的注意事项。
在进行硬度检测时,需要注意一些细节和注意事项,以确保检测结果的准确性。
首先,需要保证待测材料表面的平整度和清洁度,以免影响硬度检测的准确性。
其次,在进行硬度检测时,需要根据具体的标准和方法选择合适的载荷和时间,以确保检测结果的可靠性。
最后,需要对硬度检测设备进行定期的校准和维护,以确保设备的正常工作和检测结果的准确性。
总之,热处理硬度检测是热处理工艺中的重要环节,对材料的性能和质量有着重要的影响。
热处理检验规范
5.1.2 钢件的淬火与回火处理符合 GB/T16924-1997 标准。
华强智能
深圳华强智能技术有限公司
热处理检验规范
文件编号: 版 本: 第 2 页 共8页
5.1.3 热处理的质量控制要求符合 JB/T10175-2000 标准。
5.1.4 钢件调质后其表面,芯部硬度符合产品图纸之规定。
5.1.5 钢件淬火后其要求硬化层的硬度符合产品图纸之规定。
323
370
327
375
332
381
336
386
341
392
345
397
350
403
355
409
360
415
365
422
370
428
375
435
380
44l
385
448
39l
455
396
463
40l
470
407
478
413
486
418
494
424
502
430
510
436
518
442
449
华强智能
洛
5.1.6 钢铁件渗碳淬火有效硬化层的深度和硬度符合产品图纸之规定。
5.2 检测仪器
布氏硬度计(台式,便携式)、洛氏硬度计(台式,便携式)、维氏硬度
计(台式,便携式)、金相显微镜等。
5.3 检验依据和原则
5.3.1 根据图纸进行检验。
5.3.2 根据工艺文件进行检验。
5.3.3 根据相关技术标准进行检验。
维氏
HV 226 228 230 233 235 238 24l 244 247 250 253 256 259 262 266 269 273 276 280 284 288 292 296 300 304 308 313 317 32l 326
常用模具热处理质量检验技术
常用模具热处理质量检验技术模具热处理质量检验应按国家标准、行业标准或企业内控标准规定的程序,对工艺文件或技术标准中规定的项目进行严格的检查,并监督工艺纪律的执行情况,防止和减少废品与返工件的产生。
对批量生产的模具,必须在首件或首批检验合格后才可继续生产。
检验的项目和检验的方法,应按图样、工艺卡片和技术标准的规定执行。
对于没有明确规定的,可按相应的国家标准或客户要求进行检测。
模具热处理后的检验主要有四个方面:外观、变形、硬度、金相。
1)热作模具热处理质量检验如下:①外观检验。
模具任何部位不得有肉眼可见的裂纹,关键部位应用5~10倍的放大镜细看。
模具表面不应有明显的磕碰伤痕。
②变形检验。
用刀口形直尺或平尺观测模面的平面度,并用塞尺测量,一般规定变形量应小于留磨量的1/3~1/2。
③硬度检验。
首先将待测部位磨光或抛光,一般用洛氏硬度计检测3~4点。
根据情况,也可用维氏硬度计、肖氏硬度计、里氏硬度计检查。
如果硬度值超高,应多检测几点,尽可能准确。
根据硬度值,做出是否要提高回火温度的决定。
如果硬度偏低,应在原位置继续打磨,继续检测。
如果硬度还低,再用手提小砂轮做钢号火花鉴别,一定找出致使硬度达不到工艺要求的真正原因。
④金相检验。
热作模具的金相检验,可按JB/T 8420—2008《热作模具钢显微组织评级》执行。
2.通常热作模具钢马氏体合格级别为2~4级。
另外,有些热作模具钢还要进行蒸汽处理、氧氮共渗、TiN涂层、渗硼、氮碳共渗等表面强化处理,则应按相关技术标准验收,重点检测渗层厚度、表面硬度和金相组织三大项。
2)冷作模具热处理质量检验如下:①外观检验。
模具表面不允许有磕碰、划伤、烧毁及严重的氧化脱碳、腐蚀麻点及锈蚀现象,肉眼观察不得有裂纹,表面必须光洁,孔眼特别是不通孔内不得堵泥和盐渍,拴绑的钢丝等附着物必须解除。
②变形检验。
模具热处理后变形量不得超过留磨量的1/3~1/2。
③硬度检查。
模具热处理后应全部进行硬度检查。
热处理(材料加热件)检验制度
热处理(材料加热件)检验制度热处理技术是现代工业中不可或缺的一项技术,其作用是改善材料的性质和性能,提高材料的硬度、强度、塑性以及耐腐蚀性等物理和化学性能。
热处理是一项多而杂的过程,需要严格遵从规范和标准化的检验制度,保证加工件质量,避开由于热处理工艺不当而导致的质量问题。
一、热处理检验制度之前置工作1.热处理前样品的选择与标记:在进行热处理之前,需要从待热处理的材料中选择适当数量的样品,并依照相关规范和标准进行标记,以便于后续的检验和验证。
2.热处理工艺的确认:在进行热处理时,需要确认加热工艺的参数,包括温度、时间、冷却介质等,以确保加工件的质量。
3.热处理设备的检测:在进行热处理前,需要对热处理设备进行检测,如炉温计、炉内温度分布、炉内冷却介质流量等,确保设备充足要求。
