全国优质课-对数函数及其性质
4.4 对数函数及其性质 课件【共13张PPT】

x
a)
是奇函数,
求f(x)<0的解集.
{x | 1 x 0}
巩固练习
5.已知 loga(3a-1)恒为正,求 a 的取值范围.
解:由题意知 loga(3a-1)>0=loga1. 当 a>1 时,y=logax 是增函数, ∴33aa--11>>10,, 解得 a>23,∴a>1; 当 0<a<1 时,y=logax 是减函数, ∴33aa--11<>10,, 解得13<a<23.∴13<a<23. 综上所述,a 的取值范围是13,32∪(1,+∞).
(2)若函数 f(x)的最小值为-4,求 a 的值.
解:(1)要使函数有意义,则有1x-+x3>>00,, 解得-3<x<1,所以函数的定义域为(-3,1).
(2)函数可化为:f(x)=loga(1-x)(x+3)=loga(-x2-2x+3) =loga[-(x+1)2+4],
因为-3<x<1,所以 0<-(x+1)2+4≤4.
[解] (1)由 loga12>1 得 loga12>logaa. ①当 a>1 时,有 a<21,此时无解; ②当 0<a<1 时,有12<a,从而12<a<1.∴a 的取值范围是12,1.
(2)∵函数 y=log0.7x 在(0,+∞)上为减函数,
2x>0, ∴由 log0.7(2x)<log0.7(x-1),得x-1>0,
则x1+ -1x> >00, , 即-1<x<1,所以 F(x)的定义域为{x|-1<x<1}. (2)F(x)=f(x)-g(x),其定义域为(-1,1),且 F(-x)=f(-x)-g(-x) =loga(-x+1)-loga(1+x)=-[loga(1+x)-loga(1-x)]=-F(x),所 以 F(x)是奇函数.
《对数函数及其性质》课件

THANK YOU
对数函数的定义域和值域
理解对数函数的定义域和值域,并能够判断特定函数的定义域和值 域。
对数函数的单调性
理解对数函数的单调性,并能够判断特定函数的单调性。
进阶题目
01
02
03
复合对数函数
理解复合对数函数,并能 够求解复合对数函数的值 。
对数函数的图像
理解对数函数的图像,并 能够根据图像判断函数的 性质。
分析对数函数的值域和定义域。对于自然对数函数y=log(x) ,其值域为R;对于以a为底的对数函数y=log(x),其定义域 为(0, +∞)。对于复合对数函数y=log(u),其值域和定义域取 决于u的取值范围。
03
对数函数的应用
实际应用场景
金融计算
在复利、折旧等计算中 ,对数函数有广泛应用
。
《对数函数及其性质》ppt课件
• 对数函数的定义与性质 • 对数函数的图像与性质 • 对数函数的应用 • 对数函数与其他知识点的联系 • 习题与练习
01
对数函数的定义与性质
定义与表示
总结词
对数函数是一种特殊的函数,其 定义域为正实数集,值域为全体 实数集。常用对数函数以10为底 ,自然对数函数以e为底。
么以a为底N的对数等于b。
对数函数和指数函数在解决实际 问题中经常一起出现,例如在计 算复利、解决声学和光学问题时
。
对数函数与三角函数的联系
对数函数和三角函数在形式上有些相似,特别是在自然对数函数和正弦函数中。
在复数域中,对数函数和三角函数有更密切的联系,它们都可以用来表示复数的幂 。
在解决一些物理问题时,例如波动和振动问题,可能需要同时使用对数函数和三角 函数。
对数函数及其性质课件ppt

统计学
决策理论
在决策理论中,对数函数用于构建效 用函数,以评估不同选项的风险和收 益。
在统计学中,对数函数用于描述概率 分布,如泊松分布和二项分布。
05 练习与思考
基础练习题
01
02
03
04
基础练习题1
请计算以2为底9的对数。
基础练习题2
请计算以3为底8的对数。
基础练习题3
请计算以10为底7的对数奇函数也不是偶 函数。
