八年级下册分式与分式方程练习题
北师大版八年级数学下册第五章《分式与分式方程》测试卷(含答案)

北师大版八年级数学下册第五章《分式与分式方程》测试卷(含答案)一、选择题(共10小题,3*10=30)1. 在式子1a ,2xy π,3ab 2c 4,56+x ,x 7+y 8,9x +10y ,x 2x 中,分式的个数是( ) A .5 B .4 C .3 D .22. 下列式子:①x 3y 2·y 4x 2;②b -a ·2a 2bc ;③8xy÷4x y ;④x +y x 2-xy ÷1x -y,计算结果是分式的是( ) A .①② B .③④C .①③D .②④3. 已知2x x 2-2x =2x -2,则x 的取值范围是( ) A .x >0 B .x≠0且x≠2C .x <0D .x≠24. 若3-2x x -1÷( )=1x -1,则( )中式子为( ) A .-3 B .3-2xC .2x -3 D.13-2x5. 若将分式a +b 4a 2中的a 与b 的值都扩大为原来的2倍,则这个分式的值将( ) A .扩大为原来的2倍 B .分式的值不变C .缩小为原来的12D .缩小为原来的146. 分式3x -2(x -1)2,2x -3(1-x )3,4x -1的最简公分母是( ) A .(x -1)2 B .(x -1)3C .x -1D .(x -1)2(1-x)37. 将分式方程1x =2x -2去分母后得到的整式方程,正确的是( ) A .x -2=2x B .x 2-2x =2xC.x -2=x D .x =2x -48. 分式方程1x -1-2x +1=4x 2-1的解是( ) A .x =0 B .x =-1 C .x =±1 D .无解9. 解关于x 的方程x x -1-k x 2-1=x x +1不会产生增根,则k 的值( ) A .为2 B .为1 C .不为±2 D .无法确定10. 新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000万元,今年1~5月份,每辆车的销售价格比去年降低1万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1~5月份每辆车的销售价格是多少万元?设今年1~5月份每辆车的销售价格为x 万元.根据题意,列方程正确的是( ) A.5000x +1=5000(1-20%)x B.5000x +1=5000(1+20%)x C.5000x -1=5000(1-20%)x D.5000x -1=5000(1+20%)x 二.填空题(共8小题,3*8=24)11. 计算:xy 2xy=__ __. 12. 当a =12时,代数式2a 2-2a -1-2的值为________. 13. 小松鼠为过冬储存m 天的坚果a 千克,要使储存的坚果能多吃n 天,则小松鼠每天应节约坚果_____________千克.14. 化简:x 2+4x +4x 2-4-x x -2=___________. 15. 若a 2+5ab -b 2=0,则b a -a b的值为___________. 16. 某单位全体员工在植树节义务植树240棵.原计划每小时植树m 棵,实际每小时植树的棵数比原计划每小时植树的棵数多10棵,那么实际比原计划提前了____________小时完成任务.(用含m 的代数式表示)17. 若关于x 的方程x -1x -5=m 10-2x无解,则m =________. 18. 已知关于x 的分式方程x -3x -2=2-m 2-x会产生增根,则m =____________. 三.解答题(7小题,共66分)19.(8分) 计算:(1)3a 2b·512ab 2÷(-5a 4b);(2)b a 2-b 2÷(a a -b -1);20.(8分) 先化简,再求值:(a -2ab -b 2a )÷a 2-b 2a,其中a =1+2,b =1- 2.21.(8分) 在数学课上,老师对同学们说:“你们任意说出一个x 的值(x≠-1,1,-2),我立刻就知道式子(1+1x +1)÷x +2x 2-1的结果.”请你说出其中的道理.22.(10分) 老师在黑板上书写了一个代数式的正确演算结果,随后用手掌捂住了一部分,形式如下: ⎝ ⎛⎭⎪⎫-x 2-1x 2-2x +1÷x x +1=x +1x -1. (1)求所捂部分化简后的结果;(2)原代数式的值能等于-1吗?为什么?23.(10分) 化简x 2-4x +4x 2-2x÷(x -4x ),然后从-5<x<5的范围内选取一个合适的整数作为x 的值代入求值.24.(10分) 已知:2+23=22×23,3+38=32×38,4+415=42×415…若10+a b =102×a b(a ,b 均为正整数). (1)探究a ,b 的值;(2)求分式a 2+4ab +4b 2a 2+2ab的值.25.(12分) 为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A 、B 两个工程公司承担建设,已知A 工程公司单独建设完成此项工程需要180天,A 工程公司单独施工45天后,B 工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.(1)求B 工程公司单独建设完成此项工程需要多少天?(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划分成两部分,要求两工程公司同时开工,A 工程公司建设其中一部分用了m 天完成,B 工程公司建设另一部分用了n 天完成,其中m ,n 均为正整数,且m <46,n <92,求A 、B 两个工程公司各施工建设了多少天?参考答案1-5BDBBC 6-10BADCA11.y 12.1 13.an m (m +n ) 14.2x -2 15.5 16.2400m 2+10m17. -8 18.-1 19.解:(1)原式=-1(2)原式=1a +b20.解:原式=a -b a +b . 当a =1+2,b =1-2时,原式=222= 2. 21.解:∵原式=x +1+1x +1÷x +2(x +1)(x -1)=x +2x +1·(x +1)(x -1)x +2=x -1,∴只要学生说出x 的值,老师就可以说出答案22.解:(1)设所捂部分为A ,则A =x +1x -1·x x +1+x 2-1x 2-2x +1=x x -1+x +1x -1=x +x +1x -1=2x +1x -1. (2)若原代数式的值为-1,则x +1x -1=-1,即x +1=-x +1,解得x =0,当x =0时,除式x x +1=0,∴原代数式的值不能等于-1.23.解:原式=1x +2,∵-5<x<5且x 为整数,∴若使分式有意义,x =-1或x =1. 当x =1时,原式=13;当x =-1时,原式=1 24.解:(1)a =10,b =102-1=99(2)a 2+4ab +4b 2a 2+2ab =a +2b a ,将a ,b 的值代入得原式=104525. 解:(1)设B 工程公司单独完成需要x 天,根据题意得45×1180+54(1180+1x)=1,解得x =120,经检验,x =120是分式方程的解,且符合题意,答:B 工程公司单独完成需要120天 (2)根据题意得m ×1180+n ×1120=1,整理得n =120-23m ,∵m <46,n <92,∴120-23m <92,解得42<m <46,∵m 为正整数,∴m =43,44,45,又∵120-23m 为正整数,∴m =45,n =90.答:A ,B 两个工程公司分别施工建设了45天和90天。
八年级数学下第五章分式与分式方程单元检测试卷(北师大带答案和解释)

八年级数学下第五章分式与分式方程单元检测试卷(北师大带答案和解释)【新北师大版八年级数学(下)单元测试卷】第五《分式与分式方程》班级:___________ 姓名:___________ 得分:___________一选择题:(每小题3分共36分)1.在,,,中,是分式的有()A.1个B.2个.3个D.4个2.每千克元的糖果x千克与每千克n元的糖果千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为()A.元B.元.元D.元3.当x=2时,下列分式中,值为零的是()A.B..D.4.下列分式是最简分式的是()A.B..D..若,则的值为()A.1 B..D.6.计算所得的正确结论是()A B1 D-17.a÷b× ÷× ÷d×等于()A.a B..D.ab d8.计算的结果为:()A.B.-.-D.9.分式的分子分母都加1,所得的分式的值比()A.减小了B.不变.增大了D.不能确定10.若,则=()A B D11.关于x的方式方程的解是正数,则可能是()A.﹣4 B.﹣.﹣6 D.﹣712.如果关于x的方程的解不是负值,那么a与b的关系是()A.a>b B.b≥ a .a≥3b D.a=3b二、填空题:(每小题3分共12分)13.化简:= .14.已知,则的值是。
1.计算:= .16.若关于的分式方程无解,则= .三解答题:(共2分)17.(分)计算:(﹣)÷.18.(分)计算:.19.(6分)先化简再求值:,其中a=2,b=﹣1.20.(6分)A、B两地相距200千米,甲车从A地出发匀速开往B 地,乙车同时从B地出发匀速开往A地,两车相遇时距A地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.21.(10分)某商店经销一种纪念品,9月份的销售额为2000元,为扩大销售,10月份该商店对这种纪念品打九折销售,结果销售量增加20,销售额增加700元.(1)求这种纪念品9月份的销售价格?(2)若9月份销售这种纪念品获利800元,问10月份销售这种纪念品获利多少元?22.(10分)某工程承包方指定由甲、乙两个工程队完成某项工程,若由甲工程队单独做需要40天完成,现在甲、乙两个工程队共同做20天后,由于甲工程队另有其他任务不再做该工程,剩下的工程由乙工程队再单独做了20天才完成任务.(1)求乙工程队单独完成该工程需要多少天?(2)如果工程承包方要求乙工程队的工作时间不能超过30天,要完成该工程,甲工程队至少要工作多少天?23.(10分)一项工程,甲、乙两公司合做,12天可以完成,共需付工费102000元;如果甲、乙两公司单独完成此项公程,乙公司所用时间甲公司的1倍,乙公司每天的施工费比甲公司每天的施工费少100元。
2020-2021学年北师大版八年级下册 第五章《分式与分式方程》实际应用常考综合题专练(一)

八年级下册第五章《分式与分式方程》实际应用常考综合题专练(一)1.我市计划对城区居民供暖管道进行改造,该工程若由甲队单独施工,则恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍,如果由甲乙两队先合作15天,那么余下的工程由甲队单独完成还需要5天.(1)这项工程的规定天数是多少天?(2)已知甲队每天的施工费用是6500元,乙队每天的施工费用是3500元.为了缩短工期,工程指挥部最终决定该工程由甲、乙两队合作,则该工程的施工费用是多少?2.某书店老板去图书批发市场购买某种图书,第一次用1200元购书若干本,并按该书定价6元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1680元所购该书的数量比第一次多50本,当按定价售出300本时,出现滞销,便以定价的4折售完剩余的书.(1)第一次购书的进价是多少元?(2)试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其他因素)?若赔钱,赔多少;若赚钱,赚多少?3.列分式方程解应用题:刘峰和李明相约周末去野生动物园游玩,根据他们的谈话内容,求李明乘公交车、刘峰骑自行车每小时各行多少千米?4.列方程解应用题为了提高学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,某校开展了“阳光体育天天跑活动”,初中男生、女生分别进行1000米和800米的计时跑步,在一次计时跑步中,某班一名女生和一名男生的平均速度相同,且这名女生跑完800米所用时间比这名男生跑完1000米所用时间少56秒,求这名女生跑完800米所用时间是多少秒.5.扎西与卓玛共同清点一批图书,已知扎西清点完300本图书所用的时间与卓玛清点完200本所用的时间相同,扎西平均每分钟比卓玛多清点10本,求卓玛平均每分清点图书的数量?6.为满足防护新冠疫情需要,现有甲乙两种机器同时开工制造口罩.甲加工90个口罩所用的时间与乙加工120个口罩所用的时间相等,已知甲乙两种机器每秒钟共加工35个口罩,求甲乙两种机器每秒各加工多少个口罩?7.甲、乙两车分别从A、B两地同时出发,沿同一公路相向而行,开往B、A两地.已知甲车每小时比乙车每小时多走20km,且甲车行驶350km所用的时间与乙车行驶250km所用的时间相同.甲、乙两车的速度各是多少km/h?8.明德中学需要购进甲、乙两种笔记本电脑,经调查,每台甲种电脑的价格比每台乙种电脑的价格少0.2万元,且用12万元购买的甲种电脑的数量与用20万元购买的乙种电脑的数量相同.(1)求每台甲种电脑、每台乙种电脑的价格分别为多少万元;(2)学校计划用不超过34万元购进甲、乙两种电脑共80台,其中乙种电脑的数量不少于甲种电脑数量的1.5倍,学校有哪几种购买方案?9.2020年初,一场突如其来的新型冠状病毒肺炎疫情,打破了我们宁静的生活,为了预防新型冠状病毒肺炎,人们已经习惯出门戴口罩.某口罩生产企业在若干天内加工120万个口罩(每天生产数量相同),在实际生产时,由于提高了生产技术水平,每天加工的个数是原来的1.5倍,从而提前2天完成任务,问该企业原计划每天生产多少万个口罩?10.为了抗击疫情,支援武汉一线,某工厂接到上级下达赶制60万只医用一次性口罩的任务,为使医用一次性口罩早日到达防疫一线,开工后每天加工口罩的数量是原计划的1.5倍,结果提前5天完成任务,则该厂原计划每天加工多少万只医用一次性口罩?参考答案1.解:(1)设这项工程规定x天完成,15+5=20(天),根据题意得:,解得:x=30,经检验:x=30是原方程的解,且符合题意,答:这项工程规定30天完成.(2)总施工费用:(元),答:该工程的施工费用是180000元.2.解:(1)设第一次购书的进价是每本书x元,则第二次购书时,每本书的批发价是(1+20%)x元,根据题意得:﹣=50,解得:x=4,经检验,x=4是原方程的解,答:第一次购书的进价是每本书4元;(2)第一次购书为1200÷4=300(本),第二次购书为300+50=350(本),第一次赚钱为300×(6﹣4)=600(元),第二次赚钱为300×(6﹣4×1.2)+(350﹣300)×(6×0.4﹣4×1.2)=240(元),所以两次共赚钱为:600+240=840(元),答:该老板两次售书总体上是赚钱了,共赚了840元.3.解:设刘峰骑自行车每小时行x千米,则李明乘公交车每小时行3x千米,由题意得:=+,解得:x=20,经检验,x=20是原方程的解,且符合题意,∴3x=60,答:李明乘公交、刘峰骑自行车每小时分别行60千米、20千米.4.解:设这名女生跑完800米所用时间为x秒,则这名男生跑完1000米所用时间(x+56)秒,根据题意得:,解得:x=224,经检验,x=224是所列方程的解,并且符合实际问题的意义.答:这名女生跑完800米所用时间是224秒.5.解:设卓玛平均每分钟清点图书x本,则扎西平均每分钟清点(x+10)本,依题意,得:=.解得:x=20.经检验,x=20是原方程的解.答:卓玛平均每分钟清点图书20本.6.解:设甲每秒加工x个口罩,则乙每秒加工(35﹣x)个口罩.由题意得:=,解得:x=15,经检验:x=15是原方程的根,且x=15,35﹣x=20符合题意,答:甲每秒加工15个口罩,乙每天加秒20个口罩.7.解:设乙车的速度是xkm/h,则甲车的速度是(x+20)km/h,依题意得:=,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴x+20=70.答:甲车的速度是70km/h,乙车的速度是50km/h.8.解:(1)设每台甲种电脑的价格为x万元,则每台乙种电脑的价格为(x+0.2)万元,根据题意得:=,解得:x=0.3,经检验,x=0.3是原分式方程的解,且符合题意,∴x+0.2=0.3+0.2=0.5.答:每台甲种电脑的价格为0.3万元、每台乙种电脑的价格为0.5万元.(2)设购买乙种电脑m台,则购买甲种电脑(80﹣m)台,根据题意得:,解得:48≤m≤50.又∵m为整数,∴m可以取48,49,50.∴学校有三种购买方案,方案1:购买甲种电脑32台,乙种电脑48台;方案2:购买甲种电脑31台,乙种电脑49台;方案3:购买甲种电脑30台,乙种电脑50台.9.解:设该企业原计划每天生产x万个口罩,则在实际生产时每天生产1.5x万个口罩,由题意得:﹣=2,解得:x=20,经检验:x=20是原分式方程的解,且符合题意,答:该企业原计划每天生产20万个口罩.10.解:设该厂原计划每天加工x万只医用一次性口罩,则实际每天加工1.5x万只医用一次性口罩,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:该厂原计划每天加工4万只医用一次性口罩.。
北师大版八年级下册《第五章分式与分式方程》测试题(含答案)

第五章 分式与分式方程一、选择题(本大题共8小题,每小题3分,共24分)1.有下列各式:12(1-x ),4x π-3,x2-y22,1+a b ,5x2y ,其中分式共有( )A .2个B .3个C .4个D .5个2.下列各式中,正确的是( ) A.a +b ab =1+b b B.x +y x -y =x2-y2(x -y )2 C.x -3x2-9=1x -3 D.-x +y 2=-x +y 23.在分式15b2c -5a ,5(x -y )2y -x ,a2+b23(a +b ),4a2-b22a -b ,a -2b 2b -a 中,最简分式有( )A .1个B .2个C .3个D .4个4.解分式方程x 3+x -22+x =1时,去分母后可得到( )A .x (2+x )-2(3+x )=1B .x (2+x )-2=2+xC .x (2+x )-2(3+x )=(2+x )(3+x )D .x -2(3+x )=3+x5.化简⎝⎛⎭⎫x -2x -1x ÷⎝⎛⎭⎫1-1x 的结果是( ) A.1x B .x -1 C.x -1x D.xx -1 6.如果解关于x 的分式方程mx -2-2x2-x =1时出现增根,那么m 的值为( ) A .-2 B .2 C .4 D .-47.某工厂生产一种零件,计划在20天内完成.若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x 个,根据题意可列分式方程为( )A.20x +10x +4=15B.20x -10x +4=15C.20x +10x -4=15D.20x -10x -4=158.若关于x 的方程a x -1+1=x +ax +1的解为负数,且关于x 的不等式组⎩⎨⎧-12(x -a )>0,x -1≥2x +13无解,则所有满足条件的整数a 的值之和是( )A .5B .7C .9D .10二、填空题(本大题共6小题,每小题4分,共24分)9.若分式1x -5在实数范围内有意义,则x 的取值范围是________.10.计算:x2x +1-1x +1=________.11.化简:m2-4mn +4n2m2-4n2=________.12.某学校为了增强学生体质,准备购买一批体育器材,已知A 类器材比B 类器材的单价低10元,用150元购买A 类器材与用300元购买B 类器材的数量相同,则B 类器材的单价为________元/件.13.若关于x 的方程x +m m (x -1)=-45的解为x =-15,则m =________.14.若关于x 的分式方程2x +mx -3=3的解为正数,则m 的取值范围是________.三、解答题(本大题共6小题,共52分) 15.(10分)解下列方程: (1) xx -3-2=-33-x;(2)x x +3+2x2+3x =1.16.(6分)化简:9-a2a2+6a +9÷a2-3a a +3+1a .17.(8分)先化简,再求值:⎝⎛⎭⎫1+1a ·a2a2-1,其中a =3.18.(9分)已知关于x 的方程2xx -2+m x -2=3. (1)当m 取何值时,此方程的解为x =3? (2)当m 取何值时,此方程会产生增根?(3)当此方程的解是正数时,求m的取值范围.19.(9分)某校组织学生去9 km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.已知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少.20.(10分)某班到毕业时共节余班费1800元,班委会决定拿出不少于270元但不超过300元的资金为母校购买纪念品,其余经费用于在毕业晚会上给50名同学每人购买一件文化衫或一本相册作为留念.已知每件文化衫的价格比每本相册贵9元,用175元购买文化衫和用130元购买相册的数量相等.(1)求每件文化衫和每本相册的价格分别为多少元;(2)有哪几种购买文化衫和相册的方案?1.[解析] A12(1-x),4x π-3,x2-y22的分母中均不含有字母,因此不是分式,是整式;1+a b,5x2y的分母中含有字母,因此是分式.故选A .2.[答案] B3.[解析] A 15b2c -5a =3b2c -a ;5(x -y )2y -x =5(y -x);4a2-b22a -b =(2a +b )(2a -b )2a -b=2a +b ;a -2b2b -a=-1.所以只有一个最简分式.故选A .4.[解析] C 在方程x 3+x -22+x=1的两边同乘最简公分母(3+x)(2+x),得x(2+x)-2(3+x)=(2+x)(3+x).故选C .5.[解析] B ⎝⎛⎭⎫x -2x -1x ÷⎝⎛⎭⎫1-1x =x2-2x +1x ÷x -1x =(x -1)2x ·x x -1=x -1.故选B . 6.[答案] D 7.[答案] A8.[解析] C a x -1+1=x +ax +1,方程两边同乘(x -1)(x +1),得a(x +1)+(x -1)(x +1)=(x -1)(x +a), 整理得x =1-2a , 由题意得1-2a <0,解得a >12.解不等式组⎩⎨⎧-12(x -a )>0,x -1≥2x +13,得4≤x <a.∵不等式组无解,∴a ≤4, 则12<a ≤4. ∵1-2a ≠±1, ∴a ≠0,a ≠1,∴所有满足条件的整数a 的值之和为2+3+4=9. 故选C .9.[答案] x ≠5 10.[答案] x -111.[答案] m -2nm +2n[解析] 原式=(m -2n )2(m +2n )(m -2n )=m -2nm +2n.12.[答案] 20[解析] 设B 类器材的单价为x 元/件,则A 类器材的单价是(x -10)元/件,由题意得150x -10=300x, 解得x =20.经检验,x =20是原方程的解. 即B 类器材的单价为20元/件. 故答案为:20. 13.[答案] 5[解析] 把x =-15代入方程即可求得m 的值.14.[答案] m >-9且m ≠-6[解析] 去分母,得2x +m =3x -9,解得x =m +9.由分式方程的解为正数,得到m +9>0,且m +9≠3,解得m >-9且m ≠-6.15.解:(1)方程两边同乘(x -3),得x -2(x -3)=3. 去括号,得x -2x +6=3. 移项、合并同类项,得x =3. 检验:当x =3时,x -3=0, ∴原分式方程无解.(2)方程两边同乘x(x +3),得 x 2+2=x 2+3x ,移项、合并同类项,得3x =2,解得x =23.经检验,x =23是原方程的解.16.[解析] 先算乘除,再算加减.解:原式=-(a +3)(a -3)(a +3)2·a +3a (a -3)+1a=-1a +1a=0. 17.解:原式=a +1a ·a2(a -1)(a +1)=aa -1.当a =3时,原式=32.18.解:(1)把x =3代入方程2x x -2+mx -2=3,得m =-3.(2)方程的增根为x =2,原方程去分母得2x +m =3x -6,将x =2代入,得m =-4.(3)原方程去分母得2x +m =3x -6,解得x =m +6.因为方程的解是正数,所以m +6>0,解得m >-6.因为x ≠2,所以m ≠-4.综上,m 的取值范围是m>-6且m ≠-4.19.[解析] 设自行车的速度为x km /h ,则公共汽车的速度为3xkm /h ,根据时间=路程÷速度结合乘公共汽车比骑自行车少用12h ,即可得出关于x 的分式方程,解之经检验即可得出结论.解:设自行车的速度为x km /h ,则公共汽车的速度为3x km /h .根据题意,得9x -93x =12,解得x =12.经检验,x =12是原分式方程的解, ∴3x =36.答:自行车的速度是12 km /h ,公共汽车的速度是36 km /h .20.解:(1)设每件文化衫的价格为x 元,则每本相册的价格为(x -9)元,由题意得175x=130x -9, 解得x =35.经检验,x =35是原分式方程的解, 则x -9=35-9=26(元).答:每件文化衫的价格为35元,每本相册的价格为26元.(2)设购买文化衫m 件,则购买相册(50-m)件.由题意得1800-300≤35m +26(50-m)≤1800-270,解得2229≤m ≤2559.共有3种购买方案:①购买文化衫23件,购买相册27件;②购买文化衫24件,购买相册26件;③购买文化衫25件,购买相册25件.。
2020-2021学年北师大版八年级数学下册 第五章《分式与分式方程》实际应用常考综合题专练(二)