二、热处理检验制度之加热曲线记录1.记录热处理加热曲线:在进行热处理时,需要通过温度计等相关设备记录加热曲线,并将记录结果进行文档备份,以便后续验证和检验。
2.标记热处理过程参数:记录加热过程中的参数,如加热速度、保温时间等,并对记录结果进行文档备份,以便于检验。
3.记录热处理后的冷却曲线:在热处理结束后,需要对材料进行冷却,并记录冷却曲线,以评估冷却效果。
4.订立加热曲线审查程序:加热曲线应进行审查,并与标准加热曲线进行比较,以确保加热曲线符合规范和标准。
三、热处理检验制度之硬度检验1.硬度检验仪器校准:硬度测试仪器需要进行定期校准,以保证测试结果的精准性。
2.硬度试验方法:在进行硬度试验之前,需要确定测试方法和标准,并确保测试参数的一致性和可重复性,以确保测试结果的精准性和牢靠性。
3.评估硬度测试结果:硬度测试结果需要依据已有标准进行评估,并对测试结果进行记录和文档备份。
4.对异常硬度测试结果的处理:一旦显现异常硬度测试结果,需要进行重新测试,并记录测试结果。
四、热处理检验制度之显微组织检验1.显微组织检验仪器校准:显微组织检验需要使用专业的显微镜等设备,需要进行定期校准以保证测试结果的精准性和牢靠性。
热处理质量控制和检验
热处理质量控制和检验
热处理质量控制和检验
热处理是一种通过加热和冷却来改变材料性质的加工方式,广泛应用于制造业中。
热处理质量的控制和检验是保证产品性能和质量的重要环节。
首先,从控制方面来讲,热处理工艺参数的设定和控制是影响热处理质量的关键。
合理的热处理工艺参数可以保证产品的性能和质量,因此在热处理过程中,需要对温度、时间、冷却速率等参数进行实时监测和调整,以确保产品达到预期效果。
其次,热处理过程中需要保证热处理介质的质量,例如淬火介质是否达到要求、表面清洁度是否满足要求等。
这些因素对热处理质量的影响也不容忽视,因此需要在热处理前确保介质的质量,以保证热处理效果。
再次,热处理前后需要对材料进行检验。
热处理后材料性能的变化主要体现在硬度、强度、韧性等方面,需要进行相应的硬度测试、拉伸试验、冲击试验等检验方法来检测材料性能。
此外,还需要检验材料表面状态、尺寸精度等指标是否标准,以保证产品符合质量要求。
最后,从质量控制的角度来看,可以对热处理过程和结果进行分类,以便针对性地进行控制和调整。
常用的分类包括:同种材料在不同热
处理工艺下的性能对比、同种材料在相同热处理工艺下的批次性能对比、不同材料在相同热处理工艺下的性能对比等。
总之,热处理质量的控制和检验是制造业中不可或缺的重要环节。
通过对热处理工艺参数的合理控制和材料检验的科学、精细化,保证了产品性能和质量的稳定性和可靠性,为制造业的发展创造了条件。
锻件热处理质量检验的内容和方法
锻件热处理质量检验的内容和方法范本一:一:锻件热处理质量检验的内容和方法1. 简介本章介绍锻件热处理质量检验的目的和意义。
2. 锻件热处理质量检验的基本要求2.1 温度检验2.2 时间检验2.3 冷却介质检验2.4 表面质量检验2.5 结构检验3. 锻件热处理质量检验的方法3.1 金相检验3.2 硬度检验3.3 声波检验3.4 磁粉检验3.5 尺寸检验4. 锻件热处理质量检验记录与报告4.1 记录要求4.2 报告要求附件:1. 锻件热处理质量检验记录表2. 锻件热处理质量检验报告模板法律名词及注释:1. 温度检验:检验锻件热处理过程中的温度参数是否符合要求。
2. 时间检验:检验锻件热处理过程中的时间参数是否符合要求。
3. 冷却介质检验:检验锻件冷却介质的性能和质量是否符合要求。
4. 表面质量检验:检验锻件表面是否有裂纹、气孔等缺陷。
5. 结构检验:通过金相检验等方法,检验锻件内部组织结构的均匀性和完整性。
范本二:一:锻件热处理质量检验的内容和方法1. 简介本章简要介绍了锻件热处理质量检验的目的和作用。
2. 锻件热处理质量检验的内容2.1 温度检验2.1.1 温度检测设备2.1.2 温度检验方法与标准2.2 时间检验2.2.1 时间检测设备2.2.2 时间检验方法与标准2.3 冷却介质检验2.3.1 冷却介质检测设备2.3.2 冷却介质检验方法与标准2.4 表面质量检验2.4.1 表面质量检测设备2.4.2 表面质量检验方法与标准2.5 结构检验2.5.1 结构检测设备2.5.2 结构检验方法与标准3. 锻件热处理质量检验的方法3.1 金相检验方法3.2 硬度检验方法3.3 声波检验方法3.4 磁粉检验方法3.5 尺寸检验方法4. 锻件热处理质量检验记录与报告4.1 检验记录要求4.2 检验报告要求附件:1. 锻件热处理质量检验记录表格2. 锻件热处理质量检验报告模板法律名词及注释:1. 温度检验:对锻件热处理过程中的温度参数进行检验,确保温度控制准确。
热处理过程检验规范
热处理过程验规范编制:审核:批准:日期:1、范围本检验规程规定了本公司热处理件检验内容、检验方法,所使用的检验测量设备、产品质量状态标识,适用于本厂热处理件的检验,供方提供产品的热处理性能检验比照本文件执行。
