高中数学必修一教案-函数模型的应用实例

合集下载

人教版教材高中数学必修一《函数模型的应用实例》教案

人教版教材高中数学必修一《函数模型的应用实例》教案

3.2.3 函数模型的应用实例(一)(一)教学目标1.知识与技能:初步掌握一次和二次函数模型的应用,会解决较简单的实际应用问题.2.过程与方法:经历运用一次和二次函数模型解决实际问题,提高学生的数学建模能力.3.情感、态度与价值观:了解数学知识来源于生活,又服务于实际,从而培养学生的应用意识,提高学习数学的兴趣.(二)教学重点、难点一次和二次函数模型的应用是本节的重点,数学建模是本节的难点.(三)教学方法本节内容主要是例题教学,因此采用学生探究解题方法,总结解题规律,教师启发诱导的方法进行教学.(四)教学过程教学环节教学内容师生互动设计意图复习引入回顾一次函数和二次函数的有关知识.教师提出问题,学生回答.师:一次函数、二次函数的解析式及图象与性质.生:回答上述问题.以旧引新,激发兴趣.应用举例1.一次函数模型的应用例1 某列火车从北京西站开往石家庄,全程277km.火车出发10min开出13km后,以120km/h的速度匀速行驶.试写出火车行驶的总路程S与匀速行驶的时间t之间的关系,并求火车离开北京2h内行驶的路程.教师提出问题,让学生读题,找关键字句,联想学过的函数模型,求出函数关系式.学生根据要求,完成例1的解答.例1 解:因为火车匀速运动的时间为(200 – 13)÷120 =115(h),所以115t≤≤.因为火车匀速行驶时间t h所行驶路程为120t,所以,火车运行总路程S与匀速行驶时间t之间的关系是11130120(0).5S t t=+≤≤2h内火车行驶的路程11131206S=+⨯=233(km).通过此问题背景,让学生恰当选择相应一次函数模型解决问题,加深对函数概念本质的认识和理解.让学生体验解决实际问题的过程和方法.解题方法:1.读题,找关键点;2.抽象成数学模型;3.求出数学模型的解;4.做答.学生总结,教师完善.培养学生分析归纳、概括能力.从而初步体验解应用题的规律和方法.2.二次函数模型的应让学生自己读题,并回答下列问题:解应用题用例2 某农家旅游公司有客房300间,每间日房租20元,每天都客满.公司欲提高档次,并提高租金.如果每间客房每日增加2元,客房出租数就会减少10间.若不考虑其他因素,旅社将房间租金提高到多少时,每天客房的租金总收入最高?①题目求什么,应怎样设未知量;②每天客房的租金收入与每间客房的租金、客房的出租数有怎样的关系;③学生完成题目.法一:用列表法求解.此法可作为学生探求思路的方法,但由于运算比较繁琐,一般不用,应以法二求解为重点.对法二让学生读题,回答问题.教师指导,学生自己动手解题.师生合作由实际问题建模,让学生尝试解答.例2 解答:方法一依题意可列表如下:x y0 300×20 = 60001 (300 – 10×1)(20 + 2×1) = 63802 (300 – 10×2)(20 + 2×2) = 67203 (300 – 10×3)(20 + 2×3) = 70204 (300 – 10×4)(20 + 2×4) = 72805 (300 – 10×5)(20 + 2×5) = 75006 (300 – 10×6)(20 + 2×6) = 76807 (300 – 10×7)(20 + 2×7) = 78208 (300 – 10×8)(20 + 2×8) =79209 (300 – 10×9)(20 + 2×9) = 798010 (300 – 10×10)(20 + 2×10) = 800011 (300 – 10×11)(20 + 2×11) = 798012 (300 – 10×12)(20 + 2×12) = 792013 (300 – 10×13)(20 + 2×13) = 7820……由上表容易得到,当x = 10,即每天租金为40元时,能出租客房200间,此时每天总租金最高,为8000元.再提高租金,总收入就要小于8000元了.方法二设客房租金每间提高x个2元,则将有10x间客房空出,客房租金的总收入为y = (20 + 2x) (300 – 10x )= –20x2 + 600x– 200x + 6000= –20(x2– 20x + 100 – 100) + 6000= –20(x– 10)2 + 8000.首先要读懂题意,设计出问题指导学生审题,建立正确的数学模型.同时,培养学生独立解决问题的能力.由此得到,当x = 10时,y max = 8000.即每间租金为20 + 10×2 = 40(元)时,客房租金的总收入最高,每天为8000元.3.分将函数模型的应用例 3 一辆汽车在某段路程中的行驶速率与时间的关系如图所示.(1)求图中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立行驶这段路程时汽车里程表读数s km与时间t h的函数解析式,并作出相应的图象.生:解答:(1)阴影部分的面积为50×1+80×1+90×1+75×1+65×1=360.阴影部分的面积表示汽车在这5小时内行驶的路程为360km.(2)根据图,有502004,01,80(1)2054,12,90(2)2134,23,75(3)2224,34,65(4)2299,4 5.t tt ts t tt tt t+≤<⎧⎪-+≤<⎪⎪=-+≤<⎨⎪-+≤<⎪-+≤≤⎪⎩这个函数的图象如图所示.实际应用用问题解决的一般步骤:理解问题⇒简化假设⇒数学建模⇒解答模型⇒检验模型⇒评价与应用的进一步深体.巩固练习课堂练习习题1.如果一辆汽车匀速行驶,1.5h行驶路程为90km,求这辆汽车行驶路程与时间之间的函数关系,以及汽车3h所行驶的路程.习题2.已知某食品5kg价格为40元,求该食品价格与重量之间的函数关系,并求8kg食品的价格是多少元.习题3.有300m长的篱笆材料,如果利用已有的一面墙(设长度够用)作为一边,围成一块矩形菜地,问矩形的长、宽各为多少时,这块菜地的面学生练习,师生点评.1.设汽车行驶的时间为t h,则汽车行驶的路程S km与时间t h之间的函数关系为S = vt.当t = 1.5时,S = 90,则v = 60.因此所求的函数关系为S=60t,当t = 3时,S = 180,所以汽车3h所行驶的路程为180km.2.设食品的重量为x kg,则食品的价格y元与重量x kg之间的函数关系式为y=8x,当x = 8时,y = 64,所以当8kg食品的价格为64元.3.设矩形菜地与墙相对的一边长为x cm,则另一组对边的长为3002x-m,从而矩形菜地的面积为:学生动手实践、体验所学方法,从而提升解应用题的技能.积最大?习题4.某市一种出租车标价为1.20元/km ,但事实上的收费标准如下:最开始4km 内不管车行驶路程多少,均收费10元(即起步费),4km 后到15km 之间,每公里收费1.20元,15km 后每公里再加收50%,即每公里1.80元.试写出付费总数f 与打车路程x 之间的函数关系.21(300)21(150)11250(0300).2S x x x x =-=--+<<当x = 150时,S max = 11250. 即当矩形的长为150m ,宽为75m 时,菜地的面积最大. 4.解:所求函数的关系式为 100410 1.2(4)41523.2 1.8(15)15x y x x x x <≤⎧⎪=+-<≤⎨⎪+->⎩归纳小结课堂小结解决应用用问题的步骤:读题—列式—解答. 学生总结,师生完善使学生养成归纳总结的好习惯.让学生初步掌握数学建模的基本过程. 布置作业 习题2—3B 第1、3题: 教材第71页“思考与讨论”.学生练习使学生巩固本节所学知识与方法.例1 某游艺场每天的盈利额y 元与售出的门票数x 张之间的关系如图所示,试问盈利额为750元时,当天售出的门票数为多少?【解析】根据题意,每天的盈利额y 元与售出的门票数x 张之间的函数关系是:3.75(0400)1.251000(400600)x x y x x ≤≤⎧=⎨+≤≤⎩(1)当0≤x ≤400时,由3.75x =750,得x =200.(2)当400≤x ≤600时,由1.25x + 1000 = 750,得x = – 200 (舍去). 综合(1)和(2),盈利额为750元时,当天售出的门票数为200张. 答:当天售出的门票数为200张时盈利额为750元. 例2投资A 种商品金额(万元) 1 2 3 4 5 6 获纯利润 (万元) 0.65 1.39 1.85 2 1.84 1.40 投资B 种商品金额(万元) 1 2 3 4 5 6 获纯利润 (万元)0.250.490.7611.261.51该经营者准备下月投入12万元经营这两种产品,但不知投入A B 两种商品各多少才最合算. 请你帮助制定一个资金投入方案,使得该经营者获得最大的利润,并按你的方案求出该经营者下月可获得的最大纯利润(结果保留两位有效数字).【解析】以投资额为横坐标,纯利润为纵坐标,在直角坐标系中画出散点图:据此,可考虑用下列函数分别描述上述两组数据之间的对应关系.y = –a (x – 4)2 + 2 (a>0) ①y = bx②把x = 1,y = 0.65代入①式,得0.65 = –a (1 – 4)2 + 2,解得a = 0.15.故前六个月所获纯利润关于月投资A商品的金额的函数关系式可近似地用y = – 0.15(x– 4)2 + 2表示,再把x = 4,y = 1代入②式,得b = 0.25,故前六个月所获利润关于月投资B种商品的金额的函数关系可近似地用y = 0.25x表示.设下月投资A种商品x万元,则投资B种商品为(12 –x)万元,可获纯利润y = – 0.15 (x– 4)2 + 2 + 0.25 (12 –x)= – 0.15x2 + 0.95x + 2.6,当0.952(0.15)x-=⨯-≈3.2时,2max 4(0.15) 2.60.954(0.15)y⨯-⨯-=⨯-≈4.1.故下月分别投资A、B两种商品3.2万元和8.8万元,可获最大纯利润4.1万元.【评析】幂函数模型的应用题经常以二次函数的形式出现,要注意y = x2变换到y = a (x –m)2 + b后发生的变化.。

