函数的应用 教学设计

合集下载

一次函数的应用教学设计(通用2024)

一次函数的应用教学设计(通用2024)

03
典型应用案例解析
直线运动问题建模
01
02
03
匀速直线运动
通过一次函数描述物体的 位移与时间的关系,理解 速度作为斜率的物理意义。
变速直线运动
引入加速度概念,通过一 次函数表示速度与时间的 关系,进而分析位移、速 度、加速度之间的关系。
追及与相遇问题
运用一次函数模型解决两 物体在同一直线上运动的 追及和相遇问题,理解相 对速度的概念。
包括求解一次函数的问题、分析实际问题的数学模型等。
02 03
明确作业要求
在布置作业时,教师应该明确作业的要求,包括完成作业的时间、提交 作业的方式等。同时,教师也可以给出一些提示或建议,帮助学生更好 地完成作业。
及时批改和反馈
最后,教师应该及时批改学生的作业,并给出反馈意见。对于学生在作 业中出现的问题,教师应该及时指出并给出正确的指导,以便学生及时 纠正错误并加深对一次函数应用的理解。
斜率、截距实际意义
斜率实际意义
斜率 $k$ 表示了函数图像的倾斜程度,即函数值随自变量变化的快慢。在实际问题中,斜率往往代表了某种比例 或速率,如速度、加速度、增长率等。
截距实际意义
截距 $b$ 表示了函数图像与 $y$ 轴交点的纵坐标。在实际问题中,截距通常代表了某种初始状态或基准值,如 初始速度、初始高度、基准温度等。通过截距,我们可以了解函数在自变量为0时的取值情况。
规律总结
让学生通过实践操作,总结一次函数 图像的特点和性质,如斜率、截距对 图像的影响等。
操作步骤
指导学生输入一次函数表达式,绘制 出函数图像,并通过调整参数观察图 像变化规律。
成果展示:各组汇报探究成果,互相评价交流
汇报内容 每个小组选派一名代表,汇报本组的讨论成果和实践操作 结果。

一次函数的应用(第2 课时) 教学设计

一次函数的应用(第2 课时) 教学设计

一次函数的应用(第2课时)
一、教学目标
(一)知识与技能:1.理解一次函数与一元-次方程的关系;2.会用函数的方法求解一元一次方程.
(二)过程与方法:经历探索一元一次方程与一次函数的内在联系的过程,体会数形结合的数学思想.
(三)情感态度与价值观:通过教学活动,让学生学会从不同角度认识事物本质的方法,建立自信心,提高学生自主合作探究学习的意识和能力,激发学生学习的兴趣,让学生体验数学的价值.
二、教学重点、难点
重点:1.对一次函数与一元-次方程的关系的理解;2.应用函数求解一元一次方程.
难点:对一次函数与一元一次方程的关系的理解.
三、教学过程。

三角函数的定义及应用教学教案(优秀4篇)

三角函数的定义及应用教学教案(优秀4篇)

三角函数的定义及应用教学教案(优秀4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!三角函数的定义及应用教学教案(优秀4篇)EXcel中经常需要使用到三角函数进行计算,三角函数具体该如何使用呢?读书破万卷下笔如有神,以下内容是本店铺为您带来的4篇《三角函数的定义及应用教学教案》,希望朋友们参阅后能够文思泉涌。

函数的应用(一)教学设计

函数的应用(一)教学设计

3.4 函数的应用(一)(人教A版普通高中教科书数学必修第一册第三章)一、教学目标1. 能够帮助学生了解函数模型(如一次函数、二次函数、幂函数、分段函数等函数模型)的广泛应用.2. 帮助学生理解函数模型是描述客观世界中变量关系和规律的重要数学语言和工具.3. 引导学生掌握利用常见的函数模型解决一些简单实际问题的过程与方法.二、教学重难点1.引导学生从具体实例中学会建立函数模型.2.使学生能够利用给定的函数模型或建立确定的函数模型解决实际问题.三、教学过程1.创设情境,引发思考【实际情境】随着经济和社会的发展,汽车已逐步成为人们外出的代步工具.下面是某地一汽车销售公司对近三年的汽车销售量的统计表:43万辆汽车的远大目标,经过全体员工的共同努力,2021年实际销售44万辆,圆满完成销售目标.问题:(1)在实际生产生活中,对已收集到的样本数据常采用什么方式获取直观信息?(2)如果我们分别将2018,2019,2020,2021年定义为第一、二、三、四年,现在有两个函数模型:二次函数型f(x)=ax2+bx+c(a≠0),一次函数模型g(x)=ax+b(a≠0),哪个模型能更好地反映该公司年销量y与第x 年的关系?(3)依照目前的形势分析,你能预测一下2022年,该公司预销售多少辆汽车吗?【预设的答案】(1)建立函数模型.(2)y=x2+7x(3)2022年,该公司预销售60万辆汽车.【设计意图】通过一个实际应用问题,让学生体会函数模型在实际生活中的重要作用,它是描述客观世界中变量关系和规律的重要数学语言和工具.2.深入思考,研究不同函数模型的应用 【数学情境2】 问题1:某厂日生产文具盒的总成本y (元)与日产量x (套)之间的关系为y =6x +30 000.而出厂价格为每套12元,要使该厂不亏本,至少日生产文具盒?【预设的答案】因利润z =12x -(6x +30 000),所以z =6x -30 000,由z ≥0解得x ≥5 000,故至少日生产文具盒5 000套.【设计意图】这是一个一次函数模型的应用,让学生学会利用一次函数模型解决最值问题。