周期性
• 无周期性:对数函数没有周期性,因为其图像不会重复出 现。
03 对数函数的运算性质
换底公式
总结词
换底公式是用来转换对数的底数的公 式,它对于解决对数问题非常有用。
详细描述
换底公式是log_b(a) = log_c(a) / log_c(b),其中a、b、c是正实数,且b 和c都不等于1。通过换底公式,我们可 以将对数函数转换为任意底数的对数函 数,从而简化计算过程。
图像绘制
对数函数的图像通常在直角坐标系 中绘制,随着底数$a$的取值不同, 图像的形状和位置也会有所变化。
单调性
单调递增
当底数$a > 1$时,对数函数是单调递增的,即随着$x$的增 大,$y$的值也增大。
单调递减
当$0 < a < 1$时,对数函数是单调递减的,即随着$x$的增 大,$y$的值减小。
对数函数的乘法性质
总结词
对数函数的乘法性质是指当两个对数 函数相乘时,其结果的对数等于两个 对数函数分别取对数后的积。
详细描述
对数函数的乘法性质公式为log_b(m) * log_b(n) = log_b(m * n),其中m 和n是正实数。这个性质在对数运算 中也非常有用,因为它可以简化对数 的计算过程。
《 对数函数及其性质》示范公开课教学PPT课件【高中数学人教版】

新课讲授
指数函数的图像和性质
思考1:在同一坐标系中画出下列函数的图象:
(1) y log 2 x
(2) y log 1 x
2
思考2:从画出的图象中你能发现
函数 y log 2 x 的图象和函数 y log 1 x
2
的图象有什么关系?
描点作图
新课讲授
指数函数的图像和性质
思考3:从画出的图象中,你能发现函数的图象与
例2比较下列各组数中两个值的大小:
(1) . , . ;
(2). . ,. . ;
(3) . , . > ,且 ≠ ;
新课讲授
探究:在指数函数 = 中,为自变量,为因变
量,如果把当成自变量, 当成因变量,那么是
(1) = ;(2) = . .
课堂小结
本节主要学习了对数函数及其性质:
图象特征
(1)图象都在y轴右边
(2)函数图象都经过点(1,0)
函数性质
(2)1的对数是0
敬请各位老师提出宝贵意见!
所以 = 关于的函数。
新课讲授
对数函数
一般地,我们把函数 = ( >0且≠1)叫做对数
函数,其中是自变量,函数的定义域是(0,+∞)。
思考:
(1)在函数的定义中,为什么要限定 >0且 ≠1?
(2)为什么函数 = ( >0且 ≠1)的定义域是(0,+∞)。
对数函数及其性 估算出土文物或古
遗址的年代,对于每一个 含量P,通过关系式 = ,
都有唯一确定的年代 与之对应。同理,对于每一个对数式 =
中的,任取一个正的实数值,均有唯一的值与之对应,
对数函数的图象及性质--优质获奖精品课件 (12)

即0<x<3, y>1.
因为lg(lgy)=lg3x+lg(3-x),
所以lg(lgy)=lg[3x·(3-x)],即lgy=3x·(3-x), 所以f(x)=103x(3-x)=10-3x2+9x,其中0<x<3,
即定义域为(0,3).
(2)令u=-3x2+9x=-3x-322+247,0<x<3. 因为0<-3x2+9x≤247, 所以1<y≤10247, 所以f(x)的值域为(1,10247].
把本例(1)变成“y= log122-x”求定义域.
【解】 由题意可知
log122-x≥0, 2-x>0,
∴log122-x≥log121, 2-x>0,
∴22--xx≤>01,, 即1≤x<2.
故函数y= log122-x的定义域为{x|1≤x<2}.
因忽略对数函数的定义域致误 设函数y=f(x),且lg(lgy)=lg3x+lg(3-x). (1)求f(x)的表达式及定义域; (2)求f(x)的值域.
D.[0,1]
【解析】 因为y= xln(1-x),所以x1≥-0x,>0 , 解得0≤x<1.