2、检验依据2.1 国家标准、行业标准、ASTM E102.2 质量计划/排产计划/技术协议2.3 产品图纸及工艺3、硬度检验程序3.1检验频次:热处理零件应根据相关技术文件规定进行检验(如:法兰壳体要进行全检);技术文件未规定的,按《DH018通用抽样检验规范》中的2.5AQL进行检验。
3.2检验设备:所有硬度计均应在计量部门检定的有效期内使用,不允许在无检定合格证书或超过检定的有效期使用。
3.3工件表面处理:检验硬度前,应将表面进行修磨,使表面粗糙度符合所用硬度计的要求。
将零件表面清理干净,去除氧化皮,脱碳层及毛刺等且表面不应有明显的机加工痕迹,被测零件的温度以室温为准,或略高于室温但以人手能稳稳抓住为限。
3.4检测部位:硬度检验的位置应根据工艺文件确定,工艺文件没有规定时,优先在产品端面打印硬度,长轴类产品在不影响后续加工尺寸的情况下,可在外圆处打印硬度。
3.5 检验内容:外观及硬度。
3.6硬度计的选择①调质件采用布氏硬度计和里氏硬度计相结合的方式检验,每炉中抽出1件产品使用HB3000布氏硬度计、液压式布氏硬度计或便携式布洛硬度计进行检测,检测合格后,其余产品可用里氏硬度计进行检测。
对于尺寸较大者直接用便携式硬度检验;②淬火件用洛氏硬度计和里氏硬度计相结合的方式检验。
对于尺寸较大者,允许用里氏硬度计监控过程质量,③渗碳或硬化层较薄的零件,用维氏硬度计检验。
④当使用锉刀检验零件硬度时,必须注意锉痕的位置,应不影响零件的最后硬度。
4、质量记录检验过程做好各种质量记录,如跟单上的质量状态标识、过程首检记录、返工单、废品单、不合格品反馈处理单等。
热处理质量检验的内容和方法
热处理质量检验的内容和方法热处理是机械制造中的一个重要环节,热处理的质量好坏,直接关系着产品或零件的内在质量及性能。
在生产中影响热处理质量的因素很多,为了确保产品质量达到国家标准或行业标准规定的要求,所有的热处理零件从原材料进厂开始,每一道热处理工序后都必须进行严格的检验。
产品出现质量问题不能直接转入下道工序,这样才能确保产品质量。
另外在热处理生产中一个称职的检验员,只是按照技术要求对热处理后的工件进行质量检验和把关是不够的。
更重要的任务是当好参谋。
在热处理的生产过程中首先要看操作者是不是严格执行工艺规程,工艺参数是否正确。
在质量检验过程中如果发现质量问题要帮助操作者分析产生质量问题的原因,找出解决问题的方法。
把可能影响热处理质量的各种因素都控制起来以保证生产出质量优良、性能可靠、用户满意的合格品。
一、热处理质量检验的内容(一)预先热处理预先热处理的目的是改善原材料的组织、软化,以便于机械加工,消除应力,获得理想的热处理原始组织等。
对有些大件预先热处理也是最终热处理,预先热处理一般采用正火及退火。
1)铸钢件的扩散退火由于在高温长时间加热晶粒易粗大,在退火后还应再进行一次完全退火或正火来细化晶粒。
2)结构钢的完全退火一般用于中低碳钢铸件、焊接件、热轧及热锻件的改善组织、细化晶粒、降低硬度、消除应力等。
3)合金结构钢的等温退火主要用于42CrMo等钢的退火。
4)工具钢的球化退火球化退火的目的是改善切削加工性能及冷变形性能。
5)去应力退火去应力退火的目的是消除铸钢件、焊接件、机加工件的内应力,减少后工序的变形与开裂。
6)再结晶退火再结晶退火的目的是消除工件的冷作硬化。
7)正火正火的目的是改善组织、细化晶粒,可作为预先热处理,也可作为最终热处理。
上述退火与正火获得的组织都是珠光体。
在质量检验中,重点是做工艺参数的检查,即在退火及正火进行过程中,做流动检查工艺参数的执行情况,这是首要的,在过程结束后主要检验硬度,金相组织,脱碳深度,及退火正火目的项,带状,网状碳化物等。
热处理检验方法和规范
热处理检验方法和规范金属零件的内在质量主要取决于材料和热处理。
因热处理为特种工艺所赋予产品的质量特性往往又室补直观的内在质量,属于“内科”范畴,往往需要通过特殊的仪器(如:各种硬度计、金相显微镜、各种力学性能机)进行检测。
在GB/T19000-ISO9000系列标准中,要求对机械产品零部件在整个热处理过程中一切影响因素实施全面控制,反映原材料及热处理过程控制,质量检验及热处理作业条件(包括生产与检验设备、技术、管理、操作人员素质及管理水平)等各方面均要求控制,才能确保热处理质量。
一、硬度检验:通常是根据金属零件工作时所承受的载荷,计算出金属零件上的应力分布,考虑安全系数,提出对材料的强度要求,以强度要求,以强度与硬度的对应关系,确定零件热处理后应具有大硬度值。
为此,硬度时金属零件热处理最重要的质量检验指标,不少零件还时唯一的技术要求。
1、常用硬度检验方法的标准如下:GB230 -2002 金属洛氏硬度试验方法(合并了GB1818 金属表面洛氏硬度试验方法)GB231-2002 金属布氏硬度试验方法GB4340-2000 金属维氏硬度试验方法(合并了GB4342 金属显微维氏硬度试验方法GB5030 金属小负荷维氏试验方法)2、待检件选取与检验原则如下:为保证零件热处理后达到其图纸技术(或工艺)要求,待检件选取应有代表性,通常从热处理后的零件中选取,能反映零件的工作部位或零件的工作部位硬度的其他部位,对每一个待检件的正式试验点数一般应不少于3个点。
