浅谈压力管道应力分析及计算

合集下载

压力管道应力分析

压力管道应力分析

压力管道应力分析压力管道是工业生产和生活中常见的工程结构,广泛用于输送水、油、气等介质。

管道内部由于介质压力的作用而产生应力,这些应力的分析对于管道的设计和使用安全至关重要。

本文将从压力管道的应力计算方法、应力分布特点以及应力分析的影响因素等方面进行探讨。

压力管道的应力计算方法主要有两种,即薄壁理论和薄壁理论的改进方法。

薄壁理论是指在管道内径与壁厚比较大的情况下,将管道近似看作薄壁圆筒,应力集中在内径和外径处,通过简化计算得出管道内壁和外壁的应力分布。

该方法适用于绝大部分工程中的压力管道计算。

薄壁理论的改进方法包括厚壁筒薄壁环假设、都笑横断面假设等,通过考虑管道截面的几何形状以及内外径比等因素,提高了应力计算的准确性。

压力管道的应力分布特点主要有三个方面,即轴向应力、周向应力和切向应力。

轴向应力指的是管道轴线方向上的应力,主要由管道内压力和温度差引起。

周向应力指的是管道截面圆周方向上的应力,主要由内压力引起。

切向应力指的是管道截面切线方向上的应力,主要由内压力和薄壁理论简化计算引起。

在传统理论中,管道的轴向应力和周向应力一般为正值,而切向应力为零。

压力管道的应力分析受到多个因素的影响。

首先是管道的材料特性,包括材料的弹性模量、屈服强度、塑性延伸率等。

管道的材料特性直接决定了管道的耐压能力和变形能力。

其次是管道的几何形状,包括内径、外径、壁厚等。

几何形状的不同会导致管道内外径比和界面摩擦等因素的改变,进而影响应力分布。

再次是管道的工作条件,包括温度、压力等。

不同工作条件下管道内部介质的物理性质会发生变化,进而影响管道的应力分布。

最后是管道的固定和支撑方式。

固定和支撑方式的不同会引起管道的应力集中,影响管道的安全性。

为了保证压力管道的正常运行和安全性,需要进行应力分析以及补强设计。

应力分析主要通过有限元分析和解析方法进行。

有限元分析是一种常用的计算机辅助工程分析方法,通过将管道模型离散化为有限个单元,计算每个单元的应力和变形,进而得到整个管道应力分布的方法。

管道应力分析及计算全

管道应力分析及计算全

B、动力分析包含的内容 a)管道固有频率分析 — 防止共振。 b)管道强迫振动响应分析 — 控制管道振动及应力。 c)往复式压缩机(泵)气(液)柱频率分析 — 防止气柱 共振。
d)往复式压缩机(泵)压力脉动分析 — 控制压力脉动 值(δ值)。
C、动力分析要点
a)
振源
机器动平衡差 — 基础设计不当
⑶ 编制临界管线表(三级签署) — 应力分析管线表
静力分析
⑷ 应力分析
(三、四级);
动力分析
⑸ 卧式容器固定端确定,立式设备支耳标高确定;
⑹ 支管补强计算;
⑺ 动设备许用荷载校核(四级)
⑻ 夹套管(蒸汽、热油、热水)计算(端部强 度计算、内部导向翼板位置确定、同时 包括任何应力分析管道的所有内容);
三、管道的柔性设计
3.1、柔性定义及柔性设计的方法和目的 a)定义 b)目的 c)设计方法 d)端点位移考虑 3.2、是否进行详细柔性设计的判别方法 a)应进行详细柔性设计的管道 b)可以不进行详细柔性设计的管道 c)判别式的使用方法与注意事项 3.3、管道的热补偿
三、管道的柔性设计
3.4、应力增大因子 3.5、柔性分析方程 3.6、弹性模量随温度变化效应 3.7、柔性分析的另一规则
2)两台或三台压缩机的汇集总管截面积至少为进口管 截面积的三倍,且应使柱塞流的冲击力不增加。
3)孔板消振 — 在缓冲罐的出口加一块孔板。
孔径大小:
d D
4
U,
U
V气体流速 V介质内的声速
d 0.3 ~ 0.5 D
孔板厚度=3~5mm
孔板位置 — 在较大缓冲罐的进出口均可
d)减少激振力——减少弯头、三通、异径管等管件。
A、当

浅谈压力管道应力分析及计算

浅谈压力管道应力分析及计算

浅谈压力管道应力分析及计算摘要:压力管道在工业生产或社会建设中被越来越广泛的使用,以其自身的特殊性和有针对性的特点,成为工业社会的一个重要课题。

管道质量及应力的大小直接影响到工程的质量及安全事故的发生率,应力的分析与计算也显得十分重要。

压力管道应力可分为一次应力、二次应力及峰值应力,三种类型,各种类型应力的特点各有不同,可以通过科学的方法如CAESAR II分析系统及复杂的公式多次计算,得出准确数值。

关键词:压力管道应力分析计算随着我国现代化技术的革新,工业蓬勃发展,国家大力支持公共设施建设项目,油田建设、大兴水利、天然气工程、南水北调工程等,压力管道成为最常见设备之一,其承担着输送易燃易爆能源、放射性及高腐蚀性物资的重大任务。

压力管道的安全与质量问题也成为从设计、安装、维护到使用等各个环所有相关部门都关注的重点防范问题,但其生产和使用过受到各种荷载因素的影响,加之自身应力的原因,使得压力管道事故频频发生,成为重大公共安全隐患,其也是国家相关安全监督管理项目之一[1]。

压力管道的应力分析与计算成为各种建设项的必要课题。

现对当前常用的压力管道应力进行分析及计算,相关报告如下:一、压力管道的特点压力管道在工作过程中所承担的重任和性质的特殊性,使其呈现出与一般管道与压力容器完全不同的特性,按照使用领域来划分,压力管道了分为一般工业压力管道和大跨度的公用管道,具体分以下几点:①工业压力管道构建出现代工业化生产体系,其特点是连接点多,管道的弯曲较多,分布密度大。