【答案】 B
3.函数y=loga(x-1)+1(a>0且a≠1)恒过定点________. 【解析】 当x=2时,y=1,故恒过定点(2,1). 【答案】 (2,1)
4.求下列函数的定义域: (1)f(x)=lg(x-2)+x-1 3; (2)f(x)=log(x+1)(16-4x).
2.函数图象的平移变换规律:
3.函数图象的对称变换规律:
函数y= fx的图象
―y并―轴“―左复―侧制―图―”象―一去―份掉―翻,―到―右y―侧轴―保左―留侧→
全国一等奖对数函数的图象和性质第二节教学设计

对数函数及其性质(2)一、教学内容分析《普通高中课程标准数学教科书·必修(1)》(人民教育出版社)高中一年级第二单元2.2.2《对数函数的图象和性质》第一课时。
函数是高中数学的主体内容——变量数学的主要研究对象之一,是中学数学的重点知识,研究函数的一般理论和基本方法,用函数的思想方法解决实际问题,是函数教学的主要目标。
必修(Ⅰ)2.2.2对数函数及其性质,按课标要求教学时间为3个学时,本节课为第1课时,本节课教学是学生在学过正比例函数、一次函数、二次函数、反比例函数和指数函数的基础上进一步学习的一种新函数,对对数函数概念的理解,图象和性质的掌握和应用有利于学生对初等函数认识的系统性,有利于进一步加深对函数思想方法的理解。
为后面进一步探究对数函数的应用及指数函数、对数函数的综合应用起到承上启下的作用。
二、学情与教材分析对数函数是高中引进的第二个初等函数,是本章的重点内容。
学生在前面的函数性质、指数函数学习的基础上,用研究指数函数的方法,进一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进一步完善初等函数的认识的系统性,加深对函数的思想方法的理解,在教学过程中,虽然学生的认知水平有限,但只要让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受y=log a x(a>0且a≠1)中,a取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的规律,进而探究学习对数函数的性质。
最后将对数函数、指数函数的图象和性质进行比较,以便加深对对数函数的概念、图象和性质的理解,同时也为后面教学作准备。
三、设计思想在本节课的教学过程中,通过古遗址上死亡生物体内碳14含量与生物死亡年代关系的探索,引出对数函数的概念。
通过对底数a的分类讨论,探究总结出对数函数的图象与性质,使学生经历从特殊到一般的过程,体验知识的产生、形成过程,通过例题的分析与练习,进一步培养学生自主探索,合作交流的学习方式,通过学生经历直观感知,观察、发现、归纳类比,抽象概括等思维过程,落实培养学生积极探索学习习惯,提高学生的数学思维能力的新课程理念。
全国优质课-对数函数及其性质

教材:人教A版高中数学必修一§2.2.2对数函数及其性质(第一课时)一、教学内容解析1.函数是描述客观世界变化规律的重要数学模型,面对纷繁复杂的变化现象,可以根据变化现象的不同特征进行分类研究.现实生活中的推算出土文物或遗址的年代、地震震级的变化规律、溶液PH值的变化规律等,可以用对数函数模型来研究.对数函数是最基本的、应用最广泛的基本初等函数之一,是进一步学习数学的基础.2.本课内容是《普通高中课程标准试验教科书(人教A版)》必修1第二章《基本初等函数(I)》第二节《对数函数》第二小节的第一课时.本节是一节概念课.既可以类比前面指数函数的研究过程,又为后面幂函数的学习提供研究思路.主要内容是:对数函数的概念与基本性质,并运用它们解决一些简单的实际问题.3.本节内容是培养和提高学生数学抽象、逻辑推理、直观想象、与数学建模核心素养的重要载体.在实际背景中抽象概括出对数函数的概念;利用具体对数函数的图象,通过归纳推理,发现对数函数的性质;数形结合解决比较两个数大小的问题.