通常连续式加热炉(如网带炉):应在连续生产的网带淬火入回火炉前、回火后入料框前的网带上抽检3-5件/时。
且及时作检验记录。
同时,若发现硬度超差,应及时作检验记录。
同时,若发现硬度越差,应及时进行工艺参数调整,且将前1小时段的零件进行隔离处理(如返工、检)。
通常周期式加热炉(如井式炉、箱式炉):应在淬火后、回火后均从料框的上、中、下部位抽检6-9件/炉,且及时作检验记录。
热处理检验规范
.实用文档.热处理硬度检验标准1适用范围1.1有热处理或硬度要求的自制零件的硬度检验;1.2外委热处理零件的硬度检验;1.3有硬度要求或者有热处理要求的外协外购件的硬度检验。
2抽样标准2.1重要零部件100%全检;3一般零件抽样方法及判定标准,按照国标GB/T2828.1-2003规定的抽样程序及计数抽样表中之规定执行。
4检验工程及方法4.1热处理件进厂时要查验供给商附送的相应的热处理检验记录,并确认记录内容是否符合相关技术要求。
4.2外表打磨:4.2.1为得到较为准确的测试结果,零件的测试部位均应进行外表打磨、抛光,外表光洁度应到达Ra1.6以上。
4.2.2成品件或不允许外表打磨的零件测试时,先不进行外表打磨直接在零件不影响外观外表检测。
假设测试结果不合格时,那么须进行破坏性打磨检测,假设打磨后检测合格,那么判定合格。
4.2.3热处理零件外表产生脱碳现象时,须将零件外表磨深0.5~2mm后再进行检测。
4.3每一零件原那么上应至少检测四点,取其平均值作为评价结果。
选取位置要能代表整体各部位的硬度〔零件较小或无法取多点除外〕4.4硬度测试仪器选择4.4.1铸铁产品〔灰铁、球墨铸铁等〕,可选用布氏硬度计里氏硬度计测试。
4.4.2各类钢件可选用布氏硬度计里氏硬度计测试。
4.4.3薄壁件〔厚度在2mm以下〕,及有色金属类应选用维氏硬度计测试,不可用布氏硬度计测试。
4.硬度计的使用锤击式布氏硬度计的使用在试验前应做好如下准备工作,试验前首先将标准试块〔标准硬度试块〕大倒角形的一端插入钢珠及衡头之间嵌装在体中的弹簧使衡头将标准试块紧压在钢珠上。
在被测试材料的外表上应将其上面锈蚀层磨光使之得到一平坦且光滑的外表,以便在试验时试件上得到清晰的钢珠压痕,从而获得较精确的数值。
考前须知:1.试验人员应遵守操作规程。
2.进行试验前,要先检查测头状况〔钢球是否变形等〕。
3.标准硬度块的使用只能在工作面进行,每次试验点距离应大于2mm。
碳钢铸件热处理检验规程
碳钢铸件热处理检验规程本文为碳钢铸件热处理检验规程,旨在规范碳钢铸件的热处理过程中的检验流程和标准,确保热处理效果符合质量要求,提高产品的品质和使用寿命。
1. 检验前准备在进行热处理检验前,需要对热处理设备和工具进行检查和确认,确认以下要求:•热处理设备的温度控制系统稳定可靠。
•工具和设备的量具和温度计校准合格。
•热处理现场干净整洁,无杂物和遮挡物。
2. 热处理规程为了使得热处理效果达到最佳,并且确保产品质量,我们需要遵循以下的规程:2.1 开炉开炉前需要确认以下要求:•炉温控制器稳定,热处理的温度控制和波动符合标准。
•预热炉、夹具、钳子等热处理设备已就位并且清洁。
2.2 加载在将钢铸件放入炉内进行热处理前,需要确认以下要求:•钢铸件的信息、数量、热处理要求和检验标准已确认。
•钢铸件表面应清洁干净,无油污、砂粒及其他不利于热处理和检测的杂物。
•钢铸件放置炉内的位置和方向应符合热处理工艺要求。
2.3 升温和保温在升温和保温过程中,需要确认以下要求:•升温、保温过程控制稳定,温度控制在要求范围内。
•加热速度应适当,以纠正可能出现的过热或超调现象。
•在保温过程中,钢铸件应充分与炉内空气接触,以实现均匀加热。
2.4 冷却冷却过程需要确认以下要求:•冷却介质应符合要求,并保证冷却过程稳定、均匀。
•冷却过程中,应避免过快的冷却造成钢铸件的变形和裂纹。
2.5 卸载卸载前需要确认以下要求:•卸载时应小心操作,防止撞击钢铸件损坏。
•工艺和检验记录应填写完整,保持完好。
3. 热处理检验在热处理完成后,需要进行热处理检验,以保证热处理效果符合要求。
3.1 金相组织检验对热处理后的钢铸件进行金相组织检验,检查其晶粒形态、尺寸和分布是否符合要求。
3.2 硬度检验硬度检验是测量钢铸件抗压缩能力的重要方法,其检测结果能够反映出钢铸件的物理性能。
需要对热处理后的钢铸件进行硬度检测,并确认其硬度是否符合要求。
3.3 其他检验除金相组织和硬度检验外,还可以根据具体情况进行其他检验,如:拉伸试验、影像分析等。
热处理标准规范
热处理标准规范热处理是一种通过加热、保温和冷却等工艺,改变材料的组织结构和性能的方法。
在工程领域中,热处理被广泛应用于金属材料的加工和制造过程中。
为了确保热处理的效果和质量,制定了一系列的热处理标准规范,以指导和规范热处理工艺的操作和实施。
热处理标准规范的制定是为了保证热处理工艺的可靠性和稳定性,以及最终产品的质量和性能。
