数列知识点总结-解体方法归纳和练习习题
数列知识点归纳及习题总结材料
等差与等比数列知识与方法总结一、知识结构与要点N2cab+ =定义:nn n n n n a aa a q a a 1121+++-=→= N n ∈ 通项 →⋅=-11n n q a a 等比中项:abc 成等比数列ac b =⇒2基本概念推广m n m n q a a -⋅=前n 项和=n S )1(11)1()1(111≠--=--=q qqa a qq a q n a n n 等比数列与首末两端等距离的两项之积相等 1121......+--⋅===i n i n n a a a a a a q p n m a a a a q p n m ⋅=⋅⇒+=+}{n a 成等比,若k n n n ,...,21 成等差则nk n a a a ,...,21成等比基本性质 当101>>q a 或1001<<<q a 时 {}n a 为递增数列当101><q a 或1001<<>q a 时 {}n a 为递减数列当 q<0时 {}n a 为摆动数列 当 q=1时 {}n a 为常数数列二、等差数列、等比数列基础知识与方法概括 (一).一般数列数列的定义及表示方法;数列的项与项数;有穷数列与无穷数列;递增(减)、摆动、循环数列;数列{a n }的通项公式a n ;数列的前n 项和公式S n ; 一般数列的通项a n 与前n 项和S n 的关系:⎩⎨⎧≥-===-)2()1(111n S S n S a a n nn(二)等差数列1.等差数列的概念[定义]如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。
即:成等比数列}{)0,0,2(1n n n n a q a n d a a ⇔≠≠≥=--2.等差数列的判定方法(1)定义法:对于数列{}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列。
数列复习基本知识点及经典结论总结+练习题
数列复习基本知识点及经典结论总结1、数列的概念:数列是按一定次序排成的一列数。
数列中的每一个数都叫做这个数列的项。
数列是一个定义域为正整数集N*(或它的有限子集{1,2,3,…,n })的特殊函数,如果数列{}a n 的第n 项a n 与n 之间的关系可以用一个公式来表示,则这个公式就叫做这个数列的通项公式。
数列的通项公式也就是相应函数的解析式。
如(1)已知*2()156n n a n N n =∈+,则在数列{}n a 的最大项为__(答:125);(2)数列}{n a 的通项为1+=bn an a n ,其中b a ,均为正数,则n a 与1+n a 的大小关系为___(答:n a <1+n a );(3)已知数列{}n a 中,2n a n n λ=+,且{}n a 是递增数列,求实数λ的取值范围(答:3λ>-);(4)一给定函数)(x f y =的图象在下列图中,并且对任意)1,0(1∈a ,由关系式)(1n n a f a =+得到的数列}{n a 满足)(*1N n a a n n ∈>+,则该函数的图象是()(答:A )A B C D递推关系式:已知数列{}a n 的第一项(或前几项),且任何一项a n 与它的前一项a n 1-(前n 项)间的关系可以用一个式子来表示,则这个式子就叫数列的递推关系式。
数列的前n 项和:a a a a s n n ++++=...321.已知s n 求a n 的方法(只有一种):即利用公式 a n =⎪⎩⎪⎨⎧≥=--)2(,)1(,11n n s s s n n注意:一定不要忘记对n 取值的讨论!最后,还应检验当n=1的情况是否符合当n ≥2的关系式,从而决定能否将其合并。
2.等差数列的有关概念: 1、 等差数列的定义:即)2,*(1≥∈=--n N n d a a n n 且.(或)*(1N n d a a n n ∈=-+). (1) 等差数列的判断方法:①定义法:)(1常数d a a n n =-+⇔{}a n 为等差数列。
数列的综合应用知识点总结、经典例题解析、高考练习题带答案
数列的综合应用【考纲说明】1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的 和; 2.能综合利用等差、等比数列的基本知识解决相关综合问题; 3 .理解数列作为函数的特性,能够抽象出数列的模型;【知识梳理】考点一:通项公式的求解技巧1. 归纳、猜想数列的通项.2. 迭代法求一阶递推式的通项公式.3. 用等差(等比)数列的通项公式求数列的通项公式.4. 已知数列{a n }前n 项和S n ,则⎩⎨⎧-=-11n nn S S S a 21≥=n n .5. 已知a n -a n-1=f(n)(n ≥2),则可用叠加法求a n .6. 已知a na n-1=f(n)(n ≥2),则可用叠乘法求a n .7. 已知数列{a n }前n 项之积T n ,一般可求T n-1,则a n =111 n 2n n T n T T -=⎧⎪⎨≥⎪⎩.8. 已知混合型递推式f(a n ,S n )=0,可利用a n =S n -S n-1(n ≥2)将关系式转化为只含有a n 或S n 的递推式,再求a n 或先间接求出S n 再求出a n .9. 已知数列{a n }的递推关系,研究它的特点后,可以通过一系列的恒等变形如:倒数、通分、约分、裂项、等式两边同时乘以或除以同一个式子、因式分解、平方、开方、配方、取对数、辅助数列、待定系数等等构造得出新数列{f(a n )}为等差或等比数列.例如:形如a n+1=Aa n +f(n)或a n+1=Aa n +q n ,均可以两边同时除以A n+1后进行求解,也可以通过待定系数法将其转化为等比数列求解;形如a n =a n-1ka n-1+b 的递推数列可以两边同时倒数来求通项.考点二:数列求和的技巧 一、公式法1、等差数列的前n 项和公式2)1(2)(11dn n na a a n S n n -+=+=2、等比数列的前n 项和公式⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a q q a q na S n n n3、常用几个数列的求和公式 (1))1(213211+=+⋯+++==∑=n n n k S nk n (2))12)(1(61321222212++=+⋯+++==∑=n n n n k S nk n (3)2333313)]1(21[321+=+⋯+++==∑=n n n k S nk n二、错位相减法用于求数列}{n n b a ⨯的前n 项和,其中}{n a ,}{n b 分别是等差数列和等比数列。
数列知识点总结及例题讲解
人教版数学必修五第二章数列重难点解析第二章课文目录2.1 数列的概念与简单表示法2.2 等差数列2.3 等差数列的前n项和2.4 等比数列2.5 等比数列前n项和【重点】1、数列及其有关概念,通项公式及其应用。
2、根据数列的递推公式写出数列的前几项。
3、等差数列的概念,等差数列的通项公式;等差数列的定义、通项公式、性质的理解与应用。
4、等差数列n项和公式的理解、推导及应用,熟练掌握等差数列的求和公式。
5、等比数列的定义及通项公式,等比中项的理解与应用。
6、等比数列的前n项和公式推导,进一步熟练掌握等比数列的通项公式和前n项和公式【难点】1、根据数列的前n项观察、归纳数列的一个通项公式。
2、理解递推公式与通项公式的关系。
3、等差数列的性质,灵活应用等差数列的定义及性质解决一些相关问题。
4、灵活应用等差数列前n项公式解决一些简单的有关问题。
5、灵活应用求和公式解决问题,灵活应用定义式及通项公式解决相关问题。
6、灵活应用等比数列定义、通项公式、性质解决一些相关问题。
一、数列的概念与简单表示法1.数列的定义:按一定次序排列的一列数叫做数列.注意:(1)数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2.数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n项,….3.数列的一般形式:aj,az,ag, …,an, …,或简记为{a},其中a。
是数列的第n项4.数列的通项公式:如果数列{a}的第n项a。
与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式.注意: (1)并不是所有数列都能写出其通项公式,如上述数列④;(2)一个数列的通项公式有时是不唯一的,如数列:1,0,1,0,1,0, …它的通项公式可以是,也可以是; 1.(3)数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.数列的通项公式具有双重身份,它表示了数列的第召项,又是这个数列中所有各项的一般表示.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.5.数列与函数的关系:数列可以看成以正整数集N(或它的有限子集{1,2,3,…,n})为定义域的函数an= f(n),当自变量从小到大依次取值时对应的一列函数值。
