第24章圆导学案[人教版初三九年级] 24.1.3弧、弦、圆心角
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
马家砭中学导学稿
科
目 数 学 课题 24.4.4弧、弦、圆心角
授 课 时 间 10.24 设计人 韩 伟
课型
新授
班 级
九年级
姓 名
学 习 目 标
掌握圆心角的概念,掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个量就相等,及其它们在解题中的应用
学法指导 归纳、总结相结合,
一、温故知新
(学生活动)请同学们完成下题.
已知△OAB ,如图所示,作出绕O 点旋转30°、45°、60°的图形.
二、自学指导自学课本P82---P 83思考下列问题:
1、举例说明什么是圆心角?
2、教材P82探究中,通过旋转∠AOB ,试写出你发现的哪些等量关系?为什么?
3、在圆心角的性质中定理中,为什么要说“同圆或等圆”?能不能去掉?
4、由探究得到的定理及结论是什么?
在同圆或等圆中,相等的圆心角所对的弧 ,所对的弦 。
在同圆或等圆中,如果两条弧相等,那么它们所对的 相等, 所对的 也相等. 在同圆或等圆中,如果两条弦相等,那么它们所对的 相等, 所对的 也相等.
三、典型拓展例题:
.
2.如图,在⊙O 中,AB 、CD 是两条弦,OE ⊥AB ,OF ⊥CD ,垂足分别为EF .
(1)如果∠AOB=∠COD ,那么OE 与OF 的大小有什么关系?为什么? (2)如果OE=OF ,那么与
的大小有什么关系?AB 与CD 的大小有什么关系? 为
什么?∠AOB 与∠COD 呢?
B
A
O
三.当堂检测
1.如果两个圆心角相等,那么( )
A.这两个圆心角所对的弦相等; B.这两个圆心角所对的弧相等
C.这两个圆心角所对的弦的弦心距相等; D.以上说法都不对
2.交通工具上的轮子都是做圆的,这是运用了圆的性质中的_________.
3.一条弦长恰好为半径长,则此弦所对的弧是半圆的_________.
4.如图2,AB和DE是⊙O的直径,弦AC∥DE,若弦BE=3,则弦CE=________.
5.如图,∠AOB=90°,C、D是AB三等分点,AB分别交OC、OD于点E、F,求证:AE=BF=CD.
四、课堂小结:
1、你还需要老师为你解决那些问题?
_________________________________________________
2、你对同学有那些温馨的提示?
____________________________________________
五、巩固练习
【拓展创新】如图1和图2,MN是⊙O的直径,弦AB、CD 相交于MN 上的一点P, ∠APM=∠CPM.
(1)由以上条件,你认为AB和CD大小关系是什么,请说明理由.
(2)若交点P在⊙O的外部,上述结论是否成立?若成立,加以证明;若不成立,请说
明理由.
图一图二
O
B
A
C
E
D
F
B
A C
E
D
P
O
N
M
F
B
A
C
E
D
P
N
M
F