在热处理标准规范中,通常包括了热处理工艺的选择、操作方法、工艺参数、设备要求、质量检验等内容。
这些规范的制定是经过长期实践和经验总结的,具有较高的权威性和指导性。
首先,热处理标准规范中对热处理工艺的选择给出了明确的要求。
针对不同材料的性能和用途,规范中会提出相应的热处理工艺方案,包括淬火、回火、退火、正火等不同的工艺方法。
这些选择是基于对材料性能和组织结构的深入研究和分析,以确保最终产品能够满足设计要求和使用条件。
其次,热处理标准规范中对热处理工艺的操作方法和工艺参数也进行了详细的规定。
比如,在进行淬火处理时,规范中会明确要求加热温度、保温时间、冷却介质的选择和速度等参数,以确保材料能够获得理想的组织结构和性能。
这些操作方法和参数的规范性,是热处理工艺能够稳定和可靠实施的基础。
此外,热处理标准规范中对热处理设备的要求也是十分重要的。
规范中会对热处理设备的类型、性能指标、维护保养、检测校准等方面进行规定,以确保热处理设备能够满足工艺要求,保证热处理工艺的可靠性和稳定性。
最后,热处理标准规范中对热处理质量的检验也是至关重要的。
规范中会对热处理后材料的性能指标、组织结构、硬度等进行详细的检测要求,以确保热处理工艺的效果和产品的质量。
总之,热处理标准规范是热处理工艺的重要依据和指导,对于确保热处理工艺的可靠性和产品质量具有重要意义。
只有严格遵循热处理标准规范,才能够保证热处理工艺的稳定性和产品的质量可靠性。
热处理标准规范
热处理检验规范金属零件的内在质量主要取决于材料和热处理。
因热处理为特种工艺所赋予产品的质量特性往往又室补直观的内在质量,属于“内科”范畴,往往需要通过特殊的仪器(如:各种硬度计、金相显微镜、各种力学性能机)进行检测。
在GB/T19000-ISO9000系列标准中,要求对机械产品零部件在整个热处理过程中一切影响因素实施全面控制,反映原材料及热处理过程控制,质量检验及热处理作业条件(包括生产与检验设备、技术、管理、操作人员素质及管理水平)等各方面均要求控制,才能确保热处理质量。
为此,为了提高我公司热处理产品质量,遵循热处理相关标准,按零件图纸要求严格执行,特制定本规范一、使用范围:本规范适用于零件加工部所有热处理加工零件。
二、硬度检验:通常是根据金属零件工作时所承受的载荷,计算出金属零件上的应力分布,考虑安全系数,提出对材料的强度要求,以强度要求,以强度与硬度的对应关系,确定零件热处理后应具有大硬度值。
为此,硬度时金属零件热处理最重要的质量检验指标,不少零件还时唯一的技术要求。
1、常用硬度检验方法的标准如下:GB230 金属洛氏硬度试验方法 GB231 金属布氏硬度试验方法GB1818 金属表面洛氏硬度试验方法 GB4340 金属维氏硬度试验方法GB4342 金属显微维氏硬度试验方法 GB5030 金属小负荷维氏试验方法2、待检件选取与检验原则如下:为保证零件热处理后达到其图纸技术(或工艺)要求,待检件选取应有代表性,通常从热处理后的零件中选取,能反映零件的工作部位或零件的工作部位硬度的其他部位,对每一个待检件的正时试验点数一般应不少于3个点。
通常连续式加热炉(如网带炉):应在连续生产的网带淬火入回火炉前、回火后入料框前的网带上抽检3-5件/时。
且及时作检验记录。
同时,若发现硬度超差,应及时作检验记录。
同时,若发现硬度越差,应及时进行工艺参数调整,且将前1小时段的零件进行隔离处理(如返工、检)。
通常期式加炉(如井式炉、箱式炉):应在淬火后、回火后均从料框的上、中、下部位抽检6-9件/炉,且及时作检验记录。
碳钢铸件热处理检验规程
碳钢铸件热处理检验规程1. 背景碳钢铸件是机械制造业常见的零部件之一,其热处理过程对其机械性能和耐用性具有显著影响。
为确保碳钢铸件经过热处理后能够满足设计要求,本文档制定了碳钢铸件热处理检验规程。
2. 热处理工艺2.1. 热处理流程碳钢铸件热处理一般分为加热、保温和冷却三个阶段。
具体操作流程如下:1.加热:将碳钢铸件平稳地放进热处理炉中,控制炉温以950~1050°C加热。
2.保温:等待铸件达到保温温度并保持一段时间(一般为常温下的1小时)。
3.冷却:将铸件摆放在冷却槽内等待降温到室温。
2.2. 控制要点在热处理过程中,需要注意以下控制要点:•温度控制:炉温需要控制在950~1050°C,偏差不得超过±10°C。
•时间控制:保温时间需要控制在1小时内,严禁过长或过短。
•冷却方法:冷却速度需要适中,过快或过慢都会对铸件的性能造成损害。
冷却通常采用水淬或自然冷却的方式。
3. 热处理检验3.1. 检验标准对于碳钢铸件热处理后的性能,需要按照以下标准进行检验:•硬度:检测硬度值,应符合设计要求。
•组织结构:检查铸件内部的晶粒和耐磨性等组织特性,应符合相关标准要求。
•追溯性:可追查热处理的批次和相关信息。
3.2. 硬度检验方法碳钢铸件的硬度可采用落锤式硬度计测定。
具体方法如下:1.将硬度计的压头嵌入试件表面(垂直于表面)。
2.推动手柄,使落锤自由落下,并弹回。