各个车间职能不同,使用的压力管道材料、规格要求各不一样,降低了整个系统的均衡质量。

生产过程中影响荷载的因素众多,如温度、运送物资质量、密度、化学性质等[2]。

②大跨度公用管道该类工程均跨越地理、气候各不一样的省市,有以下几个特点即长度极大,压力荷载复杂,性质不稳定,且受自然条件影响较多,如地质压力、风雪天气、地震塌陷等。

各项安全指标的测量准确度不高,维护难度大。

管道应力分析和计算解析

管道应力分析和计算解析

管道应力分析和计算
目次
1 概述
1.1 管道应力计算的主要工作
1.2 管道应力计算常用的规范、标准1.3 管道应力分析方法
1.4 管道荷载
1.5 变形与应力
1.6 强度指标与塑性指标
1.7 强度理论
1.8 蠕变与应力松弛
1.9 应力分类
1.10 应力分析
2 管道的柔性分析与计算
2.1 管道的柔性
2.2 管道的热膨胀补偿
2.3 管道柔性分析与计算的主要工作2.4 管道柔性分析与计算的基本假定2.5 补偿值的计算
2.6 冷紧
2.7 柔性系数与应力增加系数
2.8 作用力和力矩计算的基本方法2.9 管道对设备的推力和力矩的计算
3 管道的应力验算
3.1 管道的设计参数
3.2 钢材的许用应力
3.3 管道在内压下的应力验算
3.4 管道在持续荷载下的应力验算
3.5 管道在有偶然荷载作用时的应力验算3.6 管系热胀应力范围的验算
3.7 力矩和截面抗弯矩的计算
3.8 应力增加系数
3.9 应力分析和计算软件。

压力管道局部应力分析

压力管道局部应力分析

I.
采用有限元法对特殊管件进行分析,得到应力集中系数;
II. 应力增大系数等于应力集中系数的一半。
应力增大系数应用的注意事项!
根据GB 50316、ASME B31.1和ASME B31.3的规定,计算二次应力时应 采用应力增大系数。这是由于采用应力增大系数的目的,是考虑局部应力 集中的影响,而局部应力集中主要对管件的疲劳破坏产生作用。因为局部 的高应力循环,将使材料产生裂纹并不断扩展,最终导致破坏。校核二次 应力的目的正是为了防止疲劳破坏,因此在计算二次应力时必须考虑应力 集中的影响,应该采用应力增大系数。另外,根据ASME B31.3的标准释 义,计算一次应力可不考虑应力增大系数。这主要是因为校核一次应力是 为了控制管道的整体破坏,局部的应力集中对管道的整体破坏影响不大。 另外一次应力采用弹性分析方法,认为某一点达到屈服管道失效,已经非 常保守,如果在考虑应力集中的影响将导致过分保守。
l 为了能够表示出WRC107、297计算的误差,使用有 限元分析软件(NozzlePro/FEpipe)来进行对比计算。
l 有限元法严格按照理论分析方法,结合ASME Ⅷ-2 中的应力分类来对特定结构进行应力计算,当满足 理想化假设条件时,其结果与真实应力十分接近, 并且有限元分析法不受任何几何条件的限制,计算 精度与网格划分的疏密程度相关。
可以提高至0.6
PPT文档演模板
压力管道局部应力分析
WRC107应用范围及限制条件
PPT文档演模板
压力管道局部应力分析
WRC107应用范围及限制条件
PPT文档演模板
压力管道局部应力分析
WRC297应用范围及限制条件
l WRC297继承了WRC107的一些限制条件,另外,当连接区 域的接管壁厚小于补强壁厚时,其局部应力计算值可能过于 保守

压力管道应力动态分析理论

压力管道应力动态分析理论

02 压力管道应力动态分析理 论基础
材料力学基础
材料力学是研究材料在各种力和力矩 作用下的应力和应变行为的科学。它 为压力管道应力动态分析提供了基本 原理和计算方法,包括材料的弹性模 量、泊松比、剪切模量等参数的确定。
VS
材料力学还涉及到材料的强度理论, 例如最大剪应力理论、最大伸长线应 变理论和能量理论等,这些理论为压 力管道的强度设计和校核提供了依据。
意义
通过应力分析,可以优化管道设计,降低制造成本,提高设备运行效率,保障人员和财产安全。
应力分析的方法和步骤
方法
常用的应力分析方法包括有限元法、有限差分法和边界元法等数值分析方法,以及基于力学理论的解 析法。
步骤
应力分析通常包括前处理、求解和后处理三个步骤。前处理阶段涉及建立模型、设定边界条件和载荷 等;求解阶段通过数值方法计算管道应力;后处理阶段则是对计算结果进行评估和优化。
04 压力管道应力动态分析理 论与其他理论的关联
与流体力学理论的关联
流体力学理论在压力管道应力动态分析中起 着重要作用,特别是在流体流动和压力分布 的计算方面。流体的动力学和热力学性质对 管道中的应力分布和疲劳寿命有显著影响。
压力管道中的流体流动可能导致管道产生振 动和应力集中,这些因素进一步影响管道的 稳定性和安全性。流体力学理论提供了流体 动力学和热力学的基本原理,有助于预测和
压力管道应力分析的未来发展方向
方向1
随着数值计算技术和计算机技术的不断发展,未来应力分析将更加精确和高效,能够更 好地模拟管道的实际运行工况。
方向2
随着新材料和新工艺的不断涌现,未来管道材料的性能将更加优异,能够满足更高压力 和温度的要求。
方向3
随着智能化和远程监控技术的发展,未来管道应力分析将更加智能化和远程化,能够实 现实时监测和预警,提高管道运行的安全性和可靠性。