高二数学必修五--数列知识点总结及解题技巧(含答案)---强烈-推荐
数学数列部分知识点梳理一数列的概念1)数列的前n 项和与通项的公式①n n a a a S +++= 21; ⎩⎨⎧≥-==-)2()1(11n S S n S a n n n2)数列的分类:①递增数列:对于任何+∈N n ,均有n n a a >+1.②递减数列:对于任何+∈N n ,均有n n a a <+1.③摆动数列:例如: .,1,1,1,1,1 ---④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M 使+∈≤N n M a n ,.⑥无界数列:对于任何正数M ,总有项n a 使得M a n >. 一、等差数列 1)通项公式d n a a n )1(1-+=,1a 为首项,d 为公差。
前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 2)等差中项:b a A +=2。
3)等差数列的判定方法:⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列;⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列.4)等差数列的性质:⑴数列{}n a 是等差数列,则数列{}p a n +、{}n pa (p 是常数)都是等差数列;⑵在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd .⑶d m n a a m n )(-+=;b an a n +=(a ,b 是常数);bn an S n +=2(a ,b 是常数,0≠a )⑷若),,,(+∈+=+N q p n m q p n m ,则q p n m a a a a +=+;⑸若等差数列{}n a 的前n 项和n S ,则⎭⎬⎫⎩⎨⎧n S n 是等差数列; ⑹当项数为)(2+∈N n n ,则nn a aS S nd S S 1,+==-奇偶奇偶;当项数为)(12+∈-N n n ,则nn S S a S S n 1,-==-奇偶偶奇. (7)设是等差数列,则(是常数)是公差为的等差数列;(8)设,,,则有;(9)是等差数列的前项和,则;(10)其他衍生等差数列:若已知等差数列,公差为,前项和为,则①.为等差数列,公差为;②.(即)为等差数列,公差;③.(即)为等差数列,公差为.二、等比数列 1)通项公式:11-=n n q a a ,1a 为首项,q 为公比 。
数列 知识点总结及数列求和,通项公式的方法归纳(附例题)
⎩⎨⎧无穷数列有穷数列按项数 2221,21(1)2nn a a n a a n a n=⎧⎪=+=⎪⎨=-+⎪⎪=-⋅⎩n n n n n常数列:递增数列:按单调性递减数列:摆动数列:数 列数列的考查主要涉及数列的基本公式、基本性质、通项公式,递推公式、数列求和、数列极限、简单的数列不等式证明等.1.数列的有关概念:(1) 数列:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. (2) 从函数的观点看,数列可以看做是一个定义域为正整数集N +(或它的有限子集)的函数。
当自变量从小到大依次取值时对应的一列函数值。
由于自变量的值是离散的,所以数列的值是一群孤立的点。
(3) 通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =.如: 221n a n =-。
(4) 递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,121n n a a -=+,其中121n n a a -=+是数列{}n a 的递推公式.再如: 121,2,a a ==12(2)n n n a a a n --=+>。
2.数列的表示方法:(1) 列举法:如1,3,5,7,9,… (2)图象法:用(n, a n )孤立点表示。
(3) 解析法:用通项公式表示。
(4)递推法:用递推公式表示。
3.数列的分类:按有界性M M M >Mn n n n +⎧≤∈⎪⎨⎪⎩有界数列:存在正数,总有项a 使得a ,n N 无界数列:对于任何正数,总有项a 使得a4.数列{a n }及前n 项和之间的关系:123n n S a a a a =++++ 11,(1),(2)n n n S n a S S n -=⎧=⎨-≥⎩等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差. 2.通项公式与前n 项和公式⑴通项公式d n a a n )1(1-+=,1a 为首项,d 为公差.可变形为d m n a a m n )(-+= ⑵前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列; ⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列. 5.常用性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(2)数列{}p a n +、{}n pa (p 是常数)都是等差数列;在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd 。
完整版)数列知识点归纳
完整版)数列知识点归纳数列一、等差数列性质总结1.等差数列的定义式为:$a_n-a_{n-1}=d$(其中$d$为常数,$n\geq2$);2.等差数列通项公式为:$a_n=a_1+(n-1)d$(其中$a_1$为首项,$d$为公差)推广公式为:$a_n=a_m+(n-m)d$。
因此,$d=\frac{a_n-a_m}{n-m}$;3.等差数列中,如果$a$、$A$、$b$成等差数列,那么$A$叫做$a$与$b$的等差中项,即$A=\frac{a+b}{2}$;4.等差数列的前$n$项和公式为:$S_n=\frac{n(a_1+a_n)}{2}=na_1+\frac{n(n-1)d}{2}=\frac{n[2a_1+(n-1)d]}{2}$。
特别地,当项数为奇数$2n-1$时,$a_n$是项数为$2n-1$的等差数列的中间项,且$S_{2n-1}=n\cdot a_n$;5.等差数列的判定方法:1)定义法:若$a_n-a_{n-1}=d$或$a_{n+1}-a_n=d$(常数$n\in N^*$),则$\{a_n\}$是等差数列;2)等差中项:数列$\{a_n\}$是等差数列,当且仅当$2a_n=a_{n-1}+a_{n+1}$($n\geq2$,$n\in N^*$);3)数列$\{a_n\}$是等差数列,当且仅当$a_n=kn+b$(其中$k$、$b$为常数);4)数列$\{a_n\}$是等差数列,当且仅当$S_n=An^2+Bn$(其中$A$、$B$为常数);6.等差数列的证明方法:定义法:若$a_n-a_{n-1}=d$或$a_{n+1}-a_n=d$(常数$n\in N^*$),则$\{a_n\}$是等差数列;等差中项性质法:$2a_n=a_{n-1}+a_{n+1}$($n\geq2$,$n\in N^+$)。
7.提醒:1)等差数列的通项公式及前$n$项和公式中,涉及到5个元素:$a_1$、$d$、$n$、$a_n$及$S_n$,其中$a_1$、$d$称作为基本元素。
(完整版)等差数列知识点总结及练习(精华版)
等差数列的性质总结1.等差数列的定义:(d 为常数)();d a a n n =--12≥n 2.等差数列通项公式:, 首项:,公差:d ,末项:*11(1)()n a a n d dn a d n N =+-=+-∈1a n a 推广: . 从而;d m n a a m n )(-+=mn a a d mn --=3.等差中项(1)如果,,成等差数列,那么叫做与的等差中项.即:或a A b A a b 2ba A +=b a A +=2(2)等差中项:数列是等差数列{}n a )2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a 4.等差数列的前n 项和公式:1()2n n n a a S +=1(1)2n n na d -=+特别地,当项数为奇数时,是项数为2n+1的等差数列的中间项21n +1n a +5.等差数列的判定方法(1) 定义法:若或(常数) 是等差数列. d a a n n =--1d a a n n =-+1*∈N n ⇔{}n a (2) 等差中项:数列是等差数列. {}n a )2(211-≥+=⇔+n a a a n n n 212+++=⇔n n n a a a (3) 数列是等差数列(其中是常数)。