2024春新教材高中数学3.4函数的应用(一)教学设计新人教A版必修第一册

2024春新教材高中数学3.4函数的应用(一)教学设计新人教A版必修第一册
(3)实验法:在教学过程中,教师引导学生利用计算机软件绘制函数图像,观察函数2.教学手段
(1)多媒体设备:教师利用多媒体课件,生动形象地展示函数的性质和图像,激发学生的学习兴趣,提高教学效果。
(2)教学软件:教师运用教学软件,如数学建模软件、函数图像绘制工具等,辅助教学,使学生更好地理解函数的应用。
核心素养目标分析
本节课的核心素养目标主要围绕数学抽象、数学建模、数学运算、直观想象四个方面展开。
首先,通过实际问题引入函数模型,培养学生从复杂问题中抽象出函数关系的能力,即数学抽象素养。学生需要能够识别实际问题中的数量关系,自主构建函数模型,从而培养其抽象思维能力。
其次,通过对实际问题进行数学建模,让学生学会如何用函数来描述现实世界中的变化规律,培养学生的数学建模素养。学生需要能够将现实问题转化为数学问题,运用函数理论知识进行分析,进而提高其解决实际问题的能力。
(3)学生可以利用在线函数图像绘制工具,自主探索函数的性质和变化规律,加深对函数概念的理解。
(4)建议学生学习一些数学软件的使用方法,如MATLAB、Python等,掌握这些软件在函数分析和应用方面的功能,提高自己的实际问题解决能力。
内容逻辑关系
①函数应用的基本概念:
-重点词汇:函数、自变量、因变量、函数值、定义域、值域等。
选择几个典型的函数应用案例进行分析。
详细介绍每个案例的背景、特点和意义,让学生全面了解函数应用的多样性或复杂性。
引导学生思考这些案例对实际生活或学习的影响,以及如何应用函数解决实际问题。
4.学生小组讨论(10分钟)
目标:培养学生的合作能力和解决问题的能力。
过程:
将学生分成若干小组,每组选择一个与函数应用相关的主题进行深入讨论。

函数的实际应用举例教学设计

函数的实际应用举例教学设计

函数的实际应用举例教学设计教学设计:函数的实际应用教学目标:1.了解函数的实际应用领域和重要性;2.掌握函数在实际问题中的应用方法;3.培养学生的实际问题解决能力。

教学内容:1.函数的实际应用概述;2.函数在数学、科学、工程、经济等领域中的具体应用;3.使用函数解决实际问题的思路和方法。

教学过程:第一步:导入1.引入一个实际问题的例子,例如求一个铁圆柱的体积;2.引导学生思考如何用数学知识来解决这个问题。

第二步:课堂讲解1.介绍函数的概念和作用;2.列举函数在数学、科学、工程、经济等领域中的重要作用;3.详细介绍函数在各个领域中的具体应用,如数学中的函数图像、科学中的物理模型、工程中的计算模拟等。

第三步:小组讨论1.将学生分成小组,每个小组选择一个具体的实际问题;2.让学生讨论在解决这个问题中如何使用函数,并列出解决问题的思路和方法。

第四步:学生展示1.每个小组派代表上台展示他们选择的实际问题和解决方法;2.其他小组提问并讨论解决方法的合理性。

第五步:实际操作1.指导学生使用函数解决一个实际问题;2.学生在电脑上编写程序,实现函数的具体应用;3.学生互相交流和比较结果,讨论解决问题的有效性和可行性。

第六步:总结归纳1.让学生总结函数的实际应用领域和重要性;2.引导学生思考如何将函数的实际应用与日常生活结合起来;3.鼓励学生提出其他可能的实际应用领域和问题。

第七步:作业布置1.要求学生用函数解决一个与自己感兴趣的实际问题,并写出解决步骤和思路;2.鼓励学生展示自己的作品,并与他人分享自己的思考和经验。

教学评价:1.观察学生在小组讨论中的参与程度和思考能力;2.检查学生在实际操作中的程序编写和问题解决能力;3.回顾学生的作业,评价其解决实际问题的思路和方法是否合理。

教学延伸:1.组织学生进行更复杂的实际问题解决实践,培养学生的创新能力;2.引导学生进一步学习与函数相关的知识,如函数的导数和积分等;3.鼓励学生参与数学建模比赛或科学竞赛,展示自己的实际问题解决能力。

九年级数学上册《二次函数的应用》教案、教学设计

九年级数学上册《二次函数的应用》教案、教学设计
2.利用多媒体和实物展示,帮助学生形象地理解二次函数的图像与性质。
-通过动画展示二次函数图像的平移、伸缩等变换,使学生直观地感受图像的性质。
3.设计具有梯度的问题,引导学生逐步深入地掌握二次函数的知识。
-从简单的二次函数图像识别,到求解实际问题中的二次函数,逐步提高问题的难度。
4.采用小组合作、讨论交流的学习方式,促进学生之间的思维碰撞,共同解决难题。
5.学会运用二次函数的知识,解决生活中的实际问题,提高数学应用能力。
(二)过程与方法
在本章节的学习过程中,学生将通过以下方法培养数学思维与解决问题的能力:
1.通过小组合作、讨论交流,培养学生的合作意识和团队精神。
2.利用数形结合的方法,引导学生观察、分析二次函数的图像,培养学生直观想象和逻辑推理能力。
5.反思与总结:
-请同学们在作业本上写下本节课的学习心得,包括对二次函数的理解、学习过程中的困惑以及解题方法的总结。
-教师在批改作业时,应及时给予反馈,鼓励学生持续反思,不断提高。
4.通过小组合作,培养学生互相尊重、团结协作的品质,增强集体荣誉感。
5.引导学生认识到数学知识在实际生活中的重要性,培养学生的社会责任感和使命感。
二、学情分析
九年级的学生已经具备了一定的数学基础,掌握了线性方程、不等式等知识,对于函数的概念也有初步的理解。在此基础上,学生对二次函数的学习将面临以下挑战:
-完成课后作业中的基础题,旨在让学生通过实际操作,加深对二次函数图像特征的理解。
2.提高作业:
-选做课本第chapter页的提高题,涉及二次函数在实际问题中的应用,如最值问题、面积计算等,以提升学生解决问题的能力。
-设计一道综合性的应用题,要求学生运用本节课所学知识,结合生活实际,解决实际问题。