3.读取指针指示的示值。
3.3. 组织结构检验方法碳钢铸件的组织结构可采用金相显微镜进行观察。
具体方法如下:1.取一小块碳钢铸件试样,将其打磨至平整,去除表面油污。
2.将试样压入机械研磨机中,采用碳化硅磨粉进行粗磨、中磨和精磨。
3.在光学显微镜下对试样进行观察和照相。
3.4. 热处理检验记录为确保热处理质量的追溯性,需要对热处理过程进行记录。
具体要求如下:1.热处理设备的检定证书、操作规程。
2.热处理控制系统测试数据。
热处理质量的检验的方法
热处理质量的检验的方法热处理是指对金属、合金和其他材料在一定的时间和温度下进行加热和冷却,以改变其物理和化学性质的一种工艺。
在热处理过程中,为了保证产品的质量,需要进行质量检验。
这篇文章将介绍热处理的质量检验方法。
1. 硬度测试硬度是热处理过程中评价金属材料各种性能的一个重要指标,硬度测试是一种常用的检验方法。
硬度测试方法有很多种,通常使用洛氏硬度计、布氏硬度计、维氏硬度计等。
测试时需选择相应的试验方法,测量试样的硬度值,根据硬度值判断试样的材料性质是否符合规定要求。
2. 金相检测金相检测主要是对试样中组织结构、晶粒大小、晶界形态等进行观察和分析。
金相检测是对热处理过程中是否出现组织缺陷、杂质以及合金成分是否符合要求进行判断的重要方法。
金相检测的方法比较多,可以采用光学显微镜、扫描电镜、透射电镜等工具进行观察。
相变温度是金属材料热处理时很重要的中间过程,各种热处理工艺中,相变温度的选取非常关键。
相变温度检测是通过测量材料的开始相变温度和结束相变温度,来判断热处理效果是否达到要求。
常用的相变温度检测方法有X-射线衍射法、热差法、TG-DTA法和热电偶法。
4. 化学成分分析化学成分分析是对材料合金成分进行检验的方法。
对于合金材料来说,合金成分对热处理后的组织结构和性能有很大影响。
因此,在热处理过程中需要对材料的化学成分进行检验,确保其符合要求。
化学成分分析的方法有化学分析、光谱分析、电子探针分析等。
5. 残余应力检测残余应力是热处理过程中不可避免的一个问题,其大小和分布情况直接影响材料的力学性能。
因此,需要对热处理过程中的残余应力进行检测。
常用的残余应力检测方法有X-射线衍射法、中子衍射法和频谱分析法等。
综上所述,以上五种方法是热处理过程中常用的质量检验方法。
对于不同的热处理工艺和材料,应选择合适的检测方法,确保产品质量符合要求。
碳钢铸件热处理检验规程范本(2篇)
碳钢铸件热处理检验规程范本1. 引言本规程是为了保证碳钢铸件的热处理质量,并确保其满足相关标准要求的,制定的检验规程。
本规程适用于碳钢铸件的热处理过程中的监督检验及验收。
2. 检验准备2.1 检验人员应具备相关的技能和知识,并严格按照规定操作。
2.2 检验设备应符合相关的国家标准和要求,保证能够正常使用。
2.3 检验样品应从合格的生产批次中选择,并进行标识。
3. 检验项目及要求3.1 外观检验3.1.1 确保加工精度和表面质量符合设计要求。
3.1.2 检查零件是否有缺损、裂纹、气孔等缺陷。
3.2 尺寸检验3.2.1 检查零件的重量、长度、宽度、高度等尺寸是否符合设计要求。
3.2.2 确保各部位的尺寸偏差在允许范围内。
3.3 组织结构检验3.3.1 采用金相显微镜方法观察和评估零件的金属组织结构。
3.3.2 确保组织结构均匀、细致,并无明显的缺陷。
3.4 硬度检验3.4.1 采用硬度计测量零件的硬度值。
3.4.2 确保硬度值符合设计要求,并无明显的不均匀性。
3.5 铸件缺陷检验3.5.1 通过X射线或超声波等方法检查零件的铸件缺陷。
3.5.2 确保零件无裂纹、夹杂、疏松等缺陷。
4. 检验方法4.1 外观检验4.1.1 目测外观,检查表面有无明显的缺陷。
4.1.2 使用放大镜或显微镜观察细节,检查是否有微小的缺陷。
4.2 尺寸检验4.2.1 使用测量仪器,如卡尺、游标卡尺等,对尺寸进行测量。
4.2.2 根据设计要求,对测得的尺寸数据进行比对和评估。
4.3 组织结构检验4.3.1 提取合适的试样,并使用金相显微镜观察其组织结构。
4.3.2 根据相关标准对观察到的组织结构进行评估。
4.4 硬度检验4.4.1 使用硬度计对试样进行硬度测量。
4.4.2 根据设计要求,对测得的硬度值进行比对和评估。
4.5 铸件缺陷检验4.5.1 使用X射线或超声波等设备对试样进行缺陷检测。
4.5.2 根据相关标准对检测结果进行评估。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热处理检验方法和规范金属零件的内在质量主要取决于材料和热处理。
因热处理为特种工艺所赋予产品的质量特性往往又室补直观的内在质量,属于“内科”范畴,往往需要通过特殊的仪器(如:各种硬度计、金相显微镜、各种力学性能机)进行检测。
在G B/T19000-ISO9000系列标准中,要求对机械产品零部件在整个热处理过程中一切影响因素实施全面控制,反映原材料及热处理过程控制,质量检验及热处理作业条件(包括生产与检验设备、技术、管理、操作人员素质及管理水平)等各方面均要求控制,才能确保热处理质量。