{}n a ⇔b kn a n +=b k ,(4) 数列是等差数列,(其中A 、B 是常数)。
{}n a ⇔2n S An Bn =+6.等差数列的证明方法定义法:若或(常数) 是等差数列.d a a n n =--1d a a n n =-+1*∈N n ⇔{}n a 7.提醒:等差数列的通项公式及前n 项和公式中,涉及到5个元素:,其中n a n S n n S a n d a 及、、、1称作为基本元素。
只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2.d a 、18. 等差数列的性质:(1)当公差时,0d ≠等差数列的通项公式是关于的一次函数,且斜率为公差;11(1)n a a n d dn a d =+-=+-n d 前和是关于的二次函数且常数项为0.n 211(1)(222n n n d dS na d n a n -=+=+-n (2)若公差,则为递增等差数列,若公差,则为递减等差数列,若公差,则为常数列。
数列的通项公式的求法以及典型习题练习
数列的通项公式的求法以及典型习题练习数列解题方法与研究顺序一、累加法累加法是最基本的两个数列解题方法之一,适用于广义的等差数列,即an+1=an+f(n)。
1.若an+1-an=f(n)(n≥2),且a2-a1=f(1),则可得an+1-a1=∑f(n)(k=1至n)。
例1:已知数列{an}满足an+1=an+2n+1,a1=1,求数列{an}的通项公式。
解:由题可知,f(n)=2n+1,故an+1-an=f(n)=2n+1,且a2-a1=f(1)=3.根据累加法得an+1-a1=∑f(n)=∑(2n+1)=n(n+1)+n= n^2+2n,即an=n^2+2n。
所数列{an}的通项公式为an=n^2+2n。
2.若an+1-an=f(n),则可得an+1/an=f(n)。
例2:已知数列{an}满足an+1=an+2×3+1,a1=3,求数列{an}的通项公式。
解:由题可知,f(n)=2×3+1=7,故an+1-an=f(n)=7.根据累乘法得an+1/an=f(n)=7,即an=3×7^(n-1)。
所以数列{an}的通项公式为an=3×7^(n-1)。
二、累乘法累乘法是最基本的两个数列解题方法之二,适用于广义的等比数列,即an+1=f(n)×an。
1.若an+1/an=f(n),则可得an+1/an=∏f(k)(k=1至n)。
例3:已知数列an=an-1/n,a1=2,求数列的通项公式。
解:由题可知,f(n)=1/n,故an+1/an=f(n)=1/n。
根据累乘法得an+1/an=∏f(k)=∏(1/k)=1/n。
即an=n!/n。
所以数列的通项公式为an=n!/n。
2.若an+1/an=f(n),则可得an+1×an=f(n)。
例4:已知数列{an}满足an+1=2(n+1)5×an,a1=3,求数列{an}的通项公式。
解:由题可知,f(n)=2(n+1)5,故an+1/an=f(n)=2(n+1)5.根据累乘法得an+1×an=∏f(k)=∏2(k+1)5=2^(n+1)×3^(n(n+1)/2),即an=3^n×2^(n-1)。
等差数列知识点总结和题型归纳
一.等差数列知识点:知识点1、等差数列的定义①如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列 就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母 d 表示知识点2、等差数列的判定方法:②定义法:对于数列 a n ,若am a n d (常数),则数列a .是等差数列 ③等差中项:对于数列a n ,若2a ni a n a n 2,则数列a n 是等差数列 知识点3、等差数列的通项公式:⑥S nar卫d2对于公式2整理后是关于n 的没有常数项的二次函数 知识点5、等差中项:⑥ 如果a ,A ,b 成等差数列,那么A 叫做a 与b 的等差中项即:A 号或2A a b 在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项 与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项 知识点6等差数列的性质:⑦ 等差数列任意两项间的关系:如果a n 是等差数列的第n 项,a m 是等差数列的第m 项, 且m n ,公差为d ,则有a n a m (n m )d⑧ 对于等差数列a n ,若n m p q ,则a n a m a p a q也就是: a i a n a 2 a n i a 3 a n 2⑨若数列a n 是等差数列,S n 是其前n 项的和,k N *,那么S k ,S ?k S k ,S 3k S ?k 成 等差数列如下图所示:等差数列④如果等差数列a n的首项是a !,公差是d ,则等差数列的通项为a na i(n 1)d该公式整理后是关于n 的一次函数 知识点4、等差数列的前n 项和:题型选析:题型一、计算求值(等差数列基本概念的应用)1、.等差数列{a n }的前三项依次为a-6 , 2a -5 , -3a +2,则a 等于() A . -1 B . 1 C .-2 D. 22 .在数列{a n }中,a 1=2, 2a”1=2a n +1,贝U a 101 的值为 () A. 49 B . 50 C . 51 D . 523.等差数列1,—1,_ 3,…,—89的项数是( ) A. 92B . 47 C. 46D. 454、已知等差数列 {a n }中,a 7 a 9 16, a 4 1,则 a 12 的值是()()A 15B 30C 31D 645.首项为一24的等差数列,从第10项起开始为正数,则公差的取值范围是()a 1 a 2a 3a k a k 1 S kS 2ka 2k a 2k 1 a 3kS kS 3k S 2 k的性质:①若项数为2n n则 dnn % a n 1 ,且nd , ^奇,则 S 2n 1 2n 1 a n ,且 S 奇 S 偶 a .,(其中S 奇na n , S 禺 n 1 a .)-S 3k10、等差数列的前n 项和出•②若项数为2n 1 na n 1> 8 v 3 C. 8< d v 3 3 3 D. 8v d< 336、.在数列{a n}中,a1 3 ,且对任意大于1的正整数n,点(.a n, a n 1)在直x y . 3 0上,7、在等差数列{a n}中, a5= 3, a6= — 2,贝U a4 + a s + …+8、等差数列a n的前n项和为S n,若a2 1,a3 3,则S4=()(A) 12 ( B) 10 (C) 8 ( D) 69、设数列 a n的首项a17,且满足a n 1 a n 2 (n N),则a1 a210、已知{a}为等差数列,a+ a = 22 , a= 7,贝a= _________________________a17 ____________11、 已知数列的通项 a n = -5 n +2,则其前n 项和为S=12、 设S n 为等差数列a n 的前n 项和,S 4 = 14, Sg S 7 30 ,则S 9 = ________________________________题型二、等差数列性质已知{和为等差数列,a 2+a 8=12,则a 5等于()(A )a 1 a 8 a 4a 5 (B ) Os a 1 a 4a 5 (C ) a 1 + a 8 a 4+ a 5 (D ) a 1 a 8 = a 4a 510、若一个等差数列前 3项的和为34,最后3项的和为146,且所有项的和 为390,则这个数列有( )(A ) 13 项 (B ) 12 项 (C ) 11 项 (D ) 10 项题型三、等差数列前n 项和1、等差数列a n 中,已知a 1a 2a 3La 10P ,a n 9a n 8L a n q ,则其前 n 项和S n2、等差数列2,1,4,的前n 项和为( )1A. n 3n 4 1B.n 3n 7 C. 1 n 3n 4 D. 1 -n 3n 72 2 223、已知等差数列 a n 满足a 1 a 2 a 3 a 99, 则( )A. a1a gg 0B. a 1a ggC.a 1a 99D.a 50501、 2、(A )4(B )5(C ) 6设S n 是等差数列a n 的前n 项和,若(D)7S 735,则 a 4()3、 A . 