人教a版高中数学必修一函数的应用(一)教学设计

人教a版高中数学必修一函数的应用(一)教学设计

人教a版高中数学必修一函数的应用(一)教学设计课程名称:高中数学必修一-函数的应用(一)适用对象:高中一年级学生课时数:8课时教学目标:1.理解函数的概念及其应用领域;2.掌握函数的应用方法,解决有关函数的实际问题;3.培养学生解决实际问题的数学建模能力;4.培养学生合作学习和探究精神。

教学重点:1.函数的概念及其应用领域;2.函数应用问题的转化和解决方法。

教学难点:1.实际问题的数学建模,将问题转化为函数应用问题;2.函数应用问题的解决方法及其灵活运用。

教学准备:1.教师准备:教学课件、教学素材、实际问题应用案例;2.学生准备:教材、笔、纸等。

教学过程:第一课时:函数的概念及其应用1.导入新课:教师出示一张世界各国人均寿命表格,引导学生思考:为什么有些国家的人均寿命较短而有些国家的人均寿命较长?这背后是否存在着某种规律或关系?2.介绍函数的概念:-教师简要介绍函数的概念,引导学生了解自变量、因变量和函数值的概念;-学生展示函数的图象,让学生感受函数与图象之间的关系。

3.探究函数的应用领域:-教师列举一些函数的应用领域,如物理学中的速度函数、经济学中的利润函数、人口统计学中的增长函数等;-学生小组讨论一个他们感兴趣的应用领域,并展示出来。

第二课时:函数应用问题的转化1.复习函数的概念与应用领域:老师复习第一课时的内容,让学生能够回答与函数相关的问题。

2.引入实际问题:教师提供一个实际问题,如某电商公司销售额与广告费用的关系问题,带领学生思考如何用函数来描述与解决这个问题。

3.讨论与转化:学生自由讨论如何将实际问题转化为函数应用问题;教师引导学生讨论并总结出问题转化的关键点。

第三课时:函数应用问题的解决方法1.引导学生思考解决问题的方法:教师提问:如何找到函数的解析式?如何求解函数的最值?如何解决在一定条件下的函数问题?2.示范解决实际问题:教师提供一个实际问题,带领学生使用已学方法解决;学生分组完成解决问题的过程。

《二次函数的应用2》教学设计

《二次函数的应用2》教学设计

《二次函数的应用2》教学设计
一、教学内容及内容解析
分析实际变量中的二次函数的关系,运用二次函数求出最大(小)值问题.二、教学目标
1.知识与技能:经历探索销售中最大利润等问题的过程,体会用二次函数解决最优化问题的过程,并感受数学的应用价值.
2.过程与方法:能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值,发展解决问题的能力.
3.情感、态度与价值观:经历销售中最大利润问题的探究过程,发展学生运用数学知识解决实际问题的能力,培养不怕困难的品质,发展合作意识和科学精神.三、教学问题诊断分析
根据教学目标确定重难点如下:
重点:探索销售中最大利润问题,能够分析和表示实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题中的最大(小)值,发展解决问题的能力.
难点:能正确理解题意,找准数量关系,运用二次函数的知识解决实际问题.四、教学过程设计(脚本)。

函数的应用教案二

函数的应用教案二

函数的应用教案二《函数的应用》教案12教学目标:利用数形结合的数学思想分析问题解决问题。

利用已有二次函数的知识经验,自主进行探究和合作学习,解决情境中的数学问题,初步形成数学建模能力,解决一些简单的实际问题。

在探索中体验数学来源于生活并运用于生活,感悟二次函数中数形结合的美,激发学生学习数学的兴趣,通过合作学习获得成功,树立自信心。

教学重点和难点:运用数形结合的思想方法进行解二次函数,这是重点也是难点。

教学过程:(一)引入:分组复习旧知。

探索:从二次函数y=x2+4x+3在直角坐标系中的图象中,你能得到哪些信息?可引导学生从几个方面进行讨论:(1)如何画图(2)顶点、图象与坐标轴的交点(3)所形成的三角形以及四边形的面积(4)对称轴从上面的问题导入今天的课题二次函数中的图象与性质。

(二)新授:1、再探索:二次函数y=x2+4x+3图象上找一点,使形成的图形面积与已知图形面积有数量关系。

例如:抛物线y=x2+4x+3的顶点为点a,且与x轴交于点b、c;在抛物线上求一点e使sbce= sabc。

再探索:在抛物线y=x2+4x+3上找一点f,使bce与bcd 全等。

再探索:在抛物线y=x2+4x+3上找一点m,使bom与abc 相似。

2、让同学讨论:从已知条件如何求二次函数的解析式。

例如:已知一抛物线的顶点坐标是c(2,1)且与x轴交于点a、点b,已知sabc=3,求抛物线的解析式。

(三)提高练习根据我们学校人人皆知的`船模特色项目设计了这样一个情境:让班级中的上科院小院士来简要介绍学校船模组的情况以及在绘制船模图纸时也常用到抛物线的知识的情况,再出题:船身的龙骨是近似抛物线型,船身的最大长度为48cm,且高度为12cm。