高中数学函数应用模型教案

高中数学函数应用模型教案

高中数学函数应用模型教案
目标:学生能够在实际问题中运用函数模型解决问题。

一、引入
1. 通过一个实际问题引入本节课的主题:如何利用函数模型解决实际问题。

2. 引导学生思考函数模型在日常生活中的应用和重要性。

二、概念讲解
1. 复习函数的概念:输入、输出、定义域、值域等。

2. 解释函数模型在解决实际问题中的作用:通过建立数学模型来描述实际情况,并利用函数求解问题。

3. 引入常见的函数模型:线性函数、二次函数、指数函数等,并解释其特点和应用场景。

三、案例分析
1. 给出一个实际问题,如某商品的需求量随时间变化的情况,要求学生建立相应的函数模型。

2. 引导学生分析问题,确定变量间的关系,并建立对应的函数模型。

3. 让学生利用函数模型解决问题,如预测未来需求量、制定合理的生产计划等。

四、练习与拓展
1. 针对不同类型的函数模型,设计练习题让学生巩固所学内容。

2. 拓展延伸,让学生探索更复杂的实际问题,并运用函数模型解决。

五、总结与展望
1. 总结本节课的主要内容,强调函数模型在解决实际问题中的重要性。

2. 展望下节课的内容,引入更多的实际问题让学生继续探索函数模型的应用。

以上是一份高中数学函数应用模型的教案范本,希朋针对实际教学情况做出适当调整。

人教版高中数学必修一《函数模型的应用实例》教学设计

人教版高中数学必修一《函数模型的应用实例》教学设计

《函数模型的应用实例》教学设计一、教学内容普通高中课程标准实验教科书(人民教育出版社A版)数学1(必修),3.2.2 函数模型的应用实例.二、教学目标知识与技能目标:1.能根据图象和表格提供的有关信息和数据,建立函数模型;2.会利用建立的函数模型解决实际问题;3.培养学生阅读理解、抽象概括、数据处理、语言转换、数学建模等数学能力.过程与方法目标:1.通过实例分析,使学生感受函数的广泛应用,体会建立函数模型解决实际问题的思维过程;2.渗透数形结合、分类讨论、化归转换等数学思想方法.情感、态度与价值观目标:1.让学生体验“问题解决”的成功喜悦,激发学习数学的兴趣,增强学好数学的自信心;2.培养学生的应用意识、创新意识和探索精神,优化学生的理性思维和求真务实的科学态度;3.经历建立函数模型解决实际问题的过程,领悟“认识来源于实践又服务于实践”的辩证观点.三、教材分析本小节教材共有4个例题,大致分为两类,其中例3和例5是根据图表信息建立确定性函数模型解决实际问题;例4和例6是建立拟合函数模型解决实际问题.本小节分两个教学课时,本节课是第一课时.我以教材例3和例5为基础,分别在图形和数表两种不同应用情境中,引导学生自主建立函数模型来解决实际问题.因此,本节课的教学重点是:根据图、表信息建立函数模型解决实际问题.四、学情分析学生已掌握了一些基本初等函数的相关知识,并在上一节《几类不同增长的函数模型》的学习中,初步体会了建立函数模型解决实际问题的过程,这为本节课的学习奠定了知识基础.但学生的应用意识、应用能力比较弱,且正确运用数学知识解决实际问题,需要有较高的抽象概括能力、整体驾驭能力和局部处理能力,这些能力要求对学生的学习造成了一定的困难.因此,本节课的教学难点是:将实际问题抽象为数学问题,完成从文字语言、图表语言向符号语言的转化,并建立函数模型.五、教学过程(一)交流成果提出课题学生交流上节课作业题“请举出生活中函数模型的应用实例”的成果,提出课题.【设计意图】让学生体会函数与现实生活的密切联系,感受建立函数模型解决实际问题的必要性,从而激发他们的学习内驱力,也很自然地引入课题.(二)分析探究解决实例【例1】一辆汽车在某段路程中的行驶速率与时间的关系,如图1所示.(1)求出图中阴影部分的面积,并说明所求面积的实际意义;(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2010 km ,试建立行驶这段路程时汽车里程表读数s (km )与时间t (h )的函数解析式,并作出相应的图象.【教学活动1】第(1)题:阴影部分面积为五个小矩形的面积之和,那么只要知道求其中一个矩形的面积并知道其实际意义,就能解决整个问题.因此,我借助多媒体设置动画,引导学生对第一个矩形进行分析,让学生说出它的长度、宽度各是多少?其实际意义分别是什么?根据“矩形面积=长×宽=速率×时间=路程”,学生就能很快说出第一个矩形的面积及其实际意义,整个问题也就迎刃而解了.【设计意图】利用从“局部到整体”、“特殊到一般”的思想分析问题, 从而化解难点, 教会学生分析问题的方法.【教学活动2】第(2)题:重点分析如何建立s 与t 的函数关系式.由于“汽车里程表读数s =2010 +汽车行驶路程”,而汽车行驶的路程=速率×时间,分析v 与t 的图象,得v 是t 的分段函数,从而s 是t 的分段函数.求这个分段函数的解析式,关键是求出前两段的函数解析式.其中求第二段函数解析式是难点.由第一问可知“路程”的几何意义为“图形的面积”,于是可以将求路程转化为求图形的面积.设置多媒体动画重点分析:t 在0至2小时内变化时,s 与t 的函数解析式变化,使得有效突破难点.然后让学生自主完成整个题目的解答,并利用实物投影仪展示学生的解答过程,师生共同点评,得出下列结论:(1)阴影部分的面积为50×1+80×1+90×1+75×1+65×1=360.阴影部分的面积表示汽车在这5小时内行驶的路程为360km .(2)据v 与t 的关系图,有这个函数的图象如图2所示.【设计意图】通过本例的教学,让学生体会建立分段函数模型的思维过程,培养学生读图、识图、解图、画图的能力,渗透数形结合、分类整合的数学思想,养成自主探究与合作交流相结合的学习习惯.【例2】某桶装水经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如下表所示:请根据以上数据作出分析,这个经营部怎样定价才能获得最大利润?【教学活动】对本例的教学,重点解决如下三个问题:(1)指导学生审题后提炼出题目中的已知条件与要解决的任务.已知:固定成本为200元;每桶水的进价是5元;销售单价与日均销售量之间的数据表格;任务:定价为多少时利润最大?(2)指导学生分析表格数据,建立日均销售量与销售单价之间的函数模型;从而建立利润与售价之间的函数关系;(3)实际问题中自变量取值范围的确定.⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤+<≤+<≤+<≤+<≤+=.54,204565,43,200575,32,196090,21,198080,10,201050t t t t t t t t t t s为此我设计了下列问题,引导学生自主探究、讨论交流:①利润与哪些量有关?试用等式表示.利润=销售的金额-销售成本-固定成本(或利润=单桶水的销售利润×销售量-固定成本).②分析表格数据,日均销售量随销售单价的变化规律是什么?销售单价在6元基础上每涨价1元销售量就减少40桶.③当销售单价为x元/桶时,销售量为多少?销售量=480-40(x-6)=720-40x(桶).④销售单价x受哪些条件的制约?其取值范围是什么?x>5且720-40x>0,即5<x<18.在解决上述问题后要求学生自主完成本例的解答,再用实物投影仪展示学生的解题作品.考虑到本例的自变量还可以是每桶水在进价基础上的增加量,因而我设置了链接,以达到预设与生成的和谐统一.【设计意图】让学生体验解决实际问题的过程和方法.培养学生分析归纳、概括能力. 从而初步体验解应用题的规律和方法.通过上述分析,预设学生得出以下两种解法:解法一:设每桶水定价为x元时,日均销售利润为y元.因为销售单价每增加1元,日均销售量就减少40桶,则日均销售量=480-40(x-6)=720-40x(桶).由于x>5且720-40x>0,即5<x<18,所以y=(720-40x)(x-5)-200=-40x2+920x-3800,5<x<18.易知,当x=11.5时,y有最大值. 故将销售单价定为11.5元,就可获得最大的利润.解法二:设每桶水在进价基础上增加x元后,日均销售利润为y 元.因为销售单价每增加1元,日均销售量就减少40桶,则日均销售量=480-40(x-1)=520-40x(桶).由于x>0且520-40x>0,即0<x<13,所以y=(520-40x)x-200=-40x2+520x-200,0<x<13.易知,当x=6.5时,y有最大值. 故将销售单价定为11.5元,就可获得最大的利润.【设计意图】通过本例的教学,使学生感知提取数表信息、抽象函数关系的思维过程,领悟建立函数模型解决最值问题的基本方法,渗透化归转换的数学思想.(三)反思过程发现规律【教学活动】通过比较、概括上述两个实例的求解过程,我引导学生总结出建立函数模型解决实际问题的思维流程:【设计意图】学会归纳、总结解决数学问题的思维方法,掌握建立函数模型解决实际问题的一般规律,提高理性思维能力.(四)反馈调控方法迁移【练习】某上市公司股票在30天内每股的日交易均价P(元)与时间t(天)组成有序数对(t,P),且点(t,P)落在图中的两条线段上.该股票在30天内(含30天)的日交易量Q(万股)与时间t (天)的部分数据如下表所示:(1)写出这支股票每股的日交易均价P (元)与时间t (天)所满足的函数关系式;(2)根据表中数据确定日交易量Q (万股)与时间t (天)的一次函数关系式;(3)求这30天中第几天的日交易额最大,最大值为多少万元?【教学活动】通过前面的学习与思考,学生对解决这类问题已有一定的方法基础,面对本题表现出一种一展身手的亢奋状态.我要求学生以自主探索与合作交流相结合的方式对本问题求解,老师巡视答疑,再抽取几份不同解答的答卷作实物投影展示,师生一起评价、纠错,形成共同解答.【解析】 (1) 当N t t ∈<≤且,200时,设11b t k P +=,由图象得⎩⎨⎧=+=6202111b k b ,解得⎪⎩⎪⎨⎧==25111b k ,即251+=t P ; 同样的方法可求得当N t t ∈≤≤且,3020时,8101+-=t P . 综上可得,).(3020,8101200,251N t t t t t P ∈⎪⎪⎩⎪⎪⎨⎧≤≤+-<≤+= (2)设b kt t Q +=)(,由题意知:⎩⎨⎧==30)10(36)4(Q Q ,即⎩⎨⎧=+=+3010364b k b k ,解得⎩⎨⎧=-=401b k .所以:),300(40)(N t t t t Q ∈≤≤+-=(3)设第t 天的日交易额为f (t )万元,则 )(,3020),40)(8101(,200),40)(251()(N t t t t t t t Q P t f ∈⎪⎪⎩⎪⎪⎨⎧≤≤+-+-<≤+-+=⋅= 即)(,3020,40)60(101,200,125)15(51)(22N t t t t t t f ∈⎪⎪⎩⎪⎪⎨⎧≤≤--<≤+--=当N t t ∈<≤且,200时,;125)15()(max ==f t f当N t t ∈≤≤且,3020时,;120)20()(max ==f t f所以这30天中第15天的日交易额最大,最大日交易额为125万元.【设计意图】选择一个既有图形,又有数表的实例,能有效地检测、反馈学生对两类建立函数模型的应用问题的掌握程度,同时培养学生在综合问题情境中对知识和方法的迁移能力.(五)归纳小结 深化认识引导学生从总结解题方法,提炼数学思想等方面对本节课所学内容进行归纳小结.(1)建立函数模型解决实际问题的基本步骤是什么?(2)在本节课的学习过程中,运用到了哪些数学思想方法?【设计意图】启发学生对本节课学习的内容进行总结,提醒学生重视研究问题的方法和过程.(六)布置作业 巩固提高课外作业:必做题:教材P 106练习第1题,P 107习题3.2A 组第3,4题.选做题:P 108习题3.2B 组第2题.【设计意图】让学生巩固函数建模的思想方法,并进行自我检测与评价.通过分层作业,体现对不同能力层次的学生有不同学习要求.。

