高中数学全套教学案数学3221应用已知函数模型解决实际问题

合集下载

《用函数模型解决实际问题》上课教学方案设计

《用函数模型解决实际问题》上课教学方案设计

《用函数模型解决实际问题》教学设计本资料为woRD文档,请点击下载地址下载全文下载地址用函数模型解决实际问题这部分内容,非常注重贴近实际生活,关注社会热点,要求学生对一些实际例子做出判断、决策,注重培养学生分析问题、解决问题的能力。

解决函数建模问题,也就是根据实际问题建立起数学模型来。

所谓的数学模型是指对客观实际的特征或数量关系进行抽象概括,用形式化的数学语言表达的一种数学结构。

函数就是重要的数学模型,用函数解决方程问题,使求解变得容易进行。

本节内容是安排在学生刚学完函数的相关知识,为学生建立起函数模型奠定基础。

学生虽然对这种函数建模问题并不陌生,但是要建立起正确的函数模型却不是一件容易的事。

这种题型题目较长,相关的内容较多,问题不是一眼就可以看出答案,需要建立的函数模型也多种多样,不少还会涉及到求二次函数的最值问题,学生往往是无从下手,对自己失去信心。

针对这种情况,我觉得直接让学生一步到位就找出解决问题的途径是很困难,老师在这里就应该发挥自己的主导地位,带领学生由问题入手,逐步分析,自己设计出一个一个的小问题,最后把这些小问题串起来,把题目中的大问题解决。

用函数模型解决实际问题需要建立的函数模型是多种多样的,只有根据题目的要求建立起适当的函数模型,才能成功地解决问题。

教师在授课过程中,要注重分类的思想,帮助学生把函数建模问题分成几类,以方便学生形成自己的知识系统。

一.一次函数模型的应用某同学为了援助失学儿童,每月将自己的零用钱一相等的数额存入储蓄盒内,准备凑够200元时一并寄出,储蓄盒里原有60元,两个月后盒内有90元。

(1)盒内的钱数(元)与存钱月份数的函数解析式,并画出图象。

(2)几个月后这位同学可以第一次汇款?这种题型只要建立起一次函数就可以很快地解决问题,而且学生以前也有接触过,对他们而言这种问题难度不大,主要是让他们对函数建模有个感觉。

二.二次函数模型的应用建立二次函数模型解决实际问题是整本书中出现得最多的一种方法,这种多用于根据二次函数的性质求出最值,求利润问题也多属于这种类型。

高中数学 3.2.2 函数模型的应用实例导学案 北师大版必修1

高中数学 3.2.2 函数模型的应用实例导学案 北师大版必修1

3.2.2 函数模型的应用实例第一课时 应用已知函数模型解决实际问题课前预习学案一.预习目标:熟悉几种常见的函数增长型二.预习内容:阅读课本内容思考:主要的函数增长性有哪些 三、提出疑惑课内探究学案一.学习目标:能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题.学习重点:运用一次函数、二次函数模型解决一些实际问题. 学习难点:将实际问题转变为数学模型. 二.学习过程解决实际问题的步骤1)首先建立直角坐标系,画出散点图;2)根据散点图设想比较接近的可能的函数模型:一次函数模型:()(0);f x kx b k =+≠ 二次函数模型:2()(0);g x ax bx c a =++≠ 幂函数模型:12()(0);h x ax b a =+≠指数函数模型:()x l x ab c =+(0,a b ≠>0,1b ≠)利用待定系数法求出各解析式,并对各模型进行分析评价,选出合适的函数模型;由于尝试的过程计算量较多,可同桌两个同学分工合作,最后再一起讨论确定.例1 某农家旅游公司有客房300间,每间日房租为20元,每天都客满. 公司欲提高档次,并提高租金,如果每间客房日增加2元,客房出租数就会减少10间. 若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?变式:某列火车众北京西站开往石家庄,全程277km ,火车出发10min 开出13km 后,以120km/h 匀速行驶. 试写出火车行驶的总路程S 与匀速行驶的时间t 之间的关系式,并求火车离开北京2h 内行驶的路程.例2 要建一个容积为8m 3,深为2m 的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,试求应当怎样设计,才能使水池总造价最低?并求此最低造价.变式:某工厂今年1月、2月、3月生产某种产品的数量分别为1万件,1.2万件,1.3万件,为了估计以后每个月的产量,以这三个月的产品数量为依据用一个函数模拟该产品的月产量t 与月份的x 关系,模拟函数可以选用二次函数或函数(,,)xy ab c a b c =+其中为常数.已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.课后练习与提高一.选择题1.客车从甲地以60km/h 的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h 的速度匀速行驶1小时到达丙地,下列描述客车从甲地出发.经过乙地,最后到达丙地所经过的路程s 与时间t 之间关系的图象中,正确的是( )A. B. C. D.2.一种商品连续两次降价10%后,欲通过两次连续提价恢复原价,则每次应提价( ) A .10%B .20%C .5%D .11.1%3.今有一组实验数据如下:现准备用下列函数中一个近似地表示这些数据满足的规律,其中最接近的一个是( )A . t v 2log=B .t v 21log =C .212-=t vD .22-=t v二.填空题4.假设某商品靠广告销售的收入R 与广告费A 之间满足关系R=a ·A ,那么广告效应为A A a D -=,当A= 时,取得最大广告效应.5.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为2个)经过3小时后,这种细菌可由1个分裂成__________个三.解答题6. 某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y 元,已知甲、乙两用户该月用水量分别为5x ,3x 吨. (1)求y 关于x 的函数;(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.参考答案。