求此船龙骨的抛物线的解析式。

让学生在练习中体会二次函数的图象与性质在解题中的作用。

(四)让学生讨论小结(略)(五)作业布置1、在直角坐标平面内,点o为坐标原点,二次函数y=x2+(k—5)x—(k+4)的图象交x轴于点a(x1,0)、b (x2,0)且(x1+1)(x2+1)=—8。

高中物理函数应用教案全册

高中物理函数应用教案全册

高中物理函数应用教案全册
第一课:引言
目标:了解物理函数应用的重要性和意义。

第二课:函数的概念
目标:学习函数的基本概念,了解函数的定义和性质。

第三课:函数的图像
目标:学习如何根据函数的相关信息绘制函数的图像,掌握函数图像的基本特点。

第四课:函数的变化
目标:学习函数的变化规律,了解函数的增减性、奇偶性等性质。

第五课:函数的应用
目标:探讨函数在物理问题中的应用,学习如何利用函数解决实际问题。

第六课:函数的求导
目标:介绍函数的求导概念,学习如何求函数的导数。

第七课:函数的积分
目标:介绍函数的积分概念,学习如何求函数的不定积分。

第八课:函数的微分方程
目标:学习如何利用微分方程描述物理现象,探讨微分方程在物理问题中的应用。

第九课:复习与总结
目标:复习本册课程内容,总结所学知识,并进行综合应用练习。

第十课:考试与评估
目标:进行期末考试,评估学生对物理函数应用的掌握程度。

通过以上教案设计,学生可以系统地学习和掌握物理函数应用的相关知识,提高解决实际问题的能力和水平,为将来的学习和工作打下坚实的基础。

高中一年级上学期数学《函数的应用》教学设计

高中一年级上学期数学《函数的应用》教学设计

《函数的应用(一)》教学设计一、内容和内容解析1.内容例1是《3.1.2函数的表示法》中例8的延续,本堂课借助例8的纳税背景,用函数建立数学模型解决一系列层层递进、环环相扣的实际问题。

2.内容解析函数模型是描述客观世界中变量关系和规律的重要数学语言和工具。

本节课是函数模型应用的第1课时,是在学生学习了函数的概念和性质,学习了一次函数、二次函数、反比例函数、幂函数后的第一次综合应用。

结合3.1.2中例8的税收背景,对情景对话中的问题进行分析,建立函数模型,利用函数的性质,解决实际问题。

本节课的学习,是对前面学习过的函数有关知识的综合应用,同时让学生体会建立数学模型解决实际问题的一般过程。

在此过程中,激发应用数学的意识,逐步形成分析问题、解决问题的能力,提升数学抽象、数学运算、数学建模等素养。

3.教学重难点将实际问题中的量抽象成数学中的变量,并找到变量之间的关系,初步感受建立数学模型解决实际问题的一般过程。

二、目标和目标解析1.目标能将具体的实际问题化归为函数问题,能建立函数解析式、分析函数性质,并利用函数图象解决实际问题,提升数学抽象、数学建模等素养。

2.目标解析达成上述目标的标志是:(1)能指出实际问题中的数量关系,辨别函数模型,为将实际问题抽象为数学问题化归为函数模型作准备;(2)利用应纳税所得额的算法和个税计算公式,求出小王的个税税额;(3)利用综合所得收入直接求出小王的个税税额;(4)归纳出建立函数模型解决实际问题的基本过程。

三、教学问题诊断分析首先,学生在本节课之前已经结合实例学习了函数的概念、图象和性质,并应用它们解决学科内的一些问题和一些简单的实际问题。

但是面对较复杂的实际问题,如何将其转化为数学问题,特别是如何选择函数模型来刻画实际问题,大多数学生既缺乏这方面的经验,也缺乏数学抽象的能力。

教学时可以多从两个方面帮助学生克服困难:一是根据实际问题的条件建立函数关系,从而将实际问题抽象为数学问题;二是从数和形出发,定性和定量地分析实际问题从而解决实际问题。

三角函数的定义及应用教学教案【优秀4篇】

三角函数的定义及应用教学教案【优秀4篇】

三角函数的定义及应用教学教案【优秀4篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、应急预案、演讲致辞、合同协议、规章制度、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, emergency plans, speeches, contract agreements, rules and regulations, documents, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!三角函数的定义及应用教学教案【优秀4篇】EXcel中经常需要使用到三角函数进行计算,三角函数具体该如何使用呢?它山之石可以攻玉,以下内容是本店铺为您带来的4篇《三角函数的定义及应用教学教案》,如果对您有一些参考与帮助,请分享给最好的朋友。