这些过程正是培养上述数学学科核心素养的重要过程.二、教学目标设置课标要求:通过具体实例,了解对数函数的概念,能用描点法或借助计算工具画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.教学目标:1.通过问题情境,抽象出对数函数的概念,培养学生数学建模、数学抽象的核心素养.2.类比指数函数及其性质的研究方法,分组做出图象,归纳出对数函数的性质,渗透数形结合、从特殊到一般的学习方法,培养学生自主探究的能力.3.会求和对数函数有关的函数的定义域,会利用对数函数的单调性比较大小.三、学生学情分析1.刚升入高中的学生在前面已经学习了“函数的概念及其性质”“指数函数”以及“对数的概念与运算性质”,学生的抽象概括能力、探究能力、逻辑思维能力得到了一定的锻炼,对如何研究一个具体函数方法有了初步的了解.授课学生属于本校第二层次的班级,基础知识比较扎实,具备一定的类比能力.2.虽然有“指数函数”的学习作为参照,但是学生在自主探究的过程中分析问题的能力仍然不足,如何从对数函数的图象归纳出对数函数的性质对学生来说仍有一定的难度,尤其是底数〃对函数值变化的影响,教学时,教师要适当引导.四、教学策略分析在本节课的教学中,主要以问题引导全程,启发学生反复思考,通过小组合作学习,展示学生的学习成果,让学生充分发表自己的观点,在此过程中学生不断将知识、方法内化成为自己的认知结构.这样做可使学生经历新概念产生的过程,认识新旧知识的联系,在过程中感受学习新概念、研究新函数的方法.五、教学重、难点重点:对数函数的概念、图象和性质.难点:引导学生采用数形结合地方法从具体到一般地探索、概括对数函数的性质.六、教学基本流程创设问题情境,引入新课引导学生给出对数函数的定义W 一引导学生画出对数函数的图象练习、交流、反馈、巩固七、教学情境设计(一)创设情境,引入新课※问题1:你知道考古学家是如何推测出土文物或古遗址年代的吗?设计意图:创设问题情境,从实际生活中的例子入手,激发学生的求知欲,并体会变量P与t之间的函数关系.生:利用科学计算器完成表格.师:从函数的观点引导学生认识t = log p P(将该函数板书于副板,为提5730 i■2 炼对数函数模型做准备).(二)探索新知1.对数函数的定义※问题2:观察上述函数有什么特点?设计意图:引导学生提炼对数函数模型y = log x(〃> 0且a丰1).a师:引导学生观察函数的特征:含有对数符号,底数是常数,真数是变量(用x表示函数的自变量,用y表示函数值,并将底数抽象为字母a,将解析式概括为y = log x的形式).a※问题3:根据前面对对数的学习,你认为a的取值范围是什么?自变量x的取值范围呢?设计意图:为对数函数定义的归纳作铺垫.渗透“归纳推理是发现和提出数学命题的重要途径”.生:学生思考,归纳概括对数函数的定义,尝试用恰当的数学语言予以表达.师:根据学生的表达,给出对数函数的定义(板书).※问题4:你能根据对数函数的定义,解决课本P -例7吗?71设计意图:使学生通过求函数的定义域加深对对数函数的理解.生:独立思考,尝试解决例题,可以小组讨论,交流.师:课堂巡视,个别辅导,针对学生的共同问题集中解决.2.对数函数的图象※问题5:前面我们学习指数函数时,都对其哪些性质进行了研究?你能类比指数函数及其性质的研究思路,提出研究对数函数性质的方法吗?设计意图:给出研究对数函数性质的研究思路.发现性质、弄清性质的来龙去脉,是为了更好地揭示对数函数的本质属性.师:引导学生回顾研究指数函数的哪些性质,强调数形结合,强调函数图象在研究性质中的作用,注意从具体到一般的思想方法的应用,渗透归纳概括能力的培养(将学生举出的所要研究的性质板书于副板,为后面观察图象,探究性质作准备).生:独立思考,提出研究对数函数性质的基本思路.※问题6:如何画出对数函数y = log x和y = log x的图象?