最新人教版高中数学必修1第三章《函数模型的应用实例》教案3

最新人教版高中数学必修1第三章《函数模型的应用实例》教案3

3.2.2 函数模型的应用实例第1课时教学目标知识与技能:(1)通过实例“汽车的行驶规律”,理解一次函数、分段函数的应用,提高学生的读图能力.(2)通过“马尔萨斯的人口增长模型”,使学生学会指数型函数的应用,了解函数模型在社会生活中的广泛应用.过程与方法:在实际问题的解决中,发展学生科学地提出问题、分析问题的能力,体会数学与物理、人类社会的关系.情感、态度与价值观:通过学习,体会数学在社会生活中的应用价值,培养学生的兴趣和探究素养.重点、难点教学重点:分段函数和指数型函数的应用.教学难点:函数模型的体验与建立.教学过程导入新课思路1.(情境导入)在课本第三章的章头图中,有一大群喝水、嬉戏的兔子,但是这群兔子曾使澳大利亚伤透了脑筋.1859年,有人从欧洲带进澳洲几只兔子,由于澳洲有茂盛的牧草,而且没有兔子的天敌,兔子数量不断增加,不到100年,兔子们几乎占领了整个澳大利亚,数量达到75亿只.可爱的兔子变得可恶起来,75亿只兔子吃掉了相当于75亿只羊所吃的牧草,草原的载畜率大大降低,而牛、羊是澳大利亚的主要牲口.这使澳大利亚人头痛不已,他们采用各种方法消灭这些兔子,直至二十世纪五十年代,科学家采用载液瘤病毒杀死了百分之九十的野兔,澳大利亚人才算松了一口气.与之相应,图中话道出了其中的意蕴:对于一个种群的数量,如果在理想状态(如没有天敌、食物充足等)下,那么它将呈指数增长;但在有限制的环境中,种群数量一般符合对数增长模型.上一节我们学习了不同的函数模型的增长差异,这一节我们将进一步讨论不同函数模型的应用.思路2.(直接导入)上一节我们学习了不同的函数模型的增长差异,这一节我们将进一步讨论不同函数模型的应用.推进新课新知探究提出问题(1)我市有甲、乙两家乒乓球俱乐部,两家设备和服务都很好,但收费方式不同.甲家每张球台每小时5元;乙家按月计费,一个月中30小时以内(含30小时)每张球台90元,超过30小时的部分每张球台每小时2元.小张准备下个月从这两家中的一家租一张球台开展活动,其活动时间不少于15小时,也不超过40小时.设在甲家租一张球台开展活动x 小时的收费为f (x )元(15≤x ≤40),在乙家租一张球台开展活动x 小时的收费为g (x )元(15≤x ≤40),试求f (x )和g (x ).(2)A ,B 两城相距100 km ,在两地之间距A 城x km 处的D 地建一核电站,给A ,B 两城供电,为保证城市安全.核电站距城市的距离不得少于10 km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数λ=0.25.若A 城供电量为20亿度/月,B 城为10亿度/月.把月供电总费用y 表示成x 的函数,并求定义域.(3)分析以上实例属于那种函数模型.讨论结果:(1)f (x )=5x (15≤x ≤40);g (x )=⎩⎪⎨⎪⎧90,15≤x ≤30,2(x -30)+90,30<x ≤40.(2)y =5x 2+52(100—x )2(10≤x ≤90). (3)分别属于一次函数模型、分段函数模型、二次函数模型.应用示例例1 一辆汽车在某段路程中的行驶速率与时间的关系如图1所示.图1(1)求图1中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2 004 km ,试建立行驶这段路程时汽车里程表读数s (km)与时间t (h)的函数解析式,并作出相应的图象.活动:学生先思考讨论,再回答.教师可根据实际情况,提示引导.图中横轴表示时间,纵轴表示速度,面积为路程;由于每个时间段速度不同,汽车里程表读数s (km)与时间t (h)的函数为分段函数.解:(1)阴影部分的面积为50×1+80×1+90×1+75×1+65×1=360.阴影部分的面积表示汽车在这5小时内行驶的路程为360 km. (2)根据图1,有s =⎩⎪⎨⎪⎧ 50t +2 004,0≤t <1,80(t -1)+2 054,1≤t <2,90(t -2)+2 134,2≤t <3,75(t -3)+2 224,3≤t <4,65(t -4)+2 299,4≤t ≤5.这个函数的图象如图2所示.图2图3两种优惠方案所对应的函数解析式: 20010031010010x x x ≤≤⎧⎪⎨>⎪⎩,,-,,g (x )=500500()3100500.10x g x x x ≤≤⎧⎪=⎨->⎪⎩,,, x )=g (x )时,310x -10=50,∴x =200. ∴当客户通话时间为200分钟时,两种方案均可;效控制人口增长提供依据.早在1798年,英国经济学家马尔萨斯(T.R.M a lthus ,1766—1834)就提出了自然状态下的人口增长模型:y =y 0e rt ,其中t 表示经过的时间,y 0表示t =0时的人口数,r 表示人口的年平均增长率.用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;(2)如果按表的增长趋势,大约在哪一年我国的人口达到13亿?解:(1)设1951~1959年的人口增长率分别为r 1,r 2,r 3,…,r 9.由55 196(1+r 1)=56 300,可得1951年的人口增长率为r 1≈0.020 0.同理可得,r 2≈0.021 0,r 3≈0.022 9,r 4≈0.025 0,r 5≈0.019 7,r 6≈0.022 3,r 7≈0.027 6,r 8≈0.022 2,r 9≈0.018 4.于是,1951~1959年期间,我国人口的年平均增长率为r =(r 1+r 2+…+r 9)÷9≈0.022 1.令y 0=55 196,则我国在1950~1959年期间的人口增长模型为y =55 196e 0.022 1t ,t ∈N . 根据表中的数据作出散点图,并作出函数y =55 196e 0.022 1t (t ∈N )的图象(图4).图4由图可以看出,所得模型与1950~1959年的实际人口数据基本吻合.(2)将y=130 000代入y=55 196e0.022 1t,由计算器可得t≈38.76.所以,如果按表的增长趋势,那么大约在1950年后的第39年(即1989年)我国的人口就已达到13亿.由此可以看到,如果不实行计划生育,而是让人口自然增长,今天我国将某电器公司生产A型电脑.1993年这种电脑平均每台的生产成本为5 000元,并以纯利润20%确定出厂价.从1994年开始,公司通过更新设备和加强管理,使生产成本逐年降低.到1997年,尽管A型电脑出厂价仅是1993年出厂价的80%,但却实现了50%纯利润的高效益.(1)求1997年每台A型电脑的生产成本;(2)以1993年的生产成本为基数,求1993年至1997年生产成本平均每年降低的百分数.(精确到0.01,以下数据可供参考:5=2.236,6=2.449)活动:学生先思考讨论,再回答.教师根据实际情况,提示引导.出厂价=单位商品的成本+单位商品的利润.解:(1)设1997年每台电脑的生产成本为x元,依题意,得x(1+50%)=5 000×(1+20%)×80%,解得x=3 200(元).(2)设1993年至1997年间每年平均生产成本降低的百分率为y,则依题意,得5 000(1-y)4=3 200,解得y1=1-255,y2=1+255(舍去).所以y=1-255≈0.11=11%,即1997年每台电脑的生产成本为3 200元,1993年至1997年生产成本平均每年降低约为11%.点评:函数与方程的应用是本章的重点,请同学们体会它们的关联性.拓展提升某家电企业根据市场调查分析,决定调整产品的生产方案:准备每周(按120个工时计算)生产空调、彩电、冰箱共360台,且冰箱至少生产60台.已知生产这些家电产品每台所(以千元为单位)解:设每周生产空调、彩电、冰箱分别为x 台、y 台、z 台,每周产值为f 千元, 则f =4x +3y +2z ,其中⎩⎪⎨⎪⎧ x +y +z =360,12x +13y +14z =120,x ≥0,y ≥0,z ≥60, ①②③由①②可得y =360-3x ,z =2x ,代入③得⎩⎪⎨⎪⎧ x ≥0,360-3x ≥0,2x ≥60,则有30≤x ≤120.故f =4x +3(360-3x )+2·2x =1 080-x ,当x =30时,f max =1 080-30=1 050.此时y =360-3x =270,z =2x =60.答:每周应生产空调30台,彩电270台,冰箱60台,才能使每周产值最高,最高产值为1 050千元.点评:函数、方程、不等式有着密切的关系,它们相互转化组成一个有机的整体.请同学们借助上面的实例细心体会.课堂小结本节重点学习了函数模型的实例应用,包括一次函数模型、二次函数模型、分段函数模型等;另外还应关注函数、方程、不等式之间的相互关系.活动:学生先思考讨论,再回答.教师提示、点拨,及时评价.引导方法:从基本知识和基本技能两方面来总结.作业课本习题3.2A 组 5,6.设计感想本节设计从有趣的故事开始,让学生从故事中体会函数模型的选择,然后通过几个实例介绍常用函数模型.接着通过最新题型,训练学生由图表转化为函数解析式的能力,从而解决实际问题.本节的每个例题的素材贴近现代生活,都是学生非常感兴趣的问题,很容易引起学生的共鸣.第2课时作者:王仁海,瓯海中学教师,本教学设计获浙江省教学设计大赛省一等奖.整体设计教学分析本节课选自《普通高中课程标准实验教科书数学1必修(A 版)》第三章的“3.2.2函数模型的应用实例”,即建立拟合函数模型解决实际问题.函数模型的应用是中学数学的重要内容之一,它主要包含三个方面:利用给定的函数模型解决实际问题,建立确定性函数模型解决问题,建立拟合函数模型解决实际问题.而建立拟合函数模型解决实际问题是其重点,也是难点.函数模型的应用教学,既有不可替代的位置,又有重要的现实意义.本节通过实例来说明函数模型的应用,是因为函数模型本身就来源于现实,能给学生提供更多从实际问题中发现或建立数学模型的机会,并体会数学在实际问题中的应用价值.因此在中学教学中有重要的地位.学情分析学生在学习本节内容之前,已经学习了函数的图象和性质,理解了函数的图象与性质之间的关系,尤其是学习了3.2.1几类不同的函数增长模型和3.2.2函数模型的应用实例.学会了如何利用给定的函数模型解决实际问题,建立确定性函数模型解决问题,已经具备了一定的函数模型应用能力.这为理解建立拟合函数模型解决实际问题提供了基础,也为深入理解如何建立合适的拟合函数模型提供了依据.但学生对于动态数据认识薄弱,对于综合应用函数图象与性质尚不够熟练,这些都给学生选择合适的模型造成一定的困难.因此,在教学时应该为学生创设熟悉的问题情境,充分利用学生熟悉的函数图象来选择合适的模型.引导学生观察、计算、思考和理解问题的本质.教学目标知识与技能:了解函数拟合的基本思想,学会建立拟合函数模型解决实际问题.过程与方法:借助信息技术,利用数据画出函数图象,从拟合简单的一次函数模型入手,掌握多角度观察函数图象的技能,探究出各种合适的拟合函数模型.在建构知识的过程中体会数形结合的思想与从特殊到一般的归纳思想.情感、态度与价值观:体验探究的乐趣,体验函数是描述变化规律的基本数学模型,培养学生分析解决问题的能力.重点与难点重点:将实际问题化为函数模型,建立合适的拟合函数模型解决简单的实际问题.难点:如何建立适当的函数模型来解决实际问题.教学过程设计思想一、创设应用情境,引出问题前面我们学习过两种函数模型的应用,分别是利用给定函数模型解决实际问题,建立确定性的函数模型解决问题,那么在既没有给出函数模型又无法建立确定性函数模型的情况下,又该如何解决实际问题呢?二、组织探究例 1 下表是我校从实施研究性学习以来,高一年级段学生的研究性学习小论文在我市析式.设计意图以学生熟悉的实际问题为背景,激活学生的原有知识,形成学生的“再创造”欲望,让学生在熟悉的环境中发现新知识,使新知识和原知识形成联系,同时也体现了数学的应用价值.探究:(1)组织学生读、议,小组讨论该如何分析题目?①列表②描点图1③根据点的分布特征,可以考虑以一次函数y=kx+b(k≠0)作为描绘篇数与年份的变化趋势.取(1,14),(4,35),有⎩⎪⎨⎪⎧ 14=k ·1+b ,35=k ·4+b ,解得⎩⎪⎨⎪⎧k =7,b =7.这样,我们就得到函数模型y =7x +7.作出此模型函数图象如下:图2根据上述图象,我们发现这个函数模型与已知数据的拟合程度较好,这说明它能较好地图3确定函数模型由前三组数据,用计算器确定函数模型:+12x +41;52.07×0.778x +92.5.作出函数图象进行比较时,y 1=77,y 2=81.0. 图4此变式训练是为进一步巩固例1的拟合函数思想,培养学生的应用数学意识与提高解决问题能力.体重y kg与身高x cm的函数关系?试写出这个函数模型的解析式.(2)若体重超过相同身高的同学体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,下面请各位同学对照拟合函数模型来测算自己的体重是否正常?设计意图本例题以学生熟悉的问题出发再创设情境,引起学生的学习兴趣,再次引发学生构建自身基础上的“再创造”,并通过小组合作学习,培养学生解决问题的能力,应用数学的意识.问题(1)的探究:①通过学生自主活动分析数据,发现本题只给出了通过测量得到的数据表,要想由这些数据直接发现函数模型是困难的.②教师引导学生将表中的数据输入计算器或计算机,画出它们的散点图.教师提问所作散点图与已知的哪个函数图象最接近,从而选择这个函数模型.图5由图可发现指数型函数y=a×b x的图象可能与散点图的吻合较好,可选之.③教师再问:如何确定拟合函数模型中a,b值.④教师把学生每4人分成一小组合作探究,求出拟合函数模型中a,b的值,然后画出图形,得到的拟合函数效果如何?⑤教师下去巡视后,请小组中的1名成员上台到实物投影处讲解.组1:选取(168,61.4),(172,66.2)两组数据,用计算器算出a=2.6,b=1.019.这样得到函数模型为y=2.6×1.019x,画出这个函数的图象与散点图.图6我们发现,函数y=2.6×1.019x不能很好地反映我校学生身高与体重关系.组2:选取(154,46.5),(168,61.4)两组数据,用计算器算出a=2.2,b=1.02.这样得出函数模型为y=2.2×1.02x,画出这个函数的图象与散点图.图7我们发现,散点图上的点基本上或大多数接近函数y=2.2×1.02x的图象,所以函数y =2.2×1.02x很好地刻画了我校学生身高与体重的关系.教师引导学生回顾问题的特点及解决问题的过程与方法.本题需要判断选择的函数模型与问题所给数据的吻合程度,当取表中不同的两组数据时,得到的函数解析式可能会不一样,需不断修正.当然本题若运用计算器或计算机的拟合功能,那么获得的函数模型会更精确,下课后同学们自己试一试,并且本例题体现了一个完整的建立函数模型进而解决问题的过程.在教师引导下,请一学生归纳解决问题的基本过程:设计意图引导学生进行反思和总结,并将之一般化,用流程的形式表达出来,培养了学生的反思能力及总结提升的能力.问题(2)探究:由于是研究学生自身的体重问题,因而学生的兴趣很高,每人很快都编好了自己的问题,解答起来.如一男生身高175 cm,体重80 kg,他的计算如下:将x=175代入y=2.2×1.02x,得y=2.2×1.02175≈70.4.由于80÷70.4≈1.136<1.2.所以,该男生体重正常.设计意图采用师生平等对话交流,学生单独完成的模式.因为本题是测算自己本身体重的问题,所以学生兴趣很高.本题问题难度不大,但意义重大,是培养数学应用意识的重要素材,即用拟合函数来预测自己关心的日常生活问题,学生体验过程方式教学,体现了新课程的理念.三、练习反馈教材本节练习1.学生完成后在小组中互相批改、交流.设计意图本环节以个别指导为主,体现面对全体学生的理念,使学生及时巩固所学知识、方法,以达到教学目标.四、小结反思以小组中1人总结,3人倾听的方式,对本课内容进行自主小结,教师归纳强调建立拟合函数模型解决实际问题的基本过程.设计意图提高学习主动性,培养学生表达、交流的数学能力,自主小结的形式是将课堂还给学生,是对所学内容的回顾与梳理.五、课外作业教材习题3.2A组1题,B组1题.六、课外实践通过拟合函数模型看温州经济发展.上网收集1995~2005年温州的国内生产总值、财政收支、对外经济三项数据,建立适当的拟合函数模型,画出拟合函数模型的图象,并通过拟合函数图象来预测温州在2010年的经济发展状况.设计意图课外作业为巩固作业,课外实践为拓展作业,培养学生应用数学知识、提高解决问题的能力,培养学生的探究和再创造能力.教学流程创设情境——实际问题引入,激发学生兴趣.↓组织探究——画出散点图,建立模型,体会不同函数模型拟合的准确程度.↓探索研究——由数据画出散点图,建立拟合函数模型,尝试选择不同的函数拟合数据并不断修正.↓巩固反思——师生交流共同小结,归纳建立拟合函数模型应用题的求解方法与步骤.↓作业回馈——强化基本方法及过程,规范基本格式.↓课外实践——收集生活中的具体实际问题,运用拟合函数思想来解决,培养问题意识及提高应用数学的能力.知识结构问题探讨(1)第三章的3.2.2函数模型的应用实例是否可以设置为3课时,给定的函数模型、建立确定性函数模型、建立拟合函数模型解决实际问题各设置1课时,这样可以让学生感受到函数的广泛应用,真实体验到数学是有用的;体现新课程的问题性,应用性特点;培养学生的问题意识,更加拓展学生数学活动的空间,发展学生“做数学”“用数学”的意识.(2)在函数模型的应用中,建立拟合函数模型解决实际问题是实际应用最广泛、学生最陌生、也是难度最大的,尤其是如何建立适当的拟合函数模型来解决实际问题.建议在教材中是否可安排更多的建立拟合函数模型解决实际问题的例题,加深学生对如何建立适当拟合函数模型的理解.并在练习中多安排渗透拟合函数思想的思考题.学习资源《普通高中课程标准实验教科书·数学1》第三章“函数的应用”简介白涛http:///200406/ca506858.html。