8 B . 7 C . 6若等差数列 a n 中,a 3 a 7 亦8, an a 44,则 a 74、记等差数列a n 的前n 项和为S n ,若S 24, S 420,则该数列的公差 d=()A . 7 B. 6C. 3D. 215、等差数列{a n }中,已知a 1-,a 233 ,n 为( )(A)48( B) 49( C) 50(D) 516.、等差数列{a n }中,a 1=1, a 3+a 5=14,其前n 项和S=100,则n =(A)9 (B) 10 (C)11 (D)12 7、设S 是等差数列a n 的前n 项和,a 5 a 35,则鱼(9S 5S 5A . 1B . - 1C . 28、已知等差数列{a n }满足a 1 +a 2+a 3+…+a 101 = 0 则有(A .a 1 + a 101 > 0B . a 2+ a 100 V 0C . a 3 + a 99= 0 9、如果a 51 = 51a 1, a 2, …,a 8为各项都大于零的等差数列,公差d 0,则()4、在等差数列a n 中, a1 a2 a 3 15, a n a n 1 a n 2 78 , S n 155 ,则n5、等差数列a n的前n 项和为S n , 若S2,S4 10,则S6等于( )A. 12 B . 18 C . 24 D . 426、若等差数列共有2n 1项n N*,且奇数项的和为44,偶数项的和为33,则项数为 ( )A. 5B. 7C. 9D. 117、设等差数列{a n}的前n项和为S n,若S3 9 , & 36,则a y a s a g& 若两个等差数列a n和b n的前n项和分别是S n,「,已知◎,则色等于( )T n n 3 b5227 21A. 7B. -C. 27D. 2138 4题型四、等差数列综合题精选1、等差数列{a n}的前n项和记为S n.已知a10 30,a20 50.(I)求通项a n;(n)若S n=242,求n.2、已知数列{a n}是一个等差数列,且a2 1,a55。
高中数列求和方法大全(配练习及答案)
数列的求和1.直接法:即直接用等差、等比数列的求和公式求和。
(1)等差数列的求和公式:d n n na a a n S n n 2)1(2)(11-+=+=(2)等比数列的求和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn (切记:公比含字母时一定要讨论)3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。
常见拆项公式:111)1(1+-=+n n n n ;1111()(2)22n n n n =-++ )121121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=⋅5.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。
6.合并求和法:如求22222212979899100-++-+- 的和。
7.倒序相加法:8.其它求和法:如归纳猜想法,奇偶法等 (二)主要方法:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析:例1.求和:①个n n S 111111111++++= ②22222)1()1()1(n n n xx x x x x S ++++++= ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。
解:①)110(9110101011112-=++++==kkk k a个])101010[(91)]110()110()110[(9122n S n n n -+++=-++-+-= 8110910]9)110(10[911--=--=+n n n n ②)21()21()21(224422+++++++++=nnn x x x x x x S n xx x x x x n n 2)111()(242242++++++++=(1)当1±≠x 时,n x x x x n x x x x x x S n n n n n n 2)1()1)(1(21)1(1)1(22222222222+-+-=+--+--=+--- (2)当n S x n 4,1=±=时 ③kk k k k k k k k k a k 23252)]23()12[()]1()12[()12(2)12(2-=-+-=-+-+++++-=2)1(236)12)(1(25)21(23)21(2522221+-++⋅=+++-+++=+++=n n n n n n n a a a S n n)25)(1(61-+=n n n 总结:运用等比数列前n 项和公式时,要注意公比11≠=q q 或讨论。
高三复习数列知识点和经典试题的解题方法归纳(非常全)
数列知识点和常用的解题方法归纳一、 等差数列的定义与性质() 定义:为常数,a a d d a a n d n n n +-==+-111() 等差中项:,,成等差数列x A y A x y ⇔=+2()()前项和n S a a n nan n d nn =+=+-11212{}性质:是等差数列a n()若,则;1m n p q a a a a m n p q +=++=+{}{}{}()数列,,仍为等差数列;2212a a k a b n n n -+ S S S S S n n n n n ,,……仍为等差数列;232--()若三个数成等差数列,可设为,,;3a d a a d -+()若,是等差数列,为前项和,则;42121a b S T n a b S T n n n n m m m m =-- {}()为等差数列(,为常数,是关于的常数项为52a S an bn ab n n n ⇔=+ 0的二次函数){}S S an bn a n n n 的最值可求二次函数的最值;或者求出中的正、负分界=+2项,即:当,,解不等式组可得达到最大值时的值。
a d a a S n n n n 110000><≥≤⎧⎨⎩+当,,由可得达到最小值时的值。
a d a a S n n n n 110000<>≤≥⎧⎨⎩+{}如:等差数列,,,,则a S a a a S n n n n n n =++===--1831123(由,∴a a a a a n n n n n ++=⇒==----12113331()又·,∴S a a aa 31322233113=+===()()∴·S a a n a a n nn n n =+=+=+⎛⎝ ⎫⎭⎪=-12122131218 ∴=n 27) 二、等比数列的定义与性质 定义:(为常数,),a a q q q a a q n nn n +-=≠=1110等比中项:、、成等比数列,或x G y G xy G xy ⇒==±2()前项和:(要注意)n S na q a q q q n n ==--≠⎧⎨⎪⎩⎪111111()()!{}性质:是等比数列a n()若,则··1m n p q a a a a m n p q +=+=(),,……仍为等比数列2232S S S S S n n n n n -- 三、求数列通项公式的常用方法1、公式法2、n n a S 求由;(时,,时,)n a S n a S S n n n ==≥=--121113、求差(商)法{}如:满足……a a a a n n n n 121212251122+++=+<>解:n a a ==⨯+=1122151411时,,∴n a a a n n n ≥+++=-+<>--2121212215212211时,……<>-<>=12122得:n n a ,∴a n n =+21,∴a n n n n ==≥⎧⎨⎩+141221()()[练习]{}数列满足,,求a S S a a a n n n n n +==++111534 (注意到代入得:a S S S S n n n n n+++=-=1114 {}又,∴是等比数列,S S S n n n144== n a S S n n n n ≥=-==--23411时,……·4、叠乘法{}例如:数列中,,,求a a a a nn a n n n n 1131==++ 解:a a a a a a n n a a nn n n 213211122311·……·……,∴-=-= 又,∴a a nn 133== 5、等差型递推公式由,,求,用迭加法a a f n a a a n n n -==-110()n a a f a a f a a f n n n ≥-=-=-=⎫⎬⎪⎪⎭⎪⎪-22321321时,…………两边相加,得:()()()a a f f f n n -=+++123()()()…… ∴……a