函数的定义域(教案)

合集下载

第二章第二节函数的定义域教案

第二章第二节函数的定义域教案

城东蜊市阳光实验学校第二章第二节函数的定义域教案教学目的:1.由函数表达式可以求出定义域.2.会求较简单的复合函数的定义域.3.函数的定义域,会讨论求解其中参数的取值范围.教学重点:求函数的定义域的各种方法。

教学难点:抽象函数的定义域。

教学方法:讲练结合。

学法指导:通过例题,结合练习,掌握方法。

教学过程:一、知识点复习:〔1〕给定函数的解析式,求函数的定义域的根据是根本代数式的意义.如分式的、对数的真数大于零且底数为不等于1的正数以及三角函数的意义等.〔2〕求给定函数解析式的定义域往往归结为解不等式组的问题.在解不等式组时要细心,取交集时可借助于数轴,并且要注意端点值或者者边界值的取舍.〔3〕求复合函数的定义域①复合函数的定义域是先由y=成立的条件确定u的取值范围,再由u的取值范围来确定u=g(x)中x的范围,即为的定义域.②的定义域。

求的定义域,即求u=g(x)的值域.〔3〕一些函数的定义域①分式函数的分母不等于零;②偶次方根的被开方数不小于零;③指数函数和对数函数的底数必须大于零且不等于1;④三角函数的定义域。

二、例题选讲:〔一〕根底知识扫描1.函数的定义域是〔〕A.[-2,2]B.{-2,2}C.(-∞,-2)∪(2,+∞)D.(-2,2)2.函数的定义域是()A.(-3,+∞)B.[-2,+∞)C.(-3,-2)D.(-∞,-2]3.函数的定义域为F,函数的定义域为G,那么()A.F∩G= B.F=GC.F GD.G F5.函数的定义域是{x∣0≤x≤2},那么的定义域为()A.[0,2]B.[2,4]C.[-2,0]D.无法确定6.函数的定义域为A,函数的定义域为B,那么以下正确的结论是()A.A∪B=BB.A BC.A=BD.A∩B=B7.函数的定义域为。

〔二〕题型分析:题型一:求详细函数的定义域例1:求以下函数的定义域:(1)(2) (3)分析观察所给函数解析式的构造特征,联想根本初等函数的定义域.布列不等式组,解之即得. 例2:函数)1(+=x f y 的定义域是[-2,3],那么的定义域是()A.B .[-1,4]C .[-5,5]D .[-3,7]分析:例3:的定义域为[-1,1],求的定义域.分析深化理解函数的定义域是对自变量x 而言的,绝非其它形式。

高中数学函数及定义域教案

高中数学函数及定义域教案

高中数学函数及定义域教案
目标:学生能够理解函数的概念并能够找到函数的定义域
教学内容:
1. 什么是函数?
2. 函数的定义域是什么?
3. 如何找到函数的定义域?
教学步骤:
一、导入新知识
通过举例让学生了解函数的概念,比如:y=x+3,y=2x^2+1
二、讲解函数的定义域
1. 函数的定义域是指输入的自变量的取值范围
2. 定义域可以是一个区间、多个区间的并集、整个实数集等
三、示例演练
1. 对于函数y=√x,问学生这个函数的定义域是什么?
2. 引导学生找到函数的定义域并解释
四、让学生自主找出函数的定义域
给学生几个函数的例子,让他们找出函数的定义域,然后在班级中分享答案五、总结回顾
总结函数的概念和定义域的含义,确保学生掌握了相关知识点
教学方法:
1. 讲解结合举例演示,使抽象的概念更具体化
2. 学生合作讨论,促进思维碰撞和知识分享
评估与作业:
1. 设计一些函数的定义域求解题让学生独立完成
2. 要求学生写一篇关于函数及其定义域的总结报告
拓展延伸:
引导学生探讨更多复杂函数的定义域求解方法,比如组合函数、复合函数等
以上就是本节课的教案,希望能够帮助学生更好地理解函数及其定义域的概念。

如果有任何问题或建议,请随时与我联系。

祝您教学愉快!。

对数函数的定义域值域优秀教案

对数函数的定义域值域优秀教案

对数函数定义域值域学案学习目标:1、会求对数函数地定义域; 2、会求对数函数地值域. 学习重点:求对数函数定义域、值域学习难点:利用对数函数定义域、值域解题. 例题分析:例1:求下列函数地定义域 ①()()2log 1+=-x y x ②121log 8.0--=x x y练习1.()()211log -=+x y x 2.)34(log 25.0x x y -=例2:求下列函数地值域 ①1log 2-=x y ②()1log 2-=x y练习1.]8,0(,log 21∈=x x y 2.()()532log 22-≤--=x x x y例3:①若函数]41)1([log 22+-+=x a ax y 地定义域为R ,求实数a 地取值范围.②已知)1lg(2++=ax x y 定义域为R ,值域为R ,求a 地范围例4:已知x 满足条件09log 9)(log 221212≤++x x ,求函数)4(log )3(log )(22x x x f ⋅=地最大值和最小值.学科作业:1.已知)13(log -a a 恒为正数,那么实数a 地取值范围是()A.a <31 B.3132<<a C.a >1 D. 3132<<a 或a >1 2.函数)1(2log )(2≥-=x x x f ,则)(1x f-地定义域是( )A.RB.),2[+∞-C.),1[+∞D.(0,1)3.函数)(x f 地定义域是(0,1),若)]3([log )(21x f x F -=,则函数F (x )地定义域是.4、函数)176(log 221+-=x x y 地值域是.5、求函数)1(log 2-=x y 地反函数=-)(1x f,反函数地定义域是,值域是6、已知函数)12lg()(2++=x ax x f ,(1)若f(x)地定义域为R ,求实数a 地范围; (2)若f(x)地值域为R ,求实数a 地范围.7、若9271≤≤x ,求)3(log 27log )(33x x x f ⋅=地最值.8、已知函数)1)((log )1(log 11log )(1.01.01.0 a x a x x x x f -+-+-+=地最小值为-2,求实数a 地值.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.b5E2R。

《函数定义域》公开课教案

《函数定义域》公开课教案

《函数定义域》公开课教案函数定义域公开课教案目标本公开课的目标是让学生们理解并能够正确确定函数的定义域。

通过课程的教学,学生应该能够:1. 理解函数的定义域的概念;2. 熟练应用常见函数的定义域求解方法;3. 掌握使用数学符号和语言来表达函数的定义域。

教学方法本公开课将采用以下教学方法来帮助学生理解函数定义域的概念和求解方法:1. 引入:通过生动有趣的例子引出函数定义域的概念和重要性;引入:通过生动有趣的例子引出函数定义域的概念和重要性;2. 讲解:清晰简明地讲解函数定义域的定义和求解方法;讲解:清晰简明地讲解函数定义域的定义和求解方法;3. 示例:通过多个实际函数的例子,演示如何求解函数的定义域;示例:通过多个实际函数的例子,演示如何求解函数的定义域;4. 练:提供一些练题,让学生巩固和应用所学的知识;练习:提供一些练习题,让学生巩固和应用所学的知识;5. 讨论:引导学生讨论不同类型函数的定义域,促进深入理解;讨论:引导学生讨论不同类型函数的定义域,促进深入理解;6. 总结:总结本节课的重点内容,强调函数定义域的重要性和应用。

总结:总结本节课的重点内容,强调函数定义域的重要性和应用。

教学内容本公开课的教学内容包括以下几个方面:1. 函数和定义域的概念介绍;2. 明确函数的定义域边界和限制条件;3. 常见函数的定义域求解方法,如线性函数、多项式函数、指数函数、对数函数等;4. 特殊函数的定义域,如分段函数、反函数等;5. 使用数学符号和语言表达函数的定义域。