八年级下册第五章《分式与分式方程》实际应用常考综合题专练(二)1.在新冠肺炎疫情发生后,某企业加快转型步伐,引进A,B两种型号的机器生产防护服,已知一台A型机器比一台B型机器每小时多加工20套防护服,且一台A型机器加工800套防护服与一台B型机器加工600套防护服所用时间相等.(1)每台A,B型号的机器每小时分别加工多少套防护服?(2)如果该企业计划安排A,B两种型号的机器共10台,一起加工一批防护服,为了如期完成任务,要求这10台机器每小时加工的防护服不少于720件,则至少需要安排几台A型机器?2.春节是我国的传统节日,人们素有吃水饺的习俗.某商场在年前准备购进A、B两种品牌的水饺进行销售,据了解,用3000元购买A品牌水饺的数量(袋)比用2880元购买B 品牌水饺的数量(袋)多40袋,且B品牌水饺的单价(元/袋)是A品牌水饺单价(元/袋)的1.2倍.(1)求A、B两种品牌水饺的单价各是多少?(2)若计划购进这两种品牌的水饺共220袋销售,且购买A品牌水饺的费用不多于购买B品牌水饺的费用,写出总费用w(元)与购买A品牌水饺数量m(袋)之间的关系式,并求出如何购买才能使总费用最低?最低是多少?3.为了防疫,某学校需购买甲、乙两种品牌的额温枪.已知甲品牌额温枪的单价比乙品牌额温枪的单价低40元,且用4800元购买甲品牌额温枪的数量是用4000元购买乙品牌额温枪的数量的倍.(1)求甲、乙两种品牌额温枪的单价;(2)若学校计划购买甲、乙两种品牌的额温枪共80个,且乙品牌额温枪的数量不小于甲品牌额温枪数量的2倍,购买两种品牌额温枪的总费用不超过15000元.设购买甲品牌额温枪m个,总费用为W元,则该校共有几种购买方案?采用哪一种购买方案可使总费用最低?最低费用是多少元?4.两个小组同时开始攀登一座450m高的山,第一组的攀登速度是第二组的1.2倍,他们比第二组早1.5min到达峰顶.两个小组的攀登速度各是多少?(Ⅰ)设第二组的攀登速度为xm/min,根据题意,用含有x的式子填写下表:速度(m/min)时间(min)距离(m)第一组450第二组x450(Ⅱ)列出方程,并求出问题的解.5.创建文明城市,携手共建幸福美好.某地为美化环境,计划种植树木4800棵,由于志愿者的加入,实际每天植树的棵数比原计划多20%,结果提前4天完成任务.求原计划每天植树的棵数.6.学校田径队的小勇同学参加了两次有氧耐力训练,每一次训练内容都是在400米环形跑道上慢跑10圈.若第二次慢跑速度比第一次慢跑速度提高了20%,则第二次比第一次提前5分钟跑完.(1)小勇同学一次有氧耐力训练慢跑多少米?(2)小勇同学两次慢跑的速度各是多少?7.受新冠肺炎疫情影响,口罩、体温计、消毒液等一度紧缺,某药店用3200元采购一批耳温计(测量体温的),上市后发现供不应求,很快销售完了,该药店又去采购第二批同样的耳温计,进货价比第一批贵了5元,该店用了9900元,所购数量是第一批的3倍.(1)求第一批采购的耳温计单价是多少元?(2)若该药店按每个耳温计的售价为210元,销售光这两批耳温计,总共获利多少元?8.小华到超市购买大米,第一次按原价购买,用了60元,几天后,遇上这种大米8折出售,他用96元又买了一些,两次一共购买了30kg,这种大米的原价是多少?9.随着5G网络技术的发展,对5G手机的需求越来越大,为满足市场需求,某大型5G手机的生产厂家更新技术后,加快了生产速度,现在每月比更新技术前每月多生产2万部5G 手机,现在生产60万部5G手机所需的时间与更新技术前生产50万部5G手机所需时间相同,求更新技术前每月生产多少万部5G手机?10.某县要修筑一条长为6000米的乡村旅游公路,准备承包给甲、乙两个工程队来合作完成,已知甲队每天筑路的长度是乙队的2倍,前期两队各完成了400米时,甲比乙少用了5天.(1)求甲、乙两个工程队每天各筑路多少米?(2)若甲队每天的工程费用为1.5万元,乙队每天的工程费用为0.9万元,要使完成全部工程的总费用不超过120万元,则至少要安排甲队筑路多少天?参考答案1.解:(1)设每台B型号的机器每小时加工x套防护服,则每台A型号的机器每小时加工(x+20)套防护服,依题意得:,解得:x=60,经检验,x=60是原方程的解,且符合题意,∴x+20=80.答:每台A型号的机器每小时加工80套防护服,每台B型号的机器每小时加工60套防护服.(2)设需要安排m台A型机器,则安排(10﹣m)台B型机器,依题意得:80m+60(10﹣m)≥720,解得:m≥6.答:至少需要安排6台A型机器.2.解:(1)设A品牌水饺单价为x元/袋,则B品牌水饺单价为1.2x元/袋,根据题意,得:﹣=40,,解得:x=15,经检验,x=15是原方程的解,∴1.2x=18;答:A品牌水饺单价为15元/袋,B品牌水饺单价为18元/袋;(2)设购进A品牌水饺m袋,则购进B品牌水饺(220﹣m)袋,依题意,得:15m≤18(220﹣m),解得:m≥120,由题意得:w=15m+18(220﹣m)=﹣3m+3960,当m=120时,w最小=3600,220﹣120=100,答:A品牌水饺购买120袋,B品牌水饺购买100袋时,总费用最低,最低是3600元.3.解:(1)设甲、乙两种品牌额温枪的单价分别为x元、(x+40)元,由题意得:=×,解得:x=160,经检验,x=160是原方程的解,且符合题意,则x+40=200,答:甲、乙两种品牌额温枪的单价分别为160元、200元;(2)由题意得:W=160m+200(80﹣m)=﹣40m+16000,,解得:25≤m≤,∴该校共有2种购买方案:①m=25时,80﹣m=55,即购买甲种品牌的额温枪25个,购买乙种品牌的额温枪55个;②m=26时,80﹣m=54,即购买甲种品牌的额温枪26个,购买乙种品牌的额温枪54个;∵W=﹣40m+16000,﹣40<0,∴W随m的增大而减小,∴当m=26时,总费用最低,最低费用W=﹣40×26+16000=14960(元),80﹣26=54,即购买甲种品牌的额温枪26个,购买乙种品牌的额温枪54个时,可使总费用最低,最低费用是14960元.4.解:(Ⅰ)设第二组的攀登速度为xm/min,则第一组的攀登速度为1.2xm/min,∴第一组的攀登时间为(min),第二组的攀登时间为(min).故答案为:1.2x;;.(Ⅱ)根据题意得:﹣1.5=,解得:x=50,经检验,x=50是原分式方程的解,且符合题意,∴1.2x=60.答:第一组的攀登速度是60m/min,第二组的攀登速度是50m/min.5.解:设原计划每天植树x棵,则实际每天植树(1+20%)x棵,依题意,得:﹣=4,解得:x=200,经检验.x=200是原方程的解,答:原计划每天植树200棵.6.解:(1)400×10=4000(米),答:小勇同学一次有氧耐力训练慢跑4000米;(2)设第一次慢跑速度为x米/分,则第二次慢跑速度为1.2x米/分,由题意得:﹣=5,解得:x=,经检验:x=是原分式方程的解,且符合题意,1.2×=160,答:第一次慢跑速度为米/分,则第二次慢跑速度为160米/分.7.解:(1)设第一批采购的耳温计的单价为x元,则第二批采购的耳温计的单价是(x+5)元,依题意,得:,解得:x=160,经检验,x=160是原方程的解,且符合题意,答:第一批采购的耳温计的单价是160元;(2)第一批采购的耳温计的数量为3200÷160=20(个),第二批采购的耳温计数量为20×3=60(个),∴销售完这两批耳温计共获利210×(20+60)﹣3200﹣9900=3700元.答:销售光这两批耳温计,总共获利3700元.8.解:设这种大米的原价是每千克x元,根据题意,得:+=30,解得:x=6,经检验,x=6是原方程的解,且符合题意,答:这种大米的原价是每千克6元.9.解:设更新技术前每月生产x万部5G手机,则更新技术后每月生产(x+2)万部5G手机,由题意列方程,得:,解得:x=10,经检验,x=10是原方程的解,且符合题意,答:更新技术前每月生产10万部5G手机.10.解:(1)设乙队每天筑路x米,则甲每天筑路2x米.依题意,得:,解得:x=40,经检验:x=40是原分式方程的解,则2x=80答:甲每天筑路80米,乙每天筑路40米;(2)设甲筑路t天,则乙筑路天数为=(150﹣2t)天,依题意:1.5t+0.9(150﹣2t)≤120,解得:t≥50,∴甲至少要筑路50天.。
北师大版八年级下册数学 第5章《分式与分式方程》实际应用提高练习(二)

北师大版八年级下册数学:第5章《分式与分式方程》实际应用提高练习(三)1.清明时节“雨后绿初见,择艾作青团”.“元祖”推出一款鲜花青团和一款芒果青团,鲜花青团每个售价是芒果青团的倍,4月份鲜花青团和芒果青团总计销售60000个.鲜花青团销售额为250000元,芒果青团销售额为280000元.(1)求鲜花青团和芒果青团的售价?(2)5月份正值“元祖”店庆,计划再生产12000个青团回馈新老顾客,但考虑到芒果青团较受欢迎,同时也考虑受机器设备限制,因此芒果青团的个数不少于鲜花青团个数的,且不多于鲜花青团的2倍,其中,鲜花青团每个让利3元销售,芒果青团售价不变,问:“元祖”如何设计生产方案?可使总销售额最大,并求出总销售额的最大值.2.为防控新冠肺炎,某药店用1000元购进若干医用防护口罩,很快售完,接着又用2500元购进第二批口罩,已知第二批所购口罩的数量是第一批所购口罩数的2倍,且每只口罩的进价比第一批的进价多0.5元.求第一批口罩每只的进价是多少元?3.疫情防控形势下,人们在外出时都应戴上口罩以保护自己免受新型冠状病毒感染.某药店用4000元购进若干包次性医用口罩,很快售完,该店又用7500元钱购进第二批这种口罩,所进的包数比第一批多50%,每包口罩的进价比第一批每包口罩的进价多0.5元,请解答下列问题:(1)求购进的第一批医用口罩有多少包?(2)政府采取措施,在这两批医用口罩的销售中,售价保持了一致,若售完这两批口罩的总利润不高于3500元钱,那么药店销售该口罩每包的最高售价是多少元?4.为应对新冠疫情,某药店到厂家选购A、B两种品牌的医用外科口罩,B品牌口罩每个进价比A品牌口罩每个进价多0.7元,若用7200元购进A品牌数量是用5000元购进B品牌数量的2倍.(1)求A、B两种品牌的口罩每个进价分别为多少元?(2)若A品牌口罩每个售价为2元,B品牌口罩每个售价为3元,药店老板决定一次性购进A、B两种品牌口罩共6000个,在这批口罩全部出售后所获利润不低于1800元.则最少购进B品牌口罩多少个?5.某车间加工24个零件后,采用新工艺,工效比原来提高了50%,这样加工同样多的零件就少用1小时,求采用新工艺前每小时加工多少个零件?6.A,B两种机器人都被用来搬运化工原料,A型机器人每小时搬运的化工原料是B型机器人每小时搬运的化工原料的1.5倍,A型机器人搬运900kg所用时间比B型机器人搬运800kg所用时间少1小时.(1)求两种机器人每小时分别搬运多少化工原料?(2)某化工厂有8000kg化工原料需要搬运,要求搬运所有化工原料的时间不超过5小时.现计划先由6个B型机器人搬运3小时,再增加若干个A型机器人一起搬运,请问至少要增加多少个A型机器人?7.为厉行节能减排,倡导绿色出行,我市推行“共享单车“公益活动某公司在小区分别投放A、B两种不同款型的共享单车,其中A型车的投放量是B型车的投放量的倍,B 型车的成本单价比A型车高20元,A型、B型单车投放总成本分别为30000元和26400元,求A型共享单车的成本单价是多少元?8.甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米?(2)我市计划修建长度为3600m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0.5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天?9.某社区拟建A,B两类摊位以搞活“地摊经济”,每个A类摊位的占地面积比每个B类摊位的占地面积多2平方米,建A类摊位每平方米的费用为40元,建B类摊位每平方米的费用为30元,用60平方米建A类摊位的个数恰好是用同样面积建B类摊位个数的.(1)求每个A,B类摊位占地面积各为多少平方米?(2)该社区拟建A,B两类摊位共90个,且B类摊位的数量不大于A类摊位数量的3倍,建造这90个摊位的总费用不超过10850元.则共有哪几种建造方案?(3)在(2)的条件下,哪种方案的总费用最少?最少费用是多少?10.某中学为配合开展“垃圾分类进校园”活动,新购买了一批不同型号的垃圾分类垃圾桶,学校先用2700元购买了一批给班级使用的小号垃圾桶,再用3600元购买了一批放在户外永久使用的大号垃圾桶,已知每个大号垃圾桶的价格是小号垃圾桶的4倍,且购买的数量比小号垃圾桶少40个,求每个小号垃圾桶的价格是多少元?11.共有1500kg化工原料,由A,B两种机器人同时搬运,其中,A型机器人比B型机器每小时多搬运30kg,A型机器人搬运900kg所用时间与B型机器人搬运600kg所用时间相等,问需要多长时间才能运完?12.A、B两地距80千米,一辆公共汽车从A地去B地,15分钟后又从A地同方向开出一辆小汽车去B地,小汽车车速是公共汽车车速的2倍,结果小汽车比公共汽车早33分钟到达B地,求两车速度.13.在石家庄地铁3号线的建设中,某路段需要甲乙两个工程队合作完成.已知甲队修600米和乙队修路450米所用的天数相同,且甲队比乙队每天多修50米.(1)求甲队每天修路多少米?(2)地铁3号线全长45千米,若甲队施工的时间不超过120天,则乙队至少需要多少天才能完工?14.12月1日阜阳高铁正式运行,在高铁的建设中,某段轨道的铺设若由甲乙两工程队合做,12天可以完成,共需工程费用27720元,已知乙队单独完成这项工程所需时间是甲队单独完成这项工程所需时间的1.5倍,且甲队每天的工程费用比乙队多250元.(1)求甲、乙两队单独完成这项工程各需多少天?(2)若工程管理部门决定从这两个队中选一个队单独完成此项工程,从节约资金的角度考虑,应选择哪个工程队?请说明理由.15.现有甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运900件帐篷所用车辆与乙种货车装运600件帐篷所用车辆相等.求甲、乙两种货车每辆车可装多少件帐篷?参考答案1.解:(1)设每个芒果青团的售价为x元,则每个鲜花牛奶青团的售价为x元,依题意,得:,解得:x=8,经检验,x=8是原方程的解,且符合题意,∴x=10.答:每个鲜花牛奶青团的售价为10元,每个芒果青团的售价为8元.(2)设生产芒果青团m个,则生产鲜花牛奶青团(12000﹣m)个,依题意,得:,解得:7200≤m≤8000.设总销售额w元,则w=(10﹣3)(12000﹣m)+8m=m+84000.∵1>0,∴w随m的增大而增大,∴当m=8000时,w取得最大值,最大值为92000元.即生产芒果青团8000个、鲜花牛奶青团4000个,使总销售额最大,总销售额的最大值为92000.2.解:设第一批口罩每只的进价是x元,则第二批口罩每只的进价是(x+0.5)元,依题意,得:=2×,解得:x=2,经检验,x=2是原方程的解,且符合题意.答:第一批口罩每只的进价是2元.3.(1)设购进的第一批医用口罩有x包,则=﹣0.5.解得:x=2000.经检验x=2000是原方程的根并符合实际意义.答:购进的第一批医用口罩有2000包;(2)设药店销售该口罩每包的售价是y元,则由题意得:[2000+2000(1+50%)]y﹣4000﹣7500≤3500.解得:y≤3.答:药店销售该口罩每包的最高售价是3元.4.解:(1)设A品牌口罩每个进价为x元,则B品牌口罩每个进价为(x+0.7)元,依题意,得:=2×,解得:x=1.8,经检验,x=1.8是原方程的解,且符合题意,∴x+0.7=2.5,答:A品牌口罩每个进价为1.8元,B品牌口罩每个进价为2.5元.(2)设购进B品牌口罩m个,则购进A品牌口罩(6000﹣m)个,依题意,得:(2﹣1.8)(6000﹣m)+(3﹣2.5)m≥1800,解得:m≥2000.答:最少购进B品牌口罩2000个.5.解:设采用新工艺前每小时加工的零件数为x个,根据题意可知:﹣1=,解得:x=8,经检验,x=8是原方程的解.答:采用新工艺前每小时加工8个零件.6.解:(1)设B型机器人每小时搬运xkg化工原料,则A型机器人每小时搬运1.5xkg 化工原料,依题意,得:﹣=1,解得:x=200,经检验,x=200是原方程的解,且符合题意,∴1.5x=300.答:A型机器人每小时搬运300kg化工原料,B型机器人每小时搬运200kg化工原料.(2)设增加y个A型机器人,依题意,得:200×5×6+(5﹣3)×300y≥8000,解得:y≥,∵y为正整数,∴y的最小值为4.答:至少要增加4个A型机器人.7.解:设A型共享单车的成本单价是x元,则B型共享单车的成本单价是(x+20)元,依题意,得:=×,解得:x=200,经检验,x=200是所列分式方程的解,且符合题意.答:A型共享单车的成本单价是200元.8.解:(1)设乙工程队每天修路x米,则甲工程队每天修路2x米,依题意,得:﹣=5,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴2x=100.答:甲工程队每天修路100米,乙工程队每天修路50米.(2)设安排乙工程队施工m天,则安排甲工程队施工=(36﹣0.5m)天,依题意,得:0.5m+1.2(36﹣0.5m)≤40,解得:m≥32.答:至少安排乙工程队施工32天.9.解:(1)设每个B类摊位的占地面积为x平方米,则每个A类摊位的占地面积为(x+2)平方米,依题意得:=×,解得:x=3,经检验,x=3是原方程的解,且符合题意,∴x+2=5.答:每个A类摊位的占地面积为5平方米,每个B类摊位的占地面积为3平方米.(2)设建造m个A类摊位,则建造(90﹣m)个B类摊位,依题意得:,解得:≤m≤25.又∵m为整数,∴m可以取23,24,25,∴共有3种建造方案,方案1:建造23个A类摊位,67个B类摊位;方案2:建造24个A类摊位,66个B类摊位;方案1:建造25个A类摊位,65个B类摊位.(3)方案1所需总费用为40×5×23+30×3×67=10630(元),方案2所需总费用为40×5×24+30×3×66=10740(元),方案3所需总费用为40×5×25+30×3×65=10850(元).∵10630<10740<10850,∴方案1的总费用最少,最少费用是10630元.10.解:设每个小号垃圾桶的价格是x元,则每个大号垃圾桶的价格是4x元,依题意,得:﹣=40,解得:x=45,经检验,x=45是原方程的解,且符合题意.答:每个小号垃圾桶的价格是45元.11.解:设两种机器人需要x小时搬运完成,∵900kg+600kg=1500kg,∴A型机器人需要搬运900kg,B型机器人需要搬运600kg.依题意,得:﹣=30,解得:x=10,经检验,x=10是原方程的解,且符合题意.答:两种机器人需要10小时搬运完成.12.解:设公共汽车的速度为x千米/时,则小汽车的速度为2x千米/时,由题意的可得:,解得:x=50,经检验:x=50是原方程的解,∴当x=50时,2x=100(千米/时),答:公共汽车的速度为50千米/时,则小汽车的速度为100千米/时.13.解:(1)设甲队每天修路x米,则乙队每天修路(x﹣50)米,依题意,得:=,解得:x=200,经检验,x=200是原方程的解,且符合题意.答:甲队每天修路200米.(2)设乙队需要y天才能完工,依题意,得:45000﹣(200﹣50)y≤200×120,解得:y≥140.答:乙队至少需要140天才能完工.14.解:(1)设甲工程队单独完成这项工程需要x天,则乙工程队单独完成这项工程需要1.5x天,依题意,得:+=1,解得:x=20,经检验,x=20是原分式方程的解,且符合题意,∴1.5x=30.答:甲工程队单独完成这项工程需要20天,乙工程队单独完成这项工程需30天;(2)设甲工程队每天的费用是y元,则乙工程队每天的费用是(y﹣250)元,依题意,得:12y+12(y﹣250)=27720,解得:y=1280,∴y﹣250=1030.甲工程队单独完成共需要费用:1280×20=25600(元),乙工程队单独完成共需要费用:1030×30=30900(元).∵25600<30900,∴甲工程队单独完成需要的费用低,应选甲工程队单独完成.15.解:设乙种货车每辆车可装x件帐篷,则甲种货车每辆车可装(x+20)件帐篷,依题意,得:=,解得:x=40,经检验,x=40是原方程的解,且符合题意,∴x+20=60.答:甲种货车每辆车可装60件帐篷,乙种货车每辆车可装40件帐篷.。
第五章分式与分式方程+单元测试+2022-2023学年八年级下册数学北师大版