高中数学 3.2.21应用已知函数模型解决实际问题精品教案 新人教A版必修1

高中数学 3.2.21应用已知函数模型解决实际问题精品教案 新人教A版必修1

第一课时应用已知函数模型解决实际问题【教学目标】能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题.【教学重难点】1.教学重点:运用一次函数、二次函数模型解决一些实际问题.2.教学难点:将实际问题转变为数学模型.【教学过程】(一)创设情景,揭示课题引例:大约在一千五百年前,大数学家孙子在《孙子算经》中记载了这样的一道题:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有若干只有几只鸡和兔?你知道孙子是如何解答这个“鸡兔同笼”问题的吗?你有什么更好的方法?老师介绍孙子的大胆解法:他假设砍去每只鸡和兔一半的脚,则每只鸡和兔就变成了“独脚鸡”和“双脚兔”.这样,“独脚鸡”和“双脚兔”脚的数量与它们头的数量之差,就是兔子数,即:47-35=12;鸡数就是:35-12=23.比例激发学生学习兴趣,增强其求知欲望.可引导学生运用方程的思想解答“鸡兔同笼”问题.(二)结合实例,探求新知.例1 某农家旅游公司有客房300间,每间日房租为20元,每天都客满.公司欲提高档次,并提高租金,如果每间客房日增加2元,客房出租数就会减少10间.若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?引导学生探索过程如下:1)本例涉及到哪些数量关系?2)应如何选取变量,其取值范围又如何?3)应当选取何种函数模型来描述变量的关系?4)“总收入最高”的数学含义如何理解?根据老师的引导启发,学生自主,建立恰当的函数模型,进行解答,然后交流、进行评析.[略解:]设客房日租金每间提高2x元,则每天客房出租数为300-10x,由x>0,且300-10x >0得:0<x<30设客房租金总上收入y元,则有:y=(20+2x)(300-10x)=-20(x-10)2 + 8000(0<x<30)y=8000.由二次函数性质可知当x=10时,max所以当每间客房日租金提高到20+10×2=40元时,客户租金总收入最高,为每天8000元.变式:某列火车众北京西站开往石家庄,全程277km,火车出发10min开出13km后,以120km/h匀速行驶.试写出火车行驶的总路程S与匀速行驶的时间t之间的关系式,并求火车离开北京2h 内行驶的路程.例2 要建一个容积为8m 3,深为2m 的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,试求应当怎样设计,才能使水池总造价最低?并求此最低造价.解析:选择合适的数学模型建立函数关系解:设长方体底面的长为xm,则宽为(4/x)m,水池的总造价为y 元 y=480+80[4x+(16/x)]当x=2时,总造价最低为1760元 点评:利用基本不等式 变式:某工厂今年1月、2月、3月生产某种产品的数量分别为1万件,1.2万件,1.3万件,为了估计以后每个月的产量,以这三个月的产品数量为依据用一个函数模拟该产品的月产量t 与月份的x 关系,模拟函数可以选用二次函数或函数(,,)x y ab c a b c =+其中为常数.已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.【板书设计】 一、已知函数模型 二、例题 例1 变式1 例2 变式2【作业布置】教材P 116练习1、2§3.2.2 函数模型的应用实例第一课时 应用已知函数模型解决实际问题课前预习学案一.预习目标:熟悉几种常见的函数增长型二.预习内容:阅读课本内容思考:主要的函数增长性有哪些 三、提出疑惑疑惑点疑惑内容课内探究学案一.学习目标:能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题.学习重点:运用一次函数、二次函数模型解决一些实际问题. 学习难点:将实际问题转变为数学模型.二.学习过程解决实际问题的步骤1)首先建立直角坐标系,画出散点图;2)根据散点图设想比较接近的可能的函数模型: 一次函数模型:()(0);f x kx b k =+≠ 二次函数模型:2()(0);g x ax bx c a =++≠ 幂函数模型:12()(0);h x ax b a =+≠指数函数模型:()x l x ab c =+(0,a b ≠>0,1b ≠)利用待定系数法求出各解析式,并对各模型进行分析评价,选出合适的函数模型;由于尝试的过程计算量较多,可同桌两个同学分工合作,最后再一起讨论确定.例1 某农家旅游公司有客房300间,每间日房租为20元,每天都客满. 公司欲提高档次,并提高租金,如果每间客房日增加2元,客房出租数就会减少10间. 若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?变式:某列火车众北京西站开往石家庄,全程277km ,火车出发10min 开出13km 后,以120km/h 匀速行驶. 试写出火车行驶的总路程S 与匀速行驶的时间t 之间的关系式,并求火车离开北京2h 内行驶的路程.例2 要建一个容积为8m 3,深为2m 的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,试求应当怎样设计,才能使水池总造价最低?并求此最低造价.变式:某工厂今年1月、2月、3月生产某种产品的数量分别为1万件,1.2万件,1.3万件,为了估计以后每个月的产量,以这三个月的产品数量为依据用一个函数模拟该产品的月产量t 与月份的x 关系,模拟函数可以选用二次函数或函数(,,)x y ab c a b c =+其中为常数.已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.课后练习与提高一.选择题1.客车从甲地以60km/h 的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h 的速度匀速行驶1小时到达丙地,下列描述客车从甲地出发.经过乙地,最后到达丙地所经过的路程s 与时间t 之间关系的图象中,正确的是( )A. B. C. D.2.一种商品连续两次降价10%后,欲通过两次连续提价恢复原价,则每次应提价( ) A .10%B .20%C .5%D .11.1%3.今有一组实验数据如下:t1.99 3.0 4.0 5.1 6.12 v1.54.047.51218.01现准备用下列函数中一个近似地表示这些数据满足的规律,其中最接近的一个是( )A .t v 2log =B .t v 21log =C .212-=t vD .22-=t v二.填空题4.假设某商品靠广告销售的收入R 与广告费A 之间满足关系R=a ·A ,那么广告效应为A A a D -=,当A= 时,取得最大广告效应.5.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为2个)经过3小时后,这种细菌可由1个分裂成__________个三.解答题6. 某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y 元,已知甲、乙两用户该月用水量分别为5x ,3x 吨. (1)求y 关于x 的函数;(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.参考答案。

高中数学教材必修一《函数模型的应用实例》教案

高中数学教材必修一《函数模型的应用实例》教案

3.2.2函数模型的应用实例教案教学目标知识与技能掌握一些普遍使用的函数模型(一次函数、二次函数、指数函数、对数函数、幂函数、分段函数等)的实例。

过程与方法通过实例,感知并体会函数在实际生活中的应用,能利用函数图象、解析式等有关知识正确解决生活中的数学问题。

情感、态度与价值观通过实例,提高解决实际问题的能力,发挥个人的能力,构建数学模型,养成独立思考问题的能力。

教学重点与难点:函数模型的选取与求解。

教学过程设计第一课时已知函数模型解实际问题例1、一辆汽车在某段路程中的行驶速率与时间的关系如图所示。

(1)求略中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆车的里程表在汽车行驶这段路程前的读数为2004 km,试建立行驶这段路程时汽车里程表读数s km与时间t h的函数解析式,并作出相应的图象。

解:(1)阴影部分的面积为50×1 + 80×1 + 90×1 + 75×1 +65×1 = 360,阴影部分的面积表示汽车在这5小时内行驶的路程为360km。

(2)根据上图,有502004,0180(1)2054,1290(2)2134,2375(3)2224,3465(4)2299,45t tt ts t tt tt t+≤<⎧⎪-+≤<⎪⎪=-+≤<⎨⎪-+≤<⎪-+≤≤⎪⎩,这个函数的图象如右图所示。

h VH 小结:由函数图象,可以形象直观地研究推断函数关系,可以定性地研究变量之间的变化趋势,是近年来常见的应用题的一种题型,其出发点是函数的图象,处理问题的基本方法就是数形结合。

练习1:向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h的函数关系的图象如右图所示,那么水瓶的形状是( )(A) (B) (C) (D)练习2:某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示。

人教版高中数学必修1第三章函数的应用-《3.2.2函数模型的应用实例》教案(2)