教学过程本公开课的教学过程如下:1. 引入(5分钟):- 通过一个有趣的例子引出函数定义域的概念,并解释其重要性。

2. 讲解(10分钟):- 清晰简明地讲解函数的定义和定义域的概念,以及如何判断函数的定义域。

- 介绍常见的函数和它们的定义域求解方法。

3. 示例(15分钟):- 通过多个函数的实际例子,演示如何求解函数的定义域。

4. 练(10分钟):- 提供一些练题,让学生巩固和应用所学的知识。

函数的概念 教案

函数的概念 教案

函数的概念教案函数是数学中的一个重要概念,它在数学理论和实际问题中都有着广泛的应用。

本教案将介绍函数的定义、性质以及常见的函数类型。

一、函数的定义函数是一个将每个元素都从一个集合(称为定义域)映射到另一个集合(称为值域)的规则。

简单来说,函数就是根据输入值得到输出值的过程。

记作:y = f(x),其中x为自变量,y为因变量。

f(x)表示函数f对x 的输出值。

二、函数的性质1. 定义域与值域:- 定义域是函数f中所有可能的输入值x的集合。

- 值域是函数f中所有可能的输出值y的集合。

2. 一一对应关系:- 函数f的每个输入对应唯一一个输出,即不同的输入得到不同的输出。

- 一个输出可能对应多个不同的输入(但不可逆)。

3. 符号化表示:- 对于给定的函数,可以通过数学符号来表示,如多项式函数、三角函数等。

三、常见的函数类型1. 线性函数:- 定义:一个函数是线性的,当且仅当它可表示为f(x) = ax + b的形式,其中a和b是常数。

- 例子:y = 2x + 3,y = -0.5x + 1等。

2. 幂函数:- 定义:一个函数是幂函数,当且仅当它可表示为f(x) = ax^b的形式,其中a和b是常数。

- 例子:y = 2x^3,y = 0.5x^2等。

3. 指数函数:- 定义:一个函数是指数函数,当且仅当它可表示为f(x) = a^x的形式,其中a是常数。

- 例子:y = 2^x,y = 0.5^x等。

4. 对数函数:- 定义:一个函数是对数函数,当且仅当它可表示为f(x) = loga(x)的形式,其中a是常数。

- 例子:y = log2(x),y = log10(x)等。

四、总结函数是数学中的一个重要概念,它描述了输入和输出之间的关系。

我们可以通过函数来解决各种实际问题,并且函数具有很多有用的性质和种类。

熟练掌握函数的概念和常见类型,有助于我们加深对数学的理解,并能更好地应用函数的知识解决实际问题。

函数定义域值域解析式教案

函数定义域值域解析式教案

学 校: 年 级: 教学课题:学员姓名: 辅导科目:数学 学科教师:教学目标函数的定义域,值域,解析式求法教学内容考点一:映射的概念 例1、下面能构成从集合A 到集合B 的映射的是1 3 1 3 1 32 5 2 53 53 7 3 74 74 9 4 9(1) (2) (3)1 3 1 32 5 2 53 7 3 79 4(4) (5)考点二:集合与映射的关系说明:原项的集合叫做原项集,项的集合叫做项集例2、设A ,B 是两个非空集合,f :A →B 是从A 到B 的一个函数,函数的定义域与值域分别为M ,N 则下列说法正确的是 ( )A.N B M A ==,B.N B M A ⊆=,C.N B M A ⊆⊆,D.N B M A ⊆⊆,考点三、函数概念例3、下列关系中,y 不是x 的函数的是 ( )A.x y 5=B.2x y =C.x y 42=D.x y =例4、下列各组函数中,表示同一函数的是 ( )A. 1,x y y x== B. 211,1y x x y x =-+=-C. 33,y x y x ==D. 2||,()y x y x ==变式训练:下列函数中,与函数x y =相同的函数是 (A.x x y 2= B.2)(x y = C.2x y = D.x e y ln =考点四、函数解析式求解方法下面向大家提供求函数解析式的三种常用方法:(1)换元法:已知复合函数[])(x g f 的解析式,求原函数)(x f 的解析式例5、已知x x x f 64)12(2+=+,求)(x f变式训练:已知x x x f 69)13(2+=+,求)(x f 得解析式注意:使用换元法求函数解析式时要注意定义域的变换(2)待定系数法:适用条件为已知函数的类型已知))((x g f 的解析式求)(x f 的解析式例6、已知二次函数)(x f 满足0)0(=f ,82)()1(++=+x x f x f ,求)(x f 的解析式变式训练:已知)(x f 是一次函数,且[]89)(+=x x f f ,求)(x f(3)消去法:已知)()(x g x f +解析式求)(x f 解析式例7、设函数)(x f 满足)0(,)1(2)(≠=+x x xf x f ,求)(x f 的函数解析式。

函数的定义域、值域、单调性、奇偶性教案大全

函数的定义域、值域、单调性、奇偶性教案大全

第二章 函数概念与基本初等函数(Ⅰ)一、知识结构重点:函数及其表示方法;函数的单调性、奇偶性,几类特殊函数的性质及应用; 难点:运用函数解决问题:建立数学模型。

第一课时 函数的概念和图象(1)学习要求1.理解函数概念;2.了解构成函数的三个要素;3.会求一些简单函数的定义域与值域;4.培养理解抽象概念的能力.自学评价1. 函数的定义:设,A B 是两个非空数集,如果按某种对应法则f ,对于集合A 中的每一个元素x ,在集合B 中都有惟一的元素y 和它对应,这样的对应叫做从A 到B 的一个函数,记为(),y f x x A =∈.其中输入值x 组成的集合A 叫做函数()y f x =的定义域,所有输出值y 的取值集合叫做函数()y f x =的值域。

【精典范例】例1:判断下列对应是否为函数: (1);,,Z y R x x y y x ∈∈→的最大整数,为不大于其中(2)2,,,x y y x x N y R →=∈∈; (3)x y x →=,{|06}x x x ∈≤≤,;听课随笔(4)16x y x →=,{|06}x x x ∈≤≤, {|03}y y y ∈≤≤.【分析】解本题的关键是抓住函数的定义,在定义的基础上输入一些数字进行验证,当不是函数时,只要列举出一个集合A 中的x 即可. 【解】(1)是;(2)不是;(3)不是;(4)是。

点评:判断一个对应是否是函数,要注意三个关键词:“非空”、“每一个”、“惟一”。

例2:求下列函数的定义域:(1);24)(++=x x x f (2)131-+--x x ;(3)1()2f x x=-.【解】(1)),2()2,4(+∞--- ;(2)]1,3[-;(3)[1,2)(2,)-+∞。

点评: 求函数()y f x =的定义域时通常有以下几种情况: ①如果()f x 是整式,那么函数的定义域是实数集R ;②如果()f x 是分式,那么函数的定义域是使分母不等于零的实数的集合;③如果()f x 为二次根式,那么函数的定义域是使根号内的式子大于或等于0的实数的集合;④如果()f x 是由几部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数的集合。

函数的定义域与值域,单调性,奇偶性 教案

函数的定义域与值域,单调性,奇偶性 教案

高一数学求函数的定义域与值域的常用方法精讲3、求函数解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y。

(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值;(3)换元法:若给出了复合函数f[g(x)]的表达式,求f(x)的表达式时可以令t=g(x),以换元法解之;(4)构造方程组法:若给出f(x)和f(-x),或f(x)和f(1/x)的一个方程,则可以x代换-x(或1/x),构造出另一个方程,解此方程组,消去f(-x)(或f(1/x))即可求出f(x)的表达式;(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。

(二)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,4、对复合函数y=f[g(x)]的定义域的求解,应先由y=f(u)求出u的范围,即g(x)的范围,再从中解出x的范围I1;再由g(x)求出y=g(x)的定义域I2,I1和I2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;一:求函数解析式1、换元法:题目给出了与所求函数有关的复合函数表达式,可将内函数用一个变量代换。

例1. 已知2211()x x xfx x+++=,试求()f x。

2、构造方程组法:对同时给出所求函数及与之有关的复合函数的条件式,可以据此构造出另一个方程,联立求解。

函数的定义域和值域教案

函数的定义域和值域教案

函数的定义域和值域教案【教案】一、教学目标:1.了解函数的定义域和值域的概念;2.掌握求函数的定义域的方法;3.掌握求函数的值域的方法;4.能够应用所学知识解决实际问题。

二、教学内容:1.函数的定义域和值域的概念;2.求函数的定义域的方法;3.求函数的值域的方法;4.实际问题的应用。

三、教学过程:1.引入(1)复习巩固:复习一元一次方程和二元一次方程的求解方法。

(2)引入新知:通过实际问题引入函数的概念。

比如:某老师设置的体测项目中,小明的体重与身高呈正比关系,我们可以用函数的方式来表达这个关系。

2.教学展开(1)定义域- 介绍函数的定义域的概念:函数的定义域是指使函数有意义的自变量的取值集合。

- 通过例题讲解:比如给出函数f(x) = √(x + 2),问函数 f(x) 的定义域是什么?我们可以解方程x + 2 ≥ 0,得到x ≥ -2,所以函数的定义域为 [-2, +∞)。

(2)值域- 介绍函数的值域的概念:函数的值域是指因变量可能取到的值的集合。

- 通过例题讲解:比如给出函数 f(x) = x^2,问函数 f(x) 的值域是什么?我们可以通过计算函数的图像或者利用二次函数的性质知道,该函数的值域为[0, +∞)。

(3)求解定义域和值域的方法总结:- 定义域的求解方法:根据函数中涉及到的有限性、无理数和分式的限制条件,来确定定义域的范围。

- 值域的求解方法:根据函数的图像或者利用函数的性质来判断函数的取值范围。

3.实践应用通过实际问题的应用来巩固所学内容:(1)例题一:某物体下落的高度与时间的关系可以表示为函数 h(t) = 9.8t^2/2,其中 t 为时间,单位为秒。

请问该函数的定义域和值域分别是什么?- 解答:根据物理知识,时间 t 为正值,所以函数的定义域为 [0,+∞);而高度 h(t) 不会是负值,所以函数的值域为[0, +∞)。

(2)例题二:某商品的销售价格与销售数量的关系可以表示为函数 p(x) = 100 - 2x,其中 x 为销售数量,单位为件。

第1讲 函数的定义域及值域(教师版)

第1讲 函数的定义域及值域(教师版)