九年级数学下册《二次函数的应用》教案、教学设计

九年级数学下册《二次函数的应用》教案、教学设计
(2)设计一些综合性的题目,让学生运用二次函数的顶点式、交点式进行求解,提高学生的问题解决能力。
3.拓展作业:
(1)针对优秀生,布置一些具有挑战性的题目,如研究二次函数图像的变换规律、探讨二次方程与二次不等式之间的关系等。
(2)鼓励学生利用网络、书籍等资源,了解二次函数在其他学科领域的应用,拓宽知识视野。
(三)情感态度与价值观
在本章节的教学中,学生将形成以下情感态度与价值观:
1.培养学生对数学学习的兴趣,激发他们探索数学问题的热情,增强自信心和自主学习的意识。
2.通过解决实际生活中的问题,使学生感受到数学与现实生活的紧密联系,认识数学的价值,提高学习的积极性。
3.培养学生的团队合作意识,让他们在交流、互助中学会尊重他人,培养良好的人际沟通能力。
2.运用问题驱动法,设计具有挑战性的问题和实际案例,激发学生的兴趣和求知欲,培养其独立思考、合作交流的能力。
3.利用数形结合的方法,结合图像和解析式,帮助学生形象地理解二次函数的几何意义,提高解决问题的直观感知能力。
4.通过分类讨论、逐步推进的解题策略,培养学生的逻辑思维和条理性。
5.组织课堂讨论和小组活动,鼓励学生分享解题心得,提高表达和沟通能力。
九年级数学下册《二次函数的应用》教案、教学设计
一、教学目标
(一)知识与技能
在本章节《二次函数的应用》的教学中,学生将掌握以下知识与技能:
1.理解二次函数的定义及其图像特点,能够识别并写出一般形式的二次函数表达式。
2.学会运用二次函数的顶点式、交点式等不同形式进行问题求解,掌握求解二次方程的方法。
3.能够利用二次函数解决实际生活中的问题,如最值问题、范围问题等,并能够解释其几何意义。
4.掌握二次函数与一元二次方程、不等式之间的关系,能够进行简单的综合应用。

3 4函数的应用(一) 教学设计 高中数学人教A版(2019)必修第一册

3 4函数的应用(一) 教学设计  高中数学人教A版(2019)必修第一册

《函数的应用(一)》教学设计0.x1)设小王的专项扣除比例、专项附加扣依法确定的其他扣除金额与全年综合所得收入额为x(单位:元),应缴纳综合所得个税税额为146700x时,税所得额t关于综合所得收入额0,0146700,117360,xx x-寻找y关于0,0146700,117360,x x x -3.1.2例8的解析式③,可得:146700x 时,146700191700x <时,36 000t ,所以3%0.0243520.8y t x =⨯=-当191700326700x <时,36000144000t <,所以10%25200.0814256t x ⨯-=-326700521700x <时,300000t <,所以20%169200.16x -=-521700671700x <时,420000t ,所以25%319200.2x -=-671700971700x <时,660000t ,所以30%529200.24x -=-9717001346700x <时,960000t ,所以35%859200.28x -=50,01,80,12,23,75,34,45.t t t t t <<<< 你能理解阴影部分面积0,0146700,0.0243520.8,146700191700,0.0814256,191700326700,0.1640392,326700521700,61260,521700671700,0.2488128,671700971700,0.28126996,9717001346700,0.36234732,x x x x x x x x x x x x x x ------<-1346700.249600=时5712.所以,小王全年需要缴纳的综合所得解:(1)阴影部分的面积为501801901751651360⨯+⨯+⨯+⨯+⨯=.阴影部分的面积表示汽车在这5h 内行驶的路程为360 km.(2)根据图,有502004,01,80(1)2054,12,90(2)2134,23,75(3)2224,34,65(4)2299,4 5.t t t t s t t t t t t +<⎧⎪-+<⎪⎪-+<⎨⎪-+<⎪-+⎪⎩ 这个函数的图象如图所示:学生自主观察上图,写出路程1s 关于时间t 变化的函数解析式.150,01,80(1),12,90(2),23,75(3),34,65(4),4 5.t t t t s t t t t t t ⎧⎪-<⎪⎪=-<⎨⎪-<⎪-<⎪⎩教师提问:上述结果是汽车里程表读数与时间的函数解析式吗?指导学生调整解析式,并利用作图软件画出里程表读数关于时间的函数图象.教学研讨本案例的内容为两道例题,解答过程中,相关问题的设置细致入微,能较好地帮助学生体会利用函数模型解决实际问题的过程与方法.通过多媒体辅助教学,较精确、直观地刻画了函数关系,同时也提升了学生的直观想象素养.本案例还有一些地方值得商讨,比如在例题之后是否需要设置变式训练,是否需要补充一道幂函数模型的应用题等.。

《3.3函数的应用(一)》教学设计教学反思-2023-2024学年高中数学人教B版19必修第一册

《3.3函数的应用(一)》教学设计教学反思-2023-2024学年高中数学人教B版19必修第一册

《3.3 函数的应用(一)》教学设计方案(第一课时)一、教学目标1. 理解函数在实际问题中的应用,能够列出函数关系式;2. 掌握函数应用中的解题思路和方法;3. 培养解决实际问题的思维能力和逻辑推理能力。

二、教学重难点1. 教学重点:掌握函数在实际问题中的应用,列出函数关系式;2. 教学难点:如何引导学生理解和掌握函数应用中的解题思路和方法。

三、教学准备1. 准备教学素材:搜集有关函数应用的实际案例和数据;2. 制作多媒体课件:通过图片、视频等方式展示函数在实际问题中的应用;3. 安排学生预习:让学生提前了解函数的基本概念和性质,为新课做好准备。