人教版高中数学必修1第三章函数的应用-《3.2.2函数模型的应用实例》教案(2)

课题:§3.2.2函数模型的应用实例(Ⅱ)
教学目标:
知识与技能能够利用给定的函数模型或建立确定性函数模型解决实际问题.过程与方法感受运用函数概念建立模型的过程和方法,对给定的函数模型进行简单的分析评价.
情感、态度、价值观体会数学在实际问题中的应用价值.
教学重点:
重点利用给定的函数模型或建立确定性函数模型解决实际问题.
难点利用给定的函数模型或建立确定性函数模型解决实际问题,并对给定的函数模型进行简单的分析评价.
教学程序与环节设计:
实际问题引入,激发学生兴趣.
型的广泛应用.
教学过程与操作设计:。

高中数学 3.2.3函数模型的应用实例(一)全册精品教案 新人教A版必修1

高中数学 3.2.3函数模型的应用实例(一)全册精品教案 新人教A版必修1

函数模型的应用实例〔一〕〔一〕教学目标1.知识与技能:初步掌握一次和二次函数模型的应用,会解决较简单的实际应用问题.2.过程与方法:经历运用一次和二次函数模型解决实际问题,提高学生的数学建模能力.3.情感、态度与价值观:了解数学知识来源于生活,又服务于实际,从而培养学生的应用意识,提高学习数学的兴趣.〔二〕教学重点、难点一次和二次函数模型的应用是本节的重点,数学建模是本节的难点.〔三〕教学方法本节内容主要是例题教学,因此采用学生探究解题方法,总结解题规律,教师启发诱导的方法进行教学.〔四〕教学过程教学环节教学内容师生互动设计意图复习引入回顾一次函数和二次函数的有关知识.教师提出问题,学生回答.师:一次函数、二次函数的解析式及图象与性质.生:回答上述问题.以旧引新,激发兴趣.应用举例1.一次函数模型的应用S与匀速行驶的时间t之间的关系,并求火车离开2h内行驶的路程.教师提出问题,让学生读题,找关键字句,联想学过的函数模型,求出函数关系式.学生根据要求,完成例1的解答.例1 解:因为火车匀速运动的时间为(200 – 13)÷120 =115(h),所以115t≤≤.因为火车匀速行驶时间t h所行驶路程为120t,所以,火车运行总路程S与匀速行驶时间t之间的关系是11130120(0).5S t t=+≤≤2h内火车行驶的路程11131206S=+⨯=233(km).通过此问题背景,让学生恰当选择相应一次函数模型解决问题,加深对函数概念本质的认识和理解.让学生体验解决实际问题的过程和方法.解题方法:1.读题,找关键点;2.抽象成数学模型;3.求出数学模型的解;4.做答.学生总结,教师完善.培养学生分析归纳、概括能力.从而初步体验解应用题的规律和方法.2.二次函数模型的应让学生自己读题,并回答以下问题:解应用题用例2 某农家旅游公司有客房300间,每间日房租20元,每天都客满.公司欲提高档次,并提高租金.如果每间客房每日增加2元,客房出租数就会减少10间.假设不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?①题目求什么,应怎样设未知量;②每天客房的租金收入与每间客房的租金、客房的出租数有怎样的关系;③学生完成题目.法一:用列表法求解.此法可作为学生探求思路的方法,但由于运算比较繁琐,一般不用,应以法二求解为重点.对法二让学生读题,回答以下问题.教师指导,学生自己动手解题.师生合作由实际问题建模,让学生尝试解答.例2 解答:方法一依题意可列表如下:x y0 300×20 = 60001 (300 –10×1)(20 + 2×1) =63802 (300 –10×2)(20 + 2×2) =67203 (300 –10×3)(20 + 2×3) =70204 (300 –10×4)(20 + 2×4) =72805 (300 –10×5)(20 + 2×5) =75006 (300 –10×6)(20 + 2×6) =76807 (300 –10×7)(20 + 2×7) =78208 (300 – 10×8)(20 + 2×8)=79209 (300 –10×9)(20 + 2×9) =798010 (300 –10×10)(20 + 2×10)= 800011 (300 –10×11)(20 + 2×11)= 798012 (300 –10×12)(20 + 2×12)= 7920首先要读懂题意,设计出问题指导学生审题,建立正确的数学模型.同时,培养学生独立解决问题的能力.13 (300 –10×13)(20 + 2×13)= 7820……由上表容易得到,当x = 10,即每天租金为40元时,能出租客房200间,此时每天总租金最高,为8000元.再提高租金,总收入就要小于8000元了.方法二设客房租金每间提高x个2元,那么将有10x间客房空出,客房租金的总收入为y = (20 + 2x) (300 – 10x )= –20x2 + 600x– 200x + 6000= –20(x2–20x+ 100 –100) + 6000 = –20(x– 10)2 + 8000.由此得到,当x = 10时,y max = 8000.即每间租金为20 + 10×2 = 40(元)时,客房租金的总收入最高,每天为8000元.3.