第1讲 函数的定义域及值域【知识梳理】一.函数的基本概念 (1)函数的定义设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A . (2)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(3)函数的三要素:定义域、对应关系和值域. (4)函数的表示法表示函数的常用方法有解析法、图象法和列表法. 二.映射的概念设A ,B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射. 三.函数解析式的求法求函数解析式常用方法有待定系数法、换元法、配凑法、消去法. 四.常见函数定义域的求法 (1)分式函数中分母不等于零. (2)偶次根式函数被开方式大于或等于0. (3)一次函数、二次函数的定义域为R .(4)y =a x (a >0且a ≠1),y =sin x ,y =cos x ,定义域均为R .(5)y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠k π+π2,k ∈Z .(6)函数f (x )=x α的定义域为{x |x ∈R 且x ≠0}.【题型归纳全解】题型一 函数的概念例1. 有以下判断:①f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1 (x ≥0)-1 (x <0)表示同一函数;②函数y =f (x )的图象与直线x =1的交点最多有1个; ③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;④若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0. 其中正确判断的序号是________. 答案 ②③解析 对于①,由于函数f (x )=|x |x 的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1 (x ≥0)-1 (x <0)的定义域是R ,所以二者不是同一函数;对于②,若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于③,f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于④,由于f ⎝⎛⎭⎫12=⎪⎪⎪⎪12-1-⎪⎪⎪⎪12=0,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (0)=1. 综上可知,正确的判断是②③.题型二 求函数的解析式例2. (1)如果f (1x )=x1-x,则当x ≠0且x ≠1时,f (x )等于( )A.1xB.1x -1C.11-xD.1x -1 (2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则f (x )=________.(3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f (1x)·x -1,则f (x )=________.答案 (1)B (2)2x +7 (3)23x +13解析 (1)令t =1x ,得x =1t ,∴f (t )=1t 1-1t =1t -1,∴f (x )=1x -1.(2)设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,即ax +5a +b =2x +17不论x 为何值都成立, ∴⎩⎪⎨⎪⎧ a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7.(3)在f (x )=2f (1x )x -1中,用1x代替x ,得f (1x )=2f (x )1x -1,将f (1x )=2f (x )x-1代入f (x )=2f (1x )x -1中,可求得f (x )=23x +13.题型三 求函数的定义域 例3. (1)函数f (x )=ln (2+x -x 2)|x |-x 的定义域为( )A .(-1,2)B .(-1,0)∪(0,2)C .(-1,0)D .(0,2)(2)已知函数f (x )的定义域为[1,2],则函数g (x )=f (2x )(x -1)0的定义域为________.答案 (1)C (2)[12,1)解析 (1)f (x )有意义,则⎩⎪⎨⎪⎧2+x -x 2>0,|x |-x ≠0,解之得⎩⎪⎨⎪⎧-1<x <2,x <0,∴-1<x <0,∴f (x )的定义域为(-1,0).(2)要使函数g (x )=f (2x )(x -1)0有意义,则必须有⎩⎪⎨⎪⎧1≤2x ≤2x -1≠0,∴12≤x <1,故函数g (x )的定义域为[12,1). 题型四 分段函数例4. (1)已知函数f (x )=⎩⎪⎨⎪⎧2x,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .3(2)设函数y =f (x )在R 上有定义.对于给定的正数M ,定义函数f M (x ) =⎩⎪⎨⎪⎧f (x ),f (x )≤M ,M ,f (x )>M ,则称函数f M (x )为f (x )的“孪生函数”.若给定函数f (x )=2-x 2,M =1,则f M (0)的值为 ( )A .2B .1 C. 2 D .- 2 答案 (1)A (2)B解析 (1)由题意知f (1)=21=2.∵f (a )+f (1)=0, ∴f (a )+2=0.①当a >0时,f (a )=2a,2a +2=0无解;②当a ≤0时,f (a )=a +1,∴a +1+2=0,∴a =-3. (2)由题设f (x )=2-x 2≤1,得 当x ≤-1或x ≥1时, f M (x )=2-x 2;当-1<x <1时,f M (x )=1.∴f M (0)=1.【课堂训练】1. 函数f (x )=1ln (x +1)+4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]答案 B解析 由⎩⎪⎨⎪⎧x +1>0ln (x +1)≠04-x 2≥0,得-1<x ≤2,且x ≠0.2. (2012·江西)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))等于( )A.15 B .3 C.23 D.139 答案 D解析 由题意知f (3)=23,f ⎝⎛⎭⎫23=⎝⎛⎭⎫232+1=139,∴f (f (3))=f ⎝⎛⎭⎫23=139.3. 若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )答案 B解析 可以根据函数的概念进行排除,使用筛选法得到答案.4. 已知函数f (x )满足f (2x +|x |)=log 2x |x |,则f (x )的解析式是( )A .f (x )=log 2xB .f (x )=-log 2xC .f (x )=2-xD .f (x )=x -2答案 B解析 根据题意知x >0,所以f (1x )=log 2x ,则f (x )=log 21x=-log 2x .5. 某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A .y =[x10]B .y =[x +310]C .y =[x +410]D .y =[x +510]答案 B解析 方法一 取特殊值法,若x =56,则y =5,排除C ,D ; 若x =57,则y =6,排除A ,选B.方法二 设x =10m +α(0≤α≤9,m ,α∈N ),当0≤α≤6时,[x +310]=[m +α+310]=m =[x10],当6<α≤9时,[x +310]=[m +α+310]=m +1=[x10]+1,所以选B.6. 下表表示y答案 {2,3,4,5}解析 函数值只有四个数2、3、4、5,故值域为{2,3,4,5}. 7. 已知f (x -1x )=x 2+1x 2,则f (3)=________.答案 11解析 ∵f (x -1x )=x 2+1x 2=(x -1x )2+2,∴f (x )=x 2+2(x ≠0),∴f (3)=32+2=11.8. 若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________. 答案 [-1,0]解析 由题意知2x 2+2ax -a -1≥0恒成立. ∴x 2+2ax -a ≥0恒成立, ∴Δ=4a 2+4a ≤0,∴-1≤a ≤0.9. 已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1.求函数f (x )的解析式. 解 设f (x )=ax 2+bx +c (a ≠0),又f (0)=0, ∴c =0,即f (x )=ax 2+bx .又∵f (x +1)=f (x )+x +1.∴a (x +1)2+b (x +1)=ax 2+bx +x +1. ∴(2a +b )x +a +b =(b +1)x +1,∴⎩⎪⎨⎪⎧2a +b =b +1a +b =1,解得⎩⎨⎧a =12b =12.∴f (x )=12x 2+12x .10. 某人开汽车沿一条直线以60 km /h 的速度从A 地到150 km 远处的B 地.在B 地停留1 h后,再以50 km/h 的速度返回A 地,把汽车与A 地的距离x (km)表示为时间t (h)(从A 地出发开始)的函数,并画出函数的图象. 解x =⎩⎪⎨⎪⎧60t 0≤t ≤52150 52<t ≤72150-50(t -72) 72<t ≤132.图象如右图所示.【课下作业】1. 已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N ={b 2-4b +1,-2},f :x →x表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .1B .2C .3D .4答案 D解析 由已知可得M =N ,故⎩⎪⎨⎪⎧ a 2-4a =-2,b 2-4b +1=-1⇒⎩⎪⎨⎪⎧a 2-4a +2=0,b 2-4b +2=0,所以a ,b 是方程x 2-4x +2=0的两根,故a +b =4.2. 设函数f (x )=⎩⎪⎨⎪⎧x 2+4x +6,x ≤0-x +6,x >0,则不等式f (x )<f (-1)的解集是( )A .(-3,-1)∪(3,+∞)B .(-3,-1)∪(2,+∞)C .(-3,+∞)D .(-∞,-3)∪(-1,3) 答案 A解析 f (-1)=3,f (x )<3,当x ≤0时,x 2+4x +6<3, 解得x ∈(-3,-1);当x >0时,-x +6<3,解得x ∈(3,+∞),故不等式的解集为(-3,-1)∪(3,+∞),故选A.3. 已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≥0,-2x ,x <0,则关于x 的方程f (f (x ))+k =0,给出下列四个命题:①存在实数k ,使得方程恰有1个实根; ②存在实数k ,使得方程恰有2个不相等的实根; ③存在实数k ,使得方程恰有3个不相等的实根; ④存在实数k ,使得方程恰有4个不相等的实根.其中正确命题的序号是________.(把所有满足要求的命题序号都填上) 答案 ①②解析依题意,知函数f (x )>0, 又f (f (x ))=⎩⎪⎨⎪⎧ee x ,x ≥0,e -2x ,x <0,依据y =f (f (x ))的大致图象(如右图所示),知存在实数k ,使得方程f (f (x ))+k =0恰有1个实根或恰有2个不相等的实根;不存在实数k ,使得方程恰有3个不相等的实根或恰有4个不相等的实根.4. 行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫 作刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度. 解 (1)由题意及函数图象,得⎩⎨⎧402200+40m +n =8.4602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70. ∵x ≥0,∴0≤x ≤70.故行驶的最大速度是70千米/时.5. 运货卡车以每小时x 千米的速度匀速行驶130千米(50≤x ≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油(2+x 2360)升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.解 (1)行车所用时间为t =130x(h),y =130x ×2×(2+x2360)+14×130x ,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是 y =2 340x +1318x ,x ∈[50,100].(2)y =2 340x +1318x ≥2610,当且仅当2 340x =1318x ,即x =1810时,上述不等式中等号成立.故当x =1810时,这次行车的总费用最低,最低费用为2610元.。