a f f f n n =++++023()()() [练习]{}()数列,,,求a a a a n a n n n n n 111132==+≥--()()a n n=-1231 6、等比型递推公式()a ca d c d c c d n n =+≠≠≠-1010、为常数,,, ()可转化为等比数列,设a x c a x n n +=+-1()⇒=+--a ca c x n n 11令,∴()c x d x d c -==-11∴是首项为,为公比的等比数列a d c a dc c n +-⎧⎨⎩⎫⎬⎭+-111 ∴·a d c a d c c n n +-=+-⎛⎝ ⎫⎭⎪-1111∴a a d c c dc n n =+-⎛⎝⎫⎭⎪---1111[练习]{}数列满足,,求a a a a a n n n n 11934=+=+()a n n =-⎛⎝ ⎫⎭⎪+-843117、倒数法例如:,,求a a a a a n n n n 11122==++ ,由已知得:1221211a a a a n n n n+=+=+∴11121a a n n +-= , ∴⎧⎨⎩⎫⎬⎭=111121a a n 为等差数列,,公差为 ()()∴=+-=+11112121a n n n · ,∴a n n =+21三、 求数列前n 项和的常用方法 1、公式法:等差、等比前n 项和公式2、裂项法:把数列各项拆成两项或多项之和,使之出现成对互为相反数的项。
数列解题技巧归纳总结 好(5份)
数列解题技巧归纳总结好(5份)一、典型题的技巧解法1、求通项公式(1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为an+1=an+d及an+1=qan(d,q为常数)例1、已知{an}满足an+1=an+2,而且a1=1。
求an。
例1、解∵an+1-an=2为常数∴{an}是首项为1,公差为2的等差数列∴an=1+2(n-1)即an=2n-1例2、已知满足,而,求=?(2)递推式为an+1=an+f(n)例3、已知中,,求、解:由已知可知令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a2-a1)+(a3-a2)+…+(an-an-1)★ 说明只要和f (1)+f(2)+…+f(n-1)是可求的,就可以由an+1=an+f(n)以n=1,2,…,(n-1)代入,可得n-1个等式累加而求an。
(3)递推式为an+1=pan+q(p,q为常数)例4、中,,对于n>1(n∈N)有,求、解法一:由已知递推式得an+1=3an+2,an=3an-1+2。
两式相减:an+1-an=3(an-an-1)因此数列{an+1-an}是公比为3的等比数列,其首项为a2-a1=(31+2)-1=4∴an+1-an=43n-1 ∵an+1=3an+2∴3an+2-an=43n-1 即 an=23n-1-1解法二:上法得{an+1-an}是公比为3的等比数列,于是有:a2-a1=4,a3-a2=43,a4-a3=432,…,an-an-1=43n-2,把n-1个等式累加得:∴an=23n-1-1(4)递推式为an+1=p an+q n(p,q为常数)由上题的解法,得:∴ (5)递推式为思路:设,可以变形为:,想于是{an+1-αan}是公比为β的等比数列,就转化为前面的类型。
求。
(6)递推式为Sn与an的关系式关系;(2)试用n表示an。
数列题型及解题方法归纳总结 (1)
知识框架掌握了数列的基本知识,特别是等差、等比数列的定义、通项公式、求和公式及性质,掌握了典型题型的解法和数学思想法的应用,就有可能在高考中顺利地解决数列问题。
一、典型题的技巧解法 1、求通项公式 (1)观察法。
(2)由递推公式求通项。
对于由递推公式所确定的数列的求解,通常可通过对递推公式的变换转化成等差数列或等比数列问题。
(1)递推式为a n+1=a n +d 及a n+1=qa n (d ,q 为常数)例1、? 已知{a n }满足a n+1=a n +2,而且a 1=1。
求a n 。
例1、解? ∵a n+1-a n =2为常数 ∴{a n }是首项为1,公差为2的等差数列∴a n =1+2(n-1) 即a n =2n-1例2、已知{}n a 满足112n n a a +=,而12a =,求n a =? (2)递推式为a n+1=a n +f (n )例3、已知{}n a 中112a =,12141n n a a n +=+-,求n a .解: 由已知可知)12)(12(11-+=-+n n a a n n )121121(21+--=n n令n=1,2,…,(n-1),代入得(n-1)个等式累加,即(a 2-a 1)+(a 3-a 2)+…+(a n -a n-1)★ 说明 ?只要和f (1)+f (2)+…+f (n-1)是可求的,就可以由a n+1=a n +f (n )以n=1,2,…,(n-1)代入,可得n-1个等式累加而求a n 。
(3)递推式为a n+1=pa n +q (p ,q 为常数)例4、{}n a 中,11a =,对于n >1(n ∈N )有132n n a a -=+,求n a .解法一: 由已知递推式得a n+1=3a n +2,a n =3a n-1+2。
两式相减:a n+1-a n =3(a n -a n-1) 因此数列{a n+1-a n }是公比为3的等比数列,其首项为a 2-a 1=(3×1+2)-1=4∴a n+1-a n =4·3n-1 ∵a n+1=3a n +2? ∴3a n +2-a n =4·3n-1 即 a n =2·3n-1-1 解法二: 上法得{a n+1-a n }是公比为3的等比数列,于是有:a 2-a 1=4,a 3-a 2=4·3,a 4-a 3=4·32,…,a n -a n-1=4·3n-2,把n-1个等式累加得:∴an=2·3n-1-1(4)递推式为a n+1=p a n +q n (p ,q 为常数))(3211-+-=-n n n n b b b b 由上题的解法,得:n n b )32(23-= ∴n n nn n b a )31(2)21(32-==(5)递推式为21n n n a pa qa ++=+思路:设21n n n a pa qa ++=+,可以变形为:211()n n n n a a a a αβα+++-=-,想于是{a n+1-αa n }是公比为β的等比数列,就转化为前面的类型。
(完整版)数列题型及解题方法归纳总结,推荐文档
建议收藏下载本文,以便随时学习! 4、叠乘法
可转化为等比数列,设a n x c a n1 x
例如:数列a n 中,a1
3,
a n1 an
n
n
1
,求a
n
a n ca n1 c 1x
解: a 2 · a 3 …… a n 1 · 2 …… n 1 ,∴ a n 1
a1 a2
a n1 2 3
1、公式法
可能是分段形式。 数列求和的常用方法:
2、 由S n 求a n
(1)公式法:①等差数列求和公式;②等比数列求和公式。
(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类
项”先合并在一起,再运用公式法求和。
(3)倒序相加法:若和式中到首尾距离相等的两项和有其共性或数列的通项
与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这
an=3(an-an-1)
因此数列{an+1-an}是公比为 3 的等比数列,其首项为 a2-a1=(3×1+2)-
1=4
∴an+1-an=4·3n-1
∵an+1=3an+2 ∴3an+2-an=4·3n-1
即
an=2·3n-1-1 解法二: 上法得{an+1-an}是公比为 3 的等比数列,于是有:a2-a1=4,a3-
⑵已知 Sn (即 a1 a2 an f (n) )求 an ,用作差法:
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天
4
文德教育
建议收藏下载本文,以便随时学习! (8)当遇到 an1
an1
d或 an1 an1
数列知识点归纳及例题分析