四、教学过程:本节课的教学设计主要分为以下几个环节:导入新课、新课教学、课堂练习、小结与作业。

1. 导入新课:通过实际生活中的例子,如股票价格变化图,引出函数图像的概念,进而引出本节课的主题——函数的应用。

2. 新课教学:(1) 讲解函数的应用,包括函数在解决实际问题中的作用,以及如何根据函数图像分析数据等。

(2) 通过具体的例子,引导学生如何根据函数图像分析数据,发现问题,并给出解决方案。

(3) 讲解如何利用函数图像进行预测和决策,并举例说明。

(4) 让学生进行小组讨论,分享他们在日常生活中遇到的函数应用实例,并分享他们的理解和感受。

3. 课堂练习:给学生布置一些与本节课内容相关的练习题,以检验学生对新知识的掌握情况,同时也可以帮助学生更好地理解所学内容。

4. 小结与作业:(1) 小结本节课的主要内容,强调重点和难点。

(2) 布置作业:让学生自己寻找一些与函数应用相关的实际问题,尝试用本节课所学知识解决这些问题,并在下次课上进行分享。

在课堂教学中,应注重学生的参与和互动,通过实例和互动讨论,帮助学生更好地理解和掌握所学内容。

同时,也应注重学生的反馈和评价,及时调整教学策略,以提高教学效果。

教学设计方案(第二课时)一、教学目标1. 学生能够理解函数在解决实际问题中的应用,提高运用函数知识解决实际问题的能力。

《3.4 函数的应用》教学设计教学反思-2023-2024学年中职数学高教版2021基础模块上册

《3.4 函数的应用》教学设计教学反思-2023-2024学年中职数学高教版2021基础模块上册

《函数的应用》教学设计方案(第一课时)一、教学目标1. 理解函数的概念,掌握函数的定义域和值域。

2. 学会运用函数知识解决简单的实际问题。

3. 培养数学思维和解决问题的能力。

二、教学重难点1. 重点:函数的概念和性质。

2. 难点:将实际问题转化为数学问题,建立函数模型。

三、教学准备1. 准备教学用具:黑板、粉笔、函数图象工具软件。

2. 准备教学材料:相关实际问题案例,函数模型建立方法。

3. 设计教学活动:引导学生通过实际例子,引入函数概念,讲解函数性质,引导学生建立函数模型解决实际问题。

4. 预习提示:学生预习内容,准备相关实际例子,提出疑问。

四、教学过程:(一)导入新课1. 复习提问:请学生回顾初中学习的函数概念,请学生列举生活中的函数关系式。

2. 引出课题:今天我们一起来学习中职数学课程《函数的应用》。

(二)教学实施任务一:理解函数的概念1. 教师介绍函数的定义,并引导学生理解定义中的三个要素:定义域、值域、对应法则。

2. 教师举例说明函数的应用,如:一次函数、二次函数、指数函数、对数函数等的应用场景。

3. 学生小组讨论,分享生活中的函数实例。

4. 分享与讨论:请学生分享自己搜集的函数实例,并讨论函数的用途和特点。

任务二:构建函数模型1. 教师介绍常见的函数模型及其应用场景,如:一次函数模型在市场营销中的应用,指数函数模型在经济增长中的应用等。

2. 教师引导学生思考如何构建适合的函数模型来解决实际问题。

3. 学生尝试构建函数模型,并尝试用函数解决实际问题。

4. 成果展示与交流:请学生展示自己的成果,并分享构建函数模型和解决问题的思路和方法。

任务三:应用函数的优化与决策1. 教师引导学生分析如何根据函数的性质进行优化和决策,如:利用函数的单调性、奇偶性、周期性等性质进行决策。

2. 学生尝试利用函数进行优化和决策,并与其他同学分享自己的方法和心得。

(三)课堂小结1. 请学生回顾本节课学习的内容,包括函数的概念、构建函数模型的方法和利用函数进行优化决策的思路等。

函数和公式的应用教学设计

函数和公式的应用教学设计

函数和公式的应用教学设计一、教学目标:1.了解函数和公式的基本概念,掌握函数和公式的基本特性和应用。

2.培养学生运用函数和公式解决实际问题的能力。

3.激发学生对函数和公式的兴趣和探索欲望。

二、教学内容:1.函数的基本概念和性质(定义域、值域、奇偶性、单调性等)2.函数的图象及其性质(图象的对称性、极值点、单调区间、与坐标轴和文字的关系等)3.一元一次函数和二次函数的应用(解决实际问题)4.公式的类型和应用(周长、面积、体积等)三、教学方法:1.情景模拟法通过给出具体实际问题的情景,引导学生发现函数和公式的应用。

例如,通过给出一个长方形的问题,让学生思考如何利用函数和公式求解该问题。

学生可以通过画图、列式、算式等多种方式进行探究和解决。

2.启发式教学法通过给予学生一定的提示,鼓励学生主动思考和尝试,激发学生自主探索的欲望。

例如,给出一个函数图象及其性质的问题,让学生自己猜测并验证这个函数的一些特性。

3.问题导向法通过给出一系列实际问题来引导学生学习函数和公式的应用。

让学生在解问题的过程中不断积累和巩固所学的概念和知识,并培养学生运用函数和公式解决实际问题的能力。

四、教学过程设计1.导入(10分钟)教师引出函数和公式的概念和应用,并制作一张海报,上面列举一些与函数和公式应用相关的实际问题。

通过让学生观察这些实际问题,引发学生对函数和公式的思考。

2.函数和公式的基本概念及特性介绍(20分钟)教师通过讲解和示范,介绍函数和公式的基本概念(定义域、值域、奇偶性、单调性等)和特性(图象的对称性、极值点、单调区间等),并通过具体例子加深学生对这些概念和特性的理解。