第五章分式与分式方程(单元测试)一、单选题 1.分式方程113023162x x --=--的根是( ) A .310x = B .16x = C .3x = D .2x =2.要使分式31x -有意义,x 的取值应满足( ) A .1x > B .1x ≠ C .0x ≠ D .x 为任意实数3.若分式293x x -+无意义,则x 的取值为() A .0B .-3C .3D .3或-3 4.若分式方程2()8(1)5x a a x +=--的解为15x =-,则a 等于( ) A .56 B .5 C .56- D .-55.《九章算术》是中国古代数学名著,其中记载:每头牛比每只羊贵1两,20两买牛,15两买羊,买得牛羊的数量相等,则每头牛的价格为多少两?若设每头牛的价格为x 两,则可列方程为( )A .20151x x =+B .20151x x =-C .20151x x =+D .20151x x=- 6.若分式方程311x m x x -++=2无解,则m =( ) A .﹣3B .﹣2C .﹣1D .0 7.若分式3(1)(2)x x --有意义,则( ) A .x≠1 B .x≠2 C .x≠1且x≠2 D .x≠1或x≠28.在设计人体雕像时,使雕像的上部(腰以上)与下部(腰以下)的高度比,等于下部与全部(全身)的高度比,可以增加视觉美感.按此比例,如果雕像的高为3m ,那么它的下部应设计为多高?设它的下部设计高度为x m ,根据题意,列方程正确的是( )A .()233x x =-B .()233x x =-C .23x =D .23x x =-9.“杭州城市大脑”用大数据改善城市交通,实现了从治堵到治城的转变.数据表明,杭州上塘高架路上共22km 的路程,利用城市大脑后,车辆通过速度平均提升了15%,节省时间5分钟,设提速前车辆平均速度为xkm /h ,则下列方程正确的是( )A .()22225115-=+%x xB .()2222111512-=+%x x C .()22225115-=+%x x D .()2222111512-=+%x x二、填空题三、解答题21.山西省平遥县政府为进一步挖掘“双林寺、老醯水镇、平遥古城”的旅游价值,计划在2019年开工建设一条途完成该项工程.(1)若乙队单独施工,需要多少天才能完成该项工程?(2)若先让甲队施工且甲队参与该项工程施工的时间不超过36天,则乙队加入后至少要施工多少天才能完成该项工程?22.先化简,再求值:221111x x x ⎛⎫÷+ ⎪--⎝⎭,其中x 为整数且满足不等式组11822x x ->⎧⎨-≥⎩.23.按要求化简:(a ﹣1)÷22111a a a ab -+⋅+,并选择你喜欢的整数a ,b 代入求值. 小聪计算这一题的过程如下:解:原式=(a ﹣1)÷2(1)(1)a a ab +-…① =(a ﹣1)•2(1)(1)ab a a +-…① =21ab a +…① 当a =1,b =1时,原式=12…①以上过程有两处关键性错误,第一次出错在第_____步(填序号),原因:_____;还有第_____步出错(填序号),原因:_____.请你写出此题的正确解答过程.24.由于新冠肺炎疫情暴发,某公司根据市场需求代理A 、B 两种型号的空气净化器,每台A 型净化器比每台B 型净化器进价多200元,用5万元购进A 型净化器与用4.5万元购进B 型净化器的数量相等.(1)求每台A 型、B 型净化器的进价各是多少元?(2)公司计划购进A 、B 两种型号的净化器共50台进行试销,其中A 型净化器为m 台,购买资金不超过9.8万元,试参考答案:。
北师大版八年级下册数学第五章《分式与分式方程》综合练习题

《分式与分式方程》综合练习题一.选择题(共10小题)1.(2021•十堰)某工厂现在平均每天比原计划多生产50台机器,现在生产400台机器所需时间比原计划生产450台机器所需时间少1天,设现在平均每天生产x台机器,则下列方程正确的是()A.﹣=1B.﹣=1C.﹣=50D.﹣=502.(2021•嘉兴)为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中缤纷棒共花费30元,荧光棒共花费40元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x元,根据题意可列方程为()A.﹣=20B.﹣=20C.﹣=20D.﹣=203.(2021•重庆)若关于x的一元一次不等式组的解集为x≥6,且关于y 的分式方程+=2的解是正整数,则所有满足条件的整数a的值之和是()A.5B.8C.12D.154.(2021春•沙坪坝区校级月考)已知关于x的不等式组有解,且关于y的分式方程=4﹣有正整数解,则所有满足条件的整数a的值的个数为()A.2B.3C.4D.55.(2021春•茅箭区月考)某施工队计划修建一个长为600米的隧道,第一周按原计划的速度修建,一周后以原来速度的1.5倍修建,结果比原计划提前一周完成任务,若设原计划一周修建隧道x米,则可列方程为()A.=+2B.=﹣2C.=+1D.=﹣16.(2021•铜梁区校级一模)若整数a使关于x的不等式组有且只有两个整数解,且关于y的分式方程﹣=﹣2的解为正数,则满足上述条件的a的和为()A.3B.4C.5D.6 7.(2021•九龙坡区校级模拟)若数m使关于x的不等式组有解且至多有3个整数解,且使关于x的分式方程有整数解,则满足条件的所有整数m的个数是()A.5B.4C.3D.28.(2021春•重庆月考)若关于x的一元一次不等式组有且仅有3个整数解,且关于x的分式方程+=1有正数解,则所有满足条件的整数a的和为()A.12B.13C.14D.159.(2018春•温州期末)甲、乙、丙三名打字员承担一项打字任务,已知如下信息如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需()A.13小时B.13小时C.14小时D.14小时10.设x<0,x﹣=,则代数式的值()A.1B.C.D.二.填空题(共10小题)11.(2020秋•锦江区校级月考)若关于x的一元一次不等式组的解集为x ≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为.12.(2020秋•沙坪坝区校级月考)中秋、国庆“双节”前,某酒店推出甲,乙两种包装的月饼,其中甲种包装有五仁饼3个,莲蓉饼3个,豆沙饼2个,乙种包装有五仁饼1个,莲蓉饼1个,豆沙饼2个,每种包装每盒月饼的成本价为该盒中所有月饼的成本价之和.已知每个五仁饼与每个莲蓉饼的成本价之比为5:4,每盒乙包装月饼售价98元,利润率是40%,两种包装的月饼共50盒总价6123元,总利润率是30%.中秋节后,为降价促销,甲种包装每盒每类月饼各少装一个,乙种包装每盒少装月饼后售价降为原来的一半,利润率不变,那么这样包装的两种月饼共50盒的总成本是元(其中甲种包装少装月饼后的盒数与节前50盒中甲种包装月饼的盒数相同,当然乙种包装盒数也相同).13.(2019•雨城区校级模拟)若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为.14.(2014春•青羊区期末)已知x2﹣5x+1=0,则的值是.15.(2009春•营山县期末)已知,则=.16.已知实数x,y,z,a满足x+a2=2010,y+a2=2011,z+a2=2012,且xyz=6,则代数式++﹣﹣﹣的值等于.17.“非洲猪瘟”本是一种只在家畜之间传播的瘟疫,但最近已严重威胁到广大人民群众的生命安全,现我市有一组检疫工作人员(工作人员每人每天生猪检疫的效率相等),需对甲、乙两个生猪养殖场的所有生猪逐一检疫,已知,甲养殖场的生猪比乙养殖场的生猪多1倍.上午全部工作人员在甲养殖场检疫,为了尽快完成检疫,下午所有工作人员的平均工作效率提高了20%,但下午有一人因事离开,剩下的工作人员的一半仍留在甲养殖场(上、下午的工作时间相等),到下班前刚好把甲养殖场的生猪检疫完毕,另一半工作人员去乙养殖场检疫,到下班前还剩下一小部分生猪未检疫,最后由6人以提高前的检疫速度,再用不到半天的工作时间就完成了检疫.则这组工作人员最多有人.18.(2021•九龙坡区模拟)临近端午,甲、乙两生产商分别承接制作白粽,豆沙粽和蛋黄粽的任务(三种粽子都有成品,甲生产商安排200名工人制作白粽和豆沙粽,每人只能制作其中一种粽子,乙生产商安排100名工人制作蛋黄粽,其中豆沙粽的人均制作数量比白粽的人均制作数量少15个,蛋黄粽的人均制作数量比豆沙粽的人均制作数量少20%,若本次制作的白粽、豆沙粽和蛋黄粽三种粽子的人均制作数量比白粽的人均制作数用少20%,且豆沙粽的人均制作量为偶数个,则本次可制作的粽子数量最多为个.19.(2020秋•北京期末)依据如图流程图计算﹣,需要经历的路径是(只填写序号),输出的运算结果是.20.设2016a3=2017b3=2018c3,abc>0,且=++,则++=三.解答题(共10小题)21.(2021•包河区三模)市政府为美化城市环境,计划在某区城种植树木2000棵,由于青年志愿者的加入,实际每天植树棵数是原计划的2倍,结果提前4天完成任务.求实际每天植树多少棵?22.(2021•平房区三模)某体育用品商店计划购进一些篮球和排球.已知每个篮球的进价和每个排球的进价的和为200元,用2400元购进的篮球数量是用800元购进排球数量的2倍.(1)求每个篮球和每个排球的进价各是多少元;(2)若该体育用品商店计划购进篮球和排球共40个,且购进的总费用不超过3800元,则该体育用品商店最多可以购进篮球多少个?23.(2021•岳阳二模)岳阳市区某中学为了创建“书香校园”,今年春季购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元,已知学校用20000元购买的科普类图书的本数与用15000元购买的文学类图书的本数相等.(1)求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?(2)学校计划在五月份再添置600本这两类图书,且费用不超过10000元,问最多可以购买科普类图书多少本?24.(2021•宝安区模拟)为了抗击“新型肺炎”,我市某医药器械厂接受了生产一批高质量医用口罩的任务,任务要求在30天之内(含30天)生产A型和B型两种型号的口罩共200万只.在实际生产中,由于受条件限制,该工厂每天只能生产一种型号的口罩.已知该工厂每天可生产A型口罩的个数是生产B型口罩的2倍,并且加工生产40万只A型口罩比加工生产50万只B型口罩少用6天.(1)该工厂每天可加工生产多少万只B型口罩?(2)若生产一只A型口罩的利润是0.8元,生产一只B型口罩的利润是1.2元,在确保准时交付的情况下,如何安排工厂生产可以使生产这批口罩的利润最大?25.(2020秋•香洲区期末)已知(x+a)(x+b)=x2+mx+n.(1)若a=﹣3,b=2,则m=,n=;(2)若m=﹣2,,求的值;(3)若n=﹣1,当时,求m的值.26.(2021春•滨湖区期中)小红、小刚、小明三位同学在讨论:当x取何整数时,分式的值是整数?小红说:这个分式的分子、分母都含有x,它们的值均随x取值的变化而变化,有点难.小刚说:我会解这类问题:当x取何整数时,分式的值是整数?3是x+1的整数倍即可,注意不要忘记负数哦.小明说:可将分式与分数进行类比.本题可以类比小学里学过的“假分数”,当分子大于分母时,可以将“假分数”化为一个整数与“真分数”的和.比如:==2+(通常写成带分数:2).类比分式,当分子的次数大于或等于分母次数时,可称这样的分式为“假分式”,若将化成一个整式与一个“真分式”的和,就转化成小刚说的那类问题了!小红、小刚说:对!我们试试看!…(1)解决小刚提出的问题;(2)解决他们共同讨论的问题.27.(2021春•大兴区期中)已知非零实数a、b满足等式,求的值.28.(2020秋•连山区期末)阅读下面的材料,并解答后面的问题材料:将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式.解:由分母为x+1,可设3x2+4x﹣1=(x+1)(3x+a)+b.因为(x+1)(3x+a)+b=3x2+ax+3x+a+b=3x2+(a+3)x+a+b,所以3x2+4x﹣1=3x2+(a+3)x+a+b.所以,解得.所以==﹣=3x+1﹣.这样,分式就被拆分成了一个整式3x+1与一个分式的差的形式.根据你的理解解决下列问题:(1)请将分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式;(2)若分式拆分成一个整式与一个分式(分子为整数)的和(差)的形式为:5m﹣11+,求m2+n2+mn的最小值.29.(2020秋•乌苏市期末)近年来,安全快捷、平稳舒适的中国高铁,为世界高速铁路商业运营树立了新的标杆.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.30.(2021•禅城区校级一模)先化简(1﹣)÷,再从0,2,﹣1,1中选择一个合适的数代入并求值.参考答案一.选择题(共10小题)1.(2021•十堰)某工厂现在平均每天比原计划多生产50台机器,现在生产400台机器所需时间比原计划生产450台机器所需时间少1天,设现在平均每天生产x台机器,则下列方程正确的是()A.﹣=1B.﹣=1C.﹣=50D.﹣=50【考点】由实际问题抽象出分式方程.【专题】分式方程及应用;应用意识.【分析】设现在平均每天生产x台机器,则原计划平均每天生产(x﹣50)台机器,根据“现在生产400台机器所需时间比原计划生产450台机器所需时间少1天”列出方程即可.【解答】解:设现在平均每天生产x台机器,则原计划平均每天生产(x﹣50)台机器,根据题意,得﹣=1.故选:B.【点评】此题主要考查了由实际问题抽象出分式方程,利用本题中“生产400台机器所需时间比原计划生产450台机器所需时间少1天”这一个隐含条件,进而得出等式方程是解题关键.2.(2021•嘉兴)为迎接建党一百周年,某校举行歌唱比赛.901班啦啦队买了两种价格的加油棒助威,其中缤纷棒共花费30元,荧光棒共花费40元,缤纷棒比荧光棒少20根,缤纷棒单价是荧光棒的1.5倍.若设荧光棒的单价为x元,根据题意可列方程为()A.﹣=20B.﹣=20C.﹣=20D.﹣=20【考点】由实际问题抽象出分式方程.【专题】分式方程及应用;应用意识.【分析】若设荧光棒的单价为x元,则缤纷棒单价是1.5x元,根据等量关系“缤纷棒比荧光棒少20根”列方程即可.【解答】解:若设荧光棒的单价为x元,则缤纷棒单价是1.5x元,根据题意可得:﹣=20.故选:B.【点评】考查了由实际问题抽象出分式方程,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题分析题意,找到合适的等量关系是解决问题的关键.3.(2021•重庆)若关于x的一元一次不等式组的解集为x≥6,且关于y 的分式方程+=2的解是正整数,则所有满足条件的整数a的值之和是()A.5B.8C.12D.15【考点】分式方程的解;解一元一次不等式组.【专题】分式方程及应用;运算能力.【分析】解出一元一次不等式组的解集,根据不等式组的解集为x≥6,列出不等式,求出a的范围;解出分式方程的解,根据方程的解是正整数,列出不等式,求得a的范围;检验分式方程,列出不等式,求得a的范围;综上所述,得到a的范围,最后根据方程的解是正整数求得满足条件的整数a的值,求和即可.【解答】解:,解不等式①得:x≥6,解不等式②得:x>,∵不等式组的解集为x≥6,∴6,∴a<7;分式方程两边都乘(y﹣1)得:y+2a﹣3y+8=2(y﹣1),解得:y=,∵方程的解是正整数,∴>0,∴a>﹣5;∵y﹣1≠0,∴1,∴a≠﹣3,∴﹣5<a<7,且a≠﹣3,∴能使是正整数的a是:﹣1,1,3,5,∴和为8,故选:B.【点评】本题考查了解一元一次不等式组,解分式方程,注意解分式方程一定要检验.4.(2021春•沙坪坝区校级月考)已知关于x的不等式组有解,且关于y的分式方程=4﹣有正整数解,则所有满足条件的整数a的值的个数为()A.2B.3C.4D.5【考点】分式方程的解;解一元一次不等式组;一元一次不等式组的整数解.【专题】分式方程及应用;一元一次不等式(组)及应用;推理能力.【分析】分别求出满足不等式有解与分式方程的解为正数的a的取值范围,再求出其中满足使分式方程的解为正整数的a的整数值,注意舍去增根的情况.【解答】解:解不等式①得x<2,解不等式②得x>﹣1,∵不等式组有解,∴﹣1<2,解得a<9,解分式方程=4﹣得y=,∵方程的解为正数,∴>0且≠3,∴a>﹣且a≠3,∴﹣<a<9且a≠3,满足使方程的解为正整数的整数a的值有0,6两个.故选:A.【点评】本题考查一元一次不等式组与分式方程的解,解题关键是求解过程要注意分式方程的增根情况.5.(2021春•茅箭区月考)某施工队计划修建一个长为600米的隧道,第一周按原计划的速度修建,一周后以原来速度的1.5倍修建,结果比原计划提前一周完成任务,若设原计划一周修建隧道x米,则可列方程为()A.=+2B.=﹣2C.=+1D.=﹣1【考点】由实际问题抽象出分式方程.【专题】分式方程及应用;应用意识.【分析】设原计划一周修建隧道x米,则提速后的速度为一周修建1.5x米,根据“结果比原计划提前一周完成任务”即可得出关于x的分式方程,此题得解.【解答】解:设原计划一周修建隧道x米,则提速后的速度为一周修建1.5x米,根据题意,得:=+1.故选:C.【点评】本题主要考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.6.(2021•铜梁区校级一模)若整数a使关于x的不等式组有且只有两个整数解,且关于y的分式方程﹣=﹣2的解为正数,则满足上述条件的a的和为()A.3B.4C.5D.6【考点】分式方程的解;解一元一次不等式;一元一次不等式组的整数解.【专题】分式方程及应用;运算能力.【分析】解出一元一次不等式组的解集,根据有且只有两个整数解列出不等式求出a的范围;解分式方程,根据解为正数,且y﹣1≠0,得到a的范围;然后得到a的范围,再根据a为整数得到a的值,最后求和即可.【解答】解:,解不等式①得:x≤2,解不等式②得:x≥,∴不等式组的解集为≤x≤2,∵不等式组有且只有两个整数解,∴0<≤1,∴0<a≤3;分式方程两边都乘以(y﹣1)得:1﹣3y+2a=﹣2(y﹣1),解得:y=2a﹣1,∵分式方程的解为正数,∴2a﹣1>0,∴a>;∵y﹣1≠0,∴y≠1,∴2a﹣1≠1,∴a≠1,∴<a≤3,且a≠1,∵a是整数,∴a=2或3,∴2+3=5,故选:C.【点评】本题考查了一元一次不等式组的解法,分式方程的解法,解分式方程时别忘记检验.7.(2021•九龙坡区校级模拟)若数m使关于x的不等式组有解且至多有3个整数解,且使关于x的分式方程有整数解,则满足条件的所有整数m的个数是()A.5B.4C.3D.2【考点】分式方程的解;一元一次不等式组的整数解.【专题】分式方程及应用;运算能力.【分析】解出不等式组的解集,根据不等式组有解且至多3个整数解,求得m的取值范围;解分式方程,检验,根据方程有整数解求得m的值【解答】解:,解不等式①得:x≥﹣1,∴﹣1≤x<,∵不等式组有解且至多3个整数解,∴﹣1<<2,∴﹣3<m<6,分式方程两边都乘以(x﹣1)得:mx﹣2﹣3=2(x﹣1),∴(m﹣2)x=3,当m≠2时,x=,∵x﹣1≠0,∴x≠1,∴≠1,∴m≠5,∵方程有整数解,∴m﹣2=±1,±3,解得:m=3,1,5,﹣1,∵m≠5,∴,m=3,1,﹣1.故选:C.【点评】本题考查了解一元一次不等式组,解分式方程,考核学生的计算能力,解分式方程时一定要检验.8.(2021春•重庆月考)若关于x的一元一次不等式组有且仅有3个整数解,且关于x的分式方程+=1有正数解,则所有满足条件的整数a的和为()A.12B.13C.14D.15【考点】分式方程的解;一元一次不等式组的整数解.【专题】分式方程及应用;运算能力.【分析】解不等式组,根据不等式组有且仅有3个整数解,得到a的范围;解分式方程,根据分式方程有意义和方程有正数解求得a的范围,从而得到2<a≤6,且a≠5,所以a 的整数解为3,4,6,和为13.【解答】解:,解不等式①得:x<5,解不等式②得:x≥,∴不等式组的解集为,∵不等式组有且仅有3个整数解,∴1<≤2,∴2<a≤6;分式方程两边都乘以(x﹣1)得:ax﹣2﹣3=x﹣1,解得:x=,∵x﹣1≠0,∴x≠1,∵方程有正数解,∴0,≠1,∴a>1,a≠5,∴2<a≤6,且a≠5,∴a的整数解为3,4,6,和为13,故选:B.【点评】本题考查了一元一次不等式组的解法,分式方程的解法,解分式方程不要忘记检验.9.(2018春•温州期末)甲、乙、丙三名打字员承担一项打字任务,已知如下信息如果每小时只安排1名打字员,那么按照甲、乙、丙的顺序至完成工作任务,共需()A.13小时B.13小时C.14小时D.14小时【考点】分式方程的应用.【专题】分式方程及应用.【分析】设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时;根据信息二提供的信息列出方程并解答;根据信息三得到丙的工作效率,易得按照甲、乙、丙的顺序至完成工作任务所需的时间.【解答】解:设甲单独完成任务需要x小时,则乙单独完成任务需要(x﹣5)小时,则=.解得x=20经检验x=20是原方程的根,且符合题意.则丙的工作效率是.所以一轮的工作量为:++=.所以4轮后剩余的工作量为:1﹣=.所以还需要甲、乙分别工作1小时后,丙需要的工作量为:﹣﹣=.所以丙还需要工作小时.故一共需要的时间是:3×4+2+=14小时.故选:C.【点评】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.10.设x<0,x﹣=,则代数式的值()A.1B.C.D.【考点】分式的值;分式的加减法.【专题】计算题;整体思想.【分析】根据完全平方公式以及立方和公式即可求出答案.【解答】解:∵x﹣=,∴(x)2=5,∴x2+=7,∴(x+)2=x2+2+=9,∵x<0,∴x+=﹣3,∴x2+1=﹣3x,∴x4+1=7x2,∵(x2+)2=x4+2+,∴x4+=47,∴x8+1=47x4,∵x3+=(x+)(x2﹣1+),∴x3+=﹣18,∴x6+1=﹣18x3,∴原式=====故选:B.【点评】本题考查学生的整体的思想,解题的关键是熟练运用完全平方公式以及立方和公式,本题属于难题.二.填空题(共10小题)11.(2020秋•锦江区校级月考)若关于x的一元一次不等式组的解集为x ≥5,且关于y的分式方程+=﹣1有非负整数解,则符合条件的所有整数a的和为﹣2.【考点】分式方程的解;解一元一次不等式组;一元一次不等式组的整数解.【专题】分式方程及应用;运算能力.【分析】分别解出两个一元一次不等式的解集,根据不等式组的解集为x≥5,列出不等式求得a的范围;解分式方程,根据方程有非负整数解,且y﹣2≠0列出不等式,求得a 的范围;综上所述,求得a的范围.根据a为整数,求出a的值,最后求和即可.【解答】解:,解不等式①得:x≥5,解不等式②得:x>a+2,∵解集为x≥5,∴a+2<5,∴a<3;分式方程两边都乘以(y﹣2)得:y﹣a=﹣(y﹣2),解得:y=,∵分式方程有非负整数解,∴≥0,∴a≥﹣2,∵≠2,∴a≠2,综上所述,﹣2≤a<3且a≠2,∴符合条件的所有整数a的数有:﹣2,﹣1,0,1,和为﹣2﹣1+0+1=﹣2.故答案为:﹣2.【点评】本题考查了一元一次不等式组的解法,分式方程的解法,解分式方程时一定记得要检验.12.(2020秋•沙坪坝区校级月考)中秋、国庆“双节”前,某酒店推出甲,乙两种包装的月饼,其中甲种包装有五仁饼3个,莲蓉饼3个,豆沙饼2个,乙种包装有五仁饼1个,莲蓉饼1个,豆沙饼2个,每种包装每盒月饼的成本价为该盒中所有月饼的成本价之和.已知每个五仁饼与每个莲蓉饼的成本价之比为5:4,每盒乙包装月饼售价98元,利润率是40%,两种包装的月饼共50盒总价6123元,总利润率是30%.中秋节后,为降价促销,甲种包装每盒每类月饼各少装一个,乙种包装每盒少装月饼后售价降为原来的一半,利润率不变,那么这样包装的两种月饼共50盒的总成本是4710元(其中甲种包装少装月饼后的盒数与节前50盒中甲种包装月饼的盒数相同,当然乙种包装盒数也相同).【考点】分式方程的应用.【专题】整式;运算能力.【分析】设乙的成本价为a,然后根据题意列出90﹣s=40%a,求得a,设五仁饼的成本价为x,则一个莲蓉饼的成本价,则两豆沙饼成本价为(70﹣),设五仁饼的成本价为x,则一个莲蓉饼的成本价,则两豆沙饼成本价为(70﹣),设甲礼盒和乙礼盒分别为m盒和n盒,然后列式计算即可.【解答】解:设乙的成本价为a,根据题意列出90﹣s=40%a,解得a=70,设五仁饼的成本价为x,则一个莲蓉饼的成本价,则两豆沙饼成本价为(70﹣),设甲礼盒和乙礼盒分别为m盒和n盒,m+n=50则有70n+m(3x+3×)=6213÷(1+30%)70n+70m+mx=4710.xm=,节后乙每盒成本98÷2÷(1+40%)=35,甲每盒成本2x+2×x+35﹣x=35+x,总成本35n+m(35+x)=35×50+×=2657.5.故答案为:2657.5.【点评】本题考查了列代数式和一元一次方程,根据题意正确列出代数式是解题的关键.13.(2019•雨城区校级模拟)若数a使关于x的不等式组有且只有四个整数解,且使关于y的方程=2的解为非负数,则符合条件的所有整数a的和为1.【考点】分式方程的解;解一元一次不等式;一元一次不等式组的整数解.【专题】计算题;方程与不等式;应用意识.【分析】解不等式组,得到不等式组的解集,根据整数解的个数判断a的取值范围,解分式方程,用含有a的式子表示y,根据解的非负性求出a的取值范围,确定符合条件的整数a,相加即可.【解答】解:,解①得,x<5;解②得,∴不等式组的解集为;∵不等式有且只有四个整数解,∴,解得,﹣2<a≤2;解分式方程得,y=2﹣a(a≠1);∵方程的解为非负数,∴2﹣a≥0即a≤2且a≠1综上可知,﹣2<a≤2且a≠1,∵a是整数,∴a=﹣1,0,2;∴﹣1+0+2=1,故答案为:1.【点评】本题考查了解一元一次不等式组,分式方程,本题易错,易忽视分式方程有意义的条件.14.(2014春•青羊区期末)已知x2﹣5x+1=0,则的值是.【考点】分式的化简求值.【分析】先根据题意得出x2=5x﹣1,再根据分式混合运算的法则进行计算即可.【解答】解:∵x2﹣5x+1=0,∴x2=5x﹣1,∴原式======.故答案为:.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.15.(2009春•营山县期末)已知,则=﹣.【考点】分式的化简求值.【专题】探究型.【分析】先根据题意得出x﹣y=﹣2xy,再代入所求代数式进行计算即可.【解答】解:∵﹣=2,∴=2,即x﹣y=﹣2xy,原式====﹣.故答案为:﹣.【点评】本题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.16.已知实数x,y,z,a满足x+a2=2010,y+a2=2011,z+a2=2012,且xyz=6,则代数式++﹣﹣﹣的值等于.【考点】分式的化简求值.【专题】分式;运算能力;推理能力.【分析】根据xyz=6,可以先将所求式子化简,然后根据x+a2=2010,y+a2=2011,z+a2=2012,可以得到x﹣y=﹣1,y﹣z=﹣1,x﹣z=﹣2,然后代入化简后的式子即可解答本题.【解答】解:∵xyz=6,∴++﹣﹣﹣=﹣=﹣==[(x﹣y)2+(y﹣z)2+(x﹣z)2],∵x+a2=2010,y+a2=2011,z+a2=2012,∴x﹣y=﹣1,y﹣z=﹣1,x﹣z=﹣2,∴原式=×[(﹣1)2+(﹣1)2+(﹣2)2]=×(1+1+4)==,故答案为:.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.17.“非洲猪瘟”本是一种只在家畜之间传播的瘟疫,但最近已严重威胁到广大人民群众的生命安全,现我市有一组检疫工作人员(工作人员每人每天生猪检疫的效率相等),需对甲、乙两个生猪养殖场的所有生猪逐一检疫,已知,甲养殖场的生猪比乙养殖场的生猪多1倍.上午全部工作人员在甲养殖场检疫,为了尽快完成检疫,下午所有工作人员的平均工作效率提高了20%,但下午有一人因事离开,剩下的工作人员的一半仍留在甲养殖场(上、下午的工作时间相等),到下班前刚好把甲养殖场的生猪检疫完毕,另一半工作人员去乙养殖场检疫,到下班前还剩下一小部分生猪未检疫,最后由6人以提高前的检疫速度,再用不到半天的工作时间就完成了检疫.则这组工作人员最多有27人.【考点】分式方程的应用.【专题】一元一次不等式(组)及应用;应用意识.【分析】设每人每天可检疫x头猪,该组检疫工作人员有y人,则每人半天检疫头猪,由甲养殖场的生猪比乙养殖场的生猪多1倍,根据题意可得不等式,从而得解.【解答】解:设每人每天可检疫x头猪,该组检疫工作人员有y人,由题意得:xy+x(1+20%)×<2[x(1+20%)×+6×],化简得:0.4y<11.4∴y<28.5,∵y只能为正整数,且有一人离开后,人数平分∴y的最大值为27.故答案为:27.【点评】本题是较复杂的不等式应用题,题目中有两个变量,但是列完之后,每个因式中都含有x,从而可以消掉,变成一元一次不等式,从而得解,本题的难点在于变量较多,不等关系的得出较为复杂.18.(2021•九龙坡区模拟)临近端午,甲、乙两生产商分别承接制作白粽,豆沙粽和蛋黄粽的任务(三种粽子都有成品,甲生产商安排200名工人制作白粽和豆沙粽,每人只能制作其中一种粽子,乙生产商安排100名工人制作蛋黄粽,其中豆沙粽的人均制作数量比。
(北师大版)大连市八年级数学下册第五单元《分式与分式方程》测试题(包含答案解析)