数列知识点归纳及例题分析一、数列的概念:1.归纳通项公式:注重经验的积累 例1.归纳下列数列的通项公式: 10,-3,8,-15,24,....... 221,211,2111,21111,......(3), (17)9,107,1,232.n a 与n S 的关系:⎩⎨⎧≥-==-)2(,)1(,11n S S n a a n nn注意:强调2,1≥=n n 分开,注意下标;n a 与n S 之间的互化求通项例2:已知数列}{n a 的前n 项和⎩⎨⎧≥+==2,11,32n n n S n ,求n a .3.数列的函数性质:(1)单调性的判定与证明:定义法;函数单调性法 (2)最大小项问题:单调性法;图像法(3)数列的周期性:注意与函数周期性的联系例3:已知数列}{n a 满足⎪⎩⎪⎨⎧<<-≤≤=+121,12210,21n n n n n a a a a a ,531=a ,求2017a . 二、等差数列与等比数列例4等差数列的判定或证明:已知数列{a n}中,a1=错误!,a n=2-错误!n≥2,n∈N,数列{b n}满足b n=错误!n∈N.1求证:数列{b n}是等差数列;2求数列{a n}中的最大项和最小项,并说明理由.1证明∵a n=2-错误!n≥2,n∈N,b n=错误!.∴n≥2时,b n-b n-1=错误!-错误!=错误!-错误!=错误!-错误!=1.∴数列{b n}是以-错误!为首项,1为公差的等差数列.2解由1知,b n=n-错误!,则a n=1+错误!=1+错误!,设函数fx=1+错误!,易知fx在区间错误!和错误!内为减函数.∴当n=3时,a n取得最小值-1;当n=4时,a n取得最大值3.例5等差数列的基本量的计算设a1,d为实数,首项为a1,公差为d的等差数列{an}的前n项和为Sn ,满足S5S6+15=0.1若S5=5,求S6及a12求d的取值范围.解1由题意知S6=错误!=-3,a6=S6-S5=-8. 所以错误!解得a1=7,所以S6=-3,a1=7.2方法一∵S5S6+15=0,∴5a 1+10d 6a 1+15d +15=0, 即2a 错误!+9da 1+10d 2+1=0.因为关于a 1的一元二次方程有解,所以 Δ=81d 2-810d 2+1=d 2-8≥0, 解得d ≤-2错误!或d ≥2错误!. 方法二 ∵S 5S 6+15=0, ∴5a 1+10d 6a 1+15d +15=0, 9da 1+10d 2+1=0.故4a 1+9d 2=d 2-8.所以d 2≥8.故d 的取值范围为d ≤-2错误!或d ≥2错误!.例6前n 项和及综合应用1在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值;2已知数列{a n }的通项公式是a n =4n -25,求数列{|a n |}的前n 项和. 解 方法一 ∵a 1=20,S 10=S 15,∴10×20+错误!d =15×20+错误!d ,∴d =-错误!. ∴a n =20+n -1×错误!=-错误!n +错误!. ∴a 13=0,即当n ≤12时,a n >0,n ≥14时,a n <0,∴当n =12或13时,S n 取得最大值,且最大值为S 13=S 12=12×20+错误!×错误!=130.方法二 同方法一求得d =-错误!.∴S n =20n +错误!·错误!=-错误!n 2+错误!n =-错误!错误!2+错误!. ∵n ∈N,∴当n =12或13时,S n 有最大值,且最大值为S 12=S 13=130. 2∵a n =4n -25,a n +1=4n +1-25,∴a n +1-a n =4=d ,又a 1=4×1-25=-21.所以数列{a n }是以-21为首项,以4为公差的递增的等差数列. 令错误!由①得n <6错误!;由②得n ≥5错误!,所以n =6. 即数列{|a n |}的前6项是以21为首项,公差为-4的等差数列,从第7项起以后各项构成公差为4的等差数列, 而|a 7|=a 7=4×7-24=3. 设{|a n |}的前n 项和为T n ,则 T n =错误! =错误!例7已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为 3例8等差数列{},{}n n a b 的前n 项和分别为{},{}n n S T ,且7453nnS n T n ,则使得n na b 为正整数的正整数n 的个数是 3 . 先求an/bn n=5,13,35例9已知数列{}n a 中,113a =,当2≥n 时,其前n 项和n S 满足2221nn n S a S =-,则数列{}n a 的通项公式为 ()()21132214n n a n n ⎧=⎪=⎨⎪-⎩≥例10在数列{}n a 中,12a =,11ln(1)n n a a n+=++,则n a = .例1111a a -+是和的等比中项,则a +3b 的最大值为 2 . 例12 若数列1, 2cos θ, 22cos 2θ,23cos 3θ, … ,前100项之和为0, 则θ的值为例13 △ABC 的三内角成等差数列, 三边成等比数列,则三角形的形状为__等边三角形_三、数列求和: 1倒序相加法如:已知函数1()()42x f x x R =∈+,求12()()()m mS f f f m m m =+++_________2错位相减法:{}n n b a 其中{ n a }是等差数列,{}n b 是等比数列; 3裂项相消法:形如)11(1))((1CAn B An B C C An B An a n +-+-=++=4拆项分组法:形如n n n c b a ±=,如:n n n a 32+=,65()2()n n n n a n -⎧=⎨⎩为奇数为偶数,21)1(n a n n ⋅-=-练习:1、数列1,211+,3211++,···,n+++ 211的前n 项和为 B A .122+n n B .12+n nC .12++n nD .12+n n2、数列,,1617,815,413,211 前n 项和=n S .3、数列{}n a 的通项公式为nn a n ++=11,则S 100=_________________;4、设()111126121n S n n =+++++,且134n n S S +⋅=,则=n .65、设*N n ∈,关于n 的函数21)1()(n n f n ⋅-=-,若)1()(++=n f n f a n ,则数列}{n a 前100项的和=++++100321a a a a ________.答案:100.解答:])1[()1()1()1()1()1()(22221n n n n n f n f a n n n n -+-=+⋅-+⋅-=++=-,)12()1(+-=n n ,所以201)199(9)7(5)3(100321+-+++-++-=++++ a a a a100502=⨯=. 四、求数列通项式2ln n+1公式法:121+=+n n a a ,112++-=⋅n n n n a a a a ,121+=+n nn a a a 等 2累加法:形如)2)((1≥=--n n f a a n n 或)(1n f a a n n +=-,且)(n f 不为常数 3累乘法:形如)2)((1≥⋅=-n n f a a n n 且)(n f 不为常数 4待定系数法:形如1,0(,1≠+=+k b ka a n n ,其中a a =1型5转换法:已知递推关系0),(=n n a S f ⎩⎨⎧≥-==→-)2(,)1(,11n S S n a a S n n n n解题思路:利用⎩⎨⎧≥-==-)2(,)1(,11n S S n a a n nn变化1已知0),(11=--n n a S f ;2已知0),(1=--n n n S S S f (6)猜想归纳法慎用练习:考点三:数列的通项式1、在数列{}n a 中,前n 项和842--=n n S n ,则通项公式=n a _______________3、已知数列的前n 项和n n S 23+=,则=n a _______________15122n n n a n -=⎧=⎨≥⎩4、已知数列{}n a ,21=a ,231++=+n a a n n ,则 =n a )(,23*2N n nn ∈+5、在数列{}n a 中,1112,lg 1n n a a a n +⎛⎫==++ ⎪⎝⎭*N n ∈,则n a = .6、如果数列{}n a 满足)(53111*++∈=-=N n a a a a a n n n n ,,则=n a ________________7、}{n a 满足11=a ,131+=+n n n a a a ,则n a =_______132n -8、已知数列{}n a 的首项12a =,且121n n a a +=-,则通项公式n a = 121n -+ 9、若数列{}n a 满足()*112,32n n a a a n N +==+∈,则通项公式n a =10、如果数列{}n a 的前n 项和323-=n n a S ,那么这个数列的通项公式是 DA .)1(22++=n n a nB .n n a 23⋅=C .13+=n a nD .n n a 32⋅=五、数列应用题: 等差数列模型1、一种设备的价格为450000元,假设维护费第一年为1000元,以后每年增加1000元,当此设备的平均费用为最小时为最佳更新年限,那么此设备的最佳更新年限为 ;30年2、在一次人才招聘会上,有甲、乙两家公司分别公布它们的工资标准:甲公司:第一年月工资数为1500元,以后每年月工资比上一年月工资增加230元; 乙公司:第一年月工资数为2000元,以后每年月工资在上一年的月工资基础上递增5%.