为此,为了提高我公司热处理产品质量,遵循热处理相关标准,按零件图纸要求严格执行,特制定本规范一、使用范围:本规范适用于零件加工部所有热处理加工零件。
二、硬度检验:通常是根据金属零件工作时所承受的载荷,计算出金属零件上的应力分布,考虑安全系数,提出对材料的强度要求,以强度要求,以强度与硬度的对应关系,确定零件热处理后应具有大硬度值。
为此,硬度时金属零件热处理最重要的质量检验指标,不少零件还时唯一的技术要求。
1、常用硬度检验方法的标准如下:GB230 金属洛氏硬度试验方法GB23 1 金属布氏硬度试验方法GB1818 金属表面洛氏硬度试验方法 GB4340金属维氏硬度试验方法GB4342 金属显微维氏硬度试验方法 GB5030金属小负荷维氏试验方法2、待检件选取与检验原则如下:为保证零件热处理后达到其图纸技术(或工艺)要求,待检件选取应有代表性,通常从热处理后的零件中选取,能反映零件的工作部位或零件的工作部位硬度的其他部位,对每一个待检件的正时试验点数一般应不少于3个点。
通常连续式加热炉(如网带炉):应在连续生产的网带淬火入回火炉前、回火后入料框前的网带上抽检3-5件/时。
且及时作检验记录。
同时,若发现硬度超差,应及时作检验记录。
同时,若发现硬度越差,应及时进行工艺参数调整,且将前1小时段的零件进行隔离处理(如返工、检)。
通常期式加炉(如井式炉、箱式炉):应在淬火后、回火后均从料框的上、中、下部位抽检6-9件/炉,且及时作检验记录。
同时,若发现硬度超差,应及时进行工艺参数调整,且将该炉次的零件进行隔离处理(如返工、逐检)。
通常感应淬火工艺及感应器与零件间隙精度调整,经首件(或批)感应淬火合格后方可生产,且及时作检验记录。
3、硬度测量方法:3.1各种硬度测量的试验条件,见下表1:3.2测量硬化层深度不同的零件表面硬度时,硬度试验方法与试验力的一般选择,见表2:3.3经不同热处理工艺处理后的表面硬度测量方法及其选择,见小表3:量。
(2)若确定的硬度试验方法有几种试验力可供选择时,应选用试验条件允许的最大试验力。
4、检验设备与人员:4.1所有硬度计及标准硬度试块均应在计量部门检定的有效期内使用,不允许在无检定合格证书或超过检定的有效期使用。
4.2应设立专职检验人员,且经正规培训与考核,具有正式的资格证书;生产线的操作人员检验,应经一定培训,在专职检验人员的认可或指导下进行。
5、测量数据的表示与记录:5.1硬度值的表示应按相应国家标准硬度试(检)验方法的规定,一般以硬度范围法表示,标出上、下限值,如60-65HRC;特殊情况液可以只标下限值或上限值,应用不小于或不大于表示,如不大于229HBS;若记录换算硬度值时,应在换算值后面加括号注明实测值【如:48.5HRC(75.0HRA)】;若记录硬度平均值时,应在硬度值平均值后米那加括号注明计算平均值所用的各测点硬度值【如:64.0HRC(63.5HRC、64.0HRC、64.5HRC)】5.2检验报告记录,包括零件名称、材料、检验数量、检验结果及检验人员与日期。
三、金相试验金相分析时用金相显微镜观察金属内部的组成相及组织组成物的内型以及它们的相对量、大小、形态及分布等特征。
材料的性能取决于内部的组织形态,而组织又取决于化学成分及加工工艺,热处理时改变组织的主要工艺手段,因此,金相分析是材料及热处理质量检验与控制的重要方法。
1、通常金相检验方法的标准如下:GB/T11354-1989 钢铁零件渗氮层深度测测定和金相组织检验GB/T9450-1988 钢铁渗碳淬火有效硬化层深度的测定与校核GB/T9451-1988 钢件薄表面总硬化层深度或有效硬化层深度的测定GB/T5617-1985 钢的感应淬火或火焰火后有效硬化层深度的参定JB/T9204-1999 钢件感应淬火金相检验JB/T9211-1999 中碳钢与中碳合金结合钢马氏体等级JB/T7710-1995 薄层碳氮共渗或薄层渗碳显微组织检验GB/T13298-1991 金相显微组织检验方法GB/T13299-1991 钢的显微组织评定方法GB6394-86 金属平均晶粒度测定法NJ309-83 内燃机连杆螺栓金相检验标准NJ326-84 内燃机活塞销金相检验标准2、金相试样的选取与检验步骤:2.1金相试样的选取:2.1.1纵向取样:纵向取样是指沿着刚材的锻扎方向进行取样。
主要检验内容为:非金属夹杂物的变形程度、晶粒畸变程度、碳化物网、变形后的各种组织形貌、热处理的全面情况等。
2.1.2横向取样横向取样指垂直于钢材的锻扎方向进行取样。
主要检验内容为:金属材料从表层到中心的组织、显微组织状态、晶粒度级别、碳化物网、表面缺陷深度、氧化层深度、腐蚀层深度、表面化学热处理及镀层厚度等。
2.1.3缺陷或失效分析取样:截取缺陷分析的试样,应包括零件的缺陷部分在内;或在缺陷部分附近的正常部位取样进行比较。
为此,通常检验零件的最重要项目为表层显微组织观察和硬化层深度测定,应横向取样;但紧固体的螺纹部分的渗层检验需要纵向取样。
