水泥混凝土抗硫酸盐侵蚀试验检测记录表
混凝土外加剂(抗硫酸盐)检验记录表

样品编号:
检验日期 各 材 料 配 合 比 用 量(Kg/m3 ) W(A) W(B)
龄期(d) 抗 压 强 度 比 含 气 量 1d 3d 7d 28d
(A)
基准砼 (MPa)
(B)掺外加剂砼(MPa)
平均(A)
平均(B)
结果(%)
A1 含 气 量(%) 结 论
A2
A3
B1
B2
B3
(A)结果(%)(B)结果(%)Fra bibliotek复核:
试验:
混凝土外加剂检验记录表
任务编号:
检验依据 原材料 水 砂 石 子 项 目 检 验 减 水 率 坍落度(mm) 拌合用水量(g) 试验编号 混凝土拌合物用 水量(g) 混凝土拌合物总 质量(g) 泌水 率比 试样质量(g) 泌水总量(g) 泌水率比(%) 加水拌合时间 初凝时间(min) 终凝时间(min) 凝 结 时 间 差 (A) 一 测试时间及贯入阻力(N) 二 三 (B) 四 测试时间及贯入阻力(N) 五 六 平均(A) 平均(B) 结果(min) 1、基准砼 2、基准砼 3、基准砼 4、受检砼 5、受检砼 6、受检砼 (A) 基准砼 一 二 三 泥 品 GB/T8076-2008 种 规 格 掺量(%) 检 编 C S G (B) 掺外加剂砼 四 五 六 外加剂 每批拌合用量 A B 结果(%)
水泥混凝土抗硫酸盐侵蚀试验检测记录表.doc

水泥混凝土抗硫酸盐侵蚀试验检测记录表.doc
第页,共页
水泥混凝土抗硫酸盐侵蚀试验检测记录表
试验室名记录编号:
称:
工程部位 / 用途委托 / 任务编号
试验依据样品编号试验条件成型日期样品描述
试验日期
主要仪器设备及
编号
试件尺寸 (mm)
龄期 (d)
设计抗硫酸盐等级 (KS)
检查强度所需要的循环次数
循环循环试件循环后抗循环后抗压平均值对比试件对比试件抗对比试件抗平均值抗压强度受压面积
压极限荷强度标准值受压面积压极限荷载
压强度标准耐蚀系数次数
(MPa)
(MPa)
2
载值 (KN)
(MPa)
2
值(KN)
值(MPa) (%)
(mm)
(mm )
试验抗硫酸盐等级( KS )
备注:
试验:复核:日期:年月日。
胶凝材料抗硫酸盐侵蚀性能试验记录

胶凝材料抗硫酸盐侵蚀性能试验记录
记录编号 委托编号 委托日期 记录日期
(1)与试件相关的技术条件
胶凝材料
砼强度 等级
水泥 品种
水泥 厂家
粉煤灰 品种 等级
粉煤灰厂 家
掺合料在胶凝 材料中的掺量
(%)
矿粉 品种
矿粉厂家
掺合料在胶凝材料 中的掺量(%)胶凝材料抗硫酸盐侵蚀性能试验
养护方法 荷载
序号 1
2
3
4
5
6
7
8
9
代表值 (Mpa)
在水中养 护
荷载(N)
单块值 (MPa)
在侵蚀溶 液中浸泡
荷载(N)
单块值 (MPa)
抗蚀系数(K) 附注:
试验
计算
复核
抗硫酸盐侵蚀取样试验方法