函数定义域教案

函数定义域教案

函数定义域教案教案标题:函数定义域教案教案目标:1. 理解函数的定义域的概念;2. 能够确定给定函数的定义域;3. 能够解决与函数定义域相关的问题。

教案步骤:引入:1. 引入函数的概念,解释函数是一种输入和输出之间的关系;2. 引入函数定义域的概念,解释函数定义域是指函数输入的所有可能值的集合。

讲解:1. 解释如何确定函数的定义域:a. 对于简单的函数,如多项式函数、有理函数等,定义域通常是实数集合;b. 对于含有根号、对数、指数等特殊函数的函数,需要根据函数的性质确定定义域;c. 强调在确定定义域时需要注意避免分母为零、负数开偶次根号等不合法的操作。

示例:1. 提供一些简单的函数示例,让学生尝试确定函数的定义域;2. 引导学生通过分析函数的特点和限制条件来确定定义域。

练习:1. 提供一些练习题,要求学生确定给定函数的定义域;2. 强调解题过程中需要注意函数的特殊性,如分母为零、根号内为负数等。

总结:1. 总结函数定义域的概念和确定方法;2. 强调函数定义域在解决问题中的重要性。

拓展:1. 引导学生思考函数定义域与函数图像、函数性质之间的关系;2. 提供更复杂的函数定义域问题,让学生进一步巩固和应用所学知识。

教案评估:1. 针对学生的理解情况,可以设计一些选择题、填空题或解答题作为评估;2. 可以通过课堂讨论、小组合作等方式进行评估。

教案扩展:1. 可以引入函数值域的概念,与定义域进行对比,进一步拓展学生的理解;2. 可以设计一些实际问题,让学生应用函数定义域的概念解决实际问题。

【教案】1.2.1 第2课时 函数的定义域与值域-《新课程同步进阶(人教A版必修一》第一章集合与函数概念

【教案】1.2.1   第2课时   函数的定义域与值域-《新课程同步进阶(人教A版必修一》第一章集合与函数概念

第2课时函数的定义域与值域[目标] 1.了解构成函数的要素,理解函数相等的概念;2.会求简单函数的定义域与值域;3.会求形如f(g(x))的函数的定义域.[重点] 函数相等的概念,求函数的值域.[难点] 求函数的值域,求形如f(g(x))的函数的定义域.知识点一函数相等[填一填]1.条件:①定义域相同;②对应关系完全一致.2.结论:两个函数相等.[答一答]1.若两个函数的定义域和值域相同,它们是否为同一函数?对应关系和值域相同呢?提示:观察下表:对于f1(x)和f2(x),定义域和值域虽相同,但对应关系不同,故不是同一函数;对于f3(x)和f4(x),对应关系和值域虽相同,但定义域不同,故不是同一函数.知识点二函数的定义域[填一填]函数的定义域是使函数有意义的所有自变量的集合.求函数的定义域时,一般遵循以下原则:1.f(x)是整式时,定义域是全体实数的集合.2.f (x )是分式时,定义域是使分母不为0的一切实数的集合. 3.f (x )是偶次根式时,定义域是使被开方式为非负值的实数的集合. 4.零(负)指数幂的底数不能为零.5.对于含字母参数的函数,求其定义域时,需根据问题的具体情况对字母参数进行讨论.6.由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.[答一答]2.函数f (x )=x -1x -2+(x -1)0的定义域为( D ) A .{x |x ≥1} B .{x |x >1}C .{x |1≤x <2或x >2}D .{x |1<x <2或x >2}解析:要使函数有意义,则只需⎩⎪⎨⎪⎧x -1≥0,x -2≠0,x -1≠0,解得1<x <2或x >2,所以函数的定义域为{x |1<x <2或x >2}.故选D.知识点三 函数的值域[填一填]求函数的值域是一个较复杂的问题,要首先明确两点:一是值域的概念,即对于定义域A 上的函数y =f (x ),其值域就是指其函数值的集合:{f (x )|x ∈A };二是函数的定义域、对应关系是确定函数的依据.另外,在求函数的值域时,要根据所给的函数的形式,采用相应的方法.[答一答]3.已知函数y =x 2,x ∈{0,1,2,-1},函数y =x 2的值域是什么?提示:当x =0时,y =0;当x =±1时,y =1;当x =2时,y =4.所以函数的值域是{0,1,4}.类型一 函数相等的判断[例1] 下列各组函数: ①f (x )=x 2-xx ,g (x )=x -1;②f (x )=x x ,g (x )=x x; ③f (x )=x +1·1-x ,g (x )=1-x 2; ④f (x )=(x +3)2,g (x )=x +3;⑤汽车匀速运动时,路程与时间的函数关系f (t )=80t (0≤t ≤5)与一次函数g (x )=80x (0≤x ≤5).其中表示相等函数的是____________(填上所有正确的序号). [答案] ③⑤[解析] ①不同,定义域不同,f (x )定义域为{x |x ≠0},g (x )定义域为R .②不同,对应法则不同,f (x )=1x,g (x )=x .③相同,定义域、对应法则都相同.④不同,值域不同,f (x )≥0,g (x )∈R .⑤相同,定义域、对应法则都相同.讨论函数问题时,要保持定义域优先的原则.判断两个函数是否相等,要先求定义域,若定义域不同,则不相等;若定义域相同,再化简函数的解析式,若解析式相同,则相等,否则不相等.[变式训练1] 下列各组中两个函数是否表示相等函数? (1)f (x )=6x ,g (x )=63x 3; (2)f (x )=x 2-9x -3,g (x )=x +3;(3)f (x )=x 2-2x -1,g (t )=t 2-2t -1.解:(1)g (x )=63x 3=6x ,它与f (x )=6x 定义域相同,对应关系也相同,所以是相等函数. (2)f (x )=x 2-9x -3=x +3(x ≠3),它与g (x )=x +3的定义域不同,故不是相等函数.(3)虽然自变量用不同的字母表示,但两个函数的定义域和对应关系都相同,故是相等函数.类型二 函数的定义域 命题视角1:求具体函数的定义域[例2] 求下列函数的定义域,结果用区间表示: (1)y =x +2+1x 2-x -6;(2)y =(x +1)0|x |-x .[解] (1)要使函数有意义,则有⎩⎪⎨⎪⎧ x +2≥0,x 2-x -6≠0⇒⎩⎪⎨⎪⎧x ≥-2,x ≠-2且x ≠3,故函数的定义域是(-2,3)∪(3,+∞).(2)要使函数有意义,必须满足⎩⎪⎨⎪⎧x +1≠0,|x |-x >0,解得⎩⎪⎨⎪⎧x ≠-1,x <0,故函数的定义域是(-∞,-1)∪(-1,0).求函数的定义域就是求使函数式有意义的自变量的取值范围.当一个函数式由两个以上数学式子的和、差、积、商的形式构成时,定义域是使各部分都有意义的公共部分的集合.[变式训练2] 求下列函数的定义域: (1)y =1-x +1x +5;(2)y =31-1-x.解析:(1)由已知得⎩⎪⎨⎪⎧1-x ≥0,x +5≠0,解得x ≤1且x ≠-5.所求定义域为{x |x ≤1且x ≠-5}.(2)由已知得⎩⎪⎨⎪⎧1-x ≥0,1-1-x ≠0,解得x ≤1且x ≠0.所求定义域为{x |x ≤1且x ≠0}.命题视角2:求抽象函数的定义域[例3] (1)已知函数f (x )的定义域是[-1,4],求函数f (2x +1)的定义域. (2)已知函数f (2x +1)的定义域是[-1,4],求函数f (x )的定义域.[分析] 在对应关系相同的情况下, f (x )中x 应与f (g (x ))中g (x )的取值范围相同,据此可解答该题.[解] (1)由已知f (x )的定义域是[-1,4], 即-1≤x ≤4.故对于f (2x +1)应有-1≤2x +1≤4. ∴-2≤2x ≤3,∴-1≤x ≤32.∴f (2x +1)的定义域是⎣⎡⎦⎤-1,32. (2)由已知f (2x +1)的定义域是[-1,4],即f (2x +1)中,应有-1≤x ≤4,∴-1≤2x +1≤9. ∴f (x )的定义域是[-1,9].因为f (g (x ))就是用g (x )代替了f (x )中的x ,所以g (x )的取值范围与f (x )中的x 的取值范围相同.若已知函数f (x )的定义域为[a ,b ],则函数f (g (x ))的定义域是指满足不等式a ≤g (x )≤b 的x 的取值范围;而已知f (g (x ))的定义域是[a ,b ],指的是x ∈[a ,b ],要求f (x )的定义域,就是求x ∈[a ,b ]时g (x )的值域.[变式训练3] 若函数y =f (x )的定义域是[0,2],则函数g (x )=f (2x )x -1的定义域是( B )A .[0,1]B .[0,1)C .[0,1)∪(1,4]D .(0,1)解析:因为f (x )的定义域为[0,2],所以对于函数g (x )满足0≤2x ≤2,且x ≠1,故x ∈[0,1).类型三 求函数的值域[例4] 求下列函数的值域. (1)f (x )=3x -1,x ∈[-5,2); (2)y =2x +1,x ∈{1,2,3,4,5}; (3)y =x 2-4x +6,x ∈[1,5);(4)y =5x -14x +2.