2.2金相检验步骤:选样——金相切割机(或线切割机)取样—镶嵌机加热镶嵌-磨抛机磨光/抛光-化学腐蚀(通常用4%硝酸酒精溶液)-金相观察/硬化层深度(或显微硬度)测定-出具检验报告2.3取样数量:通常连续式加热炉(如网带炉):1件/4小时通常周期式加热炉(如井式炉、箱式炉):2-3件/炉(装炉夹具不同部位)备注:(1)金相试样以磨面面积小于400MM2,高度15-20MM为宜。
(2)试样的制备过程中,部允许因受热而导致组织变化,应避免试样边缘出现圆角并防止改变斜截面试样的角度。
3、金相组织观察于判别:3.1渗碳或碳氮共渗:3.1.1适用于08F、Q235AF、20、20Cr等低碳或低合金钢的零件。
3.1.2试样应从渗碳或碳氮共渗零件上切取。
液可用于钢件的材质,热处理状态,有效厚度一致,避过经同炉渗碳或碳氮共渗处理的试样。
3.1.3薄层碳氮共渗件(层深≤0.3mm),表层碳含量应不低于0.5%,氮含量应不低于0.1%。
薄层渗碳钢件(层深≤0.3mm)表层碳含量应不低于0.5%3.1.4渗层显微组织评级在淬火状态下进行(放大倍率为400倍)。
3.1.5针状马氏体级别及残余奥氏体级别评定:当渗层显微组织主要为针状马氏体时,依据JB/T7710-1995标准图谱共分1-5级,其中1-2级合格。
3.1.6板条马氏体级别评定:当渗层显微组织主要为板条马氏体时,依据JB/T7 710-1995标准图谱共分1-5级,其中1-2级合格。
3.1.7渗层(层深≤0.3mm)碳化物级别评定:依据NJ326-84标准图谱共分1-5级,其中1-3级合格。
3.1.8心部铁素体级别评定:依据JB/T7710-1995标准图谱共分1-5级,其中一般零件1-4级合格,重要零件1-3级合格。
3.2渗氮或碳氮共渗(软氮化):3.2.1渗氮前调质组织的检验:3.2.1.1渗氮前调质组织级别(对大工件可在表面2mm深度范围内检查),依据GB/T11354-1989标准图谱(放大倍率为500倍),回火索氏体中游离体素体数量共分1-5级,其中一般零件1-3级为合格,重要零件1-2级为合格。
3.2.1.2渗氮零件的工作面部允许由脱碳层或粗大的回火索氏体组织。
3.2.2试样应从渗碳零件上垂直于渗氮表面切取,也可用与零件的材料、处理条件、加工精度相同,并经同炉渗氮处理的试样;检验部位应具有代表性,若检查渗氮层脆性的试样,表面粗糙度要求>0.25-0.63mm,但不允许把化合物磨掉。
3.2.2渗氮层脆性检验:经气体渗氮的零件,必须进行脆性的检验。
3.2.2.1依据GB/T11354-1989标准图谱(放大倍率为100倍),渗氮层脆性级别按维氏硬度压痕边角碎裂程度共分1-5级,其中一般零件1-3级为合格,重要零件1-2级为合格。
3.2.2.2检验渗氮层脆性,采用维氏硬度计,试验力规定用98.07N(10kgf),加载必须缓慢(在5-9s内完成),加载后停留5-10s,然后去载荷,同时,每制件至少测3点,其中2点以上处于相同级别时,才能定级,否则,需重新测定一次。
如由特殊情况经有关各方协商,亦可采用49.03N(5kgf)或294.21N(30kgf)的试验力,但需按下表4的值换算。
磨量的零件也可在磨去加工余量后表面上测定。
3.2.3渗氮层疏松检验:经氮碳共渗(软氮化)的零件,必须进行疏松检验。
依据GB/T11354-1989标准图谱(放大倍率为500倍)取其疏松最严重的部位,渗氮层疏松级别按表面化合物内微孔的形状、数量、密集程度共分1-5级,其中一般零件1-3级为合格,重要零件1-2级为合格。
3.2.4渗氮扩散层中氮化物检验:气体渗氮的零件必须进行氮化物检验。
依据GB/T11354-1989标准图谱(放大倍率为500倍),去其组织中最差的部位,渗氮层中氮化物级别按情况共分1-5级,其中一般零件1-3级合格,重要零件1-2级为合格。
3.3感应淬火:3.3.1适用于中碳碳素钢(如45钢)和中碳合金钢(如40Cr)的机械零件。
3.3.2零件淬火后,表面不应有裂纹,灼伤等缺陷。
3.3.3零件经淬火,低温回火(≤200℃),金相组织按GB/T5617-1985标准共分1-10级,规定如下:硬度下限≥55HRC时,3-7级为合格。
硬度下限<55HRC时,3-9级为合格。
4、硬化层深度的测定方法:硬化层深度的测定方法分为金相法和硬度法两种,有争议时,以硬度法作为仲裁方法。
测定表面淬火【如感应淬火】、化学热处理【如渗碳、碳氮共渗、渗氮、氮碳共渗(软氮化)】及其他各种表面强化层深度时金相检验的重要内容。
根据硬化层深可以分为大于0.3mm的两种情况。
4.1金相法:4.1.1层深>0.3mm的表面硬化层测定方法:从零件表面垂直方向测量到规定的某种显微组织边界的距离。
测定层深时,各种强化工艺所规定的特征组织,见下表5:从表面垂直方向测量到与基体金属间的显微组织没有明显变化处的距离,即总硬化层深度。
4.2硬度法:4.2.1从零件表面垂直方向测量到规定的显微硬度硬化层处的距离。