压力钢管安全鉴定的应力分析与强度计算

压力钢管安全鉴定的应力分析与强度计算

压力钢管安全鉴定的应力分析与强度计算压力钢管作为一种用于输送气体或液体的重要管道设备,其安全鉴定对于保障工业生产和人员安全至关重要。

在进行安全鉴定时,应力分析和强度计算是必不可少的步骤。

本文将针对压力钢管的应力分析和强度计算进行探讨。

一、应力分析1.1 弹性应力分析弹性应力分析通过对压力钢管所受力的计算,确定其在工作条件下的应力状态。

弹性应力可以分为轴向应力、周向应力和切向应力。

轴向应力是指压力钢管在管轴方向上受到的拉伸或压缩作用产生的应力。

其计算公式为:σz = (P * D) / (2 * t)其中,σz表示轴向应力,P表示管内的压力,D表示管道的直径,t 表示管壁的厚度。

周向应力是指在管壁厚度方向上产生的应力。

其计算公式为:σθ = (P * D) / (4 * t)切向应力是指在周向应力方向上的切应力。

其计算公式为:τ = (P * D) / (2 * t)1.2 塑性应力分析当压力钢管的应力超过弹性极限时,塑性应力开始发挥作用。

塑性应力分析需要考虑材料的屈服强度、变形硬化指数等因素。

塑性应力的计算涉及到材料的本构关系,常用的本构关系有屈服准则、应变硬化准则等。

根据材料的特性和具体情况,可以选取适合的本构关系进行计算。

二、强度计算2.1 材料的强度计算压力钢管的强度计算主要涉及材料的屈服强度和破坏强度。

屈服强度是指在材料屈服时承受的最大应力,破坏强度是指材料在极限状态下承受的最大应力。

通常采用屈服准则或破坏准则进行强度计算。

常用的屈服准则有von Mises准则、Tresca准则等,常用的破坏准则有最大应力准则、最大应变准则等。

2.2 结构的强度计算压力钢管的结构强度计算需要考虑管道本身的结构特点和外部载荷等因素。

常用的计算方法有弹性理论法、有限元法等。

弹性理论法是一种简化的计算方法,适用于结构相对简单、载荷较小的情况。

有限元法是一种更为精确的计算方法,可以考虑更复杂的结构和不同的载荷条件。

压力管道应力分析

压力管道应力分析

压力管道应力分析引言压力管道作为输送流体的重要管线,承受的压力和温度都是极高的。

这样就会导致管道中的应力和变形问题,从而产生一定的安全隐患。

因此,对于压力管道的应力分析就显得尤为重要。

压力管道的应力压力管道在运行过程中,会受到各种力的作用,如内压、重力、支架反力、温度等,这些力作用在管道上,就会造成管道内部的应力,如轴向应力、周向应力、径向应力等。