抗硫酸盐侵蚀取样试验方法抗硫酸盐侵蚀取样试验方法1. 简介抗硫酸盐侵蚀取样试验方法是一种常用的实验方法,用于评估材料的耐蚀性能。
本文将从简介、实验步骤、结果分析和实验注意事项等方面进行论述,以便读者能够全面理解这一方法的原理与应用。
2. 实验步骤2.1 准备试样在进行抗硫酸盐侵蚀试验之前,首先需要准备试样。
通常情况下,试样需要选择具有代表性的材料,例如金属、混凝土等。
试样的规格大小应根据实际需要来确定。
2.2 试剂配制抗硫酸盐侵蚀试验中需要使用一定浓度的硫酸盐溶液。
在试验前,需要准备好所需要的试剂,并按照一定的配比将试剂与溶液配制成合适浓度。
2.3 试验设备准备在实验开始之前,还需要准备好必要的试验设备,例如试验槽、天平、pH计等。
确保这些设备能够满足实验的要求,并进行必要的校准。
2.4 试验操作将试样置于试验槽中,并加入预先配制好的硫酸盐溶液。
根据实验需求,可以通过调整试验温度、试验时间、溶液浓度等参数来控制实验条件。
需要定期对试验过程进行观察和记录。
2.5 试验结束在试验结束后,将试样从试验槽中取出,进行洗涤和清洁。
可以对试样进行质量损失、表面形貌等方面的分析和评估。
3. 结果分析通过抗硫酸盐侵蚀试验,可以获取一系列的试验结果。
这些结果可以表现为试样的质量损失、表面腐蚀形貌、电化学参数等。
通过对这些结果的分析,可以评估材料的抗硫酸盐侵蚀性能,并作出相应的判断。
4. 实验注意事项4.1 安全措施在进行抗硫酸盐侵蚀试验之前,必须采取必要的安全措施,例如佩戴防护手套、护目镜等。
确保实验室通风良好,以避免试剂挥发对实验人员造成危害。
4.2 实验条件抗硫酸盐侵蚀试验的结果受许多因素的影响,如试验温度、试验时间、溶液浓度等。
在进行试验之前,需要仔细选择和控制这些参数,以确保获得可靠的试验结果。
4.3 数据记录进行抗硫酸盐侵蚀试验时,需要及时、准确地记录实验数据。
这些数据将对后续的分析和评估工作起到重要的作用。
西北盐渍土地区混凝土抗硫酸盐侵蚀性能研究

西北盐渍土地区混凝土抗硫酸盐侵蚀性能研究西北盐渍土地区混凝土抗硫酸盐侵蚀性能研究摘要:随着西北地区经济的快速发展和工业化进程的加快,盐渍土地区的基础设施建设面临着严峻的挑战。
本文通过对西北盐渍土中混凝土的抗硫酸盐侵蚀性能进行研究,旨在提供一种有效的方法来改善西北盐渍土地区基础设施的耐久性和使用寿命。
1. 引言西北盐渍土地区是指中国西部地区的一类盐碱地。
该地区的土壤富含盐分和碱性物质,给基础设施建设带来了严重的腐蚀和侵蚀问题。
其中,硫酸盐侵蚀是最严重的一种,对混凝土结构的耐久性和使用寿命造成了严重的影响。
2. 硫酸盐侵蚀机理硫酸盐侵蚀是指土壤或水体中的硫酸盐与混凝土发生化学反应,导致混凝土的破坏和变质。
硫酸盐可以与混凝土中的水化产物生成可溶性硫酸盐,进一步形成硫酸盐结晶,导致混凝土内部产生体积膨胀和裂缝。
3. 实验方法本研究选取西北地区常见的盐渍土样品和普通混凝土为研究对象。
首先,通过X射线衍射仪和扫描电子显微镜对样品进行了物相组成和微观结构的分析。
然后,采用硫酸盐侵蚀试验方法,对盐渍土样品和混凝土样品进行了一定时间的硫酸盐侵蚀实验,并测试了样品的质量损失、抗压强度和含水率等性能指标。
4. 结果与分析实验结果表明,西北盐渍土中的盐分会促进硫酸盐侵蚀的发生和发展。
与普通混凝土相比,盐渍土的质量损失更大,抗压强度降低更明显。
同时,硫酸盐的侵蚀作用会导致盐渍土中钠离子的释放和渗透性能的变化。
5. 改善措施为了提高西北盐渍土地区基础设施的抗硫酸盐侵蚀性能,可以采取以下措施:- 选用抗硫酸盐侵蚀性能较好的材料,如特种碱性胶凝材料等;- 加强基础设施的防水和防渗措施,减少水分和硫酸盐的侵入;- 对已建成的基础设施进行维护和修复。
6. 结论本研究通过对西北盐渍土地区混凝土抗硫酸盐侵蚀性能的研究,发现盐渍土对混凝土的侵蚀作用较大,会导致混凝土的质量损失和强度降低。
为了提高基础设施的使用寿命,需要采取有效的措施来改善盐渍土地区的耐久性和抗硫酸盐侵蚀能力。
抗硫酸盐腐蚀型混凝土