分将函数模型的应用例 3 一辆汽车在某段路程中的行驶速率与时间的关系如下图.〔1〕求图中阴影部分的面积,并说明所求面积的实际含义;〔2〕假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立行驶这段路程时汽车里程表读数s km与时间t h的函数解析式,并作出相应的图象.生:解答:〔1〕阴影部分的面积为50×1+80×1+90×1+75×1+65×1=360.阴影部分的面积表示汽车在这5小时内行驶的路程为360km.〔2〕根据图,有502004,01,80(1)2054,12,90(2)2134,23,75(3)2224,34,65(4)2299,4 5.t tt ts t tt tt t+≤<⎧⎪-+≤<⎪⎪=-+≤<⎨⎪-+≤<⎪-+≤≤⎪⎩这个函数的图象如下图.实际应用用问题解决的一般步骤:理解问题⇒简化假设⇒数学建模⇒解答模型⇒检验模型⇒评价与应用的进一步深体.巩固练习课堂练习习题1.如果一辆汽车匀速行驶,1.5h行驶学生练习,师生点评.1.设汽车行驶的时间为t h,那么汽车行驶的路程S km与时间t h之间的学生动手实践、体验所学方法,从而提路程为90km ,求这辆汽车行驶路程与时间之间的函数关系,以及汽车3h 所行驶的路程.习题2.某食品5kg 价格为40元,求该食品价格与重量之间的函数关系,并求8kg 食品的价格是多少元.习题3.有300m 长的篱笆材料,如果利用已有的一面墙(设长度够用)作为一边,围成一块矩形菜地,问矩形的长、宽各为多少时,这块菜地的面积最大?f 与打车路程x 之间的函数关系.函数关系为 S = vt . 当t = 1.5时,S = 90,那么v = 60. 因此所求的函数关系为S =60t , 当t = 3时,S = 180,所以汽车3h 所行驶的路程为180km. 2.设食品的重量为x kg ,那么食品的价格y 元与重量x kg 之间的函数关系式为y =8x ,当x = 8时,y = 64,所以当8kg 食品的价格为64元. 3.设矩形菜地与墙相对的一边长为x cm ,那么另一组对边的长为3002x-m ,从而矩形菜地的面积为:21(300)21(150)11250(0300).2S x x x x =-=--+<< 当x = 150时,S max = 11250. 即当矩形的长为150m ,宽为75m 时,菜地的面积最大.4.解:所求函数的关系式为100410 1.2(4)41523.2 1.8(15)15x y x x x x <≤⎧⎪=+-<≤⎨⎪+->⎩升解应用题的技能. 归纳小结课堂小结解决应用用问题的步骤:读题—列式—解答. 学生总结,师生完善使学生养成归纳总结的好习惯.让学生初步掌握数学建模的基本过程. 布置作业 习题2—3B 第1、3题:教材第71页“思考与讨论〞.学生练习使学生巩固本节所学知识与方法.备选例题例1 某游艺场每天的盈利额y 元与售出的门票数x X 之间的关系如下图,试问盈利额为750元时,当天售出的门票数为多少?[解析]根据题意,每天的盈利额y 元与售出的门票数x X 之间的函数关系是:3.75(0400)1.251000(400600)x x y x x ≤≤⎧=⎨+≤≤⎩〔1〕当0≤x ≤x =750,得x =200.〔2〕当400≤x ≤x + 1000 = 750,得x = – 200 (舍去).综合〔1〕和〔2〕,盈利额为750元时,当天售出的门票数为200X.答:当天售出的门票数为200X时盈利额为750元.例2 某个经营者把开始六个月试销A、B两种商品的逐月投资与所获纯利润列成下表:投资A种商品金额(万元)1 2 3 4 5 6获纯利润(万元)2投资B种商品金额(万元)1 2 3 4 5 6获纯利润(万元)1该经营者准备下月投入12万元经营这两种产品,但不知投入A、B两种商品各多少才最合算. 请你帮助制定一个资金投入方案,使得该经营者获得最大的利润,并按你的方案求出该经营者下月可获得的最大纯利润(结果保留两位有效数字).[解析]以投资额为横坐标,纯利润为纵坐标,在直角坐标系中画出散点图:据此,可考虑用以下函数分别描述上述两组数据之间的对应关系.y = –a (x – 4)2 + 2 (a>0) ①y = bx②把x = 1,y代入①式,得0.65 = –a (1 – 4)2 + 2,解得a = 0.15.故前六个月所获纯利润关于月投资A商品的金额的函数关系式可近似地用y = – 0.15(x– 4)2 + 2表示,再把x = 4,y = 1代入②式,得b = 0.25,故前六个月所获利润关于月投资B种商品的金额的函数关系可近似地用yx表示.设下月投资A种商品x万元,那么投资B种商品为(12 –x)万元,可获纯利润y = – 0.15 (x– 4)2 + 2 + 0.25 (12 –x)= –x2x + 2.6,当0.952(0.15)x-=⨯-≈3.2时,2max 4(0.15) 2.60.954(0.15)y⨯-⨯-=⨯-≈4.1.故下月分别投资A、B两种商品3.2万元和8.8万元,可获最大纯利润4.1万元.[评析]幂函数模型的应用题经常以二次函数的形式出现,要注意y = x2变换到y = a (x–m)2 + b后发生的变化.。