[解] (1)∵x ∈[-5,2),∴-15≤3x <6,∴-16≤3x -1<5,∴函数f (x )=3x -1,x ∈[-5,2)的值域是[-16,5). (2)∵x ∈{1,2,3,4,5},∴2x +1∈{3,5,7,9,11},即所求函数的值域为{3,5,7,9,11}. (3)y =x 2-4x +6=(x -2)2+2.∵x ∈[1,5),∴其图象如图所示, 当x =2时,y =2;当x =5时,y =11. ∴所求函数的值域为[2,11). (4)y =5x -14x +2=54(4x +2)-1-1044x +2=54(4x +2)-1444x +2=54-72(4x +2).∵72(4x +2)≠0,∴y ≠54,∴函数y =5x -14x +2的值域为{y ∈R |y ≠54}.根据函数关系式,选择恰当的方法求函数的值域.(1)对于一次函数,已知自变量的取值范围,依据简单不等式的运算,求得函数的取值范围,即为函数的值域;(2)对于二次函数,可借助图象求函数的值域;(3)通过分离常数,借助反比例函数的特征求值域.无论哪种方法求值域,都应注意定义域的限制.[变式训练4] 求下列函数的值域: (1)y =2x +1,x ∈{0,1,3,4}; (2)y =xx +1;(3)y =x 2-4x ,x ∈[1,4]. 解:(1)∵y =2x +1,x ∈{0,1,3,4}, ∴y ∈{1,3,7,9}.(2)∵y =xx +1=(x +1)-1x +1=1-1x +1,且1x +1≠0, ∴函数y =xx +1的值域为{y |y ≠1}.(3)配方,得y =(x -2)2-4. ∵x ∈[1,4],∴函数的值域为[-4,0].1.函数f (x )=x +1+12-x的定义域为( A ) A .[-1,2)∪(2,+∞) B .(-1,+∞) C .[-1,2)D .[-1,+∞)解析:由⎩⎪⎨⎪⎧x +1≥0,2-x ≠0,解得x ≥-1且x ≠2.故选A.2.函数f (x )=x 2+1(0<x ≤2且x ∈N *)的值域是( D ) A .{x |x ≥1} B .{x |x >1} C .{2,3}D .{2,5}解析:∵0<x ≤2且x ∈N *, ∴x =1或x =2. ∴f (1)=2,f (2)=5, 故函数的值域为{2,5}.3.若函数f (x )与g (x )=32-x -2是相等的函数,则函数f (x )的定义域是[2,6)∪(6,+∞).解析:∵2-x -2≠0,∴x ≠6,又x -2≥0,∴x ≥2,∴g (x )的定义域为[2,6)∪(6,+∞). 故f (x )的定义域是[2,6)∪(6,+∞).4.已知函数f (x )的定义域为{x |-1<x <1},则函数f (2x +1)的定义域为{x |-1<x <0}. 解析:因为f (x )的定义域为{x |-1<x <1}, 所以-1<2x +1<1,解得-1<x <0.所以f (2x +1)的定义域为{x |-1<x <0}. 5.试求下列函数的定义域与值域: (1)f (x )=(x -1)2+1; (2)y =5x +4x -1;(3)y =x -x +1.解:(1)函数的定义域为R ,因为(x -1)2+1≥1,所以函数的值域为{y |y ≥1}. (2)函数的定义域为{x |x ≠1},y =5x +4x -1=5+9x -1,所以函数的值域为{y |y ≠5}.(3)要使函数式有意义,需x +1≥0,即x ≥-1,故函数的定义域为{x |x ≥-1}.设t =x +1,则x =t 2-1(t ≥0),于是y =t 2-1-t =(t -12)2-54,又t ≥0,故y ≥-54,所以函数的值域为{y |y ≥-54}.——本课须掌握的三大问题1.两个函数当且仅当它们的三要素完全相同时才表示同一函数,根据它们之间的关系,判断两个函数是否为同一函数,主要看它们的定义域和对应法则是否相同.因为只要定义域相同,对应法则相同,则值域就相同.2.研究函数问题必须树立“定义域优先”原则.求函数定义域一般有三种类型:(1)函数来自实际问题的定义域;(2)已知函数解析式求定义域;(3)抽象函数求定义域.3.求值域的方法有:(1)观察法:根据定义域和对应关系求出;(2)数形结合法:作出函数的图象,然后求解;(3)配方法:配方求解;(4)分离常数法:添一项、减一项,分离出常数再求解;(5)换元法:可以将无理函数转换成有理函数再求解.学习至此,请完成课时作业7 学科素养培优精品微课堂 复合函数与抽象函数开讲啦 1.复合函数的概念如果函数y =f (t )的定义域为A ,函数t =g (x )的定义域为D ,值域为C ,则当C ⊆A 时,称函数y =f (g (x ))为f (t )与g (x )在D 上的复合函数,其中t 叫做中间变量,t =g (x )叫做内层函数,y =f (t )叫做外层函数.2.抽象函数的概念没有给出具体解析式的函数,称为抽象函数. 3.抽象函数或复合函数的定义域理解抽象函数或复合函数的定义域,要明确以下几点: (1)函数f (x )的定义域是指x 的取值范围.(2)函数f (φ(x ))的定义域是指x 的取值范围,而不是φ(x )的范围.(3)f (t ),f (φ(x )),f (h (x ))三个函数中的t ,φ(x ),h (x )在对应关系f 下的范围相同. [典例] 若函数f (x )的定义域为[0,1],求g (x )=f (x +m )+f (x -m )(m >0)的定义域. [解] ∵f (x )的定义域为[0,1],∴g (x )=f (x +m )+f (x -m )中自变量x 需满足⎩⎪⎨⎪⎧ 0≤x +m ≤1,0≤x -m ≤1,解得⎩⎪⎨⎪⎧-m ≤x ≤1-m ,m ≤x ≤1+m .当1-m =m ,即m =12时,x =12;当1-m >m ,即0<m <12时,如图1,m ≤x ≤1-m .当1-m <m ,即m >12时,如图2,x ∈∅.综上所述,当0<m <12时,g (x )的定义域为[m,1-m ];当m =12时,g (x )的定义域为⎩⎨⎧⎭⎬⎫12;当m >12时,函数g (x )的定义域为∅.[对应训练] 已知函数f (x +3)的定义域为[-4,5],则函数f (2x -3)的定义域为⎣⎡⎦⎤1,112. 解析:∵函数f (x +3)的定义域为[-4,5],∴-4≤x ≤5,∴-1≤x +3≤8,即函数f (x )的定义域为[-1,8].由-1≤2x -3≤8,解得1≤x ≤112.故函数f (2x -3)的定义域为⎣⎡⎦⎤1,112.。

函数概念教案

函数概念教案

函数概念教案函数概念教案1教学目标:1.进一步理解用集合与对应的语言来刻画的函数的概念,进一步理解函数的本质是数集之间的对应;2.进一步熟悉与理解函数的定义域、值域的定义,会利用函数的定义域与对应法则判定有关函数是否为同一函数;3.通过教学,进一步培养学生由具体逐步过渡到符号化,代数式化,并能对以往学习过的知识进行理性化思考,对事物间的联系的一种数学化的思考.教学重点:用对应来进一步刻画函数;求基本函数的定义域和值域.教学过程:一、问题情境1.情境.复述函数及函数的定义域的概念.2.问题.概念中集合A为函数的定义域,集合B的作用是什么呢?二、学生活动1.理解函数的值域的概念;2.能利用观察法求简单函数的值域;3.探求简单的复合函数f(f(x))的定义域与值域.三、数学建构1.函数的值域:(1)按照对应法则f,对于A中所有x的值的对应输出值组成的集合称之为函数的值域;(2)值域是集合B的子集.2.x g(x) f(x) f(g(x)),其中g(x)的值域即为f(g(x))的定义域;四、数学运用(一)例题.例1 已知函数f (x)=x2+2x,求 f (-2),f (-1),f (0),f (1).例2 根据不同条件,分别求函数f(x)=(x-1)2+1的值域.(1)x∈{-1,0,1,2,3};(2)x∈R;(3)x∈[-1,3];(4)x∈(-1,2];(5)x∈(-1,1).例3 求下列函数的值域:①=;②=.例4 已知函数f(x)与g(x)分别由下表给出:x1234x1234f(x)2341g(x)2143分别求f (f (1)),f (g (2)),g(f (3)),g (g (4))的值.(二)练习.(1)求下列函数的值域:①=2-x2;②=3-|x|.(2)已知函数f(x)=3x2-5x+2,求f(3)、f(-2)、f(a)、f(a+1).(3)已知函数f(x)=2x+1,g(x)=x2-2x+2,试分别求出g(f(x))和f(g(x))的值域,比较一下,看有什么发现.(4)已知函数=f(x)的定义域为[-1,2],求f(x)+f(-x)的定义域.(5)已知f(x)的定义域为[-2,2],求f(2x),f(x2+1)的定义域.五、回顾小结函数的对应本质,函数的定义域与值域;利用分解的思想研究复合函数.六、作业课本P31-5,8,9.函数概念教案2各位领导老师:大家好!今天我说课的内容是函数的近代定义也就是函数的第一课时内容。