3.函数的图象及其性质探究(30分钟)教师出示一些函数的图象,让学生观察和比较这些图象的特点。

然后,让学生自己尝试绘制一些函数的图象,并验证其特性。

学生可以使用函数的性质来推导出一些结论,并与教师进行讨论和交流。

4.一元一次函数和二次函数的应用(30分钟)教师通过实际问题的情境引导学生运用一元一次函数和二次函数解决问题。

人教新课标高一《函数的应用教材解读》教学设计

人教新课标高一《函数的应用教材解读》教学设计
4. 收集现实生活中普遍使用几种函数模型的案例,体会三种函数模型的应用价值,发展学习应用数学知识解决实际问题的意识.
二、 编写意图和教学建议
1. 教材高度重视函数应用的教学,注重知识间的相互联系(比如函数、方程、不等式之间的关系,图象零点与方程根的关系).
2. 教材通过具体例子介绍二分法,让学生初步体会算法思想, 以及从具体到一般的认识规律.此外, 还渗透了配方法、待定分数法等数学思想方法.
3.教材高度重视信息技术在本章教学中的作用,比如,利用计算机创设问题情境,增加了学生的学习兴趣,利用计算机描绘、比较三种增长模型的变化情况,展示 的不同取值而动态变化的规律,形象、生动,利于学生深刻理解. 因此,教师要积极开发多媒体教学课件,提高课堂教学效率.
4.教材安排了“阅读与思考”的内容,肯在提高学生的数学文化素养,教师应引导学生通过查阅、收集、整理、分析相关材料,增强信息处理的能力,培养探究精神,提高数学素养.
1 .通过二次函数的图象,懂得判断一元二次方程根的存在性与根的个数,通过具体的函数例子,了解函数零点与方程根的联系.
2. 根据函数图象,借助计算器或电脑,学会运用二分法求一些方程的近似解,了解二分法的实际应用,初步体会算法思想.
3. 借助计算机作图,比较指数函数、对数函数、幂函数的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的关系 .
第三章 函数的应用
一、课程要求
本章通过学习用二分法求方程近似解的的方法,使学生体会函数与方程之间的关系,通过一些函数模型的实例,让学生感受建立函数模型的过程和方法,体会函数在数学和其他学科中的广泛应用,进一步认识到函数是描述客观世界变化规律的基本数学模型,能初步运用函数思想解决一些生活中的简单问题.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.5.1 两角差的余弦公式
教材分析
这是2019版普通高中教科书数学必修第一册(人教A 版)第五章第5节的教学内容,这部分内容课标规定三课时,本节是第1课时,《两角差的余弦公式》是三角恒等变换这一节的主要内容,还有对两角差的余弦公式有了认识,才能够以此为基础推导出其他三角恒等变换公式。

这是一个逻辑推理过程也是一个认识三角函数式的特征,体会三角恒等变换特点的过程。

本节力图体现圆的对称性与三角函数之间的内在联系,所以选择了利用对称性证明两角差的余弦公式。

课时分配
本节内容用1课时的时间完成,主要讲解两角差的余弦公式的证明及运用公式解决简单的数学问题. 教学目标
重点:利用圆的旋转对称性推导两角差的余弦公式;
难点:发现两角差的三角函数与圆的旋转对称性间的联系;认识三角恒等变换的特点,并能解决一些三 角恒等变换的问题.
知识点:两角差的余弦公式.
能力点:如何探寻两角差的余弦公式的证明思路,数形结合、分类讨论的数学思想的运用.
教育点:经历由特殊到一般的研究数学问题的过程,体会探究的乐趣,激发学生的学习热情.
自主探究点:通过三角函数的定义和圆的旋转对称性来找到弦长与三角函数值的等量关系.
考试点:用公式解决简单的数学问题,角的象限的判断,配凑角.
易错易混点:逆用两角差与和的余弦公式时符号易错.
拓展点:如何利用βα、的三角函数值表示cos(+)αβ.
教具准备 多媒体课件和三角板,圆规
课堂模式 学案导学
一、引入新课
cos()=sin 2
παα-, cos()=-cos .παα- 教师引导:大家来回答一下以上两个诱导公式的结果,你能当诱导公式中的2π
π,变成3
π时,你能求出cos()=3
π
α-?的值吗,进一步地你能求出cos(-)=αβ?的结果吗?
【师生活动】教师分析思路:第一部分依然是基于圆的对称性进行研究,与5.3节相比较,5.3节中用到的
是圆的特殊的对称性,此处用到的是圆的更一般的对称性,即旋转对称性. 这种特殊与一般的关系,蕴含着诱导公式与两角和(差)公式之间的特殊与一般的关系.一是努力使公式的证明过程简明易懂,易于学生接受:二是公式推导的依据要突出体现圆的对称性与三角函数之间的内在联系,所以选择了利用旋转对称性证明两角差的余弦公式.
【设计意图】 本课力图体现圆的对称性与三角函数之间的内在联系,所以选择了利用旋转对称性证明两角
差的余弦公式.
二、探究新知
(一)归纳公式
通过“探究”,引导学生进行自主的思维活动. 不失一般性,先研究角α与β的终边不重合时的情况,即=2,k k z απβ+∈的情况.
步骤:第一步,标注出“探究”中涉及到的量,即角α,β,αβ-的终边与单位圆的交点11,,P A P 并设单位圆与x 轴正半轴交于点A .
第二步,利用三角函数的定义,写出各点的坐标.
第三步,利用圆的旋转对称性,得到等量关系11AP A P =.
第四步,代入化简,得到两角差的余弦表达式.代人化简时需用到两点间的距离公式,在边空中已给出.在教学时可以利用勾股定理进行简单的推导.
问题:当角α与β的终边重合时,即=2,k k z απβ+∈,可得cos +sin 1αα=22,或者cos +sin 1ββ=22
即两角差的余弦表达式是否仍然成?从而得到任意两角差的余弦表达式..教科书中图5.5-1起着直观化的作用,但证明的过程利用的不是角α与β终边的特殊位置.在教学中可以从以下两方面引导学生理解这种证明过程的一般性:其一,改变角β终边的位置,让学生看到证明第二步中各点的坐标不会因此改变;其二,根据圆的旋转对称性,无论角α与β终边的位置如何,总有11AP A P =,成立.和角、差角,倍角的三角函数之间存在紧密的内在联系,因此不必孤立地去一一推导这些公式,只要推导出一个公式作为基础,再利用这种联系性,用逻辑推理的方法就可以得到其他公式.
[设计意图] 这种证明的好处是不需要利用图形本身的直观性质,即证明的过程不受图形大小,位置变化的限制,因此证明具有一般性。