2019_2020学年新教材高中数学 用函数模型解决实际问题教学案新人教A版必修第一册

2019_2020学年新教材高中数学 用函数模型解决实际问题教学案新人教A版必修第一册

第1课时用函数模型解决实际问题(教师独具内容)课程标准:1.理解函数模型是描述客观世界中变量关系和规律的重要数学语言和工具.2.会选择合适的函数类型刻画现实问题的变化规律.教学重点:用函数刻画实际问题.教学难点:准确理解题意,理清变量间的关系.【知识导学】知识点函数模型应用的两个方面01已知函数模型解决问题.(1)利用□03解释有关现象,对某些发展趋势□04进(2)建立恰当的□02函数模型,并利用所得函数模型□行预测.【新知拓展】(1)在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题常用指数函数模型表示.通常可以表示为y=N(1+p)x(其中N为基础数,p为增长率,x为时间)的形式.解题时,往往用到对数运算,要注意与已知表格中给定的值对应求解.(2)有关对数型函数的应用题,一般都会给出函数解析式,要求根据实际情况求出函数解析式中的参数,或给出具体情境,从中提炼出数据,代入解析式求值,然后根据值回答其实际意义.1.判一判(正确的打“√”,错误的打“×”)(1)函数刻画的方法可以用图象法,也可以用解析式法.( )(2)某自行车存车处在某一天总共存放车辆4000辆次,存车费为:电动自行车0.3元/辆,普通自行车0.2元/辆.若该天普通自行车存车x辆次,存车费总收入为y元,则y与x的关系为y=-0.1x+1200(0≤x≤4000,x∈Z).( )(3)某种细胞分裂时,由1个分裂成2个,2个分裂成4个,…现有2个这样的细胞,分裂x次后得到细胞的个数y与x的函数关系是y=2x.( )答案(1)√(2)√(3)×2.做一做(1)从2013年起,在20年内某海滨城市力争使全市工农业生产总产值翻两番,如果每年的增长率是8%,则达到翻两番目标的最少年数为( )A.17 B.18C .19D .20(2)某物体一天内的温度T 是时间t 的函数T (t )=t 3-3t +60,时间单位是h ,温度单位为℃,t =0时表示中午12:00,则上午8:00时的温度为________℃.答案 (1)C (2)8题型一 利用已知函数模型求解实际问题例1 一种放射性元素,最初的质量为500 g ,按每年10%衰减. (1)求t 年后,这种放射性元素质量ω的表达式;(2)由求出的函数表达式,求这种放射性元素的半衰期(剩留量为原来的一半所需的时间叫做半衰期).(精确到0.1年,已知lg 2=0.3010,lg 3=0.4771)[解] (1)最初的质量为500 g.经过1年后,ω=500(1-10%)=500×0.91; 经过2年后,ω=500×0.9(1-10%)=500×0.92; 由此推知,t 年后,ω=500×0.9t. (2)解方程500×0.9t =250,则0.9t=0.5, 所以t =lg 0.5lg 0.9=-lg 22lg 3-1≈6.6(年),即这种放射性元素的半衰期约为6.6年. 金版点睛在实际问题中,有很多问题的两变量之间的关系是已知函数模型,如一次、二次函数、反比例函数、幂函数、指数函数、对数函数,这时可借助待定系数法求出函数解析式,再根据解题需要研究函数性质.[跟踪训练1] 某城市2009年底人口总数为100万人,如果年平均增长率为1.2%,试解答以下问题:(1)写出经过x 年后,该城市人口总数y (万人)与x (年)的函数关系式; (2)计算10年后该城市人口总数(精确到0.1万人);(3)计算经过多少年以后,该城市人口将超过120万人(精确到1年).(参考数据:1.0129≈1.113,1.01210≈1.127,lg 1.2≈0.079,lg 2≈0.3010,lg 1.012≈0.005)解 (1)2009年底人口总数为100万人,经过1年,2010年底人口总数为100+100×1.2%=100×(1+1.2%);经过2年,2011年底人口总数为100×(1+1.2%)+100×(1+1.2%)×1.2%=100×(1+1.2%)2;经过3年,2012年底人口总数为100×(1+1.2%)2+100×(1+1.2%)2×1.2%=100×(1+1.2%)3;……所以经过x 年后,该城市人口总数为100×(1+1.2%)x, 所以y =100×(1+1.2%)x ,x ∈N *.(2)10年后该城市人口总数为100×(1+1.2%)10≈112.7(万人). (3)由题意得100×(1+1.2%)x>120,两边取常用对数,得lg [100×(1+1.2%)x]>lg 120, 整理得2+x lg 1.012>2+lg 1.2,得x ≥16, 所以大约16年以后,该城市人口将超过120万人. 题型二 自建函数模型解决实际问题例2 渔场中鱼群的最大养殖量为m (m >0),为了保证鱼群的生长空间,实际养殖量x 小于m ,以便留出适当的空闲量.已知鱼群的年增长量y 和实际养殖量与空闲率(空闲率是空闲量与最大养殖量的比值)的乘积成正比,比例系数为k (k >0).(1)写出y 关于x 的函数关系式,并指出该函数的定义域; (2)求鱼群年增长量的最大值. [解] (1)根据题意知,空闲率是m -x m ,故y 关于x 的函数关系式是y =kx ·m -xm,0<x <m . (2)由(1)知,y =kx ·m -x m =-k m x 2+kx =-k m ·⎝ ⎛⎭⎪⎫x -m 22+mk4,0<x <m . 则当x =m 2时,y max =mk4.所以,鱼群年增长量的最大值为mk4.金版点睛建立数学模型应注意的问题用函数有关的知识建立数学模型,难点是理解题意,把实际问题数学化,建立数学模型一定要过好三关:(1)事理关:通过阅读、理解,明白问题讲的是什么,熟悉实际背景,为解题打开突破口. (2)文理关:将实际问题的文字语言转化为数学的符号语言,用数学式子表达文字关系. (3)数理关:在构建数学模型的过程中,对已知数学知识进行检索,从而认定或构建相应的数学模型.[跟踪训练2] 一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年.为保护生态环境,森林面积至少要保留原面积的14.已知到今年为止,森林剩余面积为原来的22.(1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年? (3)今后最多还能砍伐多少年?解 (1)设每年砍伐面积的百分比为x (0<x <1),则a (1-x )10=12a ,即(1-x )10=12,解得x=1-⎝ ⎛⎭⎪⎫12 110 . (2)设经过m 年剩余面积为原来的22,则 a (1-x )m =22a ,即,所以m 10=12,解得m =5,故到今年为止,已砍伐了5年. (3)设从今年开始,以后砍伐了n 年, 则n 年后剩余面积为22a (1-x )n . 令22a (1-x )n ≥14a ,即(1-x )n ≥24, 所以,所以n 10≤32,解得n ≤15.故今后最多还能砍伐15年.1.若镭经过100年后剩留原来质量的95.76%,设质量为1的镭经过x 年后剩留量为y ,则x ,y 的函数关系是( )答案 A解析 设镭的衰变率为a ,则(1-a )100=0.9576,得1-a =0.95761100,则y =0.9576x 100,故选A .2.有一组试验数据如表所示:则最能体现这组数据关系的函数模型是( ) A .y =2x +1-1 B .y =x 2-1 C .y =2log 2x D .y =x 3答案 B解析 根据表中数据可知,能体现这组数据关系的函数模型是y =x 2-1.3.据报道,某淡水湖的湖水在50年内减少了10%,若按此规律,设2019年的湖水量为m ,从2019年起,经过x 年后湖水量y 与x 的函数关系为________.答案 y =0.9x50m解析 设淡水湖的湖水的年平均变化率为p ,则p 50=0.9,∴p =0.9 150 .设2019年的湖水量为m ,则经过x 年后湖水量y 与x 的函数关系是y =m ·0.9x50,即y =0.9 x50 m .4.用清水洗衣服,若每次能洗去污垢的34,要使存留的污垢不超过1%,则至少要清洗的次数是________(lg 2≈0.3010).答案 4解析 设至少要洗x 次,则⎝ ⎛⎭⎪⎫1-34x ≤1100,解得x ≥1lg 2≈3.322,所以至少要洗4次.5.某公司制定了一个激励销售人员的奖励方案:当销售员为公司赚取的销售利润不超过15万元时,按销售利润的10%奖励给该销售员;当销售员为公司赚取的销售利润超过15万元时,若超出部分为A 万元,则超出部分按2log 5(A +1)奖励给该销售员,没超出部分仍按销售利润的10%奖励给该销售员.记奖金总额为y (单位:万元),销售利润为x (单位:万元).(1)写出y 关于x 的函数表达式;(2)如果销售员老张获得5.5万元的奖金,那么他为该公司赚取的销售利润是多少万元?解 (1)由题意,得y =⎩⎪⎨⎪⎧0.1x ,0<x ≤15,1.5+2log 5(x -14),x >15.(2)∵x ∈(0,15]时,0.1x ≤1.5, 又y =5.5>1.5,∴x >15,∴1.5+2log 5(x -14)=5.5,解得x =39. ∴老张为该公司赚取的销售利润是39万元.。

3.2.2-1《函数模型的应用实例》教案(新人教版必修1)

3.2.2-1《函数模型的应用实例》教案(新人教版必修1)