高中数学必修一 《3 1 函数的概念及其表示》优秀教案教学设计

高中数学必修一 《3 1 函数的概念及其表示》优秀教案教学设计

【新教材】3.1.1 函数的概念(人教A版)函数在高中数学中占有很重要的比重,因而作为函数的第一节内容,主要从三个实例出发,引出函数的概念.从而就函数概念的分析判断函数,求定义域和函数值,再结合三要素判断函数相等.课程目标1.理解函数的定义、函数的定义域、值域及对应法则。

2.掌握判定函数和函数相等的方法。

3.学会求函数的定义域与函数值。

数学学科素养1.数学抽象:通过教材中四个实例总结函数定义;2.逻辑推理:相等函数的判断;3.数学运算:求函数定义域和求函数值;4.数据分析:运用分离常数法和换元法求值域;5.数学建模:通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,提高学生的抽象概括能力。

重点:函数的概念,函数的三要素。

难点:函数概念及符号y=f(x)的理解。

教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

一、情景导入初中已经学过:正比例函数、反比例函数、一次函数、二次函数等,那么在初中函数是怎样定义的?高中又是怎样定义?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本60-65页,思考并完成以下问题1. 在集合的观点下函数是如何定义?函数有哪三要素?2. 如何用区间表示数集?3. 相等函数是指什么样的函数?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任何一个属x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x)x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫做自变量,x的取值范围叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.2.区间概念(a,b为实数,且a<b)3.其它区间的表示四、典例分析、举一反三题型一 函数的定义例1 下列选项中(横轴表示x 轴,纵轴表示y 轴),表示y 是x 的函数的是( )【答案】D解题技巧:(判断是否为函数)1.(图形判断)y 是x 的函数,则函数图象与垂直于x 轴的直线至多有一个交点.若有两个或两个以上的交点,则不符合函数的定义,所对应图象不是函数图象.2.(对应关系判断)对应关系是“一对一”或“多对一”的是函数关系;“一对多”的不是函数关系. 跟踪训练一1.集合A={x|0≤x ≤4},B={y|0≤y ≤2},下列不表示从A 到B 的函数的是( )【答案】C题型二 相等函数例2 试判断以下各组函数是否表示同一函数:(1)f(x)=(√x )2,g(x)=√x 2;(2)y=x 0与y=1(x ≠0);(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z). 【答案】见解析【解析】:(1)因为函数f(x)=(√x )2的定义域为{x|x≥0},而g(x)=√x 2的定义域为{x|x ∈R},它们的定义域不同,所以它们不表示同一函数.(2)因为y=x 0要求x ≠0,且当x ≠0时,y=x 0=1,故y=x 0与y=1(x ≠0)的定义域和对应关系都相同,所以它们表示同一函数.(3)y=2x+1(x ∈Z)与y=2x-1(x ∈Z)两个函数的定义域相同,但对应关系不相同,故它们不表示同一函数. 解题技巧:(判断函数相等的方法) 定义域优先原则1.先看定义域,若定义域不同,则函数不相等.2.若定义域相同,则化简函数解析式,看对应关系是否相等. 跟踪训练二1.试判断以下各组函数是否表示同一函数: ①f(x)=x 2-x x,g(x)=x-1;②f(x)=√x x,g(x)=√x;③f(x)=√(x +3)2,g(x)=x+3;④f(x)=x+1,g(x)=x+x 0;⑤汽车匀速运动时,路程与时间的函数关系f(t)=80t(0≤t ≤5)与一次函数g(x)=80x(0≤x ≤5). 其中表示相等函数的是 (填上所有正确的序号). 【答案】⑤【解析】①f(x)与g(x)的定义域不同,不是同一函数; ②f(x)与g(x)的解析式不同,不是同一函数; ③f(x)=|x+3|,与g(x)的解析式不同,不是同一函数; ④f(x)与g(x)的定义域不同,不是同一函数;⑤f(x)与g(x)的定义域、值域、对应关系皆相同,是同一函数. 题型三 区间例3 已知集合A={x|5-x ≥0},集合B={x||x|-3≠0},则A ∩B 用区间可表示为 . 【答案】(-∞,-3)∪(-3,3)∪(3,5] 【解析】∵A={x|5-x ≥0},∴A={x|x ≤5}. ∵B={x||x|-3≠0},∴B={x|x ≠±3}. ∴A ∩B={x|x<-3或-3<x<3或3<x ≤5}, 即A ∩B=(-∞,-3)∪(-3,3)∪(3,5]. 解题技巧:(如何用区间表示集合)1.正确利用区间表示集合,要特别注意区间的端点值能否取到,即“小括号”和“中括号”的区别.2.用区间表示两集合的交集、并集、补集运算时,应先求出相应集合,再用区间表示. 跟踪训练三1.集合{x|0<x<1或2≤x ≤11}用区间表示为 .2. 若集合A=[2a-1,a+2],则实数a 的取值范围用区间表示为 . 【答案】(1)(0,1)∪[2,11] (2)(-∞,3)【解析】 (2)由区间的定义知,区间(a,b)(或[a,b])成立的条件是a<b. ∵A=[2a-1,a+2],∴2a-1<a+2.∴a<3, ∴实数a 的取值范围是(-∞,3). 题型四 求函数的定义域 例4 求下列函数的定义域: (1)y=(x+2)|x |-x; (2)f(x)=x 2-1x -1−√4-x .【答案】(1) (-∞,-2)∪(-2,0) (2) (-∞,1)∪(1,4]【解析】(1)要使函数有意义,自变量x 的取值必须满足{x +2≠0,|x |-x ≠0,即{x ≠-2,|x |≠x ,解得x<0,且x ≠-2.故原函数的定义域为(-∞,-2)∪(-2,0).(2)要使函数有意义,自变量x 的取值必须满足{4-x ≥0,x -1≠0,即{x ≤4,x ≠1.故原函数的定义域为(-∞,1)∪(1,4]. 解题方法(求函数定义域的注意事项)(1)如果函数f(x)是整式,那么函数的定义域是实数集R;(2)如果函数f(x)是分式,那么函数的定义域是使分母不等于零的实数组成的集合;(3)如果函数f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数组成的集合; (4)如果函数f(x)是由两个或两个以上代数式的和、差、积、商的形式构成的,那么函数的定义域是使各式子都有意义的自变量的取值集合(即求各式子自变量取值集合的交集). 跟踪训练四1.求函数y=√2x +3√2-x1x的定义域.2.已知函数f(x)的定义域是[-1,4],求函数f(2x+1)的定义域. 【答案】(1) {x |-32≤x <2,且x ≠0} (2) [-1,32]【解析】(1)要使函数有意义,需{2x +3≥0,2-x >0,x ≠0,解得-32≤x<2,且x ≠0,所以函数y=√2x +3−1√2-x+1x的定义域为{x |-32≤x <2,且x ≠0}.(2)已知f(x)的定义域是[-1,4],即-1≤x≤4. 故对于f(2x+1)应有-1≤2x+1≤4, ∴-2≤2x≤3,∴-1≤x≤32. ∴函数f(2x+1)的定义域是[-1,32]. 题型五 求函数值(域) 例5 (1)已知f(x)=11+x(x ∈R ,且x ≠-1),g(x)=x 2+2(x ∈R),则f(2)=________,f(g(2))=________. (2)求下列函数的值域:①y =x +1; ②y =x 2-2x +3,x ∈[0,3); ③y =3x−11+x ; ④y =2x -√x −1. 【答案】(1)1317 (2)① R ② [2,6) ③ {y|y ∈R 且y≠3} ④ ⎣⎢⎡⎭⎪⎫158,+∞ 【解析】(1) ∵f (x)=11+x ,∴f(2)=11+2=13.又∵g (x)=x 2+2,∴g (2)=22+2=6, ∴f ( g(2))=f (6)=11+6=17.(2) ①(观察法)因为x ∈R ,所以x +1∈R ,即函数值域是R.②(配方法)y =x 2-2x +3=(x -1)2+2,由x ∈[0,3),再结合函数的图象(如图),可得函数的值域为[2,6).③(分离常数法)y =3x -1x +1=3x +3-4x +1=3-4x +1.∵4x +1≠0,∴y≠3, ∴y =3x -1x +1的值域为{y|y ∈R 且y≠3}.④(换元法)设t =x -1,则t≥0且x =t 2+1,所以y =2(t 2+1)-t =2 ⎝ ⎛⎭⎪⎫t -142+158,由t≥0,再结合函数的图象(如图),可得函数的值域为⎣⎢⎡⎭⎪⎫158,+∞.解题方法(求函数值(域)的方法)1.已知f(x)的表达式时,只需用数a 替换表达式中的所有x 即得f(a)的值.2.求f(g(a))的值应遵循由内到外的原则.3. 求函数值域常用的4种方法(1)观察法:对于一些比较简单的函数,其值域可通过观察得到;(2)配方法:当所给函数是二次函数或可化为二次函数处理的函数时,可利用配方法或二次函数图像求其值域;(3)分离常数法:此方法主要是针对有理分式,即将有理分式转化为 “反比例函数类”的形式,便于求值域;(4)换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.对于f (x )=ax+b+√cx +d (其中a ,b ,c ,d 为常数,且a ≠0)型的函数常用换元法. 跟踪训练五1.求下列函数的值域:(1)y = √2x +1 +1;(2)y =1−x 21+x 2. 【答案】(1) [1,+∞) (2) (-1,1]【解析】(1)因为2x +1≥0,所以2x +1+1≥1,即所求函数的值域为[1,+∞). (2)因为y =1-x 21+x 2=-1+21+x2,又函数的定义域为R ,所以x 2+1≥1,所以0<21+x 2≤2,则y ∈(-1,1]. 所以所求函数的值域为(-1,1]. 五、课堂小结让学生总结本节课所学主要知识及解题技巧 六、板书设计 七、作业课本67页练习、72页1-5本节课主要通过从实际问题中抽象概括出函数概念的活动,培养学生从“特殊到一般”的分析问题的能力,尤其在求抽象函数定义域时,先根据特殊函数的规律总结一般规律.。