请用相同的方 2 12 法画出函数尸log x和y= log x的图象(学案).3 13设计意图:会用描点法画函数的图象,学生在学案上的同一坐标系中完成,为归纳对数函数的性质作准备.生:小组合作画图,互相交流,共同完成.师:课堂巡视,个别辅导,展示部分学生的图象.并利用《几何画板》演示.3.对数函数的性质※问题7:观察这些对数函数的图象,你能发现对数函数的哪些性质?请与同学相互交流,并将你的发现填写在学案的相应位置(如果学案所列不完整,请自行列在下面表格).设计意图:学生在对函数图象感性认识的基础上,发现、概括、归纳对数函数的性质,鼓励学生积极主动参与获得性质的过程.生:小组合作填表,互相交流,共同完成.师:课堂巡视,针对学生遇到的具体问题给予适当辅助.※问题8:通过对四个对数函数图象的观察归纳得出的性质不具有一般代表性,如何验证对任意一个对数函数y= log x(a> 0且a中1)这些性质都成立呢?a设计意图:通过归纳推理得出的性质是或然成立的,借用《几何画板》让学生经历“从特殊到一般”的学习过程,验证所得性质的一般代表性.师:利用《几何画板》画出对数函数y=log x (a〉0且a丰1)的图象.生:学生通过观察不同的底数a (a〉0且a中1)的函数图象,得出性质,相互交流,形成对对数函数性质的认识.师:总结学生的观察结果,概括对数函数的性质.(若学生对底数a (a〉0且a w 1)的分类有困难,则适当引导)(三)典型例题例7:求下列函数的定义域(1)y = log x 2 (a〉0且a w 1);a(2)y = log(4-x L〉0且a w 1). a设计意图:使学生通过求函数的定义域加深对对数函数的理解,重点并非求函数的定义域,因此不在这里加大难度.例8:比较下列各组数中两个值的大小:(1)log 3.4,log 8.5;22(2)log 1.8,log 2.7;0.3 0.3(3)log 5.1,log 5.9(a〉0且a w 1). aa设计意图:应用对数函数的单调性“比较两个数的大小”,熟悉对数函数的性质,强调应用函数单调性的目的是用函数的观点解决问题的思想方法.(四)课堂小结※问题9:通过本节课的学习,你有什么收获?教科书是怎样研究对数函数的?通过本节课的学习,面对后面我们还要学习的新函数,你知道如何入手研究吗?设计意图:了解学生通过本节课学习的收获,锻炼学生的数学表达能力.生:思考、小组讨论,推举代表叙述,其它同学补充.师:根据学生回答的情况进行评价和补充.八、课后作业1.教材P -练习2;732.教材P -练习3.733.教材习题2.2-A - 7.8题.※探究:从本节课我们研究的图象中你能发现下列函数图象有什么关系?你能尝试从代数的角度理解这种关系吗?① y = log x和y = log x,② y = log x和y = log x2 13 123设计意图:培养学生养成自主思考的好习惯,为下节课的教学内容铺垫.加深学生对“数形结合”思想的认识.九、板书设计十、反思总结“对数函数图象及性质”评课本节课的教学在体现新课改的教学理念,落实培育数学核心素养的培育上很有代表性,体现在对教学内容的分析中能深刻挖掘教材内容的育人价值,教学目标注意到学生数学核心素养目标培育的设置,教学过程注重数学核心素养的落实。
对数函数及其性质(优质课)ppt

反函数的性质:一个函数的定义域就是它反函数的 值域,值域就是它反函数的定义域。
1 、对数函数的概念 2 、对数函数的图像和性质 3 、会求定义域 4 、会用单调性比较大小
作业:
P73 练习 2、3 P74 习题A组 7、8
解:①因为x2 >0,即x≠0,
所以函数y=logax2 的定义域是{x│x≠0}
②因为4-x>0,即x<4, 所以函数y=loga(4-x)的定义域是{x│x<4}
③因为9-x2>0,即-3<x<3, 所以函数y=loga(9-x2)的定义域是{x│-3<x<3}