高中数学必修一《函数模型的应用实例》教学设计

高中数学必修一《函数模型的应用实例》教学设计

3.2.2函数模型的应用实例[学习目标] 1.会利用已知函数模型解决实际问题.2.能建立函数模型解决实际问题.知识点一常见函数模型知识点二解决函数应用问题的基本步骤利用函数知识和函数观点解决实际问题时,一般按以下几个步骤进行:(一)审题;(二)建模;(三)求模;(四)还原.这些步骤用框图表示如图:题型一一次函数、二次函数模型例1某商场以每件30元的价格购进一种商品,试销中发现,这种商品每天的销量m(件)与售价x(元)满足一次函数:m=162-3x,若要每天获得最大的销售利润,每件商品的售价应定为()A.30元B.42元C.54元D.越高越好答案B解析设每天获得的利润为y元,则y=(x-30)(162-3x)=-3(x-42)2+432,∴当x=42时,获得利润最大,应定价为42元.反思与感悟 一次函数、二次函数均是重要的函数模型,特别是二次函数模型在函数建模中占有重要的地位.利用二次函数求最值时要注意取得最值时的自变量与实际意义是否相符. 跟踪训练1 某公司市场营销人员的个人月收入与其每月的销售量成一次函数关系,如图所示,由图中给出的信息可知,营销人员没有销售量时的收入是( ) A.310元 B.300元 C.290元 D.280元答案 B解析 由题意可知,收入y 是销售量x 的一次函数,设y =ax +b ,将(1,800),(2,1 300)代入,得a =500,b =300.当销售量为x =0时,y =300.题型二 指数型函数、对数型函数模型例2 燕子每年秋天都要从北方飞到南方过冬,研究燕子的科学家发现,两岁燕子的飞行速度可以表示为函数v =5log 2Q10,单位是m/s ,其中Q 表示燕子的耗氧量.(1)计算:燕子静止时的耗氧量是多少个单位?(2)当一只燕子的耗氧量是80个单位时,它的飞行速度是多少?解 (1)由题意知,当燕子静止时,它的速度为0,代入题目所给公式可得0=5log 2Q10.解得Q =10,即燕子静止时的耗氧量为10个单位. (2)将耗氧量Q =80代入公式得: v =5log 28010=5log 28=15 (m/s),即当一只燕子的耗氧量为80个单位时,飞行速度为15 m/s.反思与感悟 指数型函数模型:y =ma x +b (a >0且a ≠1,m ≠0),在实际问题中,有关人口增长、银行利率、细胞分裂等增长率问题都可用指数型函数模型来表示.对数型函数模型:y =m log a x +c (m ≠0,a >0且a ≠1),对数型函数模型一般给出函数关系式,然后利用对数的运算求解.跟踪训练2 某城市2009年底人口总数为100万人,如果年平均增长率为1.2%,试解答以下问题:(1)写出经过x 年后,该城市人口总数y (万人)与x (年)的函数关系; (2)计算10年后该城市人口总数(精确到0.1万人);(3)计算经过多少年以后,该城市人口将达到120万人(精确到1年).(参考数据:1.0129≈1.113,1.01210≈1.127,lg 1.2≈0.079,lg 2≈0.301 0,lg 1.012≈0.005) 解 (1)2009年底人口总数为100万人,经过1年,2010年底人口总数为100+100×1.2%=100×(1+1.2%),经过2年,2011年底人口总数为100×(1+1.2%)+100×(1+1.2%)×1.2%=100×(1+1.2%)2, 经过3年,2012年底人口总数为100×(1+1.2%)2+100×(1+1.2%)2×1.2%=100×(1+1.2%)3, ……所以经过x 年后,该城市人口总数为100×(1+1.2%)x , 所以y =100×(1+1.2%)x . (2)10年后该城市人口总数为 100×(1+1.2%)10≈112.7(万人). (3)由题意得100×(1+1.2%)x >120,两边取常用对数得lg [100×(1+1.2%)x ]>lg 120, 整理得2+x lg 1.012>2+lg 1.2,得x ≥16, 所以大约16年以后,该城市人口将达到120万人. 题型三 分段函数模型例3 如图所示,等腰梯形ABCD 的两底分别为AD =2,BC =1,∠BAD =45°,直线MN ⊥AD 交AD 于M ,交折线ABCD 于N ,记AM =x ,试将梯形ABCD 位于直线MN 左侧的面积y 表示为x 的函数,并写出函数的定义域和值域.解 如图,过B ,C 分别作AD 的垂线,垂足分别为H 和G ,则AH =12,AG =32,当M 位于H 左侧时,AM =x ,MN =x , ∴y =S △AMN =12x 2,0≤x <12.当M 位于H ,G 之间时,y =12AH ·HB +HM ·MN =12×12×12+(x -12)×12=12x -18,12≤x <32.当M 位于G ,D 之间时,y =S 梯形ABCD -S △MDN =12×12×(2+1)-12(2-x )(2-x )=-12x 2+2x -54,32≤x ≤2.∴所求函数的关系式为y =⎩⎪⎨⎪⎧12x 2,0≤x <12,12x -18,12≤x <32,-12x 2+2x -54,32≤x ≤2.∴函数的定义域为[0,2],值域为[0,34].反思与感悟 1.分段函数模型是日常生活中常见的函数模型.对于分段函数,一要注意规范书写格式;二要注意各段的定义域的表示方法,对于中间的各个分点,一般是“一边闭,一边开”,以保证在各分点的“不重不漏”.2.解决分段函数问题需注意几个问题:(1)所有分段的区间的并集就是分段函数的定义域.(2)求分段函数的函数值时,先要弄清自变量在哪个区间内取值,然后再用该区间上的解析式来计算函数值.(3)一般地,分段函数由几段组成,必须注意考虑各段的自变量的取值范围. 跟踪训练3 通过研究学生的学习行为,心理学家发现,学生接受能力依赖于老师引入概念和描述问题所用的时间.讲座开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,分析结果和实验表明,用f (x )表示学生掌握和接受概念的能力(f (x )值越大,表示接受的能力越强),x 表示提出和讲授概念的时间(单位:min),可有以下的公式: f (x )=⎩⎪⎨⎪⎧-0.1x 2+2.6x +43,0<x ≤10,59,10<x ≤16,-3x +107,16<x ≤30.(1)开讲后多少分钟,学生的接受能力最强?能维持多长时间? (2)开讲后5 min 与开讲后20 min 比较,学生的接受能力何时强一些?(3)一个数学难题,需要55的接受能力以及13 min 时间,老师能否及时在学生一直达到所需接受能力的状态下讲授完这个难题? 解 (1)当0<x ≤10时,f (x )=-0.1x 2+2.6x +43=-0.1(x -13)2+59.9. 故f (x )在(0,10]上单调递增,最大值为 f (10)=-0.1×(-3)2+59.9=59; 当16<x ≤30时,f (x )单调递减, f (x )<-3×16+107=59.因此,开讲后10 min ,学生达到最强的接受能力(值为59),并维持6 min. (2)f (5)=-0.1×(5-13)2+59.9=59.9-6.4=53.5, f (20)=-3×20+107=47<53.5=f (5).因此,开讲后5 min 学生的接受能力比开讲后20 min 强一些.(3)当0<x≤10时,令f(x)=55,则-0.1×(x-13)2=-4.9,(x-13)2=49.所以x=20或x=6.但0<x≤10,故x=6.当16<x≤30时,令f(x)=55,则-3x+107=55.所以x=17 1 3.因此,学生达到(或超过)55的接受能力的时间为17 13-6=1113<13(min),所以老师来不及在学生一直达到所需接受能力的状态下讲授完这道难题.题型四拟合函数模型的应用例4为了估计山上积雪融化后对下游灌溉的影响,在山上建立了一个观察站,测量最大积雪深度x cm与当年灌溉面积y hm2.现有连续10年的实测资料,如下表所示.(1)(2)建立一个能基本反映灌溉面积变化的函数模型y=f(x),并画出图象;(3)根据所建立的函数模型,求最大积雪深度为25 cm时,可以灌溉的土地数量.解(1)描点作图如图甲.(2)从图甲中可以看到,数据点大致落在一条直线附近,由此,我们假设灌溉面积y和最大积雪深度x满足线性函数模型y=ax+b.取其中的两组数据(10.4,21.1),(24.0,45.8),代入y =ax +b ,得⎩⎪⎨⎪⎧21.1=10.4a +b ,45.8=24.0a +b ,用计算器可算得a ≈1.8,b ≈2.4.这样,我们得到一个函数模型y =1.8x +2.4.作出函数图象如图乙,可以发现,这个函数模型与已知数据的拟合程度较好,这说明它能较好地反映最大积雪深度与灌溉面积的关系.(3)由y =1.8×25+2.4,求得y =47.4,即当最大积雪深度为25 cm 时,可以灌溉土地47.4 hm 2. 反思与感悟 对于此类实际应用问题,关键是建立适当的函数关系式,再解决数学问题,最后验证并结合问题的实际意义作出回答,这个过程就是先拟合函数再利用函数解题.函数拟合与预测的一般步骤:(1)根据原始数据,绘出散点图;(2)通过考察散点图,画出“最贴近”的直线或曲线,即拟合直线或拟合曲线; (3)根据所学函数知识,求出拟合直线或拟合曲线的函数关系式;(4)利用函数关系式,根据条件对所给问题进行预测,为决策和管理提供依据. 跟踪训练4 我国1999年至2002年国内生产总值(单位:万亿元)如下表所示:年份 1999 2000 2001 2002 x /年 0 1 2 3 生产总值8.206 78.944 29.593 310.239 8(1)画出函数图形,猜想它们之间的函数关系,近似地写出一个函数关系式;(2)利用得出的关系式求生产总值,与表中实际生产总值比较.解 (1)画出函数图形,如图.从函数的图形可以看出,画出的点近似地落在一条直线上. 设所求的函数为y =kx +b ,把直线通过的两点(0,8.206 7)和(3,10.239 8)代入上式, 解方程组,可得k =0.677 7,b =8.206 7. 因此,所求的函数关系式为 y =f (x )=0.677 7x +8.206 7.(2)由得到的关系式计算出2000年和2001年的国内生产总值分别为f (1)=0.677 7×1+8.206 7=8.884 4, f (2)=0.677 7×2+8.206 7=9.562 1.与实际的生产总值相比,误差不超过0.1万亿元.建立函数模型时忽略自变量的取值范围致误例5 国庆期间,某旅行社组团去风景区旅游,若每团人数不超过30,游客需付给旅行社飞机票每张900元;若每团人数多于30,则给予优惠:每多1人,机票每张减少10元,直到达到规定人数75为止.旅行社需付给航空公司包机费每团15 000元. (1)写出飞机票的价格y (单位:元)关于人数x (单位:人)的函数关系式; (2)每团人数为多少时,旅行社可获得最大利润?解 (1)由题意,得y =⎩⎪⎨⎪⎧900,0<x ≤30,900-10(x -30),30<x ≤75,即y =⎩⎪⎨⎪⎧900,0<x ≤30,1 200-10x ,30<x ≤75.(2)设旅行社获利S 元,则S =⎩⎪⎨⎪⎧900x -15 000,0<x ≤30,x (1 200-10x )-15 000,30<x ≤75, 即S =⎩⎪⎨⎪⎧900x -15 000,0<x ≤30,-10(x -60)2+21 000,30<x ≤75.因为S =900x -15 000在区间(0,30]上为增函数, 所以当x =30时,S 取最大值12 000元, 又S =-10(x -60)2+21 000在区间(30,75]上, 当x =60时,S 取得最大值21 000.故当每团人数为60时,旅行社可获得最大利润.纠错心得 (1)二次函数的最值一般利用配方法与函数的单调性解决,但一定要密切注意函数的定义域,否则极易出错.