对数函数的定义域值域优秀教案

对数函数的定义域值域优秀教案

个人收集整理 仅供参考学习1 / 1对数函数定义域值域学案学习目标:1、会求对数函数地定义域; 2、会求对数函数地值域.学习重点:求对数函数定义域、值域学习难点:利用对数函数定义域、值域解题. 例题分析:例1:求下列函数地定义域 ①()()2log 1+=-x y x ②121log 8.0--=x x y练习1.()()211log -=+x y x 2.)34(log 25.0x x y -=例2:求下列函数地值域 ①1log 2-=x y ②()1log 2-=x y练习1.]8,0(,log 21∈=x x y 2.()()532log 22-≤--=x x x y例3:①若函数]41)1([log 22+-+=x a ax y 地定义域为R ,求实数a 地取值范围.②已知)1lg(2++=ax x y 定义域为R ,值域为R ,求a 地范围例4:已知x 满足条件09log 9)(log 221212≤++x x ,求函数)4(log )3(log )(22x x x f ⋅=地最大值和最小值.学科作业:1.已知)13(log -a a 恒为正数,那么实数a 地取值范围是()A.a <31 B.3132<<a C.a >1 D. 3132<<a 或a >1 2.函数)1(2log )(2≥-=x x x f ,则)(1x f-地定义域是( )A.RB.),2[+∞-C.),1[+∞D.(0,1)3.函数)(x f 地定义域是(0,1),若)]3([log )(21x f x F -=,则函数F (x )地定义域是.4、函数)176(log 221+-=x x y 地值域是.5、求函数)1(log 2-=x y 地反函数=-)(1x f,反函数地定义域是,值域是6、已知函数)12lg()(2++=x ax x f ,(1)若f(x)地定义域为R ,求实数a 地范围; (2)若f(x)地值域为R ,求实数a 地范围.7、若9271≤≤x ,求)3(log 27log )(33x x x f ⋅=地最值.8、已知函数)1)((log )1(log 11log )(1.01.01.0φa x a x x x x f -+-+-+=地最小值为-2,求实数a 地值.。

辽宁省大连渤海高级中学高中数学一教案:2.1.1函数的定义域

辽宁省大连渤海高级中学高中数学一教案:2.1.1函数的定义域
变式2已知函数 定义域是 ,则 的定义域是()
A. B。 C. D。
1、巡视学生的完成情况
2、对学生的展示和评价要给予及时的反馈。
3、要对学生不同的解题过程和答案给出准确的评价,总结。
1、学生先独立完成例题,然后以小组为单位统一答案。
2、小组讨论并展示自己组所写的结果.
3、其他组给予评价(主要是找错,纠错)
2)完成课后练习A组5、6题(组长检查并签字)
3
分钟
7。


根据集合的运算求参数的取值范围
例1 例2
小结 小结
8.


反 思
在具体问题中,探索、挖掘内在规律、发现数学的本质。
加深对抽象函数定义域的表示方法的理解。
1、2题共7分钟;
3、4题共12分钟
4.


提 升
1简单函数定义域常见题型
2、抽象函数定义域解题方法
引导学生归纳总结本节课解题方法及注意事项
1、讨论思考
2、抽签小组展示讨论的结果。
3、提出的问题。
强化学生知识储备及养成良好的学习习惯,加强数学思维的培养
(3) 的定义域为____________
检查,评价总结小考结果
1.独立完成课前检测
2.提出自主学习困惑
明确本节课学习目标,准备学习.
3
分钟
2.
承接结 果Fra bibliotek1、展示学生收集的求定义域的类型题
2、校对教材33页练习A4题答案
1.评价
2.补充学生出现的漏洞。
3。总结
1、学生展示收集的求定义域的类型题
2、其余学生解答
3
分钟
5.
目 标
检 测