•轴向应力轴向应力是指管道轴向方向的应力,通常是指由流体作用产生的内压力和拉力两部分的影响。

在管道内部,如果内压力太大,轴向应力就会增大,会导致管道的卡铁暴力现象。

•周向应力周向应力是指管道周向方向的应力,主要受到流体和温度两个因素的影响。

当管道内部温度升高,周向应力也会随之升高,如果超过极限值,就可能导致管道的破裂。

•径向应力径向应力是指与管道中心轴线垂直方向的应力,通常是由于弯曲、扭转等变形所引起的。

如果弯曲半径过小或者存在缺陷,就会导致径向应力过大,从而容易引起管道的破裂。

压力管道应力分析压力管道应力分析是针对管道内各种应力进行综合分析的过程。

在分析的过程中,通常需要采用有限元分析等方法,通过建立合适的数学模型和计算,得出管道内部的应力情况和强度,并评估管道是否存在危险的可能性。

在进行应力分析时,一般需要考虑以下几个方面。

1. 材料力学性能材料力学性能直接影响管道的使用寿命和安全性。

因此,对于材料的强度、韧性、塑性等性能参数,都需要进行准确的测定和分析。

常见的材料包括石墨、钢铁、铝合金等。

2. 工况分析针对不同的工况,管道所受的力也会不同。

因此,在进行应力分析之前,需要准确确定工况参数,如内压、外界温度等,以便进行有针对性的分析。

3. 有限元分析有限元分析是应用计算机模拟技术,将管道模型分割成有限个小模型,通过对小模型的计算和组合,分析管道内部的应力和强度分布。

这种方法可以更直观地了解管道内部应力的变化情况,有效评估管道的安全性和强度。

压力管道应力分析是管道设计和使用过程中必不可少的环节。

压力管道应力分析的内容及特点研究

压力管道应力分析的内容及特点研究

压力管道应力分析的内容及特点研究摘要:压力管道广泛应用于石油化工、天然气等行业的物料输送过程中,起着非常重要的作用,可以保证原材料和产品的正常运输。

压力管道在运行过程中,其受力状况会受到多种因素的影响,包括管道系统内部因素和外部环境因素。

如果要分析压力管道的受力情况,必须准确掌握压力管道的实际运行状态,以获得更准确的分析结果。

关键词:压力管道;应力分析;内容;特点研究1 管道应力分类管道应力是压力管道使用中需要考虑的关键问题。

在分析压力管道的应力之前,有必要对压力管道的应力进行相应的分类。

从我国压力管道的使用情况来看,管道的压力可分为以下几类。

1.1主要压力初应力是指管道在内外压力、重力、冲击载荷、风载荷等因素作用下产生的剪应力或法向应力。

主应力是压力管道经常承受的应力,它具有以下特点:当外部荷载增加时,主应力也会增加,与外部荷载呈平衡关系,没有自限性。

如果主应力值超过管道材料的承载范围,管道中使用的材料不能满足要求,就会发生一定的变形,导致管道损坏。

因此,必要的控制措施非常重要。

必须确保管道材料不会发生任何物理变化,并且管道在一定压力下仍能保持有效形状而不受损。

需要根据极限分析条件和弹性分析条件检查主应力。

一次性应力可分为:(1)膜应力,即沿管道横截面均匀分布的应力;(2)一次整体膜应力,影响管道的整体结构;(3)原发性局部膜应力。

一般来说,一次局部膜应力略大于整体膜应力;(4)主要弯曲应力由管道内部压力或其他接地载荷引起。

一次弯曲管道应力是沿管道厚度线性变化的应力。

1.2二次应力二次应力是指管道在外部温度和内部压力的变化下发生热膨胀、冷缩或其他位移的现象,以及在此过程中产生的剪应力和法向应力。

与一次应力相比,二次应力对管道材料的要求更高,需要使用更好的管道材料来应对二次应力对管道的影响。

一般来说,如果管道材料具有良好的塑性,则管道仅在第一次施工荷载下不会受损。

为了提高管道的承载能力,需要结合管道的具体要求,从技术参数的角度进行相应的设计,以防止管道在使用过程中产生过大的二次应力问题。

管道应力分析及计算

管道应力分析及计算

三、管道的柔性设计
3.1、柔性定义及柔性设计的方法和目的 a)定义 b)目的 c)设计方法 d)端点位移考虑 3.2、是否进行详细柔性设计的判别方法 a)应进行详细柔性设计的管道 b)可以不进行详细柔性设计的管道 c)判别式的使用方法与注意事项 3.3、管道的热补偿
三、管道的柔性设计
3.4、应力增大因子 3.5、柔性分析方程 3.6、弹性模量随温度变化效应 3.7、柔性分析的另一规则
五、管道机械专业(应力分析)常用的标准规范
1、GB50316-2000《工业金属管道设计规范》 2、HG/T20645-1998《化工装置管道机械设计规定》 3、SH/T3041-2002《石油化工企业管道柔性设计规范》 4、GB150《钢制压力容器》 5、JB/T8130.1-1999 《恒力弹簧支吊架》 6、JB/T8130.2-1999 《可变弹簧支吊架》 7、GB 50251-2003 《输气管道工程设计规范》 8、GB 50253-2003 《输油管道工程设计规范》 9、ASME/ANSI B31.1 -- Power Piping
10、ASME/ANSI B31.3 Process Piping 11、ASME/ANSI B31.4 Liquid Transmission and
Distribution piping systems 12、ASME/ANSI B31.8 Gas Transmission and Distribution piping systems 13、API610 -- 离心泵 14、NEMA SM23 -- 透平 15、API617 -- 离心式压缩机 16、API618 -- 往复式压缩机 17、API661 -- 空冷器 18、ANSI/B31.1、APIRP520 -- 安全阀、爆破膜

压力管道的强度计算

压力管道的强度计算

压力管道的强度计算1.承受内压管子的强度分析按照应力分类,管道承受压力载荷产生的应力,属于一次薄膜应力。

该应力超过某一限度,将使管道整体变形直至破坏。

承受内压的管子,管壁上任一点的应力状态可以用3个互相垂直的主应力来表示,它们是:沿管壁圆周切线方向的环向应力σθ,平行于管道轴线方向的轴向应力σz,沿管壁直径方向的径向应力σr,如图2.1,设P为管内介质压力,D n为管子内径,S为管子壁厚。

则3个主应力的平均应力表达式为管壁上的3个主应力服从下列关系式:σθ>σz>σr根据最大剪应力强度理论,材料的破坏由最大剪应力引起,当量应力为最大主应力与最小主应力之差,故强度条件为σe=σθ-σr≤[σ]将管壁的应力表达式代入上式,可得理论壁厚公式图2.1 承受内压管壁的应力状态工程上,管子尺寸多由外径D w表示,因此又得昂一个理论壁厚公式2.管子壁厚计算承受内压管子理论壁厚公式,按管子外径确定时为按管子内径确定时为式中:S l——管子理论壁厚,mm;P——管子的设计压力,MPa;D w——管子外径,mm;D n——管子内径,mm;φ——焊缝系数;[σ]t——管子材料在设计温度下的基本许用应力,MPa。

管子理论壁厚,仅是按照强度条件确定的承受内压所需的最小管子壁厚。

它只考虑了内压这个基本载荷,而没有考虑管子由于制造工艺等方面造成其强度削弱的因素,因此它只反映管道正常部位强度没有削弱时的情况。

作为工程上使用的管道壁厚计算公式,还需考虑强度削弱因素。

因此,工程上采用的管子壁厚计算公式为S j=S l+C (2-3)式中:S j——管子计算壁厚,mm;C——管子壁厚附加值,mm。

(1)焊缝系数(φ)焊缝系数φ,是考虑了确定基本许用应力安全系数时未能考虑到的因素。

焊缝系数与管子的结构、焊接工艺、焊缝的检验方法等有关。

根据我国管子制造的现实情况,焊缝系数按下列规定选取:[1]对无缝钢管,φ=1.0;对单面焊接的螺旋线钢管,φ=0.6;对于纵缝焊接钢管,参照《钢制压力容器》的有关标准选取:①双面焊的全焊透对接焊缝:100%无损检测φ=1.0;局部无损检测φ=0.S5。

压力管道应力分析

压力管道应力分析

• • • • • • • • • • •
2、管子壁厚计算(GB 50316) (1)管子计算壁厚ts 承受内压管子计算壁厚公式: ts= PD0 / (2[σ ]tEj+ PY) 式中: ts 管子的计算壁厚, mm; P 管子的设计压力 MPa; D0 管子的外径, mm; Ej 焊接接头系数; [σ ]t 管子材料在设计温度下的许用 应力, MPa。 Y 考虑温差应力影响的系数
• ts= PD0 / (2[σ ]tEj+ PY)
• (3)许用应力[σ ]t (GB 50316 ,P102) • 许用应力的选取要考虑四方面的因素: • 材料、使用状态、厚度范围、设计温度 • (4)焊接接头系数Ej(GB 50316 ,P21) • Ej ≤1.0
3、不同性质的载荷对管道安全的影响有很 大差别 例如: (1)随着管内介质压力的增加,管壁的应 力水平会不断加大,直至破坏,这种状态称 为应力没有自限性。 (2)随着管内温度增加,由于有约束存在, 管壁的应力水平也会加大,但当达到一定程 度时,如材料屈服,由温差产生的应力会逐 渐降下来,这种性质成为应力具有自限性。
• 当管壁的厚度与管直径相比较小时,在半径 方向的挤压应力σ r可以忽略不计,管壁内 只有两个方向的主应力,称为两向应力状态 或平面应力状态,反之,称为三向应力状态 或平面应力状态
• (2)薄壁管与厚壁管 • 当管道外径/内径1.2时,管道称为薄壁管, 应力分布为两向应力状态或平面应力状态。 • 反之称为厚壁管,应力分布为三向应力状态 或平面应变状态。
e
内压折算应力或叫当量应力 操作时,管道器壁的温度
• 2)管道在工作条件下,内压轴向应力和 持续外载荷的验算 • 轴向应力 除了内压外,外载荷如管道重量、 部件重量、支反力也会在轴向产生弯曲应 力与内压轴向应力叠加。 • 强度条件为,最大当量应力不超过材料在 工作温度下的基本许用应力 • σ zhl ≤[σ ]t • 该公式的含义为: • 当以环向应力作为最大应力进行强度设计 后,还应校核与环向应力垂直方向上的轴 向应力是否满足要求,因轴向应力复杂。