(2)解决函数应用问题时,最后要还原到实际问题.跟踪训练5 某公司生产一种产品的固定成本为0.5万元,但每生产100件需要增加投入0.25万元,市场对此产品的需要量为500件,销售收入为函数R (x )=5x -x 22(0≤x ≤5)万元,其中x 是产品售出的数量(单位:百件). (1)把利润表示为年产量的函数f (x );(2)年产量为多少时,当年公司所得利润最大? 解 (1)设年产量为x (百件),当0≤x ≤5时,f (x )=5x -x 22-(0.5+0.25x );当x >5时,销售收入为252万元,此时f (x )=252-(0.5+0.25x )=12-0.25x ,∴f (x )=⎩⎪⎨⎪⎧-x 22+194x -12,0≤x ≤5,12-0.25x ,x >5.(2)当0≤x ≤5时,f (x )=-12(x -4.75)2+10.781 25;当x >5时,函数f (x )为单调递减函数. ∴当年产量为475件时,公司所得利润最大.1.某商场在销售空调旺季的4天内的利润如下表所示.A.y =log 2xB.y =2xC.y =x 2D.y =2x答案 B解析 逐个检验可得答案为B.2.一辆匀速行驶的汽车90 min 行驶的路程为180 km ,则这辆汽车行驶的路程y (km)与时间t (h)之间的函数关系式是( ) A.y =2t B.y =120t C.y =2t (t ≥0) D.y =120t (t ≥0) 答案 D3.小明的父亲饭后出去散步,从家中走20分钟到一个离家900米的报亭看10分钟报纸后,用20分钟返回家里,下面图形中能表示小明的父亲离开家的时间与距离之间的关系的是( )答案 D4.里氏震级M 的计算公式为:M =lg A -lg A 0,其中A 是测震仪记录的地震曲线的最大振幅,A 0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1 000,此时标准地震的振幅为0.001,则此次地震的震级为________级;9级地震的最大振幅是5级地震最大振幅的________倍. 答案 6 10 000解析 由M =lg A -lg A 0知,M =lg 1 000-lg 0.001=6,所以此次地震的级数为6级.设9级地震的最大振幅为A 1,5级地震的最大振幅为A 2,则lg A 1A 2=lg A 1-lg A 2=(lg A 1-lg A 0)-(lgA 2-lg A 0)=9-5=4.所以A 1A 2=104=10 000.所以9级地震的最大振幅是5级地震的最大振幅的10 000倍.5.用一根长为12 m 的铁丝弯成一个矩形的铁框架,则能弯成的框架的最大面积是____ m 2. 答案 9解析 设矩形的一边长为x m , 则与这条边垂直的边长为12-2x2m ,所以矩形面积S =x ·12-2x2=-x 2+6x (0<x ≤6),当x =3 m 时,S 最大=9 m 2.1.函数模型的应用实例主要包括三个方面: (1)利用给定的函数模型解决实际问题; (2)建立确定性的函数模型解决实际问题; (3)建立拟合函数模型解决实际问题.2.在引入自变量建立目标函数解决函数应用题时,一是要注意自变量的取值范围,二是要检验所得结果,必要时运用估算和近似计算,以使结果符合实际问题的要求.3.在实际问题向数学问题的转化过程中,要充分使用数学语言,如引入字母,列表,画图等使实际问题数学符号化.4.根据收集到的数据的特点,通过建立函数模型,解决实际问题的基本过程,如下图所示.一、选择题1.某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……现有2个这样的细胞,分裂x 次后得到细胞的个数y 与x 的函数关系是( ) A.y =2x B.y =2x -1 C.y =2x D.y =2x +1答案 D解析 分裂一次后由2个变成2×2=22个,分裂两次后4×2=23个,……,分裂x 次后y =2x+1个.2.某厂日产手套的总成本y (元)与手套日产量x (副)的关系为y =5x +4 000,而手套出厂价格为每副10元,则该厂为了不亏本,日产手套至少为( ) A.200副 B.400副 C.600副 D.800副答案 D解析 由5x +4 000≤10x ,得x ≥800,即日产手套至少800副才不亏本.3.某种商品零售价2015年比2014年上涨25%,欲控制2016年比2014年上涨10%,则2016年比2015年应降价( ) A.15% B.12% C.10% D.50% 答案 B解析 设2016年比2015年降价x ,则有关系式 (1+25%)(1-x )=1+10%, ∴54(1-x )=110100,∴x =0.12.故选B. 4.已知A ,B 两地相距150千米,某人开汽车以60千米/小时的速度从A 地到达B 地,在B 地停留1小时后再以50千米/小时的速度返回A 地,把汽车离开A 地的距离x 表示为时间t 的函数,解析式是( ) A.x =60t B.x =60t +50tC.x =⎩⎪⎨⎪⎧60t (0≤t ≤2.5),150(2.5<t ≤3.5),150-50(t -3.5)(3.5<t ≤6.5)D.x =⎩⎪⎨⎪⎧60t (0≤t ≤2.5),150-50t (t >3.5)答案 C解析 应分三段建立函数关系,当0≤t ≤2.5时,x =60t ; 当2.5<t ≤3.5时,汽车与A 地的距离总是150; 当3.5<t ≤6.5时,x =150-50(t -3.5).5.某工厂生产某产品x 吨所需费用为P 元,而卖出x 吨的价格为每吨Q 元,已知P =1 000+5x +110x 2,Q =a +xb ,若生产出的产品能全部卖出,且当产量为150吨时利润最大,此时每吨的价格为40元,则有( ) A.a =45,b =-30 B.a =30,b =-45 C.a =-30,b =45 D.a =-45,b =-30答案 A解析 设生产x 吨产品全部卖出,获利为y 元, 则y =xQ -P =x ⎝⎛⎭⎫a +x b -⎝⎛⎭⎫1 000+5x +110x 2 =⎝⎛⎭⎫1b -110x 2+(a -5)x -1 000(x >0).由题意知,当x =150时,y 取最大值,此时Q =40. ∴⎩⎪⎨⎪⎧-a -52⎝⎛⎭⎫1b -110=150,a +150b=40,解得⎩⎪⎨⎪⎧a =45,b =-30.6.衣柜里的樟脑丸,随着时间会挥发而体积缩小,刚放进去的新丸体积为a ,经过t 天后体积V 与天数t 的关系式为:V =a ·e -kt .已知新丸经过50天后,体积变为49a .若一个新丸体积变为827a ,则需经过的天数为( ) A.125 B.100 C.75 D.50 答案 C解析 由已知,得49a =a ·e -50k ,∴e -k =⎝⎛⎭⎫49501. 设经过t 1天后,一个新丸体积变为827a ,则827a =a ·e 1-kt , ∴827=(e -k )1t =⎝⎛⎭⎫49150t,∴t 150=32,t 1=75. 二、填空题7.已测得(x ,y )的两组值为(1,2),(2,5),现有两个拟合模型,甲:y =x 2+1,乙:y =3x -1.若又测得(x ,y )的一组对应值为(3,10.2),则选用________作为拟合模型较好. 答案 甲解析 对于甲:x =3时,y =32+1=10,对于乙:x =3时,y =8,因此用甲作为拟合模型较好.8.已知元素“碳14”每经过5 730年其质量就变成原来的一半.现有一文物,测得其中“碳14”的残存量为原来的41%,此文物距现在约有________年.(注:精确到个位,lg 2≈0.301 0,lg 4.1≈0.613) 答案 7 400解析 设距现在为x 年,则有(12)5730x=41%,两边取对数,利用计算器可得x ≈7 400.9.已知某工厂生产某种产品的月产量y 与月份x 满足关系y =a ·(0.5)x +b ,现已知该厂今年1月、2月生产该产品分别为1万件、1.5万件.则此厂3月份该产品产量为________万件. 答案 1.75解析 由⎩⎪⎨⎪⎧ 1=a ·(0.5)1+b ,1.5=a ·(0.5)2+b ,得⎩⎪⎨⎪⎧a =-2,b =2, ∴y =-2×0.5x +2,∴3月份产量为y =-2×0.53+2=1.75万件.10.如图所示,某池塘中浮萍蔓延的面积y (m 2)与时间t (月)的关系y =a t ,有以下几种说法:①这个指数函数的底数为2;②第5个月时,浮萍面积就会超过30 m 2; ③浮萍从4 m 2蔓延到12 m 2需要经过1.5个月; ④浮萍每月增加的面积都相等. 其中正确的命题序号是________. 答案 ①②解析 由图象知,t =2时,y =4, ∴a 2=4,故a =2,①正确; 当t =5时,y =25=32>30,②正确; 当y =4时,由4=2t 1知t 1=2,当y =12时,由12=2t 2知t 2=log 212=2+log 23. t 2-t 1=log 23≠1.5,③错误;浮萍每月增长的面积不相等,实际上增长速度越来越快,④错误. 三、解答题11.某桶装水经营部每天房租、工作人员工资等固定成本为200元,每桶水进价为5元,销售单价与日销售量的关系如下表:解 设每桶水在进价的基础上上涨x 元,利润为y 元,由表格中的数据可以得到,价格每上涨1元,日销售量就减少40桶,所以涨价x 元后,日销售的桶数为 480-40(x -1)=520-40x >0,所以0<x <13, 则利润y =(520-40x )x -200=-40x 2+520x -200 =-40(x -132)2+1 490,其中0<x <13,所以当x =6.5时,利润最大,即当每桶水的价格为11.5元时,利润最大值为1 490元.12.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T 0,经过一定时间t 后的温度是T ,则T -T a =(T 0-T a )·⎝⎛⎭⎫12th,其中T a 表示环境温度,h 称为半衰期.现有一杯用88 ℃热水冲的速溶咖啡,放在24 ℃的房间中,如果咖啡降温到40 ℃需要20 min ,那么降温到35 ℃时,需要多少时间? 解 由题意知40-24=(88-24)·⎝⎛⎭⎫1220h , 即14=⎝⎛⎭⎫1220h,解得h =10.故T -24=(88-24)·⎝⎛⎭⎫1210t. 当T =35时,代入上式,得 35-24=(88-24)·⎝⎛⎭⎫1210t, 即⎝⎛⎭⎫1210t=1164.两边取对数,用计算器求得t ≈25. 因此,约需要25 min ,可降温到35℃.13.今年冬季,我国大部分地区遭遇雾霾天气,给人们的健康、交通安全等带来了严重影响.经研究,发现工业废气等污染物排放是雾霾形成和持续的重要因素,污染治理刻不容缓.为此,某工厂新购置并安装了先进的废气处理设备,使产生的废气经过过滤后排放,以降低对空气的污染.已知过滤过程中废气的污染物数量P (单位:mg/L)与过滤时间t (单位:小时)间的关系为P =P 0e -kt (P 0,k 均为非零常数,e 为自然对数的底数),其中P 0为t =0时的污染物数量.若经过5小时过滤后还剩余90%的污染物.(1)求常数k 的值;(2)试计算污染物减少到40%至少需要多少时间(精确到1小时,参考数据:ln 0.2≈-1.61,ln 0.3≈-1.20,ln 0.4≈-0.92,ln 0.5≈-0.69,ln 0.9≈-0.11.) 解 (1)由已知,当t =0时,P =P 0; 当t =5时,P =90%P 0. 于是有90%P 0=P 0e-5k.解得k =-15ln 0.9(或0.022).(2)由(1)得,P =1ln0.950⎛⎫⎪⎝⎭t P e.当P =40%P 0时,有0.4P 0=1ln0.950⎛⎫⎪⎝⎭t P e.解得t =ln 0.415ln 0.9≈-0.9215×(-0.11)=4.600.11≈41.82.故污染物减少到40%至少需要42小时.。