3.2.2-1 函数模型的应用实例一、 教学目标:1、 能够利用给定的函数模型或建立确定性函数模型解决实际问题.2、 感受运用函数概念建立模型的过程和方法,对给定的函数模型进行简单的分析评价.3、 体会数学在实际问题中的应用价值二、 教学重点与难点:重点 利用给定的函数模型或建立确定性函数模型解决实际问题.难点 利用给定的函数模型或建立确定性函数模型解决实际问题,并对给定的函数模型进行简单的分析评价.三、 学法与教学用具1. 学法:学生自主阅读教材,采用尝试、讨论方式进行探究.2. 教学用具:多媒体教学过程(一)创设情景,提出课题新课引入:前节课主要是讲授指数函数、对数函数以及幂函数的增长差异,本节课我们主要是通过一些生活中常遇到的实例来进一步说明函数模型在解决实际问题中的应用.(二)结合实例,探求新知例1.(P102)一辆汽车在某段路程中的行驶速度与时间的关系如图所示.1) 求图中阴影部分的面积,关说明所求面积的实际含义;2) 假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km ,试建立汽车行驶 这段路程时汽车里程表读数s 与时间t 的函数解析式,并作出相应的图象.分析:让学生主动参与,认真观察分析所给图象,独立思考后,讨论,教师可以作以下引导 首先引导学生写出速度v 关于时间t 的函数解析式其次引导学生写出汽车行驶路程y 关于时间t 的函数关系式,并作图象(见P102)h )V= 50 ( 0≤t<1 ) 80 ( 1≤t<2 )90 ( 2≤t<3 )75 ( 3≤t<4 )65 ( 4≤t ≤5 )S = 50t+2004, ( 0≤t<1 ) 80(t-1)+2054, ( 1≤t<2 ) 90(t-2)+2134, ( 2≤t<3 )75(t-3)+2224, ( 3≤t<4 )再次探索:1)将图中的阴影部分隐去,得到的图象表示什么?表示分段函数v(t)的图象.2)图中每一个矩形的面积的意义是什么?表示在1个小时的时间段内汽车行驶的路程.3)汽车的行驶里程与里程表读数之间有什么关系?它们关于时间的函数图象又有何关系? 汽车的行驶里程=里程表读数-2004;将里程表读数关于时间t 的函数图象向下平移2004个单位后,就得到汽车的行驶里程关于时间t 的函数图象。

高中数学3.2.2函数模型的应用实例(Ⅰ)教案新人教版必修1

高中数学3.2.2函数模型的应用实例(Ⅰ)教案新人教版必修1

§3.2.2 函数模型的应用实例(Ⅰ)一、教学目标:1.知识与技能能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题.2.过程与方法感受运用函数概念建立模型的过程和方法,体会一次函数、二次函数模型在数学和其他学科中的重要性.3.情感、态度、价值观体会运用函数思想处理现实生活中和社会中的一些简单问题的实用价值.二、教学重点与难点:1.教学重点:运用一次函数、二次函数模型解决一些实际问题.2.教学难点:将实际问题转变为数学模型.三、学法与教学用具1.学法:学生自主阅读教材,采用尝试、讨论方式进行探究.2.教学用具:多媒体四、教学设想(一)创设情景,揭示课题引例:大约在一千五百年前,大数学家孙子在《孙子算经》中记载了这样的一道题:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有若干只有几只鸡和兔?你知道孙子是如何解答这个“鸡兔同笼”问题的吗?你有什么更好的方法?老师介绍孙子的大胆解法:他假设砍去每只鸡和兔一半的脚,则每只鸡和兔就变成了“独脚鸡”和“双脚兔”.这样,“独脚鸡”和“双脚兔”脚的数量与它们头的数量之差,就是兔子数,即:47-35=12;鸡数就是:35-12=23.比例激发学生学习兴趣,增强其求知欲望.可引导学生运用方程的思想解答“鸡兔同笼”问题.(二)结合实例,探求新知例1.某列火车众北京西站开往石家庄,全程277km,火车出发10min开出13km后,以120km/h匀速行驶.试写出火车行驶的总路程S与匀速行驶的时间t之间的关系式,并求火车离开北京2h内行驶的路程.探索:1)本例所涉及的变量有哪些?它们的取值范围怎样;2)所涉及的变量的关系如何?3)写出本例的解答过程.老师提示:路程S和自变量t的取值范围(即函数的定义域),注意t的实际意义.学生独立思考,完成解答,并相互讨论、交流、评析.例2.某商店出售茶壶和茶杯,茶壶每只定价20元,茶杯每只定价5元,该商店制定了两种优惠办法:1)本例所涉及的变量之间的关系可用何种函数模型来描述?2)本例涉及到几个函数模型?3)如何理解“更省钱?”;4)写出具体的解答过程.在学生自主思考,相互讨论完成本例题解答之后,老师小结:通过以上两例,数学模型是用数学语言模拟现实的一种模型,它把实际问题中某些事物的主要特征和关系抽象出来,并用数学语言来表达,这一过程称为建模,是解应用题的关键。

北师大版高中数学必修一数学必修第一册:5.2.2《用函数模型解决实际问题》教案

北师大版高中数学必修一数学必修第一册:5.2.2《用函数模型解决实际问题》教案

用函数模型解决实际问题【教学目标】1.通过利用已知函数模型解决实际问题,提升数学建模素养。

2.通过建立数学模型解决实际问题,培养数据分析、数学运算素养。

【教学重难点】1.会利用已知函数模型解决实际问题。

(重点)2.能建立函数模型解决实际问题。

(重、难点)【教学过程】一、基础铺垫常用的函数模型:二、新知探究1.表格信息类建模问题【例1】(1)画出函数图形,猜想它们之间的函数关系,近似地写出一个函数关系式;(2)利用得出的关系式求生产总值,与表中实际生产总值比较;(3)利用关系式预测2019年该国的国内生产总值。

[解](1)根据表中数据画出函数图形,如图所示。

从函数的图形可以看出,画出的点近似地落在一条直线上,设所求的函数为y=kx+B.把直线通过的两点(0,8.206 7)和(3,10.239 8)代入上式,解方程组,可得k=0.677 7,b =8.206 7.所以它的一个函数关系式为y=0.677 7x+8.206 7.(2)由(1)中得到的关系式为f(x)=0.677 7x+8.206 7,计算出2016年和2017年的国内生产总值分别为f(1)=0.677 7×1+8.206 7=8.884 4,f(2)=0.677 7×2+8.206 7=9.562 1.与实际的生产总值相比,误差不超过0.1万亿元。

(3)2019年,即x=4,由上述关系式,得y=f(4)=0.677 7×4+8.206 7=10.917 5,即预测2019年该国的国内生产总值约为10.917 5万亿元。

【教师小结】(1)根据表格信息,画出图像;(2)根据图像特征,选定函数模型;(3)用待定系数法求出函数解析式;(4)检验模型。

2.图像信息解读问题【例2】如图1是某公共汽车线路收支差额y元与乘客量x的图像。

图1图2图3(1)试说明图1上点A、点B以及射线AB上的点的实际意义;(2)由于目前本条线路亏损,公司有关人员提出了两种扭亏为盈的建议,如图2、3所示。

高中数学必修一《函数模型的应用实例》优秀教学设计

高中数学必修一《函数模型的应用实例》优秀教学设计

课题:§3.2.2函数模型的应用实例(一)教材分析本节课选自《普通高中课程标准实验教科书数学1必修本(A版)》的第三章的3.2.2函数模型的应用实例函数模型及其应用是中学重要内容之一,又是数学与生活实践相互衔接的枢纽,特别在应用意识日益加深的今天,函数模型的应用实质是揭示了客观世界中量的相互依存有互有制约的关系,因而函数模型的应用举例有着不可替代的重要位置,又有重要的现实意义。