函数的定义域和值域教案

函数的定义域和值域教案

龙文教育个性化辅导教案提纲学生:日期: 年月日第次时段:教学课题函数的定义域和值域----导学案教学目标考点分析1.掌握基本初等函数定义域和值域的求法,会求一些简单函数的定义域和值域.2.本节是函数部分的基础,以考查函数的定义域、值域为主,求函数定义域是高考的热点,而求函数值域是高考的难点.3.本部分在高考试题中的题型以选择、填空题为主,属于中、低档题目.教学重点掌握基本初等函数定义域和值域的求法,会求一些简单函数的定义域和值域. 教学难点掌握求函数值域的常用方法的技巧,弄清函数的值域和函数最值的关系教学方法观察法、图象探究法、分析法、讲练结合法,启发式教学法教学过程:一、常见基本初等函数的定义域1.分式函数中分母.2.偶次根式函数被开方式.3.一次函数、二次函数的定义域均为.4.y=ax(a>0且a≠1),y=sin x,y=cos x,定义域均为.5.y=log ax(a>0且a≠1)的定义域为.6.y=tan x的定义域为.7.实际问题中的函数定义域,除了使函数的解析式有意义外,还要考虑实际问题对函数自变量的制约.二、函数的值域1.在函数概念的三要素中,值域是由和所确定的,因此,在研究函数值域时,既要重视对应关系的作用,又要特别注意定义域对值域的制约作用.2.基本初等函数的值域(1)y=kx+b(k≠0)的值域是.(2)y=ax2+bx+c(a≠0)的值域是:当a>0时,值域为;当a<0时,值域为;(3)y=kx(k≠0)的值域是.(4)y=a x(a>0且a≠1)的值域为.(5)y=log a x(a>0且a≠1)的值域是.(6)y=sin x,y=cos x的值域是.(7)y=tan x的值域是.三、课堂基础练习1.函数y=x2-2x的定义域为{0,1,2,3},那么其值域为( )A .{-1,0,3}B .{0,1,2,3}C .{y |-1≤y ≤3}D .{y |0≤y ≤3}2.(2011·广东高考)函数f (x )=11-x+lg(1+x )的定义域是( ) A .(-∞,-1) B .(1,+∞)C .(-1,1)∪(1,+∞)D .(-∞,+∞)3.函数y =1x 2+2的值域为 ( ) A .RB .{y |y ≥12}C .{y |y ≤12}D .{y |0<y ≤12} 4.(教材习题改编)函数f (x )=x -4|x |-5的定义域为________. 5.(教材习题改编)若x 有意义,则函数y =x 2+3x -5的值域是________.四、走近高考[例1] (2011·江西高考)若f (x )=1 12log (2x +1),则f (x )的定义域( )A.⎝⎛⎭⎫-12,0B.⎝⎛⎭⎫-12,+∞ C.⎝⎛⎭⎫-12,0∪(0,+∞) D.⎝⎛⎭⎫-12,2 若本例中的函数变为f (x )=2x -1 12log (2x +1),试求f (x )的定义域. [例2] 求下列函数的值域,并指出函数有无最值.(1)y =1-x 21+x 2;(2)y =x +4x(x <0);(3)f(x)=x-1-2x.[例3](2011·湖南高考)已知函数f(x)=e x-1,g(x)=-x2+4x-3.若有f(a)=g(b),则b的取值范围为()A.[2-2,2+2] B.(2-2,2+2)C.[1,3]D.(1,3)五、高考模拟题1.(2011·台州一模)函数f(x)=x22-x-lg(x-1)的定义域是()A.(0,2)B.(1,2)C.(2,+∞) D.(-∞,1)2.(2012·烟台调研)已知函数f(x)的图象如图所示,则函数g(x)=log2f(x)的定义域是________.3.(2012·青田质检)若函数y=f(x)的定义域为[-3,5],则函数g(x)=f(x+1)+f(x-2)的定义域是( )A.[-2,3] B.[-1,3]C.[-1,4] D.[-3,5]4.(2012·青岛模拟)函数y=16-4x的值域是()A.[0,+∞) B.[0,4]C.[0,4) D.(0,4)5.(2012·杭州模拟)若函数y=f(x)的值域是[1,3],则函数F(x)=1-2f(x+3)的值域是( )A.[-5,-1] B.[-2,0]C.[-6,-2] D.[1,3]6.(2012·宁波模拟)在实数的原有运算中,我们定义新运算“⊕”如下:当a≥b时,a⊕b=a;当a<b时,a⊕b=b2.设函数f(x)=(1⊕x)x-(2⊕x),x∈[-2,2],则函数f(x)的值域为________.7.(2012·嘉兴模拟)已知函数f(x)=4|x|+2-1的定义域是[a,b](a,b∈Z),值域是[0,1],则满足条件的整数数对(a,b)共有________个.8.(2012·合肥模拟)若函数f(x)=2x2+2ax-a-1的定义域为R,则a的取值范围为________.9.(2012·温州模拟)函数f(x)=(a-2)x2+2(a-2)x-4的定义域为R,值域为(-∞,0],则实数a的取值范围是()A.(-∞,2)B.(-∞,-2)C.{-2} D.[-2,2]知识总结:1.函数的最值与值域的关系函数的最值与函数的值域是关联的,求出了函数的值域也就能确定函数的最值情况,但只确定了函数的最大(小)值,未必能求出函数的值域.2.函数的值域是由其对应关系和定义域共同决定的.常用的求解方法有(1)基本不等式法,此时要注意其应用的条件;(2)配方法,主要适用于可化为二次函数的函数,此时要特别注意自变量的范围;(3)图象法,对于容易画出图形的函数最值问题可借助图象直观求出;(4)换元法,用换元法时一定要注意新变元的范围;(5)单调性法,要注意函数的单调性对函数最值的影响,特别是闭区间上的函数的最值问题;3. 求解定义域为R或值域为R的函数问题时,都是依据题意,对问题进行转化,转化为不等式恒成立问题进行解决,而解决不等式恒成立问题,一是利用判别式法,二是利用分离参数法,有时还可利用数形结合法.课后作业:一、选择题1.(2012·潍坊模拟)函数f(x)=log2(3x-1)的定义域为()A.(0,+∞) B.[0,+∞)C.(1,+∞) D.[1,+∞)2.下列图形中可以表示以M={x|0≤x≤1}为定义域,以N={y|0≤y≤1}为值域的函数的图象是()3.(2012·茂名模拟)函数y=x(x-1)-lg 1x的定义域为()A.{x|x>0} B.{x|x≥1}C.{x|x≥1或x<0} D.{x|0<x≤1} 4.(2012·长沙模拟)下列函数中,值域是(0,+∞)的是()A.y=x2-2x+1 B.y=x+2x+1(x∈(0,+∞))C.y=1x2+2x+1(x∈N) D.y=1|x+1|5.函数y=2x-1的定义域是(-∞,1)∪[2,5),则其值域是()A .(-∞,0)∪⎝⎛⎦⎤12,2B .(-∞,2]C.⎝⎛⎭⎫-∞,12∪[2,+∞) D .(0,+∞) 二、填空题6.(2012·忻州模拟)函数y =log a (3x -2)(0<a <1)的定义域是________.7.函数y =x -x (x ≥0)的最大值为________.三、解答题8.求下列关于x 的函数的定义域和值域:(1)y =1-x -x ;(2)y =log 2(-x 2+2x );(3)x 0 1 2 3 4 5 y 2 3 4 5 6 79.若函数f (x )=12x 2-x +a 的定义域和值域均为[1,b ](b >1),求a 、b 的值.10.运货卡车以每小时x 千米的速度匀速行驶130千米(50≤x ≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油⎝⎛⎭⎫2+x 2360升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.学生对于本次课评价: ○ 特别满意 ○ 满意 ○ 一般 ○ 差 学生签字: 教师评定: 1、上次作业评价: ○非常好 ○好 ○ 一般 ○ 需要优化2、上课情况评价: ○非常好 ○好 ○ 一般 ○ 需要优化教师签字:教务主任签字: ___________龙文教育教务处。

定义域教案

定义域教案

定义域教案一、教学目标:1. 理解函数的概念和定义域的含义;2. 掌握寻找定义域的方法和技巧;3. 能够正确确定函数的定义域;4. 通过多种练习,培养学生的逻辑思维和分析问题的能力。

二、教学重点:1. 理解函数的概念和定义域的含义;2. 掌握寻找定义域的方法和技巧。

三、教学难点:1. 理解函数的概念和定义域的含义;2. 能够正确确定函数的定义域。

四、教学过程:Step 1 引入新知识1. 激发学生学习兴趣。

引导学生回顾已学过的函数的相关内容,例如函数的性质和图像等。

2. 提问:你知道什么是函数吗?函数有什么特点?3. 引导学生回忆函数的定义,并解释清楚函数的定义域是什么意思。

Step 2 讲解函数的概念和定义域的含义1. 通过示例讲解函数的概念和定义域的含义。

例如:函数$f(x)=2x+1$,解释函数的定义域为实数集。

2. 引导学生思考:如何确定函数的定义域?给出一些方法和技巧。

Step 3 寻找函数的定义域1. 给出一些函数的表达式,让学生通过思考和分析确定函数的定义域。

2. 解答学生的问题,引导学生掌握寻找函数定义域的方法和技巧。

例如:有理式函数的定义域、根号函数的定义域等。

3. 练习:让学生完成一些函数的定义域的题目,检验学生对寻找函数定义域的掌握程度。

Step 4 巩固与拓展1. 综合练习:设计一些综合性的题目,让学生巩固和拓展所学知识。

2. 对学生的解答进行评价和讲解,指出解题的要点和需要注意的地方。

3. 通过讲解一些典型例题,帮助学生更好地理解函数的概念和定义域的含义。

五、教学总结:通过本节课的学习,学生对函数的概念和定义域有了更深入的认识,掌握了寻找函数定义域的方法和技巧。

通过大量的练习,学生的逻辑思维和分析问题的能力也得到了提高。

下节课将进一步学习函数的值域和函数的图像。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《求函数的定义域》
一、函数定义域的求法
1、常见函数的定义域求法
①当f(x)是整式时,定义域为R.
②当f(x)是分式时,定义域为使分母不为零的x 的取值的集合
③偶次根式的定义域是使被开方式非负的x 的取值的集合。

④对数式的定义域是使真数大于0的x 的取值的集合。

⑤当f(x)是由几个数学式子组成时,定义域是使各式都有意义的x 的取值的集合,即求各式都有意义的范围的交集。

2、复合函数的定义域求法
①已知)(x f 的定义域,求复合函数()][x g f 的定义域
由复合函数的定义我们可知,要构成复合函数,则内层函数的值域必须包含于外层函数的定义域之中,因此可得其方法为:若)(x f 的定义域为()b a x ,∈,求出)]([x g f 中b x g a <<)(的解x 的范围,即为)]([x g f 的定义域。

②.已知复合函数()][x g f 的定义域,求)(x f 的定义域
方法是:若()][x g f 的定义域为()b a x ,∈,则由b x a <<确定)(x g 的范围即为)(x f 的定义域。

【当堂训练】
例1、函数236x y x -=
+的定义域是
例2.函数y =的定义域为( )
A .{}|0x x ≥
B .{}|1x x ≥
C .{}{}|10x x ≥
D .{}|01x x ≤≤
例3 .函数1()ln(1)f x x =
+ ( ) (A)[2,0)(0,2]- (B)(1,0)(0,2]- (C)[2,2]- (D)(1,2]-
例4 已知函数()f x 的定义域为[]15-,,则(35)f x -的定义域
例5 已知函数(35)f x -的定义域为[]15-,,则()f x 的定义域
【课后训练】
1、函数y =的定义域为 ( ) A .[4,1]- B .[4,0)- C .(0,1] D .[4,0)(0,1]-
2、函数)13lg(13)(2
++-=x x x x f 的定义域是 ( )
A.),31(+∞-
B. )1,31
(- C. )31,31(- D. )31,(--∞
3、函数y =( )
A.(3,+∞)
B.[3, +∞)
C.(4, +∞)
D.[4, +∞)
4、函数1()lg
4x f x x -=-的定义域为( ) A.(14),
B.[14), C.(1)(4)-∞+∞,, D.(1](4)-∞+∞,, 5、函数
y =的定义域为 ( ) A .(4,1)-- B .(4,1)- C .(1,1)- D .(1,1]- 6 . 函数()
f x =
____________
7. 函数y =的定义域为 . 8、函数()()
lg 43x f x x -=
-的定义域为_____
9、函数y =的定义域为 . 10.知函数(1)f x -的定义域为(1,3),则函数()f x 的定义域____________。

相关文档
最新文档