一、选择题1.下列命题:①若22||11x x x x x ++⋅=++,则x 的值是1; ②若关于x 的方程1122mx x x -=--无解,则m 的值是1-; ③若(2019)(2018)2017x x --=,则22(2019)(2018)4034x x -+-=;④若111,,567ab bc ac a b b c c a ===+++,且0abc ≠,则abc ab bc ac ++的值是19. 其中正确的个数是( )A .1B .2C .3D .4 2.已知113x y -=,则代数式21422x xy y x xy y ----的值( ) A .4B .9C .-4D .-8 3.分式方程3121x x =-的解为( ) A .1x = B .2x = C .3x = D .4x = 4.下列各式中,分式有( )个3x ,1n ,15a +,15a b +,2z x y ,()22ab a b + A .4 B .3 C .2 D .15.现在汽车已成为人们出行的交通工具.李刚、王勇元旦那天相约一起到某加油站加油,当天95号汽油的单价为m 元/升,他俩加油的情况如图所示.半个月后的某天,他俩再次相约到同一加油站加油,此时95号汽油的单价下调为n 元/升,他俩加油的情况与上次相同,请运用所学的数学知识计算李刚、王勇两次加油谁的平均单价更低?低多少?下列结论正确的是( )A .李刚比王勇低()22m n mn -元/升B .王勇比李刚低()22mn m n -元/升 C .王勇比李刚低()22m n mn -元/升D .李刚与王勇的平均单价都是2m n +元/升 6.定义:若两个分式的和为n (n 为正整数),则称这两个分式互为“n 阶分式”.例如,分式31x +与31x x+互为“3阶分式”.设正数x ,y 互为倒数,则分式22x x y +与22y y x +互为( ) A .二阶分式B .三阶分式C .四阶分式D .六阶分式 7.关于x 的一元一次不等式组31,224x m x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,且关于y 的分式方程13122my y y y--+=--有整数解,则符合条件的所有整数m 的和为( ) A .9 B .10 C .13 D .148.计算221(1)(1)x x x +++的结果是( ) A .1 B .1+1x C .x +1 D .21(+1)x 9.将分式2+x x y中的x ,y 的做同时扩大到原来的3倍,则分式的值( ) A .扩大到原来的3倍 B .缩小到原来的13 C .保持不变 D .无法确定10.计算2m m 1m m-1+-的结果是( ) A .m B .-m C .m +1 D .m -111.不改变分式的值,下列各式变形正确的是( ) A .11x x y y +=+ B .1x y x y -+=-- C .22x y x y x y +=++ D .22233x x y y ⎛⎫-= ⎪⎝⎭ 12.化简2111313x x x x +⎫⎛-÷⎪---⎝⎭的结果是( ) A .2 B .23x - C .41x x -- D .21x -二、填空题13.若分式11x -值为整数,则满足条件的整数x 的值为_____. 14.函数332x y x -=-中自变量x 的取值范围是_________. 15.设m ,n 是实数,定义关于@的一种运算如下:22@()()m n m n m n =+--,则下列结论:①若0mn ≠,m@8n =,则223944163m m n n ÷=; ②@()@@m n k m n m k -=-;③不存在非零实数m ,n ,满足22@5m n m n =+;④若设2m ,n 是长方形的长和宽,若该长方形的周长固定,则当m n =时,@m n 的值最大.其中正确的是_____________.16.已知5a b +=,6ab =,b a a b +=______. 17.化简分式:2121211a a a a +⎛⎫÷+= ⎪-+-⎝⎭_________. 18.已知114y x-=,则分式2322x xy y x xy y +---的值为______. 19.计算:22x x xy x y x-⋅=-____________________. 20.一项工程,甲乙合作b 天能完成,甲单独做需要a 天完成,则乙独做需_____天完成.三、解答题21.先化简,再求值:2222222x xy y x y x y y x x xy ⎛⎫+++÷ ⎪---⎝⎭,其中x ,y 满足()2210x y ++-=.22.解方程:32122x x x =--- 23.解方程:1513162x x -=-- 24.(1)先化简,再求值:2222213214x x x x x x x x -⎛⎫÷-- ⎪+++-⎝⎭,其中12x =. (2)解方程:11322x x x--=--. 25.先化简,再求值:2111224x x x -⎛⎫+÷ ⎪--⎝⎭,其中3x =.26.(1)先化简,再求值:22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭,其中12x =. (2)解不等式组31233112x x x x +<+⎧⎪⎨->-⎪⎩.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据等式的性质和分式有意义的条件判断①;根据分式方程无解的意义求出m 值,可判断②;运用完全平方公式判断③;根据分式的化简求值判断④.【详解】解:①若22||11x x x x x ++⋅=++, ∴||1x =,又∵x ≠-1,∴x 的值是1,故正确; ②1122mx x x -=--化简得:()13m x +=, ∵方程1122mx x x -=--无解, ∴m +1=0,或321x m ==+, 则m 的值是-1或12,故错误; ③若(2019)(2018)2017x x --=,则22(2019)(2018)x x -+-=[]2(2019)(2018)(2019)(2018)2x x x x +-----=2120172+⨯=4035,故错误;④若111,,567ab bc ac a b b c c a ===+++,且0abc ≠, ∴1111115,6,7a b b c a c ab a b bc b c ac a c+++=+==+==+=,∴ab bc ac abc++ =111a b c ++ =12222a b c ⎛⎫⨯++ ⎪⎝⎭=11111112a b b c a c ⎛⎫⨯+++++ ⎪⎝⎭ =()15672⨯++ =9 ∴abc ab bc ac ++的值是19,故正确; 故选:B .【点睛】本题考查了分式有意义的条件,完全平方公式,分式的化简求值,解题的关键是灵活运用运算法则以及分式的性质.2.A解析:A【分析】 由11x y=3,变形得y -x =3xy ,然后整体代入代数式,计算化简,即可得到结论. 【详解】解:由11x y =3,得y x xy-=3,即y -x =3xy ,x -y =-3xy , 则21422x xy y x xy y ----=2()142x y xy x y xy ----=61432xy xy xy xy----=4. 故选:A .【点睛】本题主要考查了分式化简求值,利用整体代入法是解决本题的关键.3.C解析:C【分析】首先分式两边同时乘以最简公分母()21x x -去分母,再移项合并同类项即可得到x 的值,然后要检验;【详解】两边同时乘以()21x x -,得:()312x x -= ,解得:x=3,检验:将x=3代入()210x x -≠,∴方程的解为x=3.故选:C .【点睛】本题考查了分式方程的解法,关键是找到最简公分母去分母,注意不要忘记检验; 4.A解析:A【分析】分母是整式且整式中含有字母,根据这点判断即可.【详解】 ∵3x 中的分母是3,不含字母, ∴3x 不是分式; ∵1n 中的分母是n ,是整式,且是字母, ∴1n 是分式; ∵15a +中的分母是a+5,是多项式,含字母a , ∴15a +是分式; ∵15a b +中的分母是15,不含字母, ∴15a b +不是分式; ∵2z x y 中的分母是2x y ,是整式,含字母x ,y , ∴2z x y 是分式; ∵()22ab a b +中的分母是2()a b +,是整式,含字母a ,b , ∴()22ab a b +是分式;共有4个,故选A .【点睛】本题考查了分式的定义,熟练掌握分式构成的两个基本能条件是解题的关键.5.A解析:A【分析】先求解李刚两次加油每次加300元的平均单价为每升:2mn m n +元,再求解王勇每次加油30升的平均单价为每升:2m n +元,再利用作差法比较两个代数式的值,从而可得答案. 【详解】解:李刚两次加油每次加300元,则两次加油的平均单价为每升: ()6006002300300300mn m n m n m n mn==+++(元), 王勇每次加油30升,则两次加油的平均单价为每升:3030602m n m n ++=(元), ()()()224222m n m n mn mn m n m n m n ++∴-=-+++ ()()()222222m n m mn n m n m n --+==++ 由题意得:,m n ≠ ()()22m n m n -∴+>0, ∴ 2m n +>2mn m n +. 故A 符合题意,,,B C D 都不符合题意,故选:.A【点睛】本题考查的是列代数式,分式的加减运算,代数式的值的大小比较,掌握以上知识是解题的关键.6.A解析:A【分析】根据题意得出xy =1,可以用1x表示y ,代入22x x y ++22y y x +,计算结果为2即可. 【详解】由题意得:xy =1,则y =1x , 把 y =1x ,代入22x x y ++22y y x +,得: 原式=221x x x ++221x x x+=3321x x ++321x +=2 ∴22x x y +与22y y x +互为“2阶分式”, 故选A .【点睛】本题是一道新定义型题目,主要考查分式的相关计算,有一定难度,熟练掌握分式的运算法则是解题的关键.7.A解析:A【分析】不等式组整理后,根据已知解集确定出m 的范围,分式方程去分母转化为整式方程,根据分式方程有整数解确定出整数m 的值,进而求出之和即可.【详解】 解:31224x m x x x ⎧-≤+⎪⎨⎪-≤⎩①②,解①得x≤2m+2,解②得x≤4,∵不等式组31224x m x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,∴2m+2≥4,∴m≥1.13122my y y y--+=--, 两边都乘以y-2,得my-1+y-2=3y , ∴32y m =-,∵m≥1,分式方程13122my y y y --+=--有整数解, ∴m=1,3,5,∵y-2≠0,∴y≠2, ∴322m ≠-, ∴m≠72, ∴m=1,3,5,符合题意,1+3+5=9.故选A .【点睛】此题考查了解分式方程,解一元一次不等式组,熟练掌握各自的解法是解本题的关键. 8.B解析:B【分析】根据同分母分式加法法则计算.【详解】221(1)(1)x x x +++=211(1)1x x x +=++, 故选:B .【点睛】此题考查同分母分式加法,熟记加法法则是解题的关键.9.A解析:A【分析】将x 变为3x ,y 变为3y 计算后与原式比较即可得到答案.【详解】222(3)93333()x x x x y x y x y==⨯+++, 故分式的值扩大到原来的3倍,故选:A .【点睛】此题考查分式的基本性质,正确掌握积的乘方运算,分解因式是解题的关键. 10.A解析:A【分析】原式变形后,利用同分母分式的减法法则计算即可得到结果.【详解】 原式=211m m m m ---=21m m m--=(1)1m m m --=m , 故选:A .【点睛】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.第II 卷(非选择题)请点击修改第II 卷的文字说明11.B解析:B【分析】根据分式的基本性质即可求出答案.【详解】解:A 、11x x y y ++≠,不符合题意; B 、=1x y x y-+--,符合题意; C 、22x y x y x y+≠++,不符合题意; D 、22239x x y y ⎛⎫-= ⎪⎝⎭,不符合题意; 故选:B .【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 12.D解析:D【分析】利用乘法分配律计算即可【详解】解:原式=11(3)(3)3(1)(1)x x x x x x +⋅--⋅--+-=1-31x x --=21x -, 故选D .【点睛】本题主要考查了分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则. 二、填空题13.0或2【分析】根据分式有意义的情况得出的范围再根据分式的值为整数得出分母x-1=±1求解即可【详解】解:因为分式有意义所以x-1≠0即x≠1当分式值为整数时有x-1=±1解得x=0或x=2故答案为:解析:0或2【分析】根据分式有意义的情况得出x的范围,再根据分式的值为整数得出分母x-1=±1求解即可.【详解】解:因为分式11x-有意义,所以x-1≠0,即x≠1,当分式11x-值为整数时,有x-1=±1,解得x=0或x=2,故答案为:0或2.【点睛】本题考查分式的意义,分式的值,理解分式的值的意义是解决问题的关键.14.【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式3x-2≠0即可解得x的取值范围;【详解】根据题意有3x-2≠0解得故自变量x的取值范围是故答案为:【点睛】本题考查了分式有意义的条件解析:23 x≠【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式3x-2≠0,即可解得x的取值范围;【详解】根据题意,有3x-2≠0,解得23x≠,故自变量x的取值范围是23x≠,故答案为:23x≠.【点睛】本题考查了分式有意义的条件,正确理解分式分母不为0时有意义是解题的关键.15.②③④【分析】根据所给新定义可得再分别判断【详解】解:∵①∴==8∴mn=2∴故错误;②=∴故正确;③∴∴当m-2n=0n=0∴m=0∴不存在非零实数mn满足故正确;④∵m@n=(m+n)2-(m-解析:②③④【分析】根据所给新定义,可得22@()()4m n n m n m m n =-=+-,再分别判断.【详解】解:∵22@()()4m n n m n m m n =-=+-,①22m@()()8n m n m n =+--=,∴22()()m n m n +--=4mn =8,∴mn=2, ∴222239316241649334m m m n n n n m mn ÷=⨯==,故错误; ②()()22@()m n k m n k m n k -=+---+=4()m n k -, ()@@444m n m k mn mk m n k -=-=-,∴@()@@m n k m n m k -=-,故正确;③22@45m n mn m n ==+,∴22540m n mn +=-,∴()2220m n n -+=, 当m-2n=0,n=0,∴m=0,∴不存在非零实数m ,n ,满足22@5m n m n =+,故正确;④∵m@n=(m+n )2-(m-n )2=4mn ,(m-n )2≥0,则m 2-2mn+n 2≥0,即m 2+n 2≥2mn ,∴m 2+n 2+2mn≥4mn ,∴4mn 的最大值是m 2+n 2+2mn ,此时m 2+n 2+2mn=4mn ,解得m=n ,∴m@n 最大时,m=n ,故正确,故答案为:②③④.【点睛】本题考查因式分解的应用、整式的混合运算,分式的乘除,解题的关键是明确题意,找出所求问题需要的条件.16.【分析】原式整理成再整体代入即可求解【详解】∵∴故答案为:【点睛】本题主要考查分式的加减法解题的关键是掌握分式的加减运算法则和完全平方公式 解析:136【分析】原式整理成222()2b a b a a b ab a b ab ab++-+==,再整体代入即可求解. 【详解】∵5a b +=,6ab =, ∴222()2b a b a a b ab a b ab ab++-+== 25266-⨯= 136=. 故答案为:136. 【点睛】本题主要考查分式的加减法,解题的关键是掌握分式的加减运算法则和完全平方公式. 17.【分析】先计算括号内的加法再将除法化为乘法再计算乘法即可【详解】解:===故答案为:【点睛】本题考查分式的混合运算掌握运算顺序和每一步的运算法则是解题关键 解析:11a - 【分析】先计算括号内的加法,再将除法化为乘法,再计算乘法即可.【详解】 解:2121211a a a a +⎛⎫÷+ ⎪-+-⎝⎭ =2112211a a a a a +-+÷-+- =211(1)1a a a a +-⋅-+ =11a -, 故答案为:11a -. 【点睛】本题考查分式的混合运算.掌握运算顺序和每一步的运算法则是解题关键.18.【分析】先根据题意得出x-y=4xy 然后代入所求的式子进行约分就可求出结果【详解】∵∴x-y=4xy ∴原式=故答案为:【点睛】此题考查分式的基本性质正确对已知式子进行化简约分正确进行变形是关键解析:112【分析】先根据题意得出x-y=4xy ,然后代入所求的式子,进行约分就可求出结果.【详解】 ∵114y x-=, ∴x-y=4xy , ∴原式=2()383112422x y xy xy xy x y xy xy xy -++==---, 故答案为:112 . 【点睛】此题考查分式的基本性质,正确对已知式子进行化简,约分,正确进行变形是关键. 19.1【分析】先将第二项的分子分解因式再约分化简即可【详解】故答案为:1【点睛】此题考查分式的乘法掌握乘法的计算法则是解题的关键解析:1【分析】先将第二项的分子分解因式,再约分化简即可.【详解】22x x xy x y x-⋅=-2()1x x x y x y x -⋅=-, 故答案为:1.【点睛】此题考查分式的乘法,掌握乘法的计算法则是解题的关键.20.【分析】乙独做的天数是1÷()天然后计算化简即可【详解】解:设乙独做需要的天数=(天)故答案为:【点睛】本题考查了分式混合运算的应用正确列式熟练掌握运算法则是解题的关键 解析:ab a b- 【分析】 乙独做的天数是1÷(11b a-)天,然后计算化简即可. 【详解】 解:设乙独做需要的天数=111ab b a a b ⎛⎫÷-=⎪-⎝⎭(天). 故答案为:ab a b-.【点睛】本题考查了分式混合运算的应用,正确列式、熟练掌握运算法则是解题的关键.三、解答题21.x y,-2 【分析】由分式的加减乘除混合运算,把分式进行化简,得到最简分式,然后由非负数的性质求出x 、y 的值,再代入计算,即可得到答案.【详解】解:原式=()()()()22x y x x y x x y x y x y y ⎡⎤+--⨯⎢⎥+--⎢⎥⎣⎦=()2x x y y x y y -⨯- =x y; ∵()2210x y ++-=,∴2x =-,1y =,将2x =-,1y =代入x y,得: 原式=221-=-. 【点睛】 本题考查了分式的加减乘除混合运算,分式的化简求值,非负数的性质,解题的关键是熟练掌握运算法则,正确的进行化简.22.76x =. 【分析】 方程两边同时乘以2(x-1),把分式方程转化为整式方程求解即可.【详解】解:方程两边同时乘以2(x-1),得234(1)x x =--,去括号,得2344x x =-+,移项,合并同类项,得67x =,系数化为1,得76x =, 经检验,76x =是原方程的根, 所以原方程的解为76x =. 【点睛】本题考查了分式方程的解法,熟练确定最简公分母是解题的关键,解后要验根是注意事项,不能漏落.23.32x =【分析】 观察可得最简公分母是2(3x-1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解,最后进行检验即可.【详解】 解:1513162x x -=-- 化简,得()15131231x x -=--, 去分母,得 ()23125x --=去括号,得6225x --=移项,得 6522x =++合并同类项,得69x =系数化为1,得32x =检验:当32x =时, ()2310x -≠ 所以32x =是原方程的解. 【点睛】本题考查了分式方程的解法,注:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.24.(1)2x x +,15;;(2)3x = 【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,把12x =代入计算即可求出值; (2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)解:原式2222123214x x x x x x x x x +--=÷-+++- ()()()()()22112122x x x x x x x x -+=⋅-++-+ 2222x x x x x x =-=+++ 当12x =原式2x x =+15=; (2)解:去分母得:()1321x x --=-,移项合并得:-2x =-6,解得:3x =,经检验3x =是分式方程的解【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.25.21x +,12. 【分析】 先把括号里的式子通分进行减法计算,再把除法转化成乘法进行计算,最后把x 的值代入计算即可.【详解】 解:原式()()()222212412221111x x x x x x x x x x --+--=⋅=⋅=---++-, 当3x =时,原式2112x ==+. 【点睛】 本题考查分式的化简求值,解题的关键是掌握运算法则进行计算.26.1)()212x -;49;(2)325x << 【分析】(1)首先把括号里因式进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算;(2)分别求出各不等式的解集,再求出其公共解集即可.【详解】解:(1)22214244x x x x x x x x +--⎛⎫-÷ ⎪--+⎝⎭=2(2)(2)(2)(2)4x x x x x x x x x +--+--- =24(2)4x x x x x --- =()212x -;当12x =时,原式=22114==913222⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭; (2)31233112x x x x +<+⎧⎪⎨->-⎪⎩①② 解不等式①得,x<2;解不等式②得,x>35; ∴不等式组的解集为:325x << 【点睛】本题考查的是分式的化简求值以及求解一元一次不等式组,熟知运算的法则是解答此题的关键.。
(必考题)初中数学八年级数学下册第五单元《分式与分式方程》测试题(含答案解析)(1)