设某人年初同时被甲、乙公司录取,试问:1若该人打算连续工作n 年,则在第n 年的月工资收入分别是多少元2若该人打算连续工作10年,且只考虑工资收入的总量,该人应该选择哪家公司为什么精确到1元解:1设在甲公司第n 年的工资收入为n a 元,在乙公司第n 年的工资收入为n b 元 则2301270n a n =+,120001.05n n b -=⋅ 2设工作10年在甲公司的总收入为S 甲,在甲公司的总收入为S 乙由于S S >乙甲,所以该人应该选择甲公司.等比数列模型例 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据计划,本年度投入800万元,以后每年投入将比上一年度减少51,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上一年增加41;1设n 年内本年度为第一年总投入为n a 万元,旅游业总收入为n b 万元,写出n a 、n b 的表达式;2至少经过几年旅游业的总收入才能超过总投入精确到整数 参考解答:112511800511800511800800-⎪⎭⎫⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+=n n a2解不等式n n a b >,得5≥n ,至少经过5年,旅游业的总收入才能超过总投入.六、2017年高考题一、选择题在每小题给出的四个选项中,只有一项是符合题目要求的1. 2017年新课标Ⅰ 记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为2. 2017年新课标Ⅱ卷理 我国古代数学名着算法统宗中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯1.A 盏 3.B 盏 5.C 盏 9.D 盏 3.2017年新课标Ⅲ卷理 等差数列{}n a 的首项为1,公差不为0.若632,,a a a 成等比数列,则{}n a 前6项的和为4. 2017年浙江卷 已知等差数列}{n a 的公差为d ,前n 项和为n S ,则“0>d ”是“5642S S S >+”的.A 充分不必要条件 .B 必要不充分条件 .C 充分必要条件 .D 既不充分也不必要条件5.2017年新课标Ⅰ 几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列⋯,16,8,4,2,1,8,4,2,1,4,2,1,2,1,1其中第一项是02,接下来的两项是102,2,再接下来的三项是2102,2,2,依此类推.求满足如下条件的最小整数100:>N N 且该数列的前N 项和为2的整数幂.那么该款软件的激活码是 二、填空题将正确的答案填在题中横线上6. 2017年北京卷理 若等差数列{}n a 和等比数列{}n b 满足8,14411==-==b a b a ,22a b =_______.7.2017年江苏卷等比数列{}n a 的各项均为实数,其前n 项和为n S ,已知3676344S S ==,,则8a =_______________.8. 2017年新课标Ⅱ卷理 等差数列{}n a 的前n 项和为n S ,33a =,410S =, 则11nk kS ==∑. 9.2017年新课标Ⅲ卷理设等比数列{}n a 满足3,13121-=--=+a a a a ,则=4a __. 三、解答题应写出必要的文字说明、证明过程或演算步骤10. 2017年新课标Ⅱ文已知等差数列}{n a 前n 项和为n S ,等比数列}{n b 前n 项和为.2,1,1,2211=+=-=b a b a T n 1若533=+b a ,求}{n b 的通项公式; 2若213=T ,求3S . 11.2017年新课标Ⅰ文 记nS 为等比数列{}n a 的前n 项和,已知.6,232-==S S1求{}n a 的通项公式; 2求n S ,并判断21,,++n n n S S S 是否成等差数列; 12. 2017年全国Ⅲ卷文设数列{}n a 满足()123+212n a a n a n ++-=…1求数列{}n a 的通项公式; 2求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和;13.2017年天津卷文已知{}n a 为等差数列,前n 项和为*()n S n ∈N ,{}n b 是首项为2的等比数列,且公比大于0,2334111412,2,11b b b a a S b +==-=. 1求{}n a 和{}n b 的通项公式; 2求数列2{}n n a b 的前n 项和*()n ∈N . 14.2017年山东卷文已知{}n a 是各项均为正数的等比数列,且121236,a a a a a +==.1求数列{}n a 的通项公式;2{}n b 为各项非零等差数列,前n 项和n S ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭前n 项和n T15. 2017年天津卷理已知{}n a 为等差数列,前n 项和为()n S n *∈N ,{}n b 是首项为2的等比数列,且公比大于0,2312b b +=,3412b a a =-,11411S b =.1求{}n a 和{}n b 的通项公式; 2求数列221{}n n a b -的前n 项和()n *∈N . 16. 2017年北京卷理 设{}n a 和{}n b 是两个等差数列,记1122max{,,,}n n n c b a n b a n b a n =--⋅⋅⋅-(1,2,3,)n =⋅⋅⋅,其中12max{,,,}s x x x ⋅⋅⋅表示12,,,s x x x ⋅⋅⋅这s 个数中最大的数. 1若n a n =,21n b n =-,求123,,c c c 的值,并证明{}n c 是等差数列; 2证明:或者对任意正数M ,存在正整数m ,当n m ≥时,nc M n>;或者存在正整数m ,使得12,,,m m m c c c ++⋅⋅⋅是等差数列.17.2017年江苏卷对于给定的正整数k ,若数列{}n a 满足:1111n k n k n n n k n k a a a a a a --+-++-++++++++2n ka =对任意正整数()n n k >总成立,则称数列{}n a 是“()P k 数列”.1证明:等差数列{}n a 是“(3)P 数列”;2若数列{}n a 既是“(2)P 数列”,又是“(3)P 数列”,证明:{}n a 是等差数列. 18.本小题满分12分已知}{n x 是各项均为正数的等比数列,且.2,32321=-=+x x x x Ⅰ求数列}{n x 的通项公式;Ⅱ如图,在平面直角坐标系xOy 中,依次连接点)1,(,),2,(),1,(11211+⋯++n x P x P x P n n 得到折线121+⋯n P P P ,求由该折线与直线11,,0+===n x x x x y 所围成的区域的面积n T .19.2017年浙江卷已知数列}{n x 满足:).)(1ln(,1*111N n x x x x n n n ∈++==++证明:当*N n ∈时,1n n x x <<+10; 22211++≤-n n n n x x x x ; 3212121++≤≤n n n x .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列知识点总结-解体方法归纳和练习习题第一部分 数列的基础知识等差数列一 定义式: 1nn a a d --=二 通项公式:na 1()(1)ma n m da n d=+-⎧⎨=+-⎩一个数列是等差数列的等价条件:b an a n+=(a ,b 为常数),即na 是关于n 的一次函数,因为n Z ∈,所以na 关于n 的图像是一次函数图像的分点表示形式。
三 前n 项和公式:1()2nn n a a S +=na =中间项 1(1)2n n na d -=+ 一个数列是等差数列的另一个充要条件:bn an S n+=2(a ,b 为常数,a ≠0),即nS 是关于n 的二次函数,因为n Z ∈,所以nS 关于n 的图像是二次函数图像的分点表示形式。