例2 比较下列各组数中两个值的大小:
解:
⑴ log 23.4 , log 28.5 ⑵ log 0.31.8 , log 0.32.7 ⑶ log a5.1 , log a5.9 ( a>0 , a≠1 )
⑴考察对数函数 y = log 2x,因为 它的底数2>1,所以它在(0,+∞) 上
y
log28.5 log23.4
是增函数,于是log 23.4<log 28.5
线 -2
对数函数:y = loga x (a>0,且a≠ 1) 图象与性质
x … 1/4 1/2 1
列 表
y
y
log 2
log 1
x…
x…
2
-2 2
-1 1
0 0
y
描
2
点
1 11
42
0 1 23 4
x
24 …
1 2… -1 -2 …
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教材:人教A版高中数学必修一§2.2.2对数函数及其性质(第一课时)一、教学内容解析1.函数是描述客观世界变化规律的重要数学模型,面对纷繁复杂的变化现象,可以根据变化现象的不同特征进行分类研究.现实生活中的推算出土文物或遗址的年代、地震震级的变化规律、溶液PH值的变化规律等,可以用对数函数模型来研究.对数函数是最基本的、应用最广泛的基本初等函数之一,是进一步学习数学的基础.2.本课内容是《普通高中课程标准试验教科书(人教A版)》必修1第二章《基本初等函数(Ⅰ)》第二节《对数函数》第二小节的第一课时.本节是一节概念课.既可以类比前面指数函数的研究过程,又为后面幂函数的学习提供研究思路.主要内容是:对数函数的概念与基本性质,并运用它们解决一些简单的实际问题.3.本节内容是培养和提高学生数学抽象、逻辑推理、直观想象、与数学建模核心素养的重要载体.在实际背景中抽象概括出对数函数的概念;利用具体对数函数的图象,通过归纳推理,发现对数函数的性质;数形结合解决比较两个数大小的问题.这些过程正是培养上述数学学科核心素养的重要过程.二、教学目标设置课标要求:通过具体实例,了解对数函数的概念,能用描点法或借助计算工具画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点.教学目标:1.通过问题情境,抽象出对数函数的概念,培养学生数学建模、数学抽象的核心素养.2.类比指数函数及其性质的研究方法,分组做出图象,归纳出对数函数的性质,渗透数形结合、从特殊到一般的学习方法,培养学生自主探究的能力.3.会求和对数函数有关的函数的定义域,会利用对数函数的单调性比较大小.1.刚升入高中的学生在前面已经学习了“函数的概念及其性质”“指数函数”以及“对数的概念与运算性质”,学生的抽象概括能力、探究能力、逻辑思维能力得到了一定的锻炼,对如何研究一个具体函数方法有了初步的了解.授课学生属于本校第二层次的班级,基础知识比较扎实,具备一定的类比能力.2.虽然有“指数函数”的学习作为参照,但是学生在自主探究的过程中分析问题的能力仍然不足,如何从对数函数的图象归纳出对数函数的性质对学生来说仍有一定的难度,尤其是底数a对函数值变化的影响,教学时,教师要适当引导.四、教学策略分析在本节课的教学中,主要以问题引导全程,启发学生反复思考,通过小组合作学习,展示学生的学习成果,让学生充分发表自己的观点,在此过程中学生不断将知识、方法内化成为自己的认知结构.这样做可使学生经历新概念产生的过程,认识新旧知识的联系,在过程中感受学习新概念、研究新函数的方法.五、教学重、难点重点:对数函数的概念、图象和性质.难点:引导学生采用数形结合地方法从具体到一般地探索、概括对数函数的性质.六、教学基本流程(一)创设情境,引入新课※问题1:你知道考古学家是如何推测出土文物或古遗址年代的吗? 设计意图:创设问题情境,从实际生活中的例子入手,激发学生的求知欲,并体会变量P 与t 之间的函数关系.