压力管道的强度计算..

压力管道的强度计算..

压力管道的强度计算1.承受内压管子的强度分析按照应力分类,管道承受压力载荷产生的应力,属于一次薄膜应力。

该应力超过某一限度,将使管道整体变形直至破坏。

承受内压的管子,管壁上任一点的应力状态可以用3个互相垂直的主应力来表示,它们是:沿管壁圆周切线方向的环向应力σθ,平行于管道轴线方向的轴向应力σz,沿管壁直径方向的径向应力σr,如图2.1,设P为管内介质压力,D n为管子内径,S为管子壁厚。

则3个主应力的平均应力表达式为管壁上的3个主应力服从下列关系式:σθ>σz>σr根据最大剪应力强度理论,材料的破坏由最大剪应力引起,当量应力为最大主应力与最小主应力之差,故强度条件为σe=σθ-σr≤[σ]将管壁的应力表达式代入上式,可得理论壁厚公式图2.1 承受内压管壁的应力状态工程上,管子尺寸多由外径D w表示,因此又得昂一个理论壁厚公式2.管子壁厚计算承受内压管子理论壁厚公式,按管子外径确定时为按管子内径确定时为式中:S l——管子理论壁厚,mm;P——管子的设计压力,MPa;D w——管子外径,mm;D n——管子内径,mm;φ——焊缝系数;[σ]t——管子材料在设计温度下的基本许用应力,MPa。

管子理论壁厚,仅是按照强度条件确定的承受内压所需的最小管子壁厚。

它只考虑了内压这个基本载荷,而没有考虑管子由于制造工艺等方面造成其强度削弱的因素,因此它只反映管道正常部位强度没有削弱时的情况。

作为工程上使用的管道壁厚计算公式,还需考虑强度削弱因素。

因此,工程上采用的管子壁厚计算公式为S j=S l+C (2-3)式中:S j——管子计算壁厚,mm;C——管子壁厚附加值,mm。

(1)焊缝系数(φ)焊缝系数φ,是考虑了确定基本许用应力安全系数时未能考虑到的因素。

焊缝系数与管子的结构、焊接工艺、焊缝的检验方法等有关。

根据我国管子制造的现实情况,焊缝系数按下列规定选取:[1]对无缝钢管,φ=1.0;对单面焊接的螺旋线钢管,φ=0.6;对于纵缝焊接钢管,参照《钢制压力容器》的有关标准选取:①双面焊的全焊透对接焊缝:100%无损检测φ=1.0;局部无损检测φ=0.S5。

压力管道的强度计算

压力管道的强度计算

压力管道的强度计算1.承受内压管子的强度分析按照应力分类,管道承受压力载荷产生的应力,属于一次薄膜应力。

该应力超过某一限度,将使管道整体变形直至破坏。

承受内压的管子,管壁上任一点的应力状态可以用3个互相垂直的主应力来表示,它们是:沿管壁圆周切线方向的环向应力σθ,平行于管道轴线方向的轴向应力σz,沿管壁直径方向的径向应力σr,如图2.1,设P为管内介质压力,D n为管子内径,S为管子壁厚。

则3个主应力的平均应力表达式为管壁上的3个主应力服从下列关系式:σθ>σz>σr根据最大剪应力强度理论,材料的破坏由最大剪应力引起,当量应力为最大主应力与最小主应力之差,故强度条件为σe=σθ-σr≤[σ]将管壁的应力表达式代入上式,可得理论壁厚公式图2.1 承受内压管壁的应力状态工程上,管子尺寸多由外径D w表示,因此又得昂一个理论壁厚公式2.管子壁厚计算承受内压管子理论壁厚公式,按管子外径确定时为按管子内径确定时为式中:S l——管子理论壁厚,mm;P——管子的设计压力,MPa;D w——管子外径,mm;D n——管子内径,mm;φ——焊缝系数;[σ]t——管子材料在设计温度下的基本许用应力,MPa。

管子理论壁厚,仅是按照强度条件确定的承受内压所需的最小管子壁厚。

它只考虑了内压这个基本载荷,而没有考虑管子由于制造工艺等方面造成其强度削弱的因素,因此它只反映管道正常部位强度没有削弱时的情况。

作为工程上使用的管道壁厚计算公式,还需考虑强度削弱因素。

因此,工程上采用的管子壁厚计算公式为S j=S l+C (2-3)式中:S j——管子计算壁厚,mm;C——管子壁厚附加值,mm。

(1)焊缝系数(φ)焊缝系数φ,是考虑了确定基本许用应力安全系数时未能考虑到的因素。

焊缝系数与管子的结构、焊接工艺、焊缝的检验方法等有关。

根据我国管子制造的现实情况,焊缝系数按下列规定选取:[1]对无缝钢管,φ=1.0;对单面焊接的螺旋线钢管,φ=0.6;对于纵缝焊接钢管,参照《钢制压力容器》的有关标准选取:①双面焊的全焊透对接焊缝:100%无损检测φ=1.0;局部无损检测φ=0.S5。