四 性质结论1.3或4个数成等差数列求数值时应按对称性原则设置,如:3个数a-d,a,a+d ; 4个数a-3d,a-d,a+d,a+3d2.a 与b 的等差中项2a b A +=; 在等差数列{}na 中,若m n p q +=+,则 mnpqa a a a +=+;若2m n p +=,则2mnpa a a +=; 3.若等差数列的项数为2()+∈N n n ,则,奇偶nd S S =-1+=n n a a S S 偶奇;若等差数列的项数为()+∈-N n n 12,则()n n a n S 1212-=-,且n a S S =-偶奇,1-=n n S S偶奇 4.凡按一定规律和次序选出的一组一组的和仍然成等差数列。
设12,n A a a a =++⋯+,122n n nB a a a ++=++⋯+,21223n n nC a a a ++=++⋯+,则有C A B +=2;5.10a >,m nS S =,则前2m n S +(m+n 为偶数)或12m n S +±(m+n为奇数)最大等比数列一 定义:1(2,0,0){}nn n n aq n a q a a -=≥≠≠⇔成等比数列。
二 通项公式:11-=n n q a a ,n m n m a a q -=数列{a n }是等比数列的一个等价条件是: (1),(0,01nnS a b a b =-≠≠,)当0q >且0q ≠时,na 关于n 的图像是指数函数图像的分点表示形式。
三 前n项和:1111(1)(1)(1)11n n n na q S a a q a q q q q +=⎧⎪=--⎨=≠⎪--⎩;(注意对公比的讨论)四 性质结论:1.a 与b 的等比中项G 2G ab G ⇔=⇔=(,a b 同号); 2.在等比数列{}n a 中,若m n p q +=+,则m n p qa a a a ⋅=⋅;若2m n p +=,则2mn paa a ⋅=;3.设12,n A a a a =++⋯+,122n n nB a a a ++=++⋯+, 21223n n nC a a a ++=++⋯+, 则有2B AC =⋅求通项公式na 的基本方法一. 构造等差数列:递推式不能构造等比时,构造等差数列。
第一类:凡是出现分式递推式都可以构造等差数列来求通项公式,例如:112111-=----nn n a a a ,两边取倒数}11{112111-⇒-=+-⇒-n n n a a a是公差为2的等差数列)1(211111-+-=-⇒n a a n,从而求出na 。
第二类:221(1)(1)n n n a n a n n ---=-⇒1111n n n n a a n n -+-=⇒-1n n a n +⎧⎫⎨⎬⎩⎭是公差为1的等差数列 1111211n n n n a a a n n ++⇒=⇒=+二。
递推:即按照后项和前项的对应规律,再往前项推写对应式。
例如()1211nn nn na na a n n a a n a --=⇒=-⇒⋅⋅⋅⋅=! 【注: !(1)(2)1n n n n =--】求通项公式na 的题,不能够利用构造等比或者构造等差求na 的时候,一般通过递推来求na 。
求前n 项和nS一 裂项相消法:1111122334111111111()()()()122334111111n n n n n n n ++++=⋅⋅⋅+-+-+-++-+=-=++()、11111,2,3,4,n 39278111111234392781+的前和是:(++++)+(+++)二 错位相减法:凡等差数列和等比数列对应项的乘积构成的数列求和时用此方法, 求:23n-2n-1n n S =x 3x 5x (2n-5)x (2n-3)x (2n-1)x (x 1)++++++≠23n-2n-1n n S =x 3x 5x (2n-5)x (2n-3)x (2n-1)x (x 1)++++++≠① 234n-1n n+1n xS =x 3x 5x (2n-5)x (2n-3)x (2n-1)x (x 1)+++++≠②①减②得: ()()()()23n-1n n+1n 2n-1n+1(1x)S =x 2x 2x 2x2x 2n 1x 2x 1x x 2n 1x1x-+++++---=+---从而求出nS 。
错位相减法的步骤:(1)将要求和的杂数列前后各写出三项,列出①式(2)将①式左右两边都乘以公比q ,得到②式 (3)用①-②,错位相减 (4)化简计算三 倒序相加法:前两种方法不行时考虑倒序相加法例:等差数列求和:n 123n 2n 1nn n n 1n 2321S =a a a a a a S =a a a a a a ----++++++++++++两式相加可得:()()()()()()()n 1n 2n 13n 23n 22n 11n 1n n2S =a a a a a a a a a a a a n a a S ----++++++++++++=+⇒第二部分 数列通项公式的求和方法一、公式法例1 已知数列{}na 满足1232nn n aa +=+⨯,12a=,求数列{}n a 的通项公式。
解:1232nn n aa +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n na 是以1222a11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}na 的通项公式为31()222nnan =-。
二、累加法例2 已知数列{}na 满足11211n n aa n a +=++=,,求数列{}na 的通项公式。
解:由121n n aa n +=++得121n n aa n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=所以数列{}na 的通项公式为2nan =。
例3 已知数列{}na 满足112313n n n aa a +=+⨯+=,,求数列{}n a 的通项公式。
解:由1231n n n a a +=+⨯+得1231n n n a a +-=⨯+则11232211122112211()()()()(231)(231)(231)(231)32(3333)(1)33(13)2(1)313331331n n n n n n n n n n n n a a a a a a a a a a n n n n --------=-+-++-+-+=⨯++⨯+++⨯++⨯++=+++++-+-=+-+-=-+-+=+-所以3 1.n nan =+-例4 已知数列{}na 满足1132313n n n aa a +=+⨯+=,,求数列{}n a 的通项公式。
解:13231nn n aa +=+⨯+两边除以13n +,得111213333n n n nn aa +++=++,则111213333n n n n n a a +++-=+,故112232112232111122122()()()()33333333212121213()()()()3333333332(1)11111()1333333n n n n n n n n n n n n n n n n n n n n n a a a a a a a a a a a a n --------------=-+-+-++-+=+++++++++-=+++++++因此11(13)2(1)2113133133223n n n n na n n ---=++=+--⨯,则21133.322n n nan =⨯⨯+⨯-三、累乘法例5 已知数列{}na 满足112(1)53n n n an a a +=+⨯=,,求数列{}n a 的通项公式。
解:因为112(1)53nn n an a a +=+⨯=,,所以0na≠,则12(1)5nn na n a+=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}na 的通项公式为(1)12325!.n n n nan --=⨯⨯⨯例6 (2004年全国I 第15题,原题是填空题)已知数列{}na 满足11231123(1)(2)n n aa a a a n a n -==++++-≥,,求{}n a 的通项公式。
解:因为123123(1)(2)nn a a a a n a n -=++++-≥ ①所以1123123(1)n n n aa a a n a na +-=++++-+ ②用②式-①式得1.n n n a a na +-=则1(1)(2)n n an a n +=+≥故11(2)n na n n a+=+≥所以13222122![(1)43].2n n nn n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=③由123123(1)(2)n n a a a a n a n -=++++-≥,21222n a a a ==+取得,则21a a =,又知11a=,则21a=,代入③得!13452nn an =⋅⋅⋅⋅⋅=。