概率与统计教案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率与统计教案

【课标要求】

1.统计

⑴从事收集、整理、描述和分析的活动,能用计算器处理较复杂的统计数据.

⑵通过丰富的实例,感受抽样的必要性,能指出总体、个体、样本,体会不同的抽样可能得到不同的结果.

⑶会用扇形统计图、条形统计图、折线统计图表示数据.

⑷在具体情境中理解并会计算加权平均数;根据具体问题,能选择合适的统计量表示数据的集中程度.

⑸探索如何表示一组数据的离散程度,会计算极差和方差、标准差,并会用它们表示数据的离散程度.

⑹通过实例,理解频数、频率的概念,了解频数分布的意义和作用,会列频数分布表,画频数分布直方图和频数折线图,并能解决简单的实际问题.

⑺通过实例,体会用样本估计总体的思想,能用样本的平均数、方差来估计总体的平均数和方差.

⑻根据统计结果作出合理的判断和预测,体会统计对决策的作用,能比较清晰地表达自己的观点,并进行交流.

⑼能根据问题查找有关资料,获得数据信息;对日常生活中的某些数据发表自己的看法.

⑽认识到统计在社会生活及科学领域中的应用,并能解决一些简单的实际问题.2.概率

⑴在具体情境中了解概率的意义,运用列举法(包括列表和画树状图)计算简单事件发生的概率.

⑵通过实验,获得事件发生的频率;知道大量重复实验时频率可作为事件发生概率的估计值.

⑶通过实例进一步丰富对概率的认识,并能解决一些实际问题.

【知识回顾】

数据的收集与处理

⑴通过调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展开调查、记录结果、得出结论.

⑵条形统计图、折线统计图、扇形统计图是三种最常用的统计图.这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.

⑶我们把所要考察的对象的全体叫做总体,把组成总体的每一个考察对象叫做个体.从总体中取出的一部分个体叫做总体的一个样本.样本中包含的个体的个数叫做样本容量.

⑷普查是通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.

⑸用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样.

⑹在记录实验数据时,每个对象出现的次数称为频数.每个对象出现的次数与总次数的比值(或者百分比)称为频率.

⑺绘制频数分布直方图的步骤是:①计算最大值与最小值的差;②决定组距和组数;③决定分点;④画频数分布表;⑤画出频数分布直方图.

数据的代表

⑻在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数. ⑼将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组数据的中位数.

⑽在一组数据中,出现频数最多的数叫做这组数据的众数. ⑾在一组数据中,各个数在总结果中所占的百分比称为这个数的权重,每个数乘以它相应的权重后所得的平均数叫做这组数据的加权平均数.

⑿一组数据中的最大值减去最小值所得差称为极差.

⒀方差:我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果通常称为方差.

计算方差公式:

.则这组数据的

方差是:

用公式可表示为:

可能性与概率

⒂那些无需通过实验就能够预先确定他们在每一次实验中都一定会发生的事件称为必然事件.那些在每一次实验中都一定不会发生的事件称为不可能事件.必然事件和不可能事件统称为确定事件.

⒃无法预先确定在一次实验中会不会发生的事件称为不确定事件或随机事件. ⒄表示一个事件发生的可能性大小的数,叫做该事件的概率.

⒅概率的理论计算有:①树状图;②列表法.

1、 能力要求

例1为了了解某区九年级7000名学生的体重情况,从中抽查了500名学生的体重,就这个问题来说,下面说法正确的是 ( )

A

.7000名学生是总体 B .每个学生是个体

C .500名学生是所抽取的一个样本

D .样本容量为500

【分析】这个问题主要考查学生对总体、个体、样本、样本容量概念的理解.此题学生容易把研究对象的载体(学生)当作研究对象(体重).

【解】D.

例2 下面两幅统计图(如图1、图2),反映了某市甲、乙两所中学学生参加课外活动的情况.请你通过图中信息回答下面的问题.

⑴通过对图1的分析,写出一条你认为正确的结论;

⑵通过对图2的分析,写出一条你认为正确的结论;

⑶2003年甲、乙两所中学参加科技活动的学生人数共有多少?

【分析】此题就是考查学生的读图、识图的能力. 从统计图中处理数据的情况一般有以下几种:一、分析数据大小情况;二、分析数据所占的比例;三、分析数据的增加、减少等趋势或波动情况.

【解】⑴1997年至2003年甲校学生参加课外活动的人数比乙校增长得快;

⑵甲校学生参加文体活动的人数比参加科技活动的人数多;

⑶200038%110560%1423⨯+⨯=(人).

答:2003年两所中学的学生参加科技活动的总人数是1423人.

【说明】⑴本题是利用折线统计图和扇形统计图展示数据,折线统计图清楚地反映参加课外活动人数的变化情况,扇形统计图清楚地表示出参加课外活动人数占总人数的比例.

⑵从折线统计图可获得2003年甲校参加课外活动人数为2000人,乙校为1105人,再根据扇形统计图参加各类活动人数的百分比即可算出参加各类活动的人数.这里着重考查了学生的读图能力.

例 3 某市实行中考改革,需要根据该市中学生体能的实际情况重新制定中考体育标准.为此,抽取了50名初中毕业的女学生进行“一分钟仰卧起坐”次数测试.测试的情况绘制成表格如下:

⑴求这次抽样测试数据的平均数、众数和中位数;

⑵根据这一样本数据的特点,你认为该市中考女生“一分钟仰卧起坐”项目测试的合格标准应定为多少次较为合适?请简要说明理由;

⑶根据⑵中你认为合格的标准,试估计该市中考女生“一分钟仰卧起坐”项目测试的合格率是多少?

【分析】本题是以统计初步知识在该市怎样定中考女生“一分钟仰卧起坐”项目测试的甲、乙两校参加课外活动的学生人数统计图

(1997~2003年) /年 乙校 (图1) 2003年甲、乙两校学生参加课外活动情况统计图 (图2) 甲校 乙校

相关文档
最新文档