函数模型的应用实例教案

函数模型的应用实例教案

函数模型的应用实例教案教案:函数模型的应用实例一、课程背景在数学教学中,函数是一个非常重要的概念,在实际生活中也有许多应用。

函数模型是数学中一种常用的模型方法,它可以很好地描述和解决一些实际问题。

本课程将以函数模型的应用实例为切入点,帮助学生理解函数模型的概念和运用方法。

二、教学目标1.知识与能力目标:-理解函数模型的基本概念;-掌握函数模型的建立方法;-运用函数模型解决实际问题。

2.过程与方法目标:-引导学生发现问题和解决问题的方法;-培养学生的创新思维和实际应用能力;-培养学生的合作学习和表达能力。

3.情感态度和价值观目标:-培养学生对数学的兴趣和热爱;-培养学生的团队协作和分享精神;-培养学生的实际问题解决能力。

三、教学过程1.引入(10分钟)-介绍函数的概念和作用,以及函数模型在实际中的应用;-分享一个有关函数模型的实际问题,如汽车行驶的距离与时间的关系。

2.探究(20分钟)- 提出一个问题:假设一辆汽车以60km/h的速度行驶,行驶时间为t小时,求行驶的距离d;-学生们自主讨论解决此问题的思路和方法;-指导学生建立函数模型:行驶距离d与行驶时间t之间的关系可以用函数d(t)表示,其中d(t)=60t。

3.拓展(30分钟)-提出更多有关函数模型的实际问题,如货物运输成本与距离的关系、人口增长与时间的关系等;-学生们自主讨论解决这些问题的方法,并建立相应的函数模型;-学生们分为小组,互相分享并比较各自的解决方法和函数模型。

4.总结(15分钟)-引导学生总结函数模型的建立方法:观察题目中的各种因素,确定变量及其之间的关系,建立函数模型;-引导学生总结函数模型的应用领域:经济、物理、生物等各个领域均有函数模型的应用。

5.展示(20分钟)-邀请几个学生上台演示他们解决实际问题的步骤和函数模型;-学生们展示自己的函数模型,分享成功的经验和困惑;-整理和归纳学生们的展示内容,进行点评和讨论。

六、教学评价1.形成性评价:观察学生的探究过程和成果,给予及时的反馈和指导;2.自评和互评:学生们根据课堂表现、参与度和拓展能力进行自我评价和互评;3.总结性评价:布置作业,让学生运用函数模型解决其他实际问题,并提交书面报告。

《函数模型的应用实例》教案

《函数模型的应用实例》教案

《函数模型的应用实例》教案第一章:引言1.1 课程背景本节课将引导学生了解函数模型在实际生活中的应用,通过具体的实例让学生感受函数模型的重要性。

1.2 教学目标(1)了解函数模型的概念及其在实际问题中的应用。

(2)通过实例分析,学会建立函数模型解决实际问题。

1.3 教学内容(1)函数模型的定义及其特点。

(2)函数模型在实际问题中的应用实例。

第二章:线性函数模型2.1 课程背景本节课将引导学生了解线性函数模型,并通过实例让学生学会如何建立线性函数模型解决实际问题。

2.2 教学目标(1)了解线性函数模型的定义及其特点。

(2)学会建立线性函数模型解决实际问题。

2.3 教学内容(1)线性函数模型的定义及其特点。

(2)线性函数模型在实际问题中的应用实例。

第三章:二次函数模型3.1 课程背景本节课将引导学生了解二次函数模型,并通过实例让学生学会如何建立二次函数模型解决实际问题。

3.2 教学目标(1)了解二次函数模型的定义及其特点。

(2)学会建立二次函数模型解决实际问题。

3.3 教学内容(1)二次函数模型的定义及其特点。

(2)二次函数模型在实际问题中的应用实例。

第四章:指数函数模型4.1 课程背景本节课将引导学生了解指数函数模型,并通过实例让学生学会如何建立指数函数模型解决实际问题。

4.2 教学目标(1)了解指数函数模型的定义及其特点。

(2)学会建立指数函数模型解决实际问题。

4.3 教学内容(1)指数函数模型的定义及其特点。

(2)指数函数模型在实际问题中的应用实例。

第五章:总结与拓展5.1 课程背景本节课将对前面所学的函数模型进行总结,并通过拓展实例让学生进一步感受函数模型在实际生活中的应用。

5.2 教学目标(1)总结本节课所学的内容,巩固所学知识。

(2)通过拓展实例,进一步感受函数模型在实际问题中的应用。

5.3 教学内容(1)对前面所学的函数模型进行总结。

(2)通过拓展实例,感受函数模型在实际问题中的应用。

高中数学教材必修一《函数模型的应用实例》教案

高中数学教材必修一《函数模型的应用实例》教案

3.2.2函数模型的应用实例教案教学目标知识与技能掌握一些普遍使用的函数模型(一次函数、二次函数、指数函数、对数函数、幂函数、分段函数等)的实例。

过程与方法通过实例,感知并体会函数在实际生活中的应用,能利用函数图象、解析式等有关知识正确解决生活中的数学问题。

情感、态度与价值观通过实例,提高解决实际问题的能力,发挥个人的能力,构建数学模型,养成独立思考问题的能力。

教学重点与难点:函数模型的选取与求解。

教学过程设计第一课时已知函数模型解实际问题例1、一辆汽车在某段路程中的行驶速率与时间的关系如图所示。

(1)求略中阴影部分的面积,并说明所求面积的实际含义;(2)假设这辆车的里程表在汽车行驶这段路程前的读数为2004 km,试建立行驶这段路程时汽车里程表读数s km与时间t h的函数解析式,并作出相应的图象。

解:(1)阴影部分的面积为50×1 + 80×1 + 90×1 + 75×1 +65×1 = 360,阴影部分的面积表示汽车在这5小时内行驶的路程为360km。

(2)根据上图,有502004,0180(1)2054,1290(2)2134,2375(3)2224,3465(4)2299,45t tt ts t tt tt t+≤<⎧⎪-+≤<⎪⎪=-+≤<⎨⎪-+≤<⎪-+≤≤⎪⎩,这个函数的图象如右图所示。

h VH 小结:由函数图象,可以形象直观地研究推断函数关系,可以定性地研究变量之间的变化趋势,是近年来常见的应用题的一种题型,其出发点是函数的图象,处理问题的基本方法就是数形结合。

练习1:向高为H 的水瓶中注水,注满为止,如果注水量V 与水深h的函数关系的图象如右图所示,那么水瓶的形状是( )(A) (B) (C) (D)练习2:某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示。

《函数模型的应用实例》教案

《函数模型的应用实例》教案

《函数模型的应用实例》教案一、教学目标1. 理解函数模型在实际问题中的应用。

2. 学会构建函数模型解决实际问题。

3. 培养学生的数学建模能力和创新思维。

二、教学内容1. 函数模型概述2. 常见函数模型及其应用3. 函数模型的构建方法4. 函数模型在实际问题中的应用案例分析5. 函数模型的评估与优化三、教学重点与难点1. 教学重点:函数模型在实际问题中的应用,函数模型的构建方法。

2. 教学难点:函数模型的评估与优化。

四、教学方法1. 案例分析法:通过实际问题案例,引导学生学会构建函数模型解决问题。

2. 讨论法:分组讨论,分享不同函数模型在实际问题中的应用。

3. 实践操作法:让学生动手实践,优化函数模型。

五、教学准备1. 教学PPT2. 实际问题案例及解决方案3. 计算机软件(如MATLAB、Excel等)4. 练习题教案内容示例:第一课时:函数模型概述1. 导入:介绍函数模型在实际生活中的应用,如线性规划、最优化问题等。