压力管道强度及应力分析

压力管道强度及应力分析

压力管道强度及应力分析压力管道是指承受流体压力作用的管道系统,常用于输送液体或气体。

压力管道的设计必须考虑到管道系统的强度,以确保管道在工作条件下能够安全运行。

强度分析是对管道系统在受压状态下的力学性能进行评估和计算,包括应力分析和应变分析。

压力管道的强度分析主要涉及以下几个方面:1.管道的内压应力分析:管道容易在受到内部压力作用时发生脆性断裂。

内压应力是指管道承受的内部压力产生的应力,应力分布是管道内径和壁厚决定的。

内压应力的计算可以使用薄壁管道的公式,也可以使用粗壁管道的公式,根据实际情况选择适当的公式进行计算。

2.管道的外压应力分析:外压应力是指管道受到外界压力,如土壤或混凝土的压力而产生的应力。

外压应力会降低管道的承载能力,因此在设计时必须考虑外压应力的影响。

外压应力的计算可以通过考虑管道埋深和周围土壤或混凝土的性质来进行。

3.管道的弯曲应力分析:管道经过弯曲时会产生弯曲应力。

弯曲应力的大小与管道的弯曲半径、管道材料的弹性模量以及弯曲角度有关。

弯曲应力的计算可以通过应变能方法或力平衡方法进行。

4.管道的轴向应力分析:管道在拉伸或压缩作用下会产生轴向应力。

轴向应力与管道的拉伸或压缩变形有关,可以通过应变能方法或力平衡方法进行计算。

5.管道的剪切应力分析:管道在复杂受力状态下,如弯曲、拉伸和压缩同时作用时,会产生剪切应力。

剪切应力的计算可以通过静力平衡方程和应变能方法进行。

在进行强度分析时,需要确定管道的材料性质、管道几何尺寸和外界加载条件。

常用的材料性质包括弹性模量、泊松比和屈服强度等。

管道几何尺寸包括管道内径、壁厚和长度等。

外界加载条件包括内部压力、外部压力和温度等。

强度分析的目的是确定管道是否能够安全承受设计条件下的压力载荷,并提供合适的设计指导。

在进行强度分析时,需要进行应力和应变的计算,并与管道材料的极限强度进行比较,以评估管道的安全性。

综上所述,压力管道的强度分析是一个复杂的过程,涉及多个力学参数和设计标准。

压力管道应力分析的内容及特点研究

压力管道应力分析的内容及特点研究

一、管道应力分析方法1.管道静态分析管道静态分析是指管道受静载荷作用下的受力分析,包括重力载荷(管道自身、保温及管道内介质重量)、压力载荷(管道介质压力)、管道偶然载荷(风、浪等作用)及位移载荷(管道热应力及附加移位作用)。

管道静力划分为一次应力、二次应力及偶然应力。

以上三种应力一般称为规范应力。

一次应力:由于压力、重力及其他外力载荷的作用产生的应力,它是平衡外力载荷所需的应力,随外力载荷的增加而增加。

一次应力的特点是无自限性,即当管道内的塑性区扩展达到极限状态,使之变成几何可变机构时,即使外力载荷不再增加,管道仍将产生不可限制的塑性流动,直至破坏。

2.管道动态分析管道动态分析是指管道受动载荷作用下的受力分析,动载荷指随着时间迅速变化的载荷,管道系统不足以瞬间将其分散,产生不平衡载荷,使管道发生运动。

其中包括地震、水锤、气锤、振动、安全阀泄放反力等。

动态分析的内容包括:管道固有频率分析,冲击载荷作用下的管道应力分析,管道强迫振动响应分析,往复压缩机(泵)气(液)柱频率分析及往复压缩机(泵)脉动分析。

往复压缩机(泵)的相关分析是为了防止气柱共振和控制压力脉动,防止造成系统共振,此项工作一般由压缩机(泵)厂家进行计算校核。

管道固有频率分析目的是防止管道系统的共振,管道系统的固有频率往往要避开设备的运行频率以免发生共振,一般而言频率高的管道不易发生振动,使管道固有频率高于某个值,以达到不发生共振的条件。

二、管道应力分析内容1.设备管口载荷评估在设备校核过程中,按校核方法分为静设备和动设备。

对于静设备,当管道的作用力过大时,会造成设备管口变形、法兰泄漏,通常做法是对不同温压等级的设备管口规定相应的许用载荷,分析过程中计算荷载不超过许用荷载。

对于动设备,当管道反力过大时,会造成转动设备转子不对中、转子与定子之间间隙过大、设备振动磨损、噪音过大等问题。

常见的动设备有汽轮机、离心泵、压缩机及透平,其管口校核应遵循相关标准或制造商标准,校核内容相对静设备会更复杂,不仅有管口受力及力矩的校核,还包含进出口的联合校核。

关于压力管道的应力分析

关于压力管道的应力分析

关于压力管道的应力分析【摘要】压力管道的应力问题在管道检验过程中都会涉及到的,由于压力管道应力的分析和计算过程都要求相对高的技术,这对于检验技术人员来说是很难完成的。

因此,本文着重对压力管道应力分析的内容、应力特征、应力分类以及校核准则进行了论述,以便于为分析人员提供了有效的理论依据。

【关键词】压力管道应力分析一次应力二次应力压力管道的应力影响着压力管道在安装后的安全使用,所以进行应力分析是很有必要的,压力管道应力分析的内容相对较多,主要体现在以下几个方面。

2 压力管道应力分析的特征压力管道在应力分析过程中还不够严谨,其中还存在着一些缺陷,其主要原因是因为压力管道应力由历史根源所造成的校核准则存在不足,但压力管道应力分析有着自身的特点,主要体现在以下几个方面:(1)在压力管道的应力分析之中,没有考虑管道的薄膜应力和局部弯曲应力,从而导致一次应力中没有对一次总体薄膜应力、一次局部薄膜应力和一次弯曲应力进行细分;在一次应力校核准则中往往忽视了对一次弯曲应力和一次局部薄膜应力进行校核,而只对一次总体薄膜应力进行了校核。