生:利用科学计算器完成表格. 师:从函数的观点引导学生认识P t 215730log =(将该函数板书于副板,为提炼对数函数模型做准备). (二)探索新知 1.对数函数的定义※问题2:观察上述函数有什么特点?设计意图:引导学生提炼对数函数模型)10(log ≠>=a a x y a 且.师:引导学生观察函数的特征:含有对数符号,底数是常数,真数是变量(用x 表示函数的自变量,用y 表示函数值,并将底数抽象为字母a ,将解析式概括为x y a log =的形式).※问题3:根据前面对对数的学习,你认为a 的取值范围是什么?自变量x 的取值范围呢?设计意图:为对数函数定义的归纳作铺垫.渗透“归纳推理是发现和提出数学命题的重要途径”.生:学生思考,归纳概括对数函数的定义,尝试用恰当的数学语言予以表达. 师:根据学生的表达,给出对数函数的定义(板书). ※问题4:你能根据对数函数的定义,解决课本-71P 例7吗? 设计意图:使学生通过求函数的定义域加深对对数函数的理解. 生:独立思考,尝试解决例题,可以小组讨论,交流. 师:课堂巡视,个别辅导,针对学生的共同问题集中解决. 2.对数函数的图象※问题5:前面我们学习指数函数时,都对其哪些性质进行了研究?你能类比指数函数及其性质的研究思路,提出研究对数函数性质的方法吗?设计意图:给出研究对数函数性质的研究思路.发现性质、弄清性质的来龙去脉,是为了更好地揭示对数函数的本质属性.师:引导学生回顾研究指数函数的哪些性质,强调数形结合,强调函数图象在研究性质中的作用,注意从具体到一般的思想方法的应用,渗透归纳概括能力的培养(将学生举出的所要研究的性质板书于副板,为后面观察图象,探究性质作准备).生:独立思考,提出研究对数函数性质的基本思路.※问题6:如何画出对数函数x y 2log =和x y 21log =的图象?请用相同的方法画出函数x y 3log =和x y 31log =的图象(学案).设计意图:会用描点法画函数的图象,学生在学案上的同一坐标系中完成,为归纳对数函数的性质作准备.生:小组合作画图,互相交流,共同完成.师:课堂巡视,个别辅导,展示部分学生的图象.并利用《几何画板》演示.3.对数函数的性质※问题7:观察这些对数函数的图象,你能发现对数函数的哪些性质?请与同学相互交流,并将你的发现填写在学案的相应位置(如果学案所列不完整,请自行列在下面表格).设计意图:学生在对函数图象感性认识的基础上,发现、概括、归纳对数函数的性质,鼓励学生积极主动参与获得性质的过程.生:小组合作填表,互相交流,共同完成.师:课堂巡视,针对学生遇到的具体问题给予适当辅助.※问题8:通过对四个对数函数图象的观察归纳得出的性质不具有一般代表性,如何验证对任意一个对数函数()10log ≠>=a a x y a 且这些性质都成立呢?设计意图:通过归纳推理得出的性质是或然成立的,借用《几何画板》让学生经历“从特殊到一般”的学习过程,验证所得性质的一般代表性.x y 2log = x y 3log =x y 21log =x y 31log =(1,0)师:利用《几何画板》画出对数函数)10(log ≠>=a a x y a 且的图象. 生:学生通过观察不同的底数()10≠>a a a 且的函数图象,得出性质,相互交流,形成对对数函数性质的认识.师:总结学生的观察结果,概括对数函数的性质.(若学生对底数(三)典型例题例7:求下列函数的定义域 (1)()10log 2≠>=a a x y a 且 ; (2)()()10-4log ≠>=a a x y a 且.设计意图:使学生通过求函数的定义域加深对对数函数的理解,重点并非求函数的定义域,因此不在这里加大难度.例8:比较下列各组数中两个值的大小: (1)4.3log 2,5.8log 2; (2)8.1log 3.0,7.2log 3.0;(3)1.5log a ,)10(9.5log ≠>a a a 且.