本节课要求学生利用给定的函数模型或建立函数模型解决实际问题,并对给定的函数模型进行简单的分析评价学情分析学生在学习本节内容之前已经学习了几类不同增长的函数模型,学会了任何选择适当的函数模型分析和解决实际问题,对函数模型增长变化有了较深刻的认识。

这为建立函数模型解决实际问题提供了支持。

但学生对于从实际应用问题获取信息转化为数学问题的能力较薄弱,给建立函数模型带来了一定的难度。

因此在教学中应该给学生多阅读,多思考,由易到难逐层引导提问,理解问题的本质从而得出结论。

教学目标:知识与技能能够利用给定的函数模型或建立确定性函数模型解决实际问题.过程与方法感受运用函数概念建立模型的过程和方法,对给定的函数模型进行简单的分析评价.情感、态度、价值观体会数学在实际问题中的应用价值.教学重点、难点:重点利用给定的函数模型或建立确定性函数模型解决实际问题.难点利用给定的函数模型或建立确定性函数模型解决实际问题,并对给定的函数模型进行简单的分析评价.设计思想一、创设情境现实生活中有些实际问题所涉及的数学模型是确定的,但需要我们利用问题中的数据及其蕴含的关系建立数学模型,对于已给定数学模型的问题,我们要对所确定的数学模型进行分析评价,验证数学模型的与所提供的数据的吻合程度,并对给定的数学模型进行适当的分析和评价.设计意图教师介绍现实生活中函数应用的典型题型,提出研究内容与研究方法引出问题.二、组织探究例1.一辆汽车在某段路程中的行驶速度与时间的关系如图所示.1)求图中阴影部分的面积,关说明所求面积的实际含义;2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立汽车行驶这段路程时汽车里程表读数s 与时间t 的函数解析式,并作出相应的图象.让学生主动参与,认真观察分析所给图象,独立思考后,讨论,教师可以作以下引导 首先引导学生写出速度v 关于时间t 的函数解析式其次引导学生写出汽车行驶路程y 关于时间t 的函数关系式,并作图象再次探索:1)将图中的阴影部分隐去,得到的图象什么意义?2)图中每一个矩形的面积的意义是什么?3)汽车的行驶里程与里程表读数之间有什么关系?它们关于时间的函数图象又有何关系?设计意图学会将实际问题转化为数学问题.学会用函数模型(分段函数)刻画实际问题.培养学生的读图能力,让学生理解图象是函数对应关系的一种重要表现形式例2.人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798,英国经济学家马尔萨斯就提出了自然状态下的人口增长模型:rt e y y 0其中t 表示经过的时间,0y 表示t =0时的人口数,r 表示人口的年平均增长率.下表是1950~1959年我国的人口数据资料:(单位:万人) 年份1950 1951 1952 1953 1954 人数55196 56300 57482 58796 60266 年份1955 1956 1957 1958 1959 人数 61456 62828 64563 65994 672071)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到/通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 v(km/h ) t (h )0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;2)如果按表中的增长趋势,大约在哪一年我国的人口将达到13亿?认真阅读题目,教师指出本例的题型是利用给定的数学模型(指数函数模型rt e y y 0 )解决实际问题的一类问题,引导学生认识到确定具体函数模型的关键是确定两个参数0y 与r .学生独立思考后,教师作以下提问1) 本例中所涉及的数量有哪些?2) 描述所涉及数量之间关系的函数模型是否是确定的,确定这种模型需要几个因素?3) 根据表中数据如何确定函数模型?4) 对于所确定的函数模型怎样进行检验,根据检验结果对函数模型又应作出如何评价?5)如何根据所确定函数模型具体预测我国某个时期的人口数,实质是何种计算方法?学生根据教师引导,完成数学模型的确定,借助计算器,利用所确定的函数模型对我国的人口增长情况进行适当的预测教师在验证问题中的数据与所确定的数学模型是否吻合时,可引导学生利用计算器或计算机作出所确定函数的图象,并由表中数据作出散点图,通过比较来确定函数模型与人口数据的吻合程度.设计意图通过本例让学生认识到表格也是函数对应关系的一种表现形式.培养学生得阅读能力,分析能力三、探索研究引导学生分析例题,进行总结归纳利用给定函数模型或建立确定函数解决实际问题的方法:1)根据题意选用恰当的函数模型来描述所涉及的数量之间的关系;2)利用待定系数法,确定具体函数模型;3)对所确定的函数模型进行适当的评价;4)根据实际问题对模型进行适当的修正.设计意图渗透数学思想方法,培养学生读图、分析已知数据、概括、总结等诸多方面的能力。

高中教材数学必修一《函数模型的应用实例》教学设计

高中教材数学必修一《函数模型的应用实例》教学设计

课题:§3.2.2函数模型的应用实例(Ⅱ)
教学目标:
知识与技能能够利用给定的函数模型或建立确定性函数模型解决实际问题.过程与方法感受运用函数概念建立模型的过程和方法,对给定的函数模型进行简单的分析评价.
情感、态度、价值观体会数学在实际问题中的应用价值.
教学重点:
重点利用给定的函数模型或建立确定性函数模型解决实际问题.
难点利用给定的函数模型或建立确定性函数模型解决实际问题,并对给定的函数模型进行简单的分析评价.
教学程序与环节设计:
实际问题引入,激发学生兴趣.
型的广泛应用.
教学过程与操作设计:。