一、选择题1.定义:若两个分式的和为n (n 为正整数),则称这两个分式互为“n 阶分式”.例如,分式31x +与31x x+互为“3阶分式”.设正数x ,y 互为倒数,则分式22x x y +与22y y x +互为( ) A .二阶分式B .三阶分式C .四阶分式D .六阶分式 2.某市铺设一条长660米的管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天铺设的管道长比计划增加10%,结果提前6天完工,求实际每天铺设管道长度及实际施工天数,小明列出方程:660660(110%)x x -+=6,题中x 表示的量为( ) A .实际每天铺设管道长度B .实际施工天数C .计划施工天数D .计划每天铺设管道的长度3.下列变形不正确...的是( ) A .1a b a b a b-=-- B .1a b a b a b +=++ C .221a b a b a b +=++ D .221-=-+a b a b a b4.若关于x 的方程1044m x x x--=--无解,则m 的值是( ) A .2- B .2 C .3- D .3 5.已知x 为整数,且分式2221x x --的值为整数,满足条件的整数x 可能是( ) A .0、1、2 B .﹣1、﹣2、﹣3C .0、﹣2、﹣3D .0、﹣1、﹣2 6.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2± B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xy x y -中的,x y 都扩大3倍,分式的值不变 D .分式211x x ++是最简分式 7.若使分式2x x -有意义,则x 的取值范围是( ) A .2x ≠ B .0x = C .1x ≠- D .2x = 8.2020年新冠肺炎疫情影响全球,某企业临时增加甲、乙两个厂房生产口罩,甲厂房每天生产的数量是乙厂房每天生产数量的2倍,两厂房各加工6000箱口罩,甲厂房比乙厂房少用5天.则甲、乙两厂房每天各生产的口罩箱数为( )A .1200,600B .600,1200C .1600,800D .800,1600 9.下列各式中,正确的是( )A .22a a b b = B .11a a b b +=+ C .2233a b a ab b = D .232131a ab b ++=-- 10.若a =1,则2933a a a -++的值为( ) A .2B .2-C .12D .12- 11.若a b ,则下列分式化简中,正确的是( )A .22a a b b +=+B .22a a b b -=-C .33a a b b =D .22a a b b= 12.某生产小组计划生产3000个口罩,由于采用新技术,实际每小时生产口罩的数量是原计划的2倍,因此提前5小时完成任务,设原计划每小时生产口罩x 个,根据题意,所列方程正确的是( )A .3000300052x x -=+B .3000300052x x -=C .3000300052x x -=+D .3000300052x x-= 二、填空题13.化简2242()44224x x x x x x -+÷++++的结果是_______. 14.已知5,3a b ab -==,则b a a b +的值是__________. 15.关于x 的分式方程3122m x x-=--无解,则m 的值为_____. 16.世界上最小、最轻的昆虫其质量只有0.000005用科学记数法表示0.000005是______克.17.当x _______时,分式22x x-的值为负. 18.计算:1 2+123⨯+134⨯+145⨯+…+()1n 1n -+()1n n 1+=______. 19.如果分式126x x --的值为零,那么x =________ .20.()052019π-+- =__________三、解答题21.先化简2454111x x x x x --⎫⎛+-÷ ⎪--⎝⎭,再从22x -≤≤中取一个合适的整数x 代入求值. 22.先化简,再求值:234()22m m m m m m-+⋅-+,其中m =1.23.甲、乙两公司全体员工踊跃参与“携手并肩,共渡难关”捐款活动,甲公司共捐款10万元,乙公司共捐款14万元.下面是甲、乙两公司员工的一段对话:(1)甲、乙两公司各有多少人?(2)现甲、乙两公司共同使用这笔捐款购买A ,B 两种物资,A 种物资每箱1.5万元,B 种物资每箱1.2万元,若购买B 种物资不少于5箱,并恰好将捐款用完,有几种购买方案?请设计出来(注:A ,B 两种物资均需购买,并按整箱配送)24.(建构模型)对于两个不等的非零实数a ,b ,若分式()()x a x b x--的值为零,则x a =或x b =.因为()()()()2x a x b x a b x ab ab x a b x x x ---++==+-+,所以,关于x 的方程ab x a b x+=+的两个解分别为:1x a =,2x b =. (应用模型)利用上面建构的模型,解决下列问题: (1)若方程p x q x+=的两个解分别为11x =-,24x =.则p =___,q =___;(直接写结论)(2)已知关于x 的方程222221n n x n x +-+=+的两个解分别为1x ,()212x x x <.求12223x x -的值. 25.先化简,再求值2111x x x x x ⎛⎫-+÷ ⎪++⎝⎭,其中整数x 满足13x -≤<. 26.2016年12月29日,引江济淮工程正式开工.该工程供水范围涵盖安徽省12个市和河南省2个市,共55个区县.其中在我县一段工程招标时,有甲、乙两个工程队投标,从投标书上得知:甲队单独完成这项工程需要60天,若由甲队先做20天,剩下的工程由甲、乙合作24天可完成.(1)乙队单独完成这项工程需要多少天?(2)现将该工程分为两部分,甲队做完其中一部分工程用了m 天,乙队做完其中一部分工程用了n 天,m ,n 都是正整数,且甲队用时不到20天,乙队用时不到65天,甲队施工一天,需付工程款3.5万元,乙队施工一天需付工程款2万元.请用含m 的式子表示n ,并求出该工程款总共为多少万元?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据题意得出xy =1,可以用1x 表示y ,代入22x x y ++22y y x +,计算结果为2即可. 【详解】由题意得:xy =1,则y =1x , 把 y =1x ,代入22x x y ++22y y x +,得: 原式=221x x x ++221x x x+=3321x x ++321x +=2 ∴22x x y +与22y y x +互为“2阶分式”, 故选A .【点睛】本题是一道新定义型题目,主要考查分式的相关计算,有一定难度,熟练掌握分式的运算法则是解题的关键.2.D解析:D【分析】根据计划所用时间-实际所用时间=6,可知方程中未知数x 所表示的量.【详解】解:设原计划每天铺设管道x 米,则实际每天铺设管道()110%x +, 根据题意,可列方程:6606(110%)660x x -=+, 所以小明所列方程中未知数x 所表示的量是计划每天铺设管道的长度,故选:D .【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是依据所给方程还原等量关系.3.C解析:C【分析】A 、B 两项利用同分母分式的加减法法则计算,约分即可得到结果;C 、D 通过能否继续进行因式分解,继续化简,即可得到答案.【详解】 A.=1a b a b a b a b a b --=---,故此项正确; B.=1a b a b a b a b a b ++=+++,故此项正确; C. 22a b a b ++为最简分式,不能继续化简,故此项错误; D. ()()221a b a b a b a b a b a b--==-+-+,故此项正确; 故选C .【点睛】此题考查了分式的加减法、约分,熟练掌握运算法则是解本题的关键.4.D解析:D【分析】 根据方程1044m x x x--=--无解,得出方程有增根,利用增根的定义可求得x =4,并把x =4代入转化后的整式方程m +1−x =0,即可求出m 的值.【详解】解:去分母得:m +1−x =0, ∵方程1044m x x x--=--无解, ∴x =4是方程的增根,∴m =3.故选:D .【点睛】 本题考查了分式方程无解问题,解题的关键是理解增根的定义,并能准确求出增根. 5.C解析:C【分析】根据分式有意义的条件得到x ≠±1,把分式化简,根据题意解答即可.【详解】解:由题意得,x 2﹣1≠0,解得,x ≠±1,2221x x --=2(1)(1)(1)x x x -+-=21x +, 当21x +为整数时,x =﹣3、﹣2、0、1, ∵x ≠1, ∴满足条件的整数x 可能是0、﹣2、﹣3,故选:C .【点睛】本题考查的是求分式的值、分式有意义的条件,掌握分式的分母不为0是解题的关键. 6.D解析:D【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案.【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误; B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误; C 、分式32xy x y -中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误; D 、分式211x x ++是最简分式,正确; 故选:D .【点睛】此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.7.A解析:A【分析】根据分式有意义分母不为零即可得答案.【详解】∵分式2x x -有意义, ∴x-2≠0,解得:x≠2.故选:A .【点睛】 本题考查了分式有意义的条件,利用分母不为零得出不等式是解题关键.8.A解析:A【分析】先设乙厂房每天生产x箱口罩,则甲厂房每天生产2x箱口罩,根据工作时间=工作总量÷工作效率且两厂房各加工6000箱口罩时甲厂房比乙厂房少用5天,可得出关于x的分式方程,解方程即可得出结论.【详解】解:设乙厂房每天生产x箱口罩,则甲厂房每天生产2x箱口罩,依题意得:6000600052x x-=,解得:x=600,经检验,x=600是原分式方程的解,且符合题意,∴2x=1200.故答案选:A.【点睛】该题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.9.C解析:C【分析】利用分式的基本性质变形化简得出答案.【详解】A.22a ab b=,从左边到右边是分子和分母同时平方,不一定相等,故错误;B.11a ab b+=+,从左边到右边分子和分母同时减1,不一定相等,故错误;C.2233a b aab b=,从左边到右边分子和分母同时除以ab,分式的值不变,故正确;D.232131a ab b++=--,从左边到右边分子和分母的部分同时乘以3,不一定相等,故错误.故选:C.【点睛】本题考查分式的性质.熟记分式的性质是解题关键,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.10.B解析:B【分析】根据同分母分式减法法则计算,再将a=1代入即可求值.【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2,故选:B .【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键. 11.C解析:C【分析】根据a b ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】 ∵a b A 、22a a b b +≠+ ,故该选项错误; B 、22a a b b -≠- ,故该选项错误; C 、33a a b b= ,故该选项正确; D 、22a a b b≠ ,故该选项错误; 故选:C .【点睛】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;12.D解析:D【分析】找出等量关系:原计划所用时间-实际所用时间=提前5小时,据此即可得出分式方程,得解.【详解】解:设原计划每小时生产口罩x 个,则实际每小时生产口罩2x 个,依题意得:3000300052x x-= 故选:D .【点睛】本题考查了由实际问题抽象出分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.二、填空题13.2【分析】先约分再算加法然后把除法化为乘法进而即可求解【详解】原式=====2故答案是:2【点睛】本题主要考查分式的化简掌握分式的四则混合运算法则是解题的关键解析:2【分析】先约分,再算加法,然后把除法化为乘法,进而即可求解.【详解】原式=2(2)(2)2(2)224x x x x x x ⎡⎤+-+÷⎢⎥+++⎣⎦=()222222x x x x x -⎡⎤+÷⎢⎥+++⎣⎦ =()222222x x x x x +-⎡⎤+⋅⎢⎥++⎣⎦=()222x x x x+⋅+ =2,故答案是:2.【点睛】本题主要考查分式的化简,掌握分式的四则混合运算法则,是解题的关键.14.【分析】先利用乘法公式算出的值再根据分式的加法运算算出结果【详解】解:∵∴∴故答案为:【点睛】本题考查分式的求值解题的关键是掌握分式的加法运算法则 解析:313【分析】先利用乘法公式算出22a b +的值,再根据分式的加法运算算出结果.【详解】解:∵5a b -=,3ab =,∴()222225631a b a b ab +=-+=+=, ∴22313b a b a a b ab ++==. 故答案为:313. 【点睛】本题考查分式的求值,解题的关键是掌握分式的加法运算法则.15.-3【分析】先求解分式方程得到用m 表示的根然后再确定该分式方程的增根最后让分式方程的根等于增根并求出m 的值即可【详解】解:m+3=x-2x=m+5由的增根为x=2令m+5=2解得m=-3故填:-3【解析:-3【分析】先求解分式方程得到用m 表示的根,然后再确定该分式方程的增根,最后让分式方程的根等于增根并求出m 的值即可.【详解】 解:3122m x x-=-- 3122m x x +=-- 312m x +=- m+3=x-2x=m+5 由3122m x x-=--的增根为x=2 令m+5=2,解得m=-3.故填:-3.【点睛】本题主要考查了解分式方程以及分式方程的增根,理解增根的定义是解答本题的关键. 16.5×10-6【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10-n 与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:解析:5×10-6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000005=5×10-6,故答案是:5×10-6.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.17.且【分析】分式有意义x2≠0分式的值为负数只有分子x-2<0由此求x 的取值范围【详解】解:依题意得解得x <2且x≠0故答案为:x <2且x≠0【点睛】本题考查了分式的值求分式的值必须同时满足分母不为0解析:2x <且0x ≠【分析】分式有意义,x 2≠0,分式的值为负数,只有分子x-2<0,由此求x 的取值范围.【详解】解:依题意,得2200x x -<⎧⎨≠⎩解得x <2且x≠0,故答案为:x <2且x≠0.【点睛】本题考查了分式的值.求分式的值,必须同时满足分母不为0.18.【分析】通过观察可发现规律:则原式=即可计算出结果【详解】故答案为:【点睛】本题考查分式的运算解题的关键是发现已知式子的规律 解析:1n n + 【分析】通过观察可发现规律:()11111n n n n =-++,则原式= 11111111112233411n n n n -+-+-+⋯+-+--+,即可计算出结果. 【详解】()()111111111111111111223344511223341111n n n n n n n n n n n ++++⋯++=-+-+-+⋯+-+-=-=⨯⨯⨯-+-+++ 故答案为:1n n +. 【点睛】本题考查分式的运算,解题的关键是发现已知式子的规律. 19.1【分析】根据分式的值为零可得解方程即可得【详解】由题意得:解得分式的分母不能为零解得符合题意故答案为:1【点睛】本题考查了分式的值为零正确求出分式的值和掌握分式有意义的条件是解题关键解析:1【分析】根据分式的值为零可得10x -=,解方程即可得.【详解】由题意得:10x -=,解得1x =,分式的分母不能为零,260x ∴-≠,解得3x ≠,1x ∴=符合题意,故答案为:1.【点睛】本题考查了分式的值为零,正确求出分式的值和掌握分式有意义的条件是解题关键. 20.-2【分析】直接利用算术平方根的意义绝对值和零指数幂的性质分别化简得出答案【详解】原式=2−5+1=−3+1=−2故答案为:-2【点睛】点评:此题主要考查了实数运算正确化简各数是解题关键解析:-2【分析】直接利用算术平方根的意义、绝对值和零指数幂的性质分别化简得出答案.【详解】原式=2−5+1=−3+1=−2.故答案为:-2【点睛】点评:此题主要考查了实数运算,正确化简各数是解题关键.三、解答题21.22x x -+,-1(x 取-1时值为-3) 【分析】 先按照分式运算的顺序和法则化简,再选取数值代入计算即可.【详解】 解:原式2145111(2)(2)x x x x x x x ⎫⎛---=-⋅⎪ --+-⎝⎭ 2(2)11(2)(2)x x x x x --=⋅-+- 22x x -=+ 22x -≤≤且x 为整数2,1,0,1,2x ∴=-- 又当1x ≠且2x ≠±时,原分式有意义x ∴只能取1-或0①当x 0=时,原式212-==-(或②当x 1=-时,原式331-==-) 【点睛】本题考查分式的化简求值,解题关键是准确应用分式运算法则按照正确的运算顺序进行化简,代入求值时要使分式有意义.22.4m +4,8.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,约分得到最简结果,把m 的值代入计算即可求出值.【详解】 解:原式=(2)(2)(2)(2)3(2)(2)m m m m m m m m m +-•+--++ =[3(2)(2)]m m m m++- =3(m +2)+(m ﹣2)=3m +6+m ﹣2=4m +4,当m =1时,原式=4+4=8.【点睛】本题考查了分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则,正确的进行化简.23.(1)甲公司有150人,乙公司有180人;(2)有3种购买方案:购买12箱A 种物资、5箱B 种物资或购买8箱A 种物资,10箱B 种物资或购买4箱A 种物资,15箱B 种物资【分析】(1)设乙公司有x 人,则甲公司有(30)x -人,根据对话,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设购买A 种防疫物资m 箱,购买B 种防疫物资n 箱,根据甲公司共捐款10万元,公司共捐款14万元,列出方程,求解出4165m n =-,根据整数解,约束出m 、n 的值,即可得出方案.【详解】解:(1)设乙公司有x 人,则甲公司有()30x -人, 由題意,得10714306x x⨯=- 解得180x =. 经检验,180x =是原方程的解,30150x -=,答:甲公司有150人,乙公司有180人.(2)设购买A 种物资n 箱,购买B 种物资n 箱,由题得1.5 1.21014m n +=+,整理,得4165m n =-又5n ≥,且m ,n 为正整数, 11125m n =⎧∴⎨=⎩ 22810m n =⎧⎨=⎩ 33415m n =⎧⎨=⎩ 答:有3种购买方案:购买12箱A 种物资、5箱B 种物资或购买8箱A 种物资,10箱B 种物资或购买4箱A 种物资,15箱B 种物资.【点睛】本题考查了分式方程的应用、方案问题、二元一次方程整数解问题,找准等量关系,正确列出方程是解题的关键.24.(1)4-,3;(2)1【分析】(1)根据材料可得:p=-1×4=-4,q=-1+4=3,计算出结果;(2)将原方程变形后变为:22212121n n x n x +-++=++,未知数变为整体2x+1,根据材料中的结论可得:122n x -=,212n x += ,代入所求式子可得结论; 【详解】 解:(1)∵方程p x q x+= 的两个解分别为:121=4x x =-, , ∴p=-1×4=-4,q=-1+4=3,故答案为:-4,3. (2)由222221n n x n x +-+=+,可得 22212121n n x n x +-++=++. ∴()()()()21212121n n x n n x +-++=++-+.故212x n +=+,解得12n x +=. 或211x n +=-,解得22n x -=. ∵12x x <, ∴122n x -=,212n x +=. ∴122222221123132232n x n n n x n n -⋅--====+-+--⋅-.【点睛】本题考查了分式方程的解,弄清题中的规律是解题的关键;25.原式1x=,1x =时,原式1=;或2x =时原式12=. 【分析】根据分式的减法和除法可以化简题目中的式子,然后从-1≤x <3中选取使得原分式有意义的整数代入化简后的式子即可解答本题.【详解】 解:2111x x x x x ⎛⎫-+÷ ⎪++⎝⎭ =2(1)(1)11x x x x x x--++⋅+ =221x x x-+ =1x, ∵x (x+1)≠0,∴x≠0,x≠-1,∵整数x 满足-1≤x <3,∴x=1或2,当x=1时,原式=11=1,当x=2时,原式=12. 【点睛】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.26.(1)90天;(2)3902n m =-(50203m <<,m ,n 均为正整数),189万元. 【分析】(1)设乙队单独完成这项工程需要x 天,根据题意列出方程20112416060x ⎛⎫++= ⎪⎝⎭,求出x 的值并进行检验即可; (2)根据题意得出16090m n +=解得3902n m =-,继而得出20390652m m <⎧⎪⎨-<⎪⎩,解出m 的取值并分情况求解即可;【详解】解:(1)设乙队单独完成这项工程需要x 天,根据题意得:20112416060x ⎛⎫++= ⎪⎝⎭,解得:90x =, 经检验,90x =是所列分式方程的解,且符合题意.答:乙队单独完成这项工程需要90天.(2)解:由题意得16090m n +=整理,得3902n m =-, 20390652m m <⎧⎪⎨-<⎪⎩,解得:50203m <<, 因为m ,n 均为正整数,所以,当17m =时,64.5n =,不是整数(舍去);当18m =时,63n =,符合题意;当19m =时,61.5n =,不是整数(舍去),工程款总数为3.518263189⨯+⨯=万元.【点睛】本题考查了分式方程的工程问题,正确理解题意和工作效率和工作时间之间的关系是解题的关键;。
(典型题)初中数学八年级数学下册第五单元《分式与分式方程》测试题(包含答案解析)