混凝土抗硫酸盐侵蚀研究作者摘要:本文介绍了混凝土硫酸盐侵蚀破坏的机理和分类以及混凝土硫酸盐侵蚀的影响因素。
主要综合说明了5种判断硫酸盐侵蚀混凝土的检验方法:快速法;膨胀法;干湿循环法I;干湿循环法II;氯离子渗透试验。
提出了4种改善方法:合理选择水泥及掺合料品种;提高混凝土密实性;采用高压蒸汽养护;增设必要的保护层。
Summary:This paper introduces the mechanism and classification of erosion of concrete sulfate and influence factors of concrete sulfate attack.5 methods for the inspection of sulfate attack concrete are described:Express method;Plavini;dry wet cycling method I;Dry wet cycling method II;Chloride ion penetration test.4 improvement methods are proposed:Reasonable selection of varieties of cement and admixture;Improve the density of concrete;High pressure steam curing;Add the necessary protective layer.关键词:硫酸盐侵蚀混凝土改善方法影响因素Key word: Sulfate attack Concrete Improvement method Influential factors一、研究背景自混凝土产生以来,就以其原材料来源广泛、强度高、可塑性好、成本低等优点被普遍应用在房建工程、桥梁工程、还有水利及其它工程中,随着社会的发展和科学技术的进步,环境污染也成为了人类面临的一大重要问题,在空气和水中都产生了大量的腐蚀性的物质,给混凝土结构的使用寿命带来了严峻的考验。
普通C40混凝土抗硫酸盐侵蚀性能研究

广东建材2008年第8期表1C40混凝土配合比材料水泥(kg/m3)粉煤灰(kg/m3)砂(kg/m3)5~31.5mm碎石(kg/m3)水(kg/m3)减水剂(kg/m3)坍落度(mm)3/28d立方体抗压强度(MPa)用量3309070511051686.72142/16934.9/50.2硫酸盐侵蚀是混凝土化学侵蚀中最广泛和最普通的形式。
硫酸钠、硫酸钾、硫酸钙、硫酸镁等硫酸盐均会对混凝土产生侵蚀作用。
在污水处理厂、化纤工业、制药、制皂业等厂房附近的地表水和地下水中由于硫酸盐浓度相对较高,混凝土结构物的硫酸盐侵蚀破坏现象较为常见。
硫酸盐侵蚀破坏是一个复杂的物理化学过程,多年以来,国内外许多学者在侵蚀机理方面作了大量的研究。
其破坏实质是,环境水中的硫酸根离子进入其内部,与水泥石中一些固相组分发生化学反应,生成一些难溶的盐类矿物而引起。
这些难溶的盐类矿物一方面可形成钙矾石、石膏等膨胀性产物而引起膨胀、开裂、剥落和解体,另一方面也可使硬化水泥石中CH和C-S-H等组分溶出或分解,导致水泥石强度和粘结性能损失。
当硫酸盐浓度较高时干湿交替作用下会发生硫酸盐结晶破坏,结晶的硫酸盐会产生类似冻融的膨胀破坏,集料的坚固性实验就是直接用饱和Na2SO4溶液干湿交替5循环后的质量损失来衡量。
通常情况下,混凝土受硫酸盐侵蚀后表面泛白,风干后更为明显,损坏通常在棱角处开始,进而表面剥落,伴随着着裂缝发育层层推进,极端情况下有可能导致结构崩溃。
1原材料、试验方法及试验结果选用佛山某混凝土搅拌站日常供应C40商混实际使用的混凝土原材料。
水泥为英德龙山水泥有限公司生产的海螺牌P.O42.5R水泥,广电Ⅱ级粉煤灰,细集料为肇庆西江砂,细度模数2.9;粗集料为广州增城永和石场生产的5~31.5mm花岗岩碎石;减水剂采用佛山瑞安建材科技有限公司生产的LS-300缓凝高效减水剂。
具体配比见表1。
按标准成型150mm×150mm×550mm的混凝土抗折试件6个,试件于20±2℃静停24小时,脱模。
硫酸盐侵蚀试验整理