(2)计算一次应力主要是为了避免管道在安装的时候承受不住压力而塌下来。

计算二次应力是为了防止管道在发生热变形之后是否会出现问题,通过二次应力计算管道是否发生偏移、移位,并防止并排管道所产生的相互影响。

(3)二次应力校核具有着自身的操作方式,最主要是针对其结构的安定性,只需满足结构安定性条件,就可以避免压力管道产生低周疲劳。

(4)一次应力校核主要是校核压力管道的纵向应力,其最主要的特点是不遵循剪应力理论,二次应力校核虽然遵循的是最大剪应力,但其计算应力过程中不会计算管道轴向立,只考虑管道弯矩和扭矩的作用。

3 压力管道的应力分类及校核准则压力管道与压力容器有所不同,对于不同的管道根据管道自身的特点都有着不同的校核准则,由于压力管道的应力分析主要侧重于对管系整体的分析,而压力容器的应力分析主要是对局部进行详细的分析,两者在应力分类的方法和校核准则上都存在着较大的差异。

15.压力管道应力分析详解

15.压力管道应力分析详解

压力管道的强度计算

参数确定
焊缝系数φ

无缝管φ=1.0; 单面焊接的螺旋线钢管φ=0.6; 纵缝焊接钢管:
双面焊的全焊透对接焊缝: 100%无损探伤,φ=1.0; 局部无损探伤,φ=0.85。 单面焊的对接焊缝,沿焊缝根部全长具有垫板: 100%无损探伤,φ=0.9; 局部无损探伤,φ=0.8。
自限性载荷(属静力载荷) 由于管道结构变形受约束所产生的载荷,不直接与外部 载荷平衡,当管道材料塑性较好时,其最大值限定在一定范 围内,不会无限制增大的载荷。 如管道温度变化产生的热载荷;结构曲率发生突变处附 近的边缘应力等 非自限性载荷(属静力载荷) 直接由外部作用的外力载荷。如介质压力、管道自重等

安定性
结构在载荷(包括热负荷)反复变化的过程中,不再发生 塑性变形的连续循环

安定性准则
由于塑性材料具有二次应力的局部性和自限性,控制结构 在运行中不发生疲劳破坏,使结构保持安定,而限定二次
应力范围的方法

一般压力管道应力许用值的限定
一次应力的限定

内压作用下 t 内压轴向力和持续外载作用下 zhl r 二次应力的限定 t 一次应力加二次应力 1.25 f
一次总体薄膜应力(Pm)
它是管道的基本应力,分布在整个管道上,在管道的截面 上是均匀分布的。如内压力引起的管道环向应力和轴向应力 一次弯曲应力(Pb) 这个应力在管道的很大区域内分布,在管道截面上的分布是 沿厚度变化的,呈线性分布。这种应力达到屈服时,只是局部 屈服,如果继续加载,应力在管道截面上的分布重新调整,允 许比一次总体薄膜应力具有较高的许用应力。 如由于管道的自重和机械载荷引起管道的弯曲变形产生的 弯曲应力等 一次局部薄膜应力(Pl) 由于压力或机械载荷引起的分布在局部范围内的薄膜应力。 这种应力达到屈服时,由于材料的塑性变形,也只引起局部屈 服,周围仍受到弹性材料的约束,允许在局部区域内产生屈服。 如管道支架处或管道接管连接处产生的应力

浅谈压力管道应力分析及计算

浅谈压力管道应力分析及计算

质量及 应力的大小直接影响到工程的质量及 安全事故的发 生率,应 力的分析与计算也显得十分重要 。压力管道应力可分为一次应力 、二次应 力及峰值应 力,三种类型 ,各种类型应力的特 点各有 不同,可以通过科 学的方法如 C A E S A RI 1 分析 系统及复杂的公式 多次计算,得 出准确数值。
有 以下 几 个特 点 即长 度极 大 ,压 力荷 载复 杂 ,性 质 不稳 定 ,且受 自然 条 件影 响较 多 ,如 地质 压 力 、风 雪天气 、地 震 塌陷 等 。各项 安全 指 标 的测量 准确度 不高 ,维护 难度 大。
用 力时, 二次 应力计 算公式, 1 I 1 . 2 5 [ o - ] + 『 a r 1 ) . . 1 中, f 为修 正系 数,

压 力 管道 的特 点
压 力管道 在 工作 过 程 中所承 担 的重 任和 性质 的特 殊性 ,使其 呈 现 出与一 般管 道 与压 力容 器 完全 不 同的特 性 ,按 照使 用领 域来 划分 ,压 力 管道 了分 为 一般 工业 压 力管道 和 大跨 度 的公 用管 道 ,具体 分 以下 几
关 报告如 下 :

晰 的国 际化标 准作 为 参考 等优 点 ,成 为计算 压 力管道 应 力的 是首 选软 件 。其可 以 计算诸 多 种类 的应 力 ,包括 地 震荷载 、瞬变 流冲 击荷 载如 安全 阀 自动跳 闸或 阀门在 特殊 条件 下 的瞬 间开 启或关 闭的冲 击力 等一 次应 力 、热胀 冷缩 的热 力荷载 和定 点位 置 移动 荷载 的二 次应 力 、管道 的支 吊架所承 受 的压力 、压力管 道对连 接的机 械设 备限制 力等 。
2 . 手动公 式计 算 在 经典 力学 原理 的基 础 上推 理 出的一 套应 力 计算公 式 ,可 将 其运
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浅谈压力管道应力分析及计算
摘要:压力管道在工业生产或社会建设中被越来越广泛的使用,以其自身的特殊性和有针对性的特点,成为工业社会的一个重要课题。

管道质量及应力的大小直接影响到工程的质量及安全事故的发生率,应力的分析与计算也显得十分重要。

压力管道应力可分为一次应力、二次应力及峰值应力,三种类型,各种类型应力的特点各有不同,可以通过科学的方法如CAESAR II分析系统及复杂的公式多次计算,得出准确数值。