①=②,故A正确;
B、当a取互为倒数的值时,即取m和 ,则 ,
当a取m时,① ,当a取 时,②
①=②,故B正确;
C、可举例判断,由 >1得,取a=2,3(2<3)
则 < ,
故C正确;
D、可举例判断,由 得,取a= , ( > )
,
故D错误;
故选:D.
【点睛】
本题考查了相反数的性质,倒数的性质,不等式的性质和代数式求值的知识,正确理解题意是解题的关键.
【详解】
25.计算题:
(1)因式分解: ;
(2)计算: ;
(3)解分式方程: ;
(4)先化简 ,然后从 , ,1,2中选择一个合适的整数作为 的值代入求值.
26.列分式方程解应用题:
2020年玉林市倡导市民积极参与垃圾分类,某小区购进A型和B型两种分类垃圾桶,购买A型垃圾桶花费了2500元,购买B型垃圾桶花费了2000元,且购买A型垃圾桶数量是购买B型垃圾桶数量的2倍,已知购买一个B型垃圾桶比购买一个A型垃圾桶多花30元,求购买一个A型垃圾桶、一个B型垃圾桶各需多少元?
9.B
解析:B
【分析】
最简分式的标准是分子、分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分;
【详解】
A、 ;
B、 的分子分母不能再进行约分,是最简分式;
C、 ;
D、 ;
故选:B.
【点睛】
本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题,在解题中一定要引起注意;.
A.1个B.2个C.3个D.4个
八年级数学下 第5章 分式与分式方程巩固练习(含答案解析)

第5章分式与分式方程巩固练习题一、选择题1.计算﹣的结果是()A、﹣B、C、D、2.分式的计算结果是()A、B、C、D、3.下列计算正确的是()A、B、C、D、4.已知两个分式:,,其中x≠±2,则A与B的关系是()A、相等B、互为倒数C、互为相反数D、A大于B二、解答题5.计算:(1)= ;(2)= 。
6.请你阅读下列计算过程,再回答所提出的问题:解:=(A)=(B)=x﹣3﹣3(x+1)(C)=﹣2x﹣6(D)(1)上述计算过程中,从哪一步开始出现错误:;(2)从B到C是否正确,若不正确,错误的原因是;(3)请你正确解答。
7.若,则的值为。
8.读一读:式子“1+2+3+4+…+100”表示从1开始的100个连续自然数的和,由于式子比较长,书写不方便,为了简便起见,我们将其表示为,这里“∑”是求和符号,通过对以上材料的阅读,计算= 。
9.已知(a≠b),求的值。
10.若,求A、B的值。
11.a、b为实数,且ab=1,设P=,,则P Q(选填“>”、“<”或“=”)。
12.设x、y为正整数,并计算它们的倒数和,接着将这两个正整数x、y分别加上1、2后,再计算它们的倒数和,请问经过这样操作之后,倒数和之差的最大值是。
13.已知x为整数,且为整数,求所有符合条件的x 值的和。
参考答案与试题解析一、选择题1.计算﹣的结果是()【考点】分式的加减法。
【分析】首先通分,然后根据同分母的分式加减运算法则求解即可求得答案。
【解答】解:﹣===﹣。
故选A。
【点评】此题考查了分式的加减运算法则。
题目比较简单,注意解题需细心。
2.分式的计算结果是()【考点】分式的加减法。
【分析】先通分,然后进行同分母分式加减运算,最后要注意将结果化为最简分式。
【解答】解: ==。
故选:C。
【点评】本题考查了分式的加减运算,题目比较容易。
3.下列计算正确的是()【考点】分式的加减法。
【分析】本题考查了分式的加减运算。
解决本题首先应通分,最后要注意将结果化为最简分式。
专题5.23 分式与分式方程(全章基本概念与性质专题)八年级数学下册基础知识专项讲练(北师大版)

专题5.23分式与分式方程(全章基本概念与性质专题)(专项练习)一、单选题【性质】分式基本性质1.如果将分式xx y2+中的字母x 与y 的值分别扩大为原来的5倍,那么这个分式的值()A .扩大为原来的5倍B .扩大为原来的10倍C .缩小为原来的15D .不改变2.如果把分式22x x y-中的x ,y 的值都扩大2倍,那么此分式的值()A .扩大2倍B .扩大4倍C .扩大6倍D .不变【概念一】分式3.下列代数式中,属于分式的是()A .23-x B .xπC .23x +D .124.在式子1a ,2xy π,2334a b c,56x +,109x y +,78x y +中,分式的个数是()A .2B .3C .4D .5【概念二】最简分式5.下列分式中是最简分式的是()A .221x x +B .42xC .211x x --D .11x x --6.下列各分式中是最简分式的是()A .()()1215x y x y -+B .2222x y x y xy ++C .()222x y x y -+D .22x y x y-+【概念三】约分7.化简222a b a ab--的结果为()A .2a b a-B .a b a-C .a b a+D .a b a b-+8.将分236x xy-约分的结果是()A .12y-B .2x y-C .2xy-D .x y-【概念四】最简公分母9.分式1x y +、1x y-、221x y -的最简公分母是()A .()()x y x y +-B .()()()22x y x y x y +--C .()()22x y x y +-D .()()22x y x y --10.212a b与2a b ab c +的最简公分母为()A .222a b cB .abC .222a b D .2abc【概念五】通分11.把12x -,1(2)(3)x x -+,22(3)x +通分的过程中,不正确的是()A .最简公分母是2(2)(3)x x -+B .221(3)2(2)(3)x x x x +=--+C .213(2)(3)(2)(3)x x x x x +=-+-+D .22222(3)(2)(3)x x x x -=+-+12.把2121a a a -++与211a -通分后,2121a a a -++的分母为()()211a a -+,则211a -的分子变为()A .1a -B .1a +C .1a --D .1a-+【概念六】分式方程的增根13.若分式方程311x mx x -=--有增根,则m 等于()A .3B .3-C .2D .2-14.关于x 的方程31111x mx x --=++有增根,则方程的增根是()A .1-B .4C .4-D .2【概念七】分式方程的无解15.关于x 的方程6122=---ax x x无解,则a 的值为()A .1B .3C .1或3-D .1或316.已知关于x 的分式方程2322x mm x x+=--无解,则m 的值是()A .1或13B .1或3C .13D .1二、填空题【性质】分式基本性质17.已知32m n =,则m n n+的值为__________.18.不改变分式10.4210.35-+a ba b 的值,若把其分子与分母中的各项系数都化成整数,其结果为______.【概念一】分式19.下列各式:2a b -,3x x -,5y π+,a ba b+-,1()m x y -中,是分式的共有____个.20.将分式121x x ++写成除法的形式:____________________.【概念二】最简分式21.将分式2244x x +-化为最简分式,所得结果是_______.22.下列分式:①233a a ++;②22x y x y --;③22m m n;④21m +,最简分式有______(填序号).【概念三】约分23.约分:222315a ba b =________.24.约分:22abc b c=____________.【概念四】最简公分母25.分式22a b ,1ab ,3abc的最简公分母是______________;26.分式212a b 与31ab 的最简公分母是________.【概念五】通分27.2121a a a -++与251a -通分的结果是_______.28.把分式22111221(1)x x x ⋅⋅+--通分,最简公分母是_________________.【概念六】分式方程的增根29.若关于x 的分式方程5233x mx x +=---有增根,则常数m 的值是_________.30.若关于x 的分式方程1222x mx x-=---有增根,则m 的值是_______.【概念七】分式方程的无解31.已知关于x 的分式方程11235a xx x --=+-无解,则a 的值为_____.32.若关于x 的方程301ax x+=-无解,则a 的值为______.参考答案1.D 【分析】将xx y2+的字母x 与y 的值分别扩大为原来的5倍,与原式比较即可.【详解】解:xx y2+的字母x 与y 的值分别扩大为原来的5倍得:()25522555x x xx y x y x y⨯⨯==+++所以,分式的值不变.故选D【点拨】本题考查了分式的基本性质,熟练运用分式的基本性质是解题关键.2.A【分析】根据分式的基本性质进行计算即可得出结果.【详解】解:由题意得:()()2222822==2222x x x x y x yx y ⨯---,∴把x ,y 的值都扩大2倍,分式的值扩大了2倍,故选:A .【点拨】本题考查了分式的基本性质,熟练掌握分式的基本性质是解题的关键.3.C【分析】根据分式的定义逐个判断即可.【详解】解:A .23-x 分母中不含字母,不是分式,故本选项不符合题意;B .xπ分母中不含字母,不是分式,故本选项不符合题意;C .23x +分母中含字母,是分式,故本选项符合题意;D .12分母中不含字母,不是分式,故本选项不符合题意;故选:C .【点拨】本题考查了分式的定义,能熟记分式的定义是解此题的关键,式子AB(A 、B 是整式)中,分母B 中含有字母,则AB叫分式.4.B【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【详解】式子2xyπ,2334a b c,78x y +中的分母中均不含有字母,因此它们是整式,而不是分式;1a ,56x+,109x y +中分母中含有字母,因此是分式.故选B .【点拨】本题主要考查分式的定义,注意π不是字母,是常数,所以2xyπ不是分式,是整式,掌握分母里含有字母是分式区别于整式的标志是解题的关键.5.A【分析】直接利用最简分式的定义,一个分式的分子与分母没有公因式时叫最简分式,进而分析得出答案.【详解】解:A .221xx +的分子、分母都不能再分解,且不能约分,是最简分式,故此选项符合题意;B .422x x=,故此选项不符合题意;C .()()21111111x x x x x x +---==-+,故此选项不符合题意;D .()11111x x x x ---==---,故此选项不符合题意.故选:A .【点拨】本题考查最简分式,正确掌握最简分式的定义是解题的关键.6.B【分析】最简分式是分子,分母中不含有公因式,不能再约分的分式.判断的方法是把分子、分母分解因式,并且观察有无公因式.如果有互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【详解】解:A 、()()()()124155x y x y x y x y --=++,不是最简分式,不符合题意;B 、2222x y x y xy ++是最简分式,符合题意;C 、()()()()2222x y x y x y x yx y x y x y +---==+++,不是最简分式,不符合题意;D 、()()22x y x y x y x y x y x y+--==-++,不是最简分式,不符合题意;故选B .【点拨】本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.7.C【分析】分子、分母分别因式分解,约分即可得到结论.【详解】解:()()()222a b a b a b a ba ab a a b a+--+==--,故选:C .【点拨】本题考查了分式的化简,解决问题的关键是熟练应用平方差公式.8.C【分析】依据分式的性质约分即可.【详解】解:2362x xxy y-=-故选:C .【点拨】本题考查了分式的约分;熟练掌握分式的性质是解题的关键.9.A【分析】先把分母因式分解,再找出最简分母即可.【详解】解:221x y-的分母为:()()22x y x y x y -=+-,∴最简公分母为:()()x y x y +-,故选:A .【点拨】本题主要考查最简公分母的定义,熟练掌握最简公分母的定义是解决本题的关键.10.A【分析】根据最简公分母的确定方法:各分母系数的最小公倍数与字母因式的最高次幂的积,进行判断即可.【详解】解:212a b与2a b ab c +的最简公分母为222a b c ;故选A .【点拨】本题考查最简公分母.熟练掌握最简公分母的确定方法,是解题的关键.11.D【分析】按照通分的方法依次验证各选项,找出不正确的答案.【详解】A 、最简公分母为2(2)(3)x x -+,正确,该选项不符合题意;B 、221(3)2(2)(3)x x x x +=--+,通分正确,该选项不符合题意;C 、213(2)(3)(2)(3)x x x x x +=-+-+,通分正确,该选项不符合题意;D 、通分不正确,分子应为()222224(3)(2)(3)x x x x x --=+-+,该选项符合题意;故选:D .【点拨】本题考查根据分数的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.解题的关键是通分保证(1)各分式与原分式相等;(2)各分式分母相等.12.B【分析】直接利用已知进行通分运算,进而得出答案.【详解】解∶221111(1)(1)(1)(1)aa a a a a +==--+-+,故211a -的分子为1a +.故选∶B .【点拨】此题主要考查了通分,正确进行通分运算是解题关键.13.D【分析】方程两边都乘以最简公分母,把分式方程化为整式方程,再求出分式方程的增根,然后代入整式方程,解关于m 的方程即可得解.【详解】解:311x mx x -=--,去分母,得3x m -=,由分式方程有增根,得到10x -=,即1x =,把1x =代入3x m -=,并解得2m =-.故选:D .【点拨】本题考查了分式方程的增根问题,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.14.C【分析】由分式方程有增根,得到10x +=,求出x 的值,将原方程去分母化为整式方程,将x 的值代入即可求出m 的值.【详解】由分式方程有增根,得到10x +=,解得:=1x -,分式方程31111x m x x --=++,去分母得311x m x --=+,将=1x -代入311x m x --=+中,得:3111m ---=-+,解得:4m =-,故选:C .【点拨】本题考查了分式方程的增根,关键是求出增根的值,代入到分式方程化简后的整式方程中去求未知数参数的值.15.D【分析】分式方程去分母转化为整式方程,再分整式方程无解和整式方程的解是分式方程的增根两种情况进行讨论,即可得出答案.【详解】解:分式方程去分母得:26ax x =-+,整理得:()14a x -=,当a −1=0,即a =1时,此时整式方程无解,分式方程无解;当a −1≠0,即a ≠1时,由()14a x -=得x =41a -,若此时分式方程无解,则分式方程有增根,即20x -=,增根为x =2,∴421a =-,解得:a =3,∴关于x 的方程6122=---ax x x无解时,则a 的值为1或3,故选:D .【点拨】本题考查了分式方程无解问题,理解分式方程无解有整式方程无解和整式方程的解是分式方程的增根两种情况是解决问题的关键.16.A【分析】根据分式方程无解,需要对化简之后的整式进行讨论,可能是整式方程无解,也可能是整式方程的解是原分式方程的增根,即可求解.【详解】解:去分母得,23(2)x m m x -=-,去括号得,236x m mx m -=-,移项得,326x mx m m -=-,合并同类项得,(13)4m x m -=-,∵分式方程2322x m m x x+=--无解,∴1-3m =0或x =2,∴13m =,将x =2代入(13)4m x m -=-,得2(13)4m m -=-,解得m =1,综上,m 的值是1或13.故选A .【点拨】本题主要考查的是利用分式方程无解求参数的值,理解分式方程无解的解题方法是解题关键.17.52【分析】设3,2m k n k ==,代入m nn+约分化简.【详解】∵32m n =,∴设3,2m k n k ==,∴32522m n k k n k ++==.故答案为:52.【点拨】本题考查了分式的约分,设3,2m k n k ==是解答本题的关键.18.4523a b a b-+【分析】根据分式的性质“分子分母同时扩大或缩小相同的倍数,分式的值不变”,分子和分母同时乘以10,即可获得答案.【详解】解:分式2110.45221130.35510a b a ba b a b --=++,分子、分母同时乘以10,则有原式4523a b a b -=+.故答案为:4523a ba b-+.【点拨】本题主要考查了分式的性质,理解并掌握分式的性质是解题关键.19.3【详解】解析:判断式子是否是分式就是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.由此可知3x x -,a ba b+-,1()m x y -是分式,共3个.答案:3易错:4错因:误认为π是字母,错误判断5yπ+是分式.满分备考:区分整式与分式的唯一标准就是看分母,分母中不含字母的是整式,分母中含有字母的是分式.注意π是一个数,而不是字母.20.()()121x x +÷+【分析】根据分式的意义将分式写成除法形式即可.【详解】解:将分式121x x ++写成除法的形式为()()121x x +÷+.故答案为:()()121x x +÷+【点拨】本题考查了分式的意义,AB表示A B ÷,其中分数线表示相除的意思.21.22x -【分析】先把分式的分子、分母因式分解,再约分即可.【详解】解:2244x x +-()()()2222x x x +=+-22x =-.故答案为:22x -.【点拨】本题考查的是最简分式,掌握分式的约分法则是解题的关键.22.①④##④①【分析】根据最简分式的定义逐式分析即可.【详解】①233a a ++是最简分式;②22x y x y --=1x y +,不是最简分式;③22m m n =12mn,不是最简分式;④21m +是最简分式.故答案为:①④.【点拨】本题考查了最简分式的识别,与最简分数的意义类似,当一个分式的分子与分母,除去1以外没有其它的公因式时,这样的分式叫做最简分式.23.15b【分析】根据分式的基本性质解答即可.【详解】解:22231155a b a b b=;故答案为:15b.【点拨】本题考查了分式的约分,属于基础题型,熟练掌握分式的基本性质是解题的关键.24.acb【分析】根据分式的性质,分子分母同时乘以或除以相同因式时分式的值不变即可解题解答.【详解】解:22abc ac bc ac b c b bc b== 故答案为:acb【点拨】本题考查了分式的约分,熟悉分式的性质是解题关键,约分的方法是:若分子分母都是单项式,则直接求取分子分母的公因式再化简;若分子或分母是多项式,需要将分子分母因式分解后求取分子分母的公因式再化简25.2a bc【分析】各分母系数的最小公倍数和所有因式的最高次幂的积作为公分母,这样的公分母称为最简公分母,据此即可求解.【详解】解:22a b ,1ab ,3abc的最简公分母是2a bc ,故答案为:2a bc .【点拨】本题考查了最简公分母,解题的关键是掌握最简公分母.26.232a b 【分析】根据确定最简公分母的步骤找出最简公分母即可.【详解】解:2、1的最小公倍数为2,a 的最高次幂为2,b 的最高次幂为3,所以最简公分母为232a b .故答案为:232a b .【点拨】本题考查了分式的基本性质,掌握分式的基本性质是关键.27.222(1)5(1),(1)(1)(1)(1)a a a a a a --++-+-【分析】找到最简公分母,根据分式的结伴行知进行通分即可;【详解】221121(1)a a a a a --=+++ ,225511a a -==--5(1)(1)a a -+-,∴最简公分母为()()211a a +-,∴通分后分别为222(1)5(1),(1)(1)(1)(1)a a a a a a --++-+-.故答案为:222(1)5(1),(1)(1)(1)(1)a a a a a a --++-+-.【点拨】本题主要考查了分式的通分,准确计算是解题的关键.28.22(1)(1)x x +-【分析】根据确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式确定;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【详解】解:∵()2221x x +=+()()2111x x x -=-+,故22x +,21x -,()21x -的最简公分母为:22(1)(1)x x +-.故答案为22(1)(1)x x +-.【点拨】本题主要考查了最简公分母的定义:取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.29.8【分析】首先把所给的分式方程化为整式方程,然后根据分式方程有增根,得到30x -=,据此求出x 的值,代入整式方程求出m 的值即可.【详解】解:去分母,得:() 523x x m+=-+由分式方程有增根,得到30x -=,即3x =,把3x =代入整式方程,可得: 8m =.故答案为:8.【点拨】此题主要考查了分式方程的增根,解答此题的关键是要明确:(1)化分式方程为整式方程;(2)把增根代入整式方程即可求得相关字母的值.30.1【分析】先把分式方程去分母变为整式方程,然后把2x =代入计算,即可求出m 的值.【详解】解:∵1222x m x x-=---,去分母,得:12(2)x m x -=---;∵分式方程有增根,∴2x =,把2x =代入12(2)x m x -=---,则122(22)m -=---,解得:1m =;故答案为:1.【点拨】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.31.5或112【分析】根据分式方程的解法步骤,结合分式方程无解的情况即可得到参数a 的值.【详解】解:11235a x x x --=+-,去分母得()()()()()523235x x a x x x --+-=+-,∴()112310a x a -=-,关于x 的分式方程11235a x x x --=+-无解,∴①当1120a -=时,即112a =,此时()112310a x a -=-无解;②当1120a -≠时,即112a ≠,解()112310a x a -=-得310112a x a -=-,此时分式方程无解,必须有32x =-或5x =,则31031122a x a -==--或3105112a x a-==-,i 当31031122a x a -==--时,方程无解;ii 当3105112a x a-==-时,解得5a =;综上所述,a 的值为5或112,故答案为:5或11 2.【点拨】本题考查解分式方程及由分式方程无解求参数问题,熟练掌握分式方程的解法步骤以及无解情况的分类讨论是解决问题的关键.32.0或-3【分析】先去分母化为整式方程,根据分式方程无解得到x=0或x=1或3+a=0,将解代入整式方程求出a即可.【详解】解:去分母,得3x+a(x-1)=0,∴(3+a)x-a=0,∵原分式方程无解,∴x=0或x=1或3+a=0,当x=0时,a=0;当x=1时,3+0=0,无解;∴a=0,当3+a=0时,解得a=-3,故答案为:0或-3.【点拨】此题考查了根据分式方程解的情况求参数,正确掌握解分式方程的解法是解题的关键.。
(必考题)初中数学八年级数学下册第五单元《分式与分式方程》检测卷(含答案解析)