大部分的土壤中含有硫酸盐,以石膏(CaSO4.2H20)的形式存在(一般以S04计含0.01%一0.05%),此含量对混凝土无害。
在正常温度下,石膏在水中的溶解度很有限。
地下水中硫酸盐浓度较高,通常是由于存在硫酸镁、硫酸钠和硫酸钾所致;农村土壤和水中常常含有硫酸馁。
用高硫煤为燃料的锅炉和化学工业的排放物中可能会含有硫酸。
沼泽、采矿坑、污水管中有机腐殖物的分解会生成H2S,H2S会由于细菌的作用转变成硫酸。
混凝土冷却塔的用水,可能会由于水的蒸发而含有高浓度的硫酸盐。
因此在自然水和工业水中,硫酸盐的侵害不容忽视。
从硫酸根的来源看,混凝土的硫酸盐侵蚀可分为内部和外部侵蚀。
内部侵蚀是由于混凝土组分本身带有的硫酸盐引起的,而外部侵蚀是环境中的硫酸盐对混凝土的侵蚀。
外部侵蚀可分为两个过程:(1)由环境溶液进入混凝土孔隙中,这是一个扩散过程,其速率决定于混凝土的抗渗性;(2)内部SO42-与其他物质的反应过程。
近年来,由于含硫酸盐外加剂及含硫酸盐集料的大量采用,内部硫酸盐侵蚀也成为研究热点。
与外部侵蚀相比,内部侵蚀的化学实质也是SO42-与水泥石矿物的反应,但由于SO42-来源不同,内部侵蚀又具有与外部侵蚀不同的特点,内部侵蚀中,母体内部的SO42-从混凝土拌和时就己存在,不经过扩散即可与水泥石中的矿物发生侵蚀反应,而SO42-的浓度随反应的进行而减少,因此侵蚀速率则随母体龄期增长而趋于降低。
本课题重点探讨由外部引起的侵蚀。
水泥混凝土受侵蚀破坏主要是水泥石的受侵蚀破坏。
在水泥侵蚀破坏诸多类型中,产生的侵蚀内因基本一致,但以外部侵蚀介质的硫酸盐,镁盐侵蚀最为严重。
所以,进行水泥混凝土的抗硫酸盐,镁盐侵蚀,对提高普通水泥混凝土的抗侵蚀研究具有代表性和普遍性。
①离子的影响Bonen和cohen[曾调查过硫酸镁溶液对水泥浆的影响,提出镁离子最初在暴露面上形成一层氢氧化镁沉淀。
因为其溶解度低,镁离子不易通过这层膜深入其内部,但应加以注意的是,氢氧化镁的形成消耗了大量的ca(oH)2,其浓度的下降使得溶液的PH值下降,为了保持稳定性,C-S-H凝胶释放出大量的到周围的溶液中,ca(oH)2来增加PH值,这最终导致C-S-H凝胶的分解,在侵蚀的高级阶段,C-S-H凝胶中的Ca2+能够完全被Mg2+完全替代,形成不具有胶结性的糊状物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
页,共
页
水泥混凝土抗硫酸盐侵蚀试验检测记录表
试验室名称:
工程部位/用途 试验依据 试验条件 样品描述
主要仪器设备及编号
记录编号:
委托/任务编号 样品编号 成型日期 试验日期
试件尺寸(mm) 检查强度所需要的循环次数 循环 次数 循环试件 受压面积 2 (mm )
龄期(d) 循环后抗 循环后抗 平均值 压极限荷 压强度标 (MPa) 载值(KN) 准值(MPa) 对比试件 受压面积 2 (mm )
设计抗硫酸盐等级(KS) 对比试件 抗压极限 荷载值 对比试件 抗压强度 标准值 平均 值 (MPa) 抗压强度 耐蚀系备
注:
试验:
复核:
日期:
年
月
日