给学生充分的感性材料,揭示公式的发现过程, 通过学生发现若干特例的共性, 培养学生归纳、概括、提出数学问题的能力(一般性探究).避免直接将公式抛给学生.
(二)公式证明
根据弦长相等,可以利用两点间的公式推导三个角函数之间的关系[]cos()1+sin -=cos -cos +sin -sin αβαβαβαβ--2222()()()
[]=cos()1+sin -=cos -cos +sin -sin αβαβαβαβ--2
22()()() cos()cos cos sin .sin αβαβαβ-=+
[设计意图] 通过学生的计算,感受两角差的余弦公式的形成,加
深对公式的理解。

同时体现了由形到数的转化思想。

三、理解新知
任意角αβ, 的正余弦与其差角的余弦之间的关系,成为差角的余弦公式
分析公式βαβαβαsin sin cos cos )-cos(
+=的结构特点,
特征,,αβαβ-1.左边是复角右边是单角
2.,αβ式中的是任意角.
3.同名相乘,符号相反
得到口诀:余余正正符号反.
.
[设计意图]为准确地运用新知,作必要的铺垫,一分钟记忆背诵.让学生从了解到熟练,牢记公式形式,公式特征,达到记忆准确,融会贯通。

也通过大声记忆提振学生精神。

四、运用新知
cos -sin παα=例1 ()2
cos --cos παα= () [设计意图]利用两角和的余弦公式证明诱导公式,体现了前后知识之间的内在联系,有利于学生全面而系统地掌握知识.让学生发现诱导公式是两角差余弦公式的特殊形式,体现特殊与一般的联系。

452sin ,(,),cos ,5213πααπβ=
∈=-例已知如β是第三象限角求)(βα-cos 的值.
02
π
απαπ∈∈如果把条件中(,)改为(,)结果如何?
你能总结求两角差的余弦的步骤吗?
[设计意图] 此题是应用、理解公式的基础练习,解此题需要思考使用公式前应作出的必要准备,要作出这些必要的准备,需要运用到同角三角函数的知识。

解题时必须强调解决三角变换问题的基本要求:思维的有序性和表述的条理性。

五、课堂小结
教师提问:本节课我们学习了哪些知识,涉及到哪些数学思想方法?学生作答:
1.知识:βαβαβαsin sin cos cos )-cos(+=.
2.思想:分类讨论的思想、数形结合的思想、特殊与一般的思想.
教师总结: 公式的证明过程用到了前面利用单位圆定义三角函数和利用圆的对称性证明诱导公式的知识和方法,在学习新知时,从已知已会的经验出发,加强对数学规律性,统一性的认识,从而更好地运用知识,解题要有目的性,加强对数学知识、思想方法的认识与自觉运用.
[设计意图] 让学生了解知识的来龙去脉,了解学习的主要内容及应用,会用数学思想方法解决问题. 达标训练
cos =-cos -πααα3 1.已知,是第二象限角,求()的值.54
1cos15cos(4530) cos 45cos30sin 45sin 30222︒=︒-︒=︒︒+︒=+⋅=2.解:
00003.cos(21)cos(24)sin(21)sin(24)=θθθθ+-++-
[设计意图] 本环节设计了三个题目,分别对应公式直接应用,公式活学活用应用,公式逆运用等三个方面 培养学生发散思维的能力及良好的解题习惯,第二题是对公式的直接应用,体现了角的拆分的思想。

拆分的多样性,体现了变换的多样性。

求解的过程可以完全由学生独立完成。

既可以找到例题中两个问题的联系,又可以公式的灵活变形和逆用提高学生的解题能力. 逆向运用公式.两个问题的设计由具体到抽象,便于学生全面的认识公式, 提高理解、运用知识的能力.
目标回扣
1.差角的余弦在现实生活中的应用
2.差角的余弦的证明方法
3.利用该公式进行证明,求值
[设计意图] 通过对学习目标再现,加深对本节课学习的内容再认识,达到学有所得,学有所思的目的. 知新 如何利用βα、的三角函数值表示cos(+)?αβ呢
[设计意图]设计分层作业,是引导学生先抓基础,再巩固提高,根据学生的学习规律循序渐进.书面作业的布置,是为了让学生能够巩固两角差与和的余弦公式,解决简单的数学问题;知新环节的安排,是让学生理解公式之间的联系,会用任意角的观点宏观的看问题,起到承上启下的作用.
六、布置作业
必做题:1.课后练习P217 3.4
选做题:1. 习题5.5复习巩固1.2
2. 已知α,β都是锐角,13
5)cos(54
cos -=+=βαα, ,求cos β的值. 七、教后反思
1.本教案的亮点是理解新知的教学中,让学生根据已有的知识经验和研究方法说明思路的由来过程。

让学生积极探究,了解不同的证明方法,加深对知识的公式的理解。

达标训练切入点低,题型丰富,让学生学习有获得感.
2.由于学情情况不同,建议在使用本教案时灵活掌握,要把证明的过程分析透彻,让学生知其然,知其由然,知其何以由然.
3.本节课的弱项是由于证明过程跨度较大,在课堂上没有充分的学生活动,需给予针对性地诊断与分析.
八、板书设计。

相关文档
最新文档