一、选择题1.H7N9病毒直径为30纳米,已知1纳米=0.000 000 001米.用科学记数法表示这个病毒直径的大小,正确的是( ) A .93010-⨯米 B .83.010-⨯米C .103.010-⨯米D .90.310-⨯米2.使分式21xx -有意义的x 的取值范围是( ) A .x ≠1 B .x ≠0C .x ≠±1D .x 为任意实数3.关于分式2634m nm n--,下列说法正确的是( )A .分子、分母中的m 、n 均扩大2倍,分式的值也扩大2倍B .分子、分母的中m 扩大2倍,n 不变,分式的值扩大2倍C .分子、分母的中n 扩大2倍,m 不变,分式的值不变D .分子、分母中的m 、n 均扩大2倍,分式的值不变4.若数a 关于x 的不等式组()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥-+⎩恰有三个整数解,且使关于y 的分式方程13y 2a2y 11y--=---的解为正数,则所有满足条件的整数a 的值之和是( ) A .2B .3C .4D .55.已知x 为整数,且分式2221x x --的值为整数,满足条件的整数x 可能是( ) A .0、1、2B .﹣1、﹣2、﹣3C .0、﹣2、﹣3D .0、﹣1、﹣26.2020年5月1日,北京市正式实施《北京市生活垃圾管理条例》,生活垃圾按照厨余垃圾,可回收物,有害垃圾,其他垃圾进行分类.小红所住小区5月和12月的厨余垃圾分出量和其他三种垃圾的总量的相关信息如下表所示:厨余垃圾分出量如果厨余垃圾分出率=100%⨯厨余垃圾分出量生活垃圾总量(生活垃圾总量=厨余垃圾分出量+其他三种垃圾的总量),且该小区12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍,那么下面列式正确的是( )A .660840014710x x ⨯=B .6608400147660840010x x⨯=++C .660840014147660840010x x⨯=⨯++ D .7840066010146608400x x++⨯=7.PM2.5是大气压中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( ) A .50.2510-⨯B .60.2510-⨯C .72.510-⨯D .62.510-⨯8.a b c 三个有理数满足0a b c <<<,且1a b c ++=,b c M a +=,a cN b+=,a bP c+=,则M ,N ,P 之间的大小关系是( ) A .M P N << B .M N P <<C .N P M <<D .P M N <<9.若ab ,则下列分式化简中,正确的是( )A .22a ab b +=+ B .22a ab b-=- C .33a a b b = D .22a a b b=10.不改变分式的值,下列各式变形正确的是( )A .11x x y y +=+B .1x yx y-+=-- C .22x y x y x y +=++ D .22233x x y y ⎛⎫-= ⎪⎝⎭11.若数a 使关于x 的分式方程2311ax x+=--的解为非负数,且使关于y 的不等式组213202y yy a +⎧->⎪⎪⎨-⎪≤⎪⎩的解集为2y <-,则符合条件的所有整数a 的个数为( ) A .5B .6C .7D .812.若分式211a a +-的值等于0,则a 的值为( )A .±1B .0C .1-D .无解二、填空题13.已知实数m 、n 均不为0且22227m mn n m n mn--=-+,则11m n -=______.14.若分式11x -值为整数,则满足条件的整数x 的值为_____. 15.人类进入5G 时代,科技竞争日趋激烈.据报道,我国某种芯片的制作工艺已达到28纳米,居世界前列.已知1纳米=1×10﹣9米,则28纳米等于多少米?将其结果用科学记数法表示为_____.16.若113m n+=,则分式225m n mn m n +---的值为________ .17.计算:()1211xx x x x ⎡⎤-⋅=⎢⎥+-⎣⎦______. 18.计算:22112a a a a a--÷+=____.19.如果2y =,那么y x =_______________________. 20.如果方程322x mx x-=-- 无解,则m=___________. 三、解答题21.先化简,再求值:2111224x x x -⎛⎫+÷⎪--⎝⎭,其中3x =.22.先化简,再求值:222422244x x x x x x x --⎛⎫-+÷ ⎪+++⎝⎭,其中2x =.23.阅读下列材料:我们在使用完全平方公式222()2a b a ab b ±=±+时,可以把这个公式分成三部分:a b ±称为加减项;②22a b +称为平方项;③ab 称为乘积项在以上三部分中,已知任意两部分都可以求得第三部分. 例:若225,21a b a b +=+=,求ab 的值. 解:由5a b +=可得22()5a b +=22225a b ab ++=把2221a b +=代入上式得21225ab += 2ab =请结合以上方法解决下列问题:(1)若2238,13a b ab +==,求+a b 的值;(2)若2410a a -+=,求221a a +的值. 24.清江山水华府小区物业,将对小区内部非活动区域进行绿化.甲工程队用m 天完成这项工程的三分之一,为加快工程进度,乙工程队参与绿化建设,两队合作用5天完成这一项工程.(1)若10m =,求乙工程队单独完成这项工程所需的时间; (2)求m 的取值范围. 25.先阅读,再解答问题:恒等变形,是代数式求值的一个很重要的方法.利用恒等变形,可以把无理数运算转化为有理数运算,可以把次数较高的代数式转化为次数较低的代数式.例如:当1x =+时,求32122x x x --+的值.为解答这道题,若直接把1x =+代入所求的式中,进行计算,显然很麻烦,我们可以通过恒等变形,对本题进行解答.方法:将条件变形,因1x =+,得1x -=算转化为有理数运算.由1x -=2220x x --=,即222x x -=,222x x =+.原式)(2221222222x x x x x x x x =+--+=+--+=. 请参照以上的解决问题的思路和方法,解决以下问题:(1)若1x =,求322431x x x +-+的值;(2)已知2x =432295543x x x x x x ---+-+的值. 26.为支援贫困山区,某学校爱心活动小组准备用筹集的资金购买A 、B 两种型号的学习用品.已知B 型学习用品的单价比A 型学习用品的单价多10元,用180元购买B 型学习用品与用120元购买A 型学习用品的件数相同. (1)求A 、B 两种学习用品的单价各是多少元;(2)若购买A 、B 两种学习用品共1000件,且总费用不超过28000元,则最多购买B 型学习用品多少件?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由于1纳米=10-9米,则30纳米=30×10-9米,然后根据幂的运算法则计算即可. 【详解】解:1纳米=0.000 000 001米=10-9米, 30纳米=30×10-9米=3×10-8米. 故选:B . 【点睛】本题考查了科学记数法-表示较小的数:用a×10n (1≤a <10,n 为负整数)表示较小的数.2.C解析:C【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围. 【详解】由题意,得x 2−1≠0, 解得:x≠±1, 故选:C . 【点睛】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.3.D解析:D 【分析】根据分式的基本性质即可求出答案. 【详解】 解:A 、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,故该说法不符合题意;B 、22623=23432m n m nm n m n ⨯--⨯--,故分子、分母的中m 扩大2倍,n 不变,分式的值没有扩大2倍,故该说法不符合题意;C 、226212=32438m n m nm n m n -⨯--⨯-,故分子、分母的中n 扩大2倍,m 不变,分式的值发生变化,故该说法不符合题意;D 、22262(26)26=23242(34)34m n m n m nm n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,此说法正确,符合题意; 故选:D . 【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.4.A解析:A 【分析】先解不等式得出解集x≤2且x≥2a -,根据其有两个整数解得出0<2a -≤1,解之求得a 的范围;解分式方程求出y =2a −1,由解为正数且分式方程有解得出2a −1>0且2a - 1≠1,解之求得a 的范围;综合以上a 的范围得出a 的整数值,从而得出答案. 【详解】解:()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥--⎩①②,解不等式①得:x≤2, 解不等式②得:x≥2a -, ∵不等式组恰有三个整数解, ∴-1<2a -≤0, 解得12a ≤<,解分式方程132211y ay y--=---, 得:21y a =-,由题意知210211a a ->⎧⎨-≠⎩,解得12a >且1a ≠, 则满足12a ≤<,12a >且1a ≠的所有整数a 的值是2, 所有满足条件的整数a 的值之和为2. 故选择:A . 【点睛】本题主要考查解一元一次不等式组和求方程的正数解,解题的关键是根据不等式组整数解和方程的正数解得出a 的范围,再求和即可.5.C解析:C 【分析】根据分式有意义的条件得到x ≠±1,把分式化简,根据题意解答即可. 【详解】解:由题意得,x 2﹣1≠0, 解得,x ≠±1,2221x x --=2(1)(1)(1)x x x -+-=21x +, 当21x +为整数时,x =﹣3、﹣2、0、1, ∵x ≠1,∴满足条件的整数x 可能是0、﹣2、﹣3, 故选:C . 【点睛】本题考查的是求分式的值、分式有意义的条件,掌握分式的分母不为0是解题的关键.6.B解析:B 【分析】根据公式列出12月与5月厨余垃圾分出率,根据12月的厨余垃圾分出率约是5月的厨余垃圾分出率的14倍列方程即可. 【详解】5月份厨余垃圾分出率=660660x+,12月份厨余垃圾分出率=84007840010x + ,∴由题意得6608400147660840010x x⨯=++,故选:B . 【点睛】此题考查分式方程的实际应用,正确理解题意是解题的关键.7.D解析:D 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同. 【详解】0.0000025=62.510-⨯,故选:D . 【点睛】此题考查了科学记数法,注意n 的值的确定方法:当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.8.A解析:A 【分析】根据a+b+c=1可以把M 、N 、P 分别化为1111,1,1a b c ---,再根据a<0<b<c 得到111,,a b c的大小关系后可以得到解答. 【详解】 解:∵a+b+c=1,∴1111,1,1M N P a b c=-=-=-, ∵a<0<b<c ,∴1110,0,c b b c bc a --=>< ∴111a c b <<, ∴M<P<N ,故选A . 【点睛】本题考查分式的大小比较,熟练掌握分式的大小比较方法是解题关键.9.C解析:C 【分析】 根据a b ,可以判断各个选项中的式子是否正确,从而可以解答本题; 【详解】∵a bA 、22a ab b+≠+ ,故该选项错误; B 、22a ab b-≠- ,故该选项错误; C 、33a ab b= ,故该选项正确; D 、22a ab b ≠ ,故该选项错误;故选:C . 【点睛】本题考查了分式的混合运算,解题时需要熟练掌握分式的性质,分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变,熟练掌握分式的基本性质是解题的关键;10.B解析:B 【分析】根据分式的基本性质即可求出答案. 【详解】 解:A 、11x x y y ++≠,不符合题意; B 、=1x yx y-+--,符合题意; C 、22x y x y x y+≠++,不符合题意; D 、22239x x y y ⎛⎫-= ⎪⎝⎭,不符合题意;故选:B . 【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型.11.C解析:C 【分析】 根据分式方程2311a x x+=--的解为非负数求得a>5,根据不等式组的解集为2y <-,求得2a ≥-,利用分式的分母不等于0得到x ≠1,即可得到a 的取值范围25a -≤≤,且x ≠1,根据整数的意义得到a 的整数值. 【详解】 解分式方程2311a x x+=--,得53a x -=,∵分式方程2311ax x+=--的解为非负数, ∴503a-≥, 解得a ≤5,∵关于y 的不等式组213202y yy a +⎧->⎪⎪⎨-⎪≤⎪⎩,得2y y a <-⎧⎨≤⎩,∵不等式组的解集为2y <-, ∴2a ≥-, ∵x-1≠0, ∴x ≠1,∴25a -≤≤,且x ≠1,∴整数a 为:-2、-1、0、1、3、4、5,共有7个, 故选:C . 【点睛】此题考查根据分式方程的解的情况求未知数的取值范围,根据不等式组的解集情况求未知数的取值范围,确定不等式的整数解,正确理解题意并计算是解题的关键.12.D解析:D 【分析】根据分式的值为零的意义具体计算即可. 【详解】∵分式211a a +-的值等于0,∴21a +=0, ∵21a +≥1>0,∴21a+=0是不可能的,∴无解,故选D.【点睛】本题考查了分式的值为零的条件,熟记基本条件和实数的非负性是解题的关键.二、填空题13.【分析】将原分式化简得再两边同时除以即可得结果【详解】由得所以则故答案为:【点睛】本题考查了分式的化简求值观察式子得到已知与未知的式子之间的关系是解题的关键解析:16 3【分析】将原分式化简得163n m mn-=,再两边同时除以mn即可得结果.【详解】由22227m mn nm n mn--=-+得24414m mn n m n mn--=-+所以163n m mn-=,则11163m n-=故答案为:16 3【点睛】本题考查了分式的化简求值,观察式子得到已知与未知的式子之间的关系是解题的关键.14.0或2【分析】根据分式有意义的情况得出的范围再根据分式的值为整数得出分母x-1=±1求解即可【详解】解:因为分式有意义所以x-1≠0即x≠1当分式值为整数时有x-1=±1解得x=0或x=2故答案为:解析:0或2【分析】根据分式有意义的情况得出x的范围,再根据分式的值为整数得出分母x-1=±1求解即可.【详解】解:因为分式11x-有意义,所以x-1≠0,即x≠1,当分式11x-值为整数时,有x-1=±1,解得x=0或x=2,故答案为:0或2.【点睛】本题考查分式的意义,分式的值,理解分式的值的意义是解决问题的关键.15.8×10-8米【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a |<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值≥10时n 是正数;解析:8×10-8米【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】解:将28纳米用科学记数法表示为2.8×10-8米,故答案为:2.8×10-8米.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.16.【分析】由可得m+n=3mn 再将原分式变形将分子分母化为含有(m+n )的代数式进而整体代换求出结果即可【详解】解:∵∴即m+n=3mn ∴====故答案为:【点睛】本题考查分式的值理解分式有意义的条件 解析:13- 【分析】 由113m n+=可得m+n=3mn ,再将原分式变形,将分子、分母化为含有(m+n )的代数式,进而整体代换求出结果即可.【详解】 解:∵113m n +=, ∴=3m n mn +,即m+n=3mn , ∴225m n mn m n+--- =()()25+m n mn m n +-- =2353mn mn mn⋅-- =3mn mn -=13-. 故答案为:13-.【点睛】本题考查分式的值,理解分式有意义的条件,掌握分式值的计算方法是解决问题的关键. 17.【分析】先把括号里的分式通分再相减然后运用分式乘法进行计算即可【详解】解:===故答案为:【点睛】本题考查了分式的混合运算掌握正确的运算顺序和运算法则是解题关键 解析:11x + 【分析】先把括号里的分式通分,再相减,然后运用分式乘法进行计算即可.【详解】 解:()1211x x x x x ⎡⎤-⋅⎢⎥+-⎣⎦, =()12(1)11x x x x x x x ⎡⎤+-⋅⎢⎥++-⎣⎦, =1(1)1x x x x x -⋅+-, =11x +, 故答案为:11x +. 【点睛】本题考查了分式的混合运算,掌握正确的运算顺序和运算法则是解题关键.18.【分析】根据分式除法法则先将除法转化为乘法再运用分式的乘法法则进行计算即可得出结果【详解】解:故答案为:【点睛】本题考查了分式的除法运算掌握分式的乘除法的关系及运算法则是解题的关键 解析:12a a ++ 【分析】根据分式除法法则先将除法转化为乘法,再运用分式的乘法法则进行计算,即可得出结果.【详解】 解:22112a a a a a--÷+()()()a 1a 1a a a 2a 1+-=⋅+- 12a a +=+ 故答案为:12a a ++ 【点睛】 本题考查了分式的除法运算,掌握分式的乘、除法的关系及运算法则是解题的关键. 19.【分析】根据二次根式的有意义的条件可求出x 进而可得y 的值然后把xy 的值代入所求式子计算即可【详解】解:∵x -3≥03-x≥0∴x=3∴y=﹣2∴故答案为:【点睛】本题考查了二次根式有意义的条件和负整 解析:19【分析】根据二次根式的有意义的条件可求出x ,进而可得y 的值,然后把x 、y 的值代入所求式子计算即可.【详解】解:∵x -3≥0,3-x ≥0,∴x =3,∴y =﹣2, ∴2139y x -==. 故答案为:19. 【点睛】本题考查了二次根式有意义的条件和负整数指数幂的运算,属于常考题型,熟练掌握基本知识是解题的关键.20.1【分析】先去分母把分式方程转化为整式方程再根据原方程无解可得x=2然后把x=2代入整式方程求解即可【详解】解:去分母得x -3=﹣m ∵原方程无解∴x -2=0即x=2把x=2代入上式得2-3=﹣m 所以解析:1【分析】先去分母把分式方程转化为整式方程,再根据原方程无解可得x =2,然后把x =2代入整式方程求解即可.【详解】解:去分母,得x -3=﹣m ,∵原方程无解,∴x -2=0,即x =2,把x =2代入上式,得2-3=﹣m ,所以m =1.故答案为1.【点睛】本题考查了分式方程的无解问题,属于常考题型,正确理解题意、掌握解答的方法是关键.三、解答题21.21x +,12. 【分析】 先把括号里的式子通分进行减法计算,再把除法转化成乘法进行计算,最后把x 的值代入计算即可.【详解】 解:原式()()()222212412221111x x x x x x x x x x --+--=⋅=⋅=---++-, 当3x =时,原式2112x ==+. 【点睛】 本题考查分式的化简求值,解题的关键是掌握运算法则进行计算.22.2x --;【分析】首先把括号里进行通分,然后把除法运算转化成乘法运算,进行约分化简,最后代值计算.【详解】 解:222422244x x x x x x x --⎛⎫-+÷ ⎪+++⎝⎭ =222244(2)22x x x x x x--+++- =222(2)(2)22x x x x x x --++- =2x --当2x =时,原式=2)2=--【点睛】本题是分式的混合运算需特别注意运算顺序及符号的处理,也需要对通分、分解因式、约分等知识点熟练掌握.23.(1)±8;(2)14【分析】(1)根据示例提供的方法可以求得a+b 的值;(2)根据a 2-4a+1=0,通过变形可以求得所求式子的值.【详解】解:(1)∵a ,b 满足a 2+b 2=38,ab=13,∴222()2a b a b ab +=+-,即:38=(a+b )2-2×13,解得,a+b=8或a+b=-8,(2)∵a 2-4a+1=0, ∴140a a -+=, ∴14a a+=, ∴21()16a a +=, ∴221216a a ++=, ∴22114a a +=. 【点睛】本题考查分式的混合运算,解答本题的关键是明确分式混合运算的计算方法,利用数形结合的思想解答.24.(1)乙工程队单独完成这项工程需要10天;(2) 2.5m >【分析】(1)甲工程队用10天完成这项工程的三分之一,则每天完成130的工程量,设乙工程队单独完成这项工程需要x 天,列分式方程求解即可; (1)甲工程队用m 天完成这项工程的三分之一,则每天完成13m的工程量,设乙工程队单独完成这项工程需要x 天,列分式方程,结合x 和m 都是正数,即可求解.【详解】解:(1)设乙工程队单独完成这项工程需要x 天. 由题意,得11151330x ⎛⎫++⨯= ⎪⎝⎭, 解得10x =.经检验10x =是原分式方程的解且符合题意,答:乙工程队单独完成这项工程需要10天;(2)由题意,得1115133m x ⎛⎫++⨯= ⎪⎝⎭, 解得1525m x m =-. 0x ,0m >,250m ∴->,2.5m ∴>.即m的取值范围是 2.5m>.【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.此题涉及的公式:工作总量=工作效率×工作时间.25.(1);(2)3 2【分析】(1)变形已知条件得到x+1x2+2x=1,再利用降次和整体代入的方法把原式化为−x+1,然后把x的值代入计算即可;(2)变形已知条件,把2x=+x2−4x=−1或x2=4x−1,再利用降次和整体代入的方法化简原式,从而得到原式的值.【详解】解:(1)∵1x=,∴x+1,∴(x+1)2=2,即x2+2x+1=2,∴x2+2x=1,∴原式=2x(x2+2x)−3x+1=2x−3x+1=−x+1=−−1)+1=;(2)∵2x=+∴x−2,∴(x−2)2=3,即x2−4x+4=3,∴x2−4x=−1或x2=4x−1,∴原式=()()()241419415513x x x x x-------++=12(16x2−8x+1−4x2+x−36x+9−5x+5)=12[12(4x−1)−48x+15]=12(48x−12−48x+15)=12×3=32.【点睛】本题考查了分式与整式的化简求值:化简求值题,一定要先化简再代入求值.使用整体代入和降幂的方法更简洁.26.(1)A 型学习用品的单价为20元,B 型学习用品的单价为30元;(2)最多购买B 型学习用品800件.【分析】(1)设A 型学习用品单价x 元,利用“用180元购买B 型学习用品的件数与用120元购买A 型学习用品的件数相同”列分式方程求解即可;(2)设可以购买B 型学习用品y 件,则A 型学习用品(1000−y )件,根据这批学习用品的钱不超过28000元建立不等式求出其解即可.【详解】解:(1)设A 型学习用品的单价为x 元,则B 型学习用品的单价为(x +10)元,由题意得:18012010x x=+, 解得:x =20,经检验x =20是原分式方程的根,且符合实际,则x +10=30.答:A 型学习用品的单价为20元,B 型学习用品的单价为30元;(2)设购买B 型学习用品y 件,则购买A 型学习用品(1000−y )件,由题意得:20(1000−y )+30y≤28000,解得:y≤800.答:最多购买B 型学习用品800件.【点睛】本题考查了列分式方程解应用题和一元一次不等式解实际问题的运用,找到数量关系,列出分式方程和一元一次不等式,是解题的关键.。
第5章 分式与分式方程 北师大版数学八年级下册单元检测(含答案)