2. 讲解:讲解函数模型的概念、特点和分类。

3. 案例分析:分析实际问题案例,引导学生理解函数模型。

4. 练习:让学生练习构建简单的函数模型。

第二课时:常见函数模型及其应用1. 导入:介绍常见函数模型,如线性函数、二次函数等。

2. 讲解:讲解常见函数模型的性质及其在实际问题中的应用。

3. 案例分析:分析实际问题案例,引导学生运用常见函数模型解决问题。

4. 练习:让学生运用常见函数模型解决实际问题。

后续课时依次讲解函数模型的构建方法、函数模型在实际问题中的应用案例分析、函数模型的评估与优化等内容。

教学反思:在教学过程中,关注学生的学习反馈,及时调整教学方法和节奏,确保学生能够掌握函数模型在实际问题中的应用。

注重培养学生的创新思维和动手实践能力,提高他们的数学建模能力。

六、教学活动设计1. 课堂讲解:介绍函数模型的基本概念和重要性。

2. 案例分析:分析实际问题,引导学生识别和构建函数模型。

高中数学优质教案 函数模型的应用实例

高中数学优质教案 函数模型的应用实例

§3.2.2函数模型的实际应用教学目标:知识与技能:将实际问题转化为函数模型.过程与方法:能够借助函数模型(指数函数、对数函数、幂函数、分段函数等)解决实际问题,了解函数模型的广泛应用.情感、态度、价值观:体验函数是描述宏观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用.教学重点:重点:将实际问题转化为函数模型,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.难点:怎样选择数学模型分析解决实际问题.教学过程例1某市的一家报刊摊点,从报社买进《晚报》的价格是每份0.20元,卖出价是每份0.30元,卖不掉的报纸可以以每份0.05元的价格退回报社.在一个月(以30天计)里,有20天每天可卖出400份,其余10天每天只能卖出250份,但每天从报社买进的份数必须相同,这个摊主每天从报社买进多少份,才能使每月所获的利润最大?并计算他一个月最多可赚得多少元?活动:学生先思考或讨论,再回答.教师根据实际,可以提示引导:设摊主每天从报社买进x份,显然当x∈[250,400]时,每月所获利润才能最大.而每月所获利润=卖报收入的总价-付给报社的总价.卖报收入的总价包含三部分:①可卖出400份的20天里,收入为20·0.30x;②可卖出250份的10天里,收入为10·0.30·250;③10天里多进的报刊退回给报社的收入为10·0.05·(x-250).付给报社的总价为30·0.20x.解:设摊主每天从报社买进x份,显然当x∈[250,400]时,每月所获利润才能最大.于是每月所获利润y为y=20·0.30x+10·0.30·250+10·0.05·(x-250)-30·0.20x=0.5x+625,x∈[250,400].因函数y在[250,400]上为增函数,故当x=400时,y有最大值825元.例2某医药研究所开发一种新药,如果成人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y与时间t之间近似满足如图所示的曲线.(1)写出服药后y 与t 之间的函数关系式;(2)据测定:每毫升血液中含药量不少于4微克时治疗疾病有效,假若某病人一天中第一次服药时间为上午7:00,问一天中怎样安排服药的时间(共4次)效果最佳?图3-2-1-15解:(1)依题意,得y =⎪⎩⎪⎨⎧≤<+-≤≤.101,32032,10,6t t t t (2)设第二次服药时在第一次服药后t 1小时,则32-t 1+320=4,t 1=4.因而第二次服药应在11:00; 设第三次服药在第一次服药后t 2小时,则此时血液中含药量应为两次服药量的和,即有32-t 2+32032-(t 2-4)+320=4,解得t 2=9小时,故第三次服药应在16:00; 设第四次服药在第一次后t 3小时(t 3>10),则此时第一次服进的药已吸收完,此时血液中含药量应为第二、三次的和,32-(t 2-4)+32032-(t 2-9)+320=4,解得t 3=13.5小时,故第四次服药应在20:30.变式训练通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间:讲座开始时,学生兴趣激增;中间有一段不太长的时间,学生的兴趣保持较理想的状态;随后学生的注意力开始分散.分析结果和实验表明,用f (x )表示学生接受概念的能力〔f (x )的值愈大,表示接受的能力愈强〕,x 表示提出和讲授概念的时间(单位:分),可有以下的公式: f (x )=⎪⎩⎪⎨⎧≤<+-≤<≤<++-.3016.1073,1610.59,100.436.21.02x x x x x x(1)开讲后多少分钟,学生的接受能力最强?能维持多长时间?(2)开讲后5分钟与开讲后20分钟比较,学生的接受能力何时强一些?解:(1)当0<x ≤10时,f (x )=-0.1x 2+2.6x +43=-0.1(x -13)2+59.9,由f (x )的图象,知当x =10时,[f (x )]max =f (10)=59;当10<x ≤16时,f (x )=59;当16<x ≤30时,f (x )=-3x +107,由f (x )的图象,知f (x )<-3×16+107=59.因此,开讲后10分钟,学生的接受能力最强,并能持续6分钟.(2)∵f (5)=-0.1×(5-13)2+59.9=53.5,f (20)=-3×20+107=47<53.5,∴开讲后5分钟时学生的接受能力比开讲后20分钟强.点评:解析式与图象的转换是函数应用的重点,关于分段函数问题更应重点训练. 拓展提升探究内容①在函数应用中如何利用图象求解析式.②分段函数解析式的求法.③函数应用中的最大值、最小值问题.举例探究:(2007山东省青岛高三教学质量检测,理21)某跨国公司是专门生产健身产品的企业,第一批产品A 上市销售40天内全部售完,该公司对第一批产品A 上市后的国内外市场销售情况进行调研,结果如图3-2-1-18(1)、图3-2-1-18(2)、图3-2-1-18(3)所示.其中图3-2-1-18(1)的折线表示的是国外市场的日销售量与上市时间的关系;图3-2-1-18(2)的抛物线表示的是国内市场的日销售量与上市时间的关系;图3-2-1-18(3)的折线表示的是每件产品A 的销售利润与上市时间的关系.图3-2-1-18(1)分别写出国外市场的日销售量f (t )、国内市场的日销售量g (t )与第一批产品A 上市时间t 的关系式;(2)第一批产品A 上市后的哪几天,这家公司的国内和国外日销售利润之和超过6 300万元? 分析:1.利用图象求解析式,先要分清函数类型再利用待定系数法求解析式.2.在t ∈[0,40]上,有几个分界点,请同学们思考应分为几段.3.回忆函数最值的求法.解:(1)f (t )=⎩⎨⎧≤<+-≤≤,4030,2406,300,2t t t t g (t )=203-t 2+6t (0≤t ≤40).(2)每件A 产品销售利润h (t )=⎩⎨⎧≤≤≤≤.4020,60,200,3t t t . 该公司的日销售利润F(t )=⎪⎪⎪⎩⎪⎪⎪⎨⎧≤≤+-≤≤+-≤≤--,4030),240203(60,3020),8203(60,200),8203(3222t t t t t t t t t , 当0≤t ≤20时,F(t )=3t (203-t 2+8t ),先判断其单调性. 设0≤t 1<t 2≤20,则F(t 1)-F(t 2)=3t 1(203-t 12+8t 1)-3t 2(203-t 22+8t 2)=209-(t 1+t 2)(t 1-t 2)2. ∴F(t )在[0,20]上为增函数.∴F(t )max =F(20)=6 000<6 300.当20<t ≤30时,令60(203-t 2+8t )>6 300,则370<t <30; 当30<t ≤40时,F(t )=60(203-t 2+240)<60(203-×302+240)=6 300, 故在第24、25、26、27、28、29天日销售利润超过6 300万元.点评:1.利用图象求解析式,先要分清函数类型再利用待定系数法求解析式,重点是找出关键点.2.在t ∈[0,40]上,有几个分界点,t =20,t =30两点把区间分为三段.3.二次函数的最值可用配方法,另外利用单调性求最值也是常用方法之一.课堂小结本节学习了:幂函数、指数函数、对数函数的应用.作业课本P 107习题3.2A 组3、4.。

高中数学必修一《函数模型的应用实例》优秀教学设计

高中数学必修一《函数模型的应用实例》优秀教学设计

课题:§3.2.2函数模型的应用实例(一)教材分析本节课选自《普通高中课程标准实验教科书数学1必修本(A版)》的第三章的3.2.2函数模型的应用实例函数模型及其应用是中学重要内容之一,又是数学与生活实践相互衔接的枢纽,特别在应用意识日益加深的今天,函数模型的应用实质是揭示了客观世界中量的相互依存有互有制约的关系,因而函数模型的应用举例有着不可替代的重要位置,又有重要的现实意义。

本节课要求学生利用给定的函数模型或建立函数模型解决实际问题,并对给定的函数模型进行简单的分析评价学情分析学生在学习本节内容之前已经学习了几类不同增长的函数模型,学会了任何选择适当的函数模型分析和解决实际问题,对函数模型增长变化有了较深刻的认识。

这为建立函数模型解决实际问题提供了支持。

但学生对于从实际应用问题获取信息转化为数学问题的能力较薄弱,给建立函数模型带来了一定的难度。

因此在教学中应该给学生多阅读,多思考,由易到难逐层引导提问,理解问题的本质从而得出结论。

教学目标:知识与技能能够利用给定的函数模型或建立确定性函数模型解决实际问题.过程与方法感受运用函数概念建立模型的过程和方法,对给定的函数模型进行简单的分析评价.情感、态度、价值观体会数学在实际问题中的应用价值.教学重点、难点:重点利用给定的函数模型或建立确定性函数模型解决实际问题.难点利用给定的函数模型或建立确定性函数模型解决实际问题,并对给定的函数模型进行简单的分析评价.设计思想一、创设情境现实生活中有些实际问题所涉及的数学模型是确定的,但需要我们利用问题中的数据及其蕴含的关系建立数学模型,对于已给定数学模型的问题,我们要对所确定的数学模型进行分析评价,验证数学模型的与所提供的数据的吻合程度,并对给定的数学模型进行适当的分析和评价.设计意图教师介绍现实生活中函数应用的典型题型,提出研究内容与研究方法引出问题.二、组织探究例1.一辆汽车在某段路程中的行驶速度与时间的关系如图所示.1)求图中阴影部分的面积,关说明所求面积的实际含义;2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为2004km,试建立汽车行驶这段路程时汽车里程表读数s 与时间t 的函数解析式,并作出相应的图象.让学生主动参与,认真观察分析所给图象,独立思考后,讨论,教师可以作以下引导 首先引导学生写出速度v 关于时间t 的函数解析式其次引导学生写出汽车行驶路程y 关于时间t 的函数关系式,并作图象再次探索:1)将图中的阴影部分隐去,得到的图象什么意义?2)图中每一个矩形的面积的意义是什么?3)汽车的行驶里程与里程表读数之间有什么关系?它们关于时间的函数图象又有何关系?设计意图学会将实际问题转化为数学问题.学会用函数模型(分段函数)刻画实际问题.培养学生的读图能力,让学生理解图象是函数对应关系的一种重要表现形式例2.人口问题是当今世界各国普遍关注的问题.认识人口数量的变化规律,可以为有效控制人口增长提供依据.早在1798,英国经济学家马尔萨斯就提出了自然状态下的人口增长模型:rt e y y 0其中t 表示经过的时间,0y 表示t =0时的人口数,r 表示人口的年平均增长率.下表是1950~1959年我国的人口数据资料:(单位:万人) 年份1950 1951 1952 1953 1954 人数55196 56300 57482 58796 60266 年份1955 1956 1957 1958 1959 人数 61456 62828 64563 65994 672071)如果以各年人口增长率的平均值作为我国这一时期的人口增长率(精确到/通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 /通用格式 v(km/h ) t (h )0.0001),用马尔萨斯人口增长模型建立我国在这一时期的具体人口增长模型,并检验所得模型与实际人口数据是否相符;2)如果按表中的增长趋势,大约在哪一年我国的人口将达到13亿?认真阅读题目,教师指出本例的题型是利用给定的数学模型(指数函数模型rt e y y 0 )解决实际问题的一类问题,引导学生认识到确定具体函数模型的关键是确定两个参数0y 与r .学生独立思考后,教师作以下提问1) 本例中所涉及的数量有哪些?2) 描述所涉及数量之间关系的函数模型是否是确定的,确定这种模型需要几个因素?3) 根据表中数据如何确定函数模型?4) 对于所确定的函数模型怎样进行检验,根据检验结果对函数模型又应作出如何评价?5)如何根据所确定函数模型具体预测我国某个时期的人口数,实质是何种计算方法?学生根据教师引导,完成数学模型的确定,借助计算器,利用所确定的函数模型对我国的人口增长情况进行适当的预测教师在验证问题中的数据与所确定的数学模型是否吻合时,可引导学生利用计算器或计算机作出所确定函数的图象,并由表中数据作出散点图,通过比较来确定函数模型与人口数据的吻合程度.设计意图通过本例让学生认识到表格也是函数对应关系的一种表现形式.培养学生得阅读能力,分析能力三、探索研究引导学生分析例题,进行总结归纳利用给定函数模型或建立确定函数解决实际问题的方法:1)根据题意选用恰当的函数模型来描述所涉及的数量之间的关系;2)利用待定系数法,确定具体函数模型;3)对所确定的函数模型进行适当的评价;4)根据实际问题对模型进行适当的修正.设计意图渗透数学思想方法,培养学生读图、分析已知数据、概括、总结等诸多方面的能力。