设计意图:应用对数函数的单调性“比较两个数的大小”,熟悉对数函数的性质,强调应用函数单调性的目的是用函数的观点解决问题的思想方法.(四)课堂小结※问题9:通过本节课的学习,你有什么收获?教科书是怎样研究对数函数的?通过本节课的学习,面对后面我们还要学习的新函数,你知道如何入手研究吗?设计意图:了解学生通过本节课学习的收获,锻炼学生的数学表达能力. 生:思考、小组讨论,推举代表叙述,其它同学补充. 师:根据学生回答的情况进行评价和补充. 八、课后作业1.教材-73P 练习2;2.教材-73P 练习3. 3.教材习题8.7-2.2-A 题.※探究:从本节课我们研究的图象中你能发现下列函数图象有什么关系?你能尝试从代数的角度理解这种关系吗?①x y 2log =和x y 21log =,②x y 3log =和x y 31log =设计意图:培养学生养成自主思考的好习惯,为下节课的教学内容铺垫.加深学生对“数形结合”思想的认识. 九、板书设计十、反思总结“对数函数图象及性质”评课本节课的教学在体现新课改的教学理念,落实培育数学核心素养的培育上很有代表性,体现在对教学内容的分析中能深刻挖掘教材内容的育人价值,教学目标注意到学生数学核心素养目标培育的设置,教学过程注重数学核心素养的落实。
一.对数概念形成自然李老师采用碳衰变的实际问题作为情境,这一问题情境是教材这一章一以贯之用的例子,相同情境不同问题,一脉相承又在其上自然延伸发展,采用列表让学生用计算器计算值,加深学生对函数对应关系的理解,使得对数函数概念的形成过程自然流畅,形成概念过程真正的让学生经历知识形成过程培育学生数学抽象的核心素养。
二.性质研究注重方法数学核心素养的培育体现在四基的教学过程中,基础知识、基本技能、基本思想、基本的活动经验,对数函数的性质研究方法与指数函数性质的研究方法是一致的,因此,本节课的教学完全可以放手让学生类比指数函数性质的研究去完成,“活动”是这节课的主旋律。
“请同学们按照指数函数性质的研究方法研究对数函数的性质”,然后放手让学生去探索,耐心等待学生展示探索的结果,这一过程中有学生的独立思考,有学生的合作交流,有学生的成果展示,形成欣欣向荣的课堂学习情景。
无论是对数概念的形成,性质的探究,李老师展现的是教师是课堂教学的组织者和引导者,学生是课堂的主人,这种以学习者为中心的教学正是当下教育改革所追求的方式。
2.2.2对数函数及其性质(学案)1. 对数函数概念的形成利用对应关系P t 215730log =,使用科学计算器,完成下表尝试用简明的语言描述对数函数的概念对数函数的概念:一般地,我们把函 叫做对数函数,其中 是自变量,函数的定义域是 . 例7:求下列函数的定义域(3)()10log 2≠>=a a x y a 且 ; (2)()()10-4log ≠>=a a x y a 且.2. 探究:对数函数()10log ≠>=a a x y a 且的图象与性质 在同一坐标系中用描点法画出下列对数函数的图象①x y 2log =;②x y 21log =;③x y 3log =;④x y 31log =.②描点、连线(备注:2.5323≈,6.15325≈)3.对数函数的性质一般地,对数函数()1log≠>=aaxya且的图象和性质如下表所示:图象定义域值域性质单调性奇偶性定点10 例8:比较下列各组数中两个值的大小:(4)4.3log 2,5.8log 2;(5)8.1log 3.0,7.2log 3.0;(6)1.5log a ,)10(9.5log ≠>a a a 且.4.课后探究从本节课我们研究和图象中你能发现下列函数图象有什么关系?①x y 2log =和x y 21log =,②x y 3log =和xy 31log =你能尝试从代数的角度理解这种关系吗?5.课后作业教材-73P 练习2、3;教材习题8.7-2.2-A 题.。