2023年北师大版数学八年级下册《分式与分式方程》单元检测一、选择题(共12小题)1.下列式子是分式的是( )A.a-b2 B.5+yπ C.x+3x D.1+x2.下列是分式方程的是( )A.xx+1+x+43B.x4+x-52=0 C.34(x-2)=43x D.1x+2+1=03.若分式x+12-x有意义,则x满足的条件是( )A.x≠-1B.x≠-2C.x≠2D.x≠-1且x≠24.方程2x+1x-1=3的解是( )A.-45B.45C.-4D.45.下列计算错误的是( )A.0.2a+b0.7a+b=2a+b7a+bB.x3y2x2y3=xyC.a-bb-a=﹣1 D.1c+2c=3c6.下列等式成立的是( )A.(-3)-2=-9B.(-3)-2=19C.(a-12)2=a14D.(-a-1b-3)-2=-a2b67.化简:等于( ).A. B.xy4z2 C.xy4z4 D.y5z8.化简:-x-2y2xy+x+6y2xy=( )A.2xB.4xC.-2xD.-4x9.解分式方程2x-1+x+21-x=3时,去分母后变形为( )A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1)C.2﹣(x+2)=3(1﹣x)D.2﹣(x+2)=3(x﹣1)10.甲、乙两船从相距300 km的A,B两地同时出发相向而行,甲船从A地顺流航行180 km时与从B地逆流航行的乙船相遇,水流的速度为6 km/h,若甲、乙两船在静水中的速度均为x km/h,则求两船在静水中的速度可列方程为( )A.180x+6=120x-6B.180x-6=120x+6C.180x+6=120xD.180x=120x-611.若a+b=2,ab=﹣2,则ab +ba的值是( )A.2B.﹣2C.4D.﹣412.用换元法解分式方程﹣+1=0时,如果设=y,将原方程化为关于y 的整式方程,那么这个整式方程是()A.y2+y﹣3=0B.y2﹣3y+1=0C.3y2﹣y+1=0D.3y2﹣y﹣1=0二、填空题(共6小题)13.若分式的值为0,则x= .14.若关于x的方程«Skip Record If...»的解为x=4,则m= .15.计算:(﹣2xy﹣1)﹣3=.16.已知1a-1b=12,则aba-b的值是________.17.已知关于x的分式方程kx+1+x+kx-1=1的解为负数,则k的取值范围是.18.某城市进行道路改造,若甲、乙两工程队合作施工20天可完成;若甲、乙两工程队合作施工5天后,乙工程队再单独施工45天可完成.求乙工程队单独完成此工程需要多少天?设乙工程队单独完成此工程需要x天,可列方程为.三、解答题(共8小题)19.计算:(a 2+3a)÷a 2-9a -3;20.计算:«Skip Record If...».21.解分式方程:x x -1-1=2x 3x -3.22.解分式方程:2x +2x-x +2x -2=x 2-2x 2-2x.23.先化简,再求值:1﹣÷,其中x 、y 满足|x ﹣2|+(2x ﹣y ﹣3)2=0.24.在解分式方程2-xx -3=13-x-2时,小玉的解法如下:解:方程两边都乘以x-3,得2-x=-1-2.①移项,得-x=-1-2-2.②解得x=5.③(1)你认为小玉从哪一步开始出现了错误________(只填序号),错误的原因是________________;(2)请你写出这个方程的完整解题过程.25.贸易公司现有480吨货物,准备外包给甲、乙两个车主来完成运输任务,已知甲车主单独完成运输任务比乙车主单独完成任务要多用10天,而乙车主每天运输的吨数是甲车主的1.5倍,公司需付甲车主每天800元运输费,乙车主每天运输费1200元,同时公司每天要付给发货工人200元工资.(1)求甲、乙两个车主每天各能运输多少吨货物?(2)公司制定如下方案,可以单独由甲乙任意一个车主完成,也可以由两车主合作完成.请你通过计算,帮该公司选择一种既省钱又省时的外包方案.26.某高速铁路工程指挥部,要对某路段工程进行招标,接到了甲、乙两个工程队的投标书.从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的23;若由甲队先做20天,剩下的工程再由甲、乙两队合作60天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为8.6万元,乙队每天的施工费用为5.4万元,工程预算的施工费用为1000万元.若在甲、乙工程队工作效率不变的情况下使施工时间最短,问拟安排预算的施工费用是否够用?若不够用,需追加预算多少万元?答案1.C2.D3.C.4.D5.A6.B7.B8.A9.D10.A.11.D.12.A13.答案为:2.14.答案为:3;15.答案为:﹣y3 8x3.16.答案为:-2;17.答案为:k>﹣12且k≠0.18.答案为:520+45x=1.19.解:原式=a.20.解:原式=«Skip Record If...».21.解:方程两边同乘以3(x-1),得3x-3(x-1)=2x,解得x=1.5.检验:当x=1.5时,3(x-1)=1.5≠0,所以原方程的解为x=1.5.22.解:原方程可化为2(x+1)x-x+2x-2=x2-2x(x-2),方程两边同时乘x(x-2),得2(x+1)(x-2)-x(x+2)=x2-2,整理得-4x=2.解得x=-1 2 .经检验,x=-12是原方程的解.23.解:原式=1﹣•=1﹣==﹣,∵|x﹣2|+(2x﹣y﹣3)2=0,∴,解得:x=2,y=1,当x=2,y=1时,原式=﹣1 3 .24.解:(1)① 去分母时漏乘常数项 (2)去分母,得2-x=-1-2(x-3).去括号,得2-x=-1-2x+6.移项,合并,得x=3.检验,将x=3代入x-3=0,所以原方程无解.25.解:(1)设甲车主每天能运输x吨货物,则乙车主每天能运输1.5x吨货物,根据题意得:﹣=10,解得:x=16,经检验,x=16是原方程的解,且符合题意,∴1.5x=24.答:甲车主每天能运输16吨货物,乙车主每天能运输24吨货物.(2)甲车主单独完成所需时间为480÷16=30(天),乙车主单独完成所需时间为480÷24=20(天),甲、乙两车主合作完成所需时间为480÷(16+24)=12(天),甲车主单独完成所需费用为30×(800+200)=30000(元),乙车主单独完成所需费用为20×(1200+200)=28000(元),甲、乙两车主合作完成所需费用为12×(800+1200+200)=26400(元).∵30000>28000>26400,30>20>12,∴该公司选择由两车主合作完成既省钱又省时.26.解:(1)设乙队单独完成这项工程需要x天,则甲队单独完成这项工程需要23x天.根据题意得202x3+60×(12x3+1x)=1,解得x=180.经检验,x=180是原分式方程的根,且符合题意,∴2x3=120,则甲、乙两队单独完成这项工程分别需120天、180天.(2)设甲、乙两队合作完成这项工程需要y天,则有y(1120+1180)=1,解得y=72,需要施工费用72×(8.6+5.4)=1008(万元),∵1008>1000,∴工程预算的施工费用不够用,需追加预算8万元。
北师大版数学八年级下册第五章 分式与分式方程 达标测试卷(含答案)

第五章 分式与分式方程 达标测试卷 一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列代数式,是分式的是( ) A.3x 2π B.m +n m C.ab 25 D.52.【2022·天津】计算a +1a +2+1a +2的结果是( ) A .1 B .2a +2 C .a +2 D .a a +23.【2022·佛山禅城区期末】如果分式|m +4|m -4的值为0,那么m 的值为( ) A .不存在 B .±4 C .4 D .-44.运用分式的性质,下列计算正确的是( )A.-x +y 2=-x +y 2B.x -3x 2-9=1x -3C.x 2-2xy +y 2x -y =x -yD.xy x 2-xy =x x -y5.若将分式3m m +n 与4n 2(m -n )通分,则分式3m m +n的分子应变为( ) A .6m 2-6mn B .6m -6n C .2(m -n ) D .2(m -n )(m +n )6.若关于x 的分式方程3x +ax x +1=2-3x +1有增根x =-1,则2a -3的值为( ) A .2 B .3 C .4 D .67.【2022·德阳】关于x 的方程2x +a x -1=1的解是正数,则a 的取值范围是( ) A .a >-1 B .a >-1且a ≠0 C .a <-1 D .a <-1且a ≠-28.已知x 2-4x -3÷是一道分式化简题,其中一部分被墨水污染了,若只知道该题化简的结果为整式,则被墨水覆盖的部分不可能是( )A .x -3B .x -2C .x +3D .x +29.师徒两人做工艺品,已知徒弟每天比师傅少做6个,徒弟做48个所用的时间与师傅做72个所用的时间相同,则师傅每天做( )A .12个B .18个C .20个D .24个10.若关于x 的不等式组⎩⎪⎨⎪⎧x -3(x -2)>-2,a +x 2<x 有解,关于y 的分式方程ay -14-y +3y -4=-2有整数解,则符合条件的所有整数a 的和为( )A .0B .1C .2D .5二、填空题:本大题共5小题,每小题3分,共15分.11.分式m m 2-n 2和n 3m +3n的最简公分母为__________. 12.用换元法解分式方程x +1x -2x x +1=1时,如果设x x +1=y ,那么原方程可以化为关于y 的整式方程是________.13.【2022·成都】已知2a 2-7=2a ,则代数式⎝⎛⎭⎪⎫a -2a -1a ÷a -1a 2的值为________. 14.【2022·江西】甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x 人,则可列分式方程为________________.15.对于两个非零的实数a ,b ,规定a *b =3b -2a ,若5*(3x -1)=2,则x 的值为________.三、解答题(一):本大题共3小题,每小题8分,共24分.16.计算:(1)x 2x -3÷34x 2-9·12x +3; (2)⎝ ⎛⎭⎪⎫a -1+2a +1÷(a 2+1).17.解分式方程:(1)1-x x -2=12-x -2; (2)4x 2-9-x 3-x=1.18.已知x (x -1)-(x 2-y )=-6,求x 2+y 22-xy 的值.四、解答题(二):本大题共3小题,每小题9分,共27分.19.先化简,再求值:⎝ ⎛⎭⎪⎫x +2x -2+4x 2-4x +4÷x x -2,其中-1<x ≤2且x 为整数.请你选一个合适的x 值代入求值.20.【原创题】北京首条全封闭马拉松路线是冬奥公园的一大亮点,这条“特色最鲜明、体验最丰富、服务最专业”的42公里滨河马拉松路线,充分融合“永定河”“西山”“首钢工业”“冬奥”元素,构建畅通无阻的慢行绿道,具备“智慧跑”“滨水跑”“公园跑”“堤上跑”等多功能特色。
八年级数学分式方程题目

八年级数学分式方程题目一、分式方程题目。
1. 解方程:(1)/(x - 2)=(3)/(x)- 解析:- 方程两边同乘x(x - 2)(这是x-2与x的最简公分母)得:x=3(x - 2)。
- 展开括号得x = 3x-6。
- 移项得3x - x=6,即2x = 6。
- 解得x = 3。
- 检验:当x = 3时,x(x - 2)=3×(3 - 2)=3≠0,所以x = 3是原分式方程的解。
2. 解方程:(2)/(x+1)+(3)/(x - 1)=(6)/(x^2)-1- 解析:- x^2-1=(x + 1)(x - 1),方程两边同乘(x + 1)(x - 1)得:2(x - 1)+3(x + 1)=6。
- 展开括号得2x-2 + 3x+3 = 6。
- 合并同类项得5x+1 = 6。
- 移项得5x=6 - 1,即5x = 5。
- 解得x = 1。
- 检验:当x = 1时,(x + 1)(x - 1)=(1 + 1)×(1 - 1)=0,所以x = 1是增根,原分式方程无解。
3. 若关于x的分式方程(x)/(x - 3)-2=(m)/(x - 3)有增根,求m的值。
- 解析:- 方程两边同乘(x - 3)得x-2(x - 3)=m。
- 展开括号得x-2x + 6=m,即-x+6 = m。
- 因为分式方程有增根,所以x - 3 = 0,即x = 3。
- 把x = 3代入-x + 6=m得m=-3 + 6 = 3。
4. 解方程:(3)/(x - 1)-(x + 3)/(x^2)-1=0- 解析:- 方程两边同乘(x + 1)(x - 1)(x^2-1=(x + 1)(x - 1))得:3(x + 1)-(x + 3)=0。
- 展开括号得3x+3 - x - 3 = 0。
- 合并同类项得2x = 0。
- 解得x = 0。
- 检验:当x = 0时,(x + 1)(x - 1)=(0 + 1)×(0 - 1)= - 1≠0,所以x = 0是原分式方程的解。
分式与分式方程练习题

分式与分式方程练习题一、基础练习1. 计算下列分式的值:(a) $\frac{3}{5} + \frac{2}{5}$(b) $\frac{5}{6} - \frac{1}{3}$(c) $\frac{2}{3} \times \frac{4}{5}$(d) $\frac{7}{8} \div \frac{4}{9}$2. 将下列分数化为最简形式:(a) $\frac{9}{12}$(b) $\frac{18}{30}$(c) $\frac{24}{36}$(d) $\frac{16}{48}$3. 求下列分式的整数部分和分数部分:(a) $\frac{15}{4}$(b) $\frac{8}{3}$(c) $\frac{23}{5}$(d) $\frac{17}{6}$4. 求下列分式的倒数:(a) $\frac{4}{9}$(b) $\frac{5}{12}$(c) $\frac{7}{5}$(d) $\frac{9}{10}$5. 求下列分式的平方:(a) $\left( \frac{2}{5} \right)^2$(b) $\left( \frac{3}{4} \right)^2$(c) $\left( \frac{5}{6} \right)^2$(d) $\left( \frac{7}{8} \right)^2$二、方程练习1. 解下列分式方程:(a) $\frac{x}{3} - \frac{1}{2} = \frac{x}{4}$(b) $\frac{2}{x} + \frac{3}{4} = \frac{1}{2}$(c) $\frac{x}{6} + \frac{x-1}{3} = \frac{3}{2}$(d) $\frac{x}{5} - \frac{2x-1}{4} = \frac{x}{3} - 2$2. 解下列分式方程组:(a) $\frac{1}{x} + \frac{1}{y} = \frac{3}{4}$$\frac{1}{x} - \frac{1}{y} = \frac{1}{8}$ (b) $\frac{x+1}{2} + \frac{y-1}{3} = 1$$\frac{x-2}{4} - \frac{y+2}{2} = 2$三、应用练习1. 小明花了$\frac{3}{8}$小时的时间在写作业上,又花了$\frac{5}{12}$小时的时间在看电视上。