人教版高中必修13.2.2函数模型的应用实例课程设计

人教版高中必修13.2.2函数模型的应用实例课程设计

人教版高中必修13.2.2函数模型的应用实例课程设计引言函数模型是高中数学重要的内容之一,也是实际应用中常用的数学模型之一。

在高中数学教学中,教师应该重视函数模型的现实应用,有效引导学生掌握函数模型的基本方法和技巧。

本文将介绍人教版高中必修13.2.2函数模型的应用实例课程设计,希望能对广大数学教师提供参考和指导。

基本概念函数模型是指将某个变化关系用函数的形式表示出来,以便于对其进行研究和应用的数学模型。

在实际应用中,函数模型有着广泛的应用,如物理学、经济学、工程学等领域。

课程设计教学目标本次课程设计的教学目标如下:1.掌握函数模型的基本概念和应用;2.能够用函数模型解决实际问题;3.能够熟练使用函数模型进行分析和演算。

教学内容本次课程教学内容主要包括以下三个方面:1.函数模型的基本概念及其应用;2.函数模型在实际问题中的应用;3.函数模型的分析及演算。

本次课程教学主要采用如下几个方法:1.讲解法:通过讲解函数模型的基本概念及其应用,使学生掌握相关知识;2.分组讨论法:将学生分为小组,引导学生利用函数模型解决实际问题;3.实践演练法:通过大量的实例演练,让学生熟练掌握函数模型的分析和演算方法。

教学过程第一阶段:讲解函数模型的基本概念及其应用1.首先,引导学生回顾函数的基本概念,如定义域、值域、单调性、奇偶性等;2.然后,讲解函数模型的基本概念,如一次函数、二次函数、指数函数、对数函数等,以及它们在实际问题中的应用;3.接着,讲解函数模型的图像特征,如顶点坐标、对称轴、零点等,以及它们的应用。

第二阶段:引导学生利用函数模型解决实际问题1.将学生分为小组,让每个小组选定一个实际问题;2.针对每个实际问题,引导学生构建相应的函数模型,分析其特征和趋势;3.探讨函数模型在解决实际问题中的应用,如寻找最优解、确定规律等。

第三阶段:实践演练,提高应用能力1.设计大量的函数模型应用实例,引导学生进行分析和演算;2.引导学生利用所学到的函数模型知识,解决更加复杂的实际问题;3.鼓励学生自主探索函数模型的应用,提高分析和应用能力。

高中数学《函数模型的应用实例》教案2新人教A版必修1(优秀经典公开课比赛教案)

高中数学《函数模型的应用实例》教案2新人教A版必修1(优秀经典公开课比赛教案)

课题:§321几类不同增长的函数模型教学目标:知识与技能结合实例体会直线上升、指数爆炸、对数增长等不同增长的函数模型意义,理解它们的增长差异性.过程与方法能够借助信息技术,利用函数图象及数据表格,对几种常见增长类型的函数的增长状况进行比较,初步体会它们的增长差异性;收集一些社会生活中普遍使用的函数模型(指数函数、对数函数、幕函数、分段函数等),了解函数模型的广泛应用.情感、态度、价值观体验函数是描述宏观世界变化规律的基本数学模型,体验指数函数、对数函数等函数与现实世界的密切联系及其在刻画现实问题中的作用.教学重点:重点将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.难点怎样选择数学模型分析解决实际问题.教学程序与环节设计: 实际问题引入,激发学生兴趣.选择变量、建立模型,利用数据表格、函数图象讨论模型,体会不同函数模型增长的含义及其差异.总结例题的探究方法,并进一步探索研究幂函数、指数函数、对数函数的增长差异,形成结论性报告.师生交流共同小结,归纳一般的应用题的求解方法步骤.强化基本方法,规范基本格式.收集一些社会生活中普遍使用的函数模型,了解函数模型的广泛应用.4)你能借助计算器或计算机作出函数图象, 并通过图象描述一下三种方案的特点吗?生:对三种方案的不同 变化趋势作出描述,并 为方案选择提供依据.师:引导学生分析影响 方案选择的因素,使学 生认识到要做出正确 选择除了考虑每天的 收益,还要考虑一段时 间内的总收益.例2•某公司为了实现 1000万元利润的目标, 准备制定一个激励销售部门的奖励方案:在销售利 润达到10万元时,按销售利润进行奖励, 且奖金y (单位:万元)随销售利润x (单位:万元)的增加而增加但奖金不超过 5万元,同时奖金不超过利 润的25%.现有三个奖励模型:y = 0.25x y = log 7 x 1 y = 1.002x .问:其中哪个模型能符合公司的要求? 探究:师:引导学生分析问题 使学生得出:要对每一 个奖励模型的奖金总 额是否超出5万元,以 及奖励比例是否超过 25%进行分析,才能做 出正确选择.环节 呈现教学材料 师生互动设计师:引导学生利用函数 图象分析三种方案的 不同变化趋势.5)根据以上分析,你认为就作出如何选择?组织探究生:通过自主活动,分 析整理数据,并根据其 中的信息做出推理判 断,获得累计收益并给 出本全的完整解答,然 后全班进行交流.师:引导学生分析三种 函数的不同增长情况 对于奖励模型的影响, 使学生明确问题的实 质就是比较三个函数 的增长情况.生:进一步体会三种基 本函数模型在实际中 的广泛应用,体会它们 的增长差异.1)本例涉及了哪几类函数模型? 本例的实质是什么?2)你能根据问题中的数据,判定所给的奖励 模型是否符合公司要求吗?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《函数模型的应用实例》
一、教学内容分析:
本节课选自人民教育出版社A版的普通高中课程标准实验教科书·数学必修1中3.2.2函数模型的应用实例(第二课时).函数基本模型的应用是本章的重点内容之一,函数模型本身就来源于现实,并用于解决实际问题.本节课的内容是在《几类不同增长的函数模型》和《函数模型的应用实例(一)》内容之后,对于纯数学知识的几类函数及其性质和给定的函数模型应用有了一定的学习,本节课是对以上两节内容的延续与拓展,研究没有给定函数模型或没有确定性函数模型的实际问题进行建模和应用.这节课的内容继续通过一些实例来感受函数模型的建立和应用,逐步体会实际问题中构建函数模型的过程,本节课的函数模型的应用实例主要包括建立确定性函数模型解决问题及选择或建立拟合函数模型解决问题.例5所给的问题的特点是表中数学的变化是有特定规律的,运用表中的数据规律建立数学模型,注意变化范围和检验结果的合理性,同时使用这种有规律的简单数据实例提供了建立数学模型的方法.
例6与例5有所区别,表中数据的变化规律特点不是和明显,需要自己根据对数据的理解选择模型,这反映一个较为完整的建立函数模型解决问题的过程,让学生逐步感受和明确这一点.
整节课要求学生分析数据,比较各个函数模型的优劣,选择接近实际的函数模型,并应用函数模型解决实际问题.强化读图、读表能力;优化学生思维,提高学生探究和解决问题的能力;强化学生数学应用意识,感受数学的实用性;锻炼学生的吃苦精神,提高学生的团队合作能力.
二、教学目标:
知识与技能:1.会分析所给出数据,画出散点图.
2.会利用选择或建立的函数模型.
3.会运用函数模型解决实际问题.
过程与方法:1.通过对给出的数据的分析,抽象出相应的确定性函数模型,并验证函数模型的合理性.
2.通过收集到的数据作出散点图,并通过观察图像判断问题所适用的函数模型,在合理选择部分数据或计算机的拟合功能得出具体的满意的函数解析
式,并应用模型解决实际问题.
情感、态度和价值观:1.经历建立函数模型解决实际问题的过程,领悟数学源自生活,服
务生活,体会数学的应用价值.
2.培养学生的应用意识、创新意识和探索精神,优化学生的理性思
维和求真务实的科学态度.
3.提高学生探究学习新知识的兴趣,培养学生,勇于探索的科学态度.三、学生学情分析:
1.已掌握了一些基本初等函数的相关知识,有相应的数学基础知识储备.
2.在前面的学习中,初步体会了利用给定函数模型解决实际问题的经历,为本节课积累解决问题的经验.
3.学生从文字语言向图像语言和符号语言转化较弱;应用意识和应用能力不强;抽象概括和局部处理能力薄弱.
四、教学重点、难点
重点:根据收集的数据作出散点图,并通过观察图像选择问题所适用的函数模型,利用演算或计算机数据建立具体的函数解析式.
难点:怎样合理分析数据选择函数模型和建立具体的函数解析式.
五、教学策略分析:
基于新课程标准倡导以学生为主体进行探究性学习,教师应成为学生学习的引导者、组织者和合作者的教学理念和最近发展区理论,结合本节课的教学目标,采用如下教学方法:1.问题教学法.
在例1的教学中,提出如何能更为直观的发现函数模型,引导学生思考,发现选择函数模型的重要方法,即散点图图像,从而让学生有收获,有成就感.在例2的解决过程中,提出一系列的问题串,学会对问题的剖析,直达问题的核心.使学生的学习过程成为在教师引导下的“再创造”过程,并使学生从中体会学习的兴趣.这样可以充分调动学生学习的主动性、积极性,使课堂气氛更加活跃,同时培养了学生自主学习,动手探究的能力.
2.分组讨论法.
在例2的教学中,遇到难以选择模型时,通过小组讨论,拓展思维,加强合作,解决问题;在获得函数模型后和课堂总结中,组织小组讨论,相互交流成果,扩大成果影响力.这样不仅能够培养学生对数学知识的探索精神和团队协作精神,更能让学生体验成功的乐趣,培养其学习的主动性.
3.多媒体辅助教学法:
在教学过程中,采用多媒体教学工具,通过动态演示有利于引起学生的学习兴趣,激发学
生的学习热情,增大信息的容量,使内容充实、形象、直观,提高教学效率和教学质量。

通过实物展台,增进交流,增加思维碰撞,优化学生思维,强化学生成就感和认同感,激发学生学习兴趣.
六、教学过程:。

相关文档
最新文档