高中数学:2.3.1函数的应用(I)教案新人教版必修1

高中数学:2.3.1函数的应用(I)教案新人教版必修1

(Ⅰ)
教学目标:学习一次、二次函数的模型的应用,解决一些简单的实际问题
教学重点:一次、二次函数的模型的应用
教学过程:
一次、二次函数模型的应用问题:
例1.某列火车从西站开往某某,全程277km.火车出发10min开出13km后,以120km/h匀速行驶,试写出火车行驶的总里程s与匀速行驶的时间t之间的关系?并求离开2h时火车行驶的路程?
例2.某农家旅游公司有客房300间,每间日房租为20元,每天都客满.公司欲提高档次,并提高租金.如果每间日房租每增加2元,客房出租数就会减少10间.假设不考虑其他因素,旅游公司将房间租金提高到多少时,每天客房的租金总收入最高?
方法一:列表分析:
方法二:函数分析:
例3 .某单位计划用围墙围出一块矩形场地,现有材料可筑墙的总长度为l,如果要使围墙围出的场地面积最大,问矩形的长、宽各等于多少?
例4.问题我国1999~2002年国内生产总值,(单位:万亿元)如下表所示:
(1)画出函数图象,猜想它们之间的函数关系,近似地写出一个函数关系式;
(2)利用得出的关系式求生产总值,与表中实际生产总值比较.
(3)利用关系式估计2003年我国的国内生产总值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§3.2.2 函数模型的应用实例
第一课时应用已知函数模型解决实际问题
【教学目标】
能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题.
【教学重难点】
1.教学重点:运用一次函数、二次函数模型解决一些实际问题.
2.教学难点:将实际问题转变为数学模型.
【教学过程】
(一)创设情景,揭示课题
引例:大约在一千五百年前,大数学家孙子在《孙子算经》中记载了这样的一道题:“今有雏兔同笼,上有三十五头,下有九十四足,问雏兔各几何?”这四句的意思就是:有若干只有几只鸡和兔?你知道孙子是如何解答这个“鸡兔同笼”问题的吗?你有什么更好的方法?老师介绍孙子的大胆解法:他假设砍去每只鸡和兔一半的脚,则每只鸡和兔就变成了“独脚鸡”和“双脚兔”.这样,“独脚鸡”和“双脚兔”脚的数量与它们头的数量之差,就是兔子数,即:47-35=12;鸡数就是:35-12=23.
比例激发学生学习兴趣,增强其求知欲望.
可引导学生运用方程的思想解答“鸡兔同笼”问题.
(二)结合实例,探求新知.
例1 某农家旅游公司有客房300间,每间日房租为20元,每天都客满.公司欲提高档次,并提高租金,如果每间客房日增加2元,客房出租数就会减少10间.若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?
引导学生探索过程如下:
1)本例涉及到哪些数量关系?
2)应如何选取变量,其取值范围又如何?
3)应当选取何种函数模型来描述变量的关系?
4)“总收入最高”的数学含义如何理解?
根据老师的引导启发,学生自主,建立恰当的函数模型,进行解答,然后交流、进行评析.
设客房日租金每间提高2x元,则每天客房出租数为300-10x,由x>0,且300-10x>0得:0<x <30
设客房租金总上收入y 元,则有:
y =(20+2x )(300-10x )
=-20(x -10)2 + 8000(0<x <30)
由二次函数性质可知当x =10时,max y =8000.
所以当每间客房日租金提高到20+10×2=40元时,客户租金总收入最高,为每天8000元.
变式:某列火车众北京西站开往石家庄,全程277km ,火车出发10min 开出13km 后,以120km/h 匀速行驶. 试写出火车行驶的总路程S 与匀速行驶的时间t 之间的关系式,并求火车离开北京2h 内行驶的路程.
例2 要建一个容积为8m 3,深为2m 的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,试求应当怎样设计,才能使水池总造价最低?并求此最低造价.
解析:选择合适的数学模型建立函数关系
解:设长方体底面的长为xm,则宽为(4/x)m,水池的总造价为y 元
y=480+80
当x=2时,总造价最低为1760元
点评:利用基本不等式
变式:某工厂今年1月、2月、3月生产某种产品的数量分别为1万件,1.2万件,1.3万件,为了估计以后每个月的产量,以这三个月的产品数量为依据用一个函数模拟该产品的月产量t 与月份的x 关系,模拟函数可以选用二次函数或函数(,,)x
y ab c a b c =+其中为常数.已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.
【板书设计】
一、已知函数模型
二、例题
例1
变式1
例2
变式2
【作业布置】教材P 116练习1、2
§3.2.2 函数模型的应用实例
第一课时 应用已知函数模型解决实际问题
课前预习学案
一.预习目标:熟悉几种常见的函数增长型
二.预习内容:阅读课本内容思考:主要的函数增长性有哪些
三、提出疑惑
同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中 疑惑点 疑惑内容
课内探究学案
一.学习目标:能够找出简单实际问题中的函数关系式,初步体会应用一次函数、二次函数模型解决实际问题.
学习重点:运用一次函数、二次函数模型解决一些实际问题.
学习难点:将实际问题转变为数学模型.
二.学习过程
解决实际问题的步骤
1)首先建立直角坐标系,画出散点图;
2)根据散点图设想比较接近的可能的函数模型:
一次函数模型:()(0);f x kx b k =+≠
二次函数模型:2()(0);g x ax bx c a =++≠
幂函数模型:12
()(0);h x ax b a =+≠
指数函数模型:()x l x ab c =+(0,a b ≠>0,1b ≠)
利用待定系数法求出各解析式,并对各模型进行分析评价,选出合适的函数模型;由于尝试的过程计算量较多,可同桌两个同学分工合作,最后再一起讨论确定.
例1 某农家旅游公司有客房300间,每间日房租为20元,每天都客满. 公司欲提高档次,并提高租
金,如果每间客房日增加2元,客房出租数就会减少10间. 若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?
变式:某列火车众北京西站开往石家庄,全程277km ,火车出发10min 开出13km 后,以120km/h 匀速行驶. 试写出火车行驶的总路程S 与匀速行驶的时间t 之间的关系式,并求火车离开北京2h 内行驶的路程.
例2 要建一个容积为8m 3,深为2m 的长方体无盖水池,如果池底和池壁的造价每平方米分别为120元和80元,试求应当怎样设计,才能使水池总造价最低?并求此最低造价.
变式:某工厂今年1月、2月、3月生产某种产品的数量分别为1万件,1.2万件,1.3万件,为了估计以后每个月的产量,以这三个月的产品数量为依据用一个函数模拟该产品的月产量t 与月份的x 关系,模拟函数可以选用二次函数或函数(,,)x
y ab c a b c =+其中为常数.已知4月份该产品的产量为1.37万件,请问用以上哪个函数作为模拟函数较好,并说明理由.
课后练习与提高
一.选择题
1.客车从甲地以60km/h 的速度匀速行驶1小时到达乙地,在乙地停留了半小时,然后以80km/h 的速度匀速行驶1小时到达丙地,下列描述客车从甲地出发.经过乙地,最后到达丙地所经过的路程s 与时间t 之间关系的图象中,正确的是( )
A. B. C. D.
2.一种商品连续两次降价10%后,欲通过两次连续提价恢复原价,则每次应提价( )
A .10%
B .20%
C .5%
D .11.1%
3.今有一组实验数据如下: t 1.99 3.0 4.0 5.1 6.12 v 1.5 4.04 7.5 12 18.01
现准备用下列函数中一个近似地表示这些数据满足的规律,其中最接近的一个是( )
A .t v 2log =
B .t v 21log =
C .212-=t v
D .22-=t v 二.填空题
4.假设某商品靠广告销售的收入R 与广告费A 之间满足关系R=a ·A ,那么广告效应为A A a D -=,当A= 时,取得最大广告效应.
5.某种细菌在培养过程中,每20分钟分裂一次(一个分裂为2个)经过3小时后,这种细菌可由1个分裂成__________个
三.解答题
6. 某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y 元,已知甲、乙两用户该月用水量分别为5x ,3x 吨.
(1)求y 关于x 的函数;
(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.
参考答案。

相关文档
最新文档