关键词:压力管道应力分析计算
随着我国现代化技术的革新,工业蓬勃发展,国家大力支持公共设施建设项目,油田建设、大兴水利、天然气工程、南水北调工程等,压力管道成为最常见设备之一,其承担着输送易燃易爆能源、放射性及高腐蚀性物资的重大任务。

压力管道的安全与质量问题也成为从设计、安装、维护到使用等各个环所有相关部门都关注的重点防范问题,但其生产和使用过受到各种荷载因素的影响,加之自身应力的原因,使得压力管道事故频频发生,成为重大公共安全隐患,其也是国家相关安全监督管理项目之一[1]。

压力管道的应力分析与计算成为各种建设项的必要课题。

现对当前常用的压力管道应力进行分析及计算,相关报告如下:
一、压力管道的特点
压力管道在工作过程中所承担的重任和性质的特殊性,使其呈现出与一般管道与压力容器完全不同的特性,按照使用领域来划分,压力管道了分为一般工业压力管道和大跨度的公用管道,具体分以下几点:①工业压力管道构建出现代工业化生产体系,其特点是连接点多,管道的弯曲较多,分布密度大。

各个车间职能不同,使用的压力管道材料、规格要求各不一样,降低了整个系统的均衡质量。

生产过程中影响荷载的因素众多,如温度、运送物资质量、密度、化学性质等[2]。

②大跨度公用管道该类工程均跨越地理、气候各不一样的省市,有以下几个特点即长度极大,压力荷载复杂,性质不稳定,且受自然条件影响较多,如地质压力、风雪天气、地震塌陷等。

各项安全指标的测量准确度不高,维护难度大。

二、压力管道应力的分类
在使用过程中,压力管道会受到各种荷载的影响,发生弯曲、变形、断裂等现象,也使得压力管道的安全管理问题难度很大,也直接影响到压力管道的使用寿命。

因此压力管道的应力分析十分必要。

一般压力管道应力分为以下三种:①一次应力一次应力是压力管道在对抗外在载荷时所必须的内部应力,其随着外力的增大而增大,且始终保持微妙的平衡关系,具有非自限性的特点。

一次应力按照分布状况又可分为三个类型:一次整体薄膜应力、一次局部薄膜应力、一次弯曲应力;②二次应力二次应力(Q)与外部荷载没有直接关系,而是自身结构上的各个部件的组合、连接,互相作用变形产生的正应力。

在管道受到外部荷
载时,塑性变化缓冲本身应力。

二次应力不会直接损伤管道,而是经过一段时间反复交替且不稳定量的荷载压力下,导致管道老化、脆弱。

鉴于该性质,二次应力的检测需在一段时间内测量与计算,才能获得准确值[3]。

③峰值应力当管道局部构件出现集中热荷载,甚至达到一次应力或二次应力的荷载量,而管道并未发生位移、形变等反应,管道对于热荷载的瞬间疲劳和损伤,是从根本上损伤了管道的物理及化学性质,对管道是致命的、不可逆的损伤[4]。

三、应力的计算
在计算压力管道应力值方面,方法众多,大致可以分为如软件计算与手动公式计算两大来类:
1.软件计算
现代先进的测算系统中,常用的软件有AutoPIPE 、CAESAR II等,CAESAR II以其简便的操作,较高的准确率,还可给给予用户清晰的国际化标准作为参考等优点,成为计算压力管道应力的是首选软件。

其可以计算诸多种类的应力,包括地震荷载、瞬变流冲击荷载如安全阀自动跳闸或阀门在特殊条件下的瞬间开启或关闭的冲击力等一次应力、热胀冷缩的热力荷载和定点位置移动荷载的二次应力、管道的支吊架所承受的压力、压力管道对连接的机械设备限制力等[5]。

2.手动公式计算
在经典力学原理的基础上推理出的一套应力计算公式,可将其运用于实际应力值计算中,根据作用力的不同类型,计算公式也有所区别,如压力管道的应力许用值的限定中的一次应力的限定值为:内力作用下;内压轴向力与连续的外部力作用下;二次应力的限定值可分为一次应力加二次应力;单独二次应力;当内压轴向力和连续外部作用力小于内压作用力时,二次应力计算公式中,f 为修正系数,交变次数N的值小于7000时,相应的f值为1;当N的值超过7000时,则f的值为0.9。

承受内压圆筒应力分布平均值的计算式为
,。

由最大剪力应用理论可以推出压力管道壁的厚度计算公式:根据外径来计算根据内径来计算,若在必要条件下,需考虑压力管道在产生负偏差和被腐蚀等情况,应在一定程度上放宽数值,压力的管道壁的厚度应为。

因压力管道的受力情况复杂,且自身架构材质等不同,计算公式也十分繁琐,且需要多次计算才能得出准确值,如火力电厂锅炉压力管道应力的具体公式为:
该公式中αeq表示内压折算应力(MPa);P表示设计压力(MPa);Do表示管子外径(mm)S表示管子实测最小壁厚(mm);Y表示温度对计算管子壁厚公式的修正系数;α表示考虑腐蚀、磨损和机械强度的附加厚度(mm);η表示许用应力的修正系数。

对计算出的一次应力、二次应力等进行判别。

一、
二次应力值应小于规定值;管道对设备管口的推力和力矩应在允许的范围内;管道的最大位移量应能满足管道布置的要求。

参考文献
[1]罗宇,张春迎,陈万里.探讨化工设计中的管道应力分析[J].科技信息.2010(11):775-748.
[2]周小兵,蔡晓峰,阳东升,何旭东,包俊.弹簧支吊架在管道布置和应力分析中的相关注意事项[J].化肥设计.2010(06):29-31.
[3]唐永进.压力管道应力分析的内容及特点[J].石油化工设计.2008(02):20-24.
[4]姚志华,张光科.压力管道洪水损坏施工修复设计研究[J].吉林水利.2011(04):15-17.
[5]曹宇光,孔谦,田凯,张卿,张杰.基于有限元模拟的压力管道轴向裂纹应力强度因子计算[J].石油矿场机械.2010(08):1-6.。

相关文档
最新文档