五年级奥数.计数综合.排列组合(ABC级)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、 排列问题
在实际生活中经常会遇到这样的问题,就是要把一些事物排在一起,构成一列,计算有多少种排法,就是排列问题.在排的过程中,不仅与参与排列的事物有关,而且与各事物所在的先后顺序有关.
一般地,从n 个不同的元素中取出m (m n ≤)个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.
根据排列的定义,两个排列相同,指的是两个排列的元素完全相同,并且元素的排列顺序也相同.如果两个排列中,元素不完全相同,它们是不同的排列;如果两个排列中,虽然元素完全相同,但元素的排列顺序不同,它们也是不同的排列.
排列的基本问题是计算排列的总个数.
从n 个不同的元素中取出m (m n ≤)个元素的所有排列的个数,叫做从n 个不同的元素的排列中取出
m 个元素的排列数,我们把它记做m n P .
根据排列的定义,做一个m 元素的排列由m 个步骤完成:
步骤1:从n 个不同的元素中任取一个元素排在第一位,有n 种方法;
步骤2:从剩下的(1n -)个元素中任取一个元素排在第二位,有(1n -)种方法; ……
步骤m :从剩下的[(1)]n m --个元素中任取一个元素排在第m 个位置,有11n m n m --=-+()(种)
方法;
由乘法原理,从n 个不同元素中取出m 个元素的排列数是121n n n n m ⋅-⋅-⋅⋅-+()()()
,即121m n P n n n n m =---+()()(),这里,m n ≤,且等号右边从n 开始,后面每个因数比前一个因数小1,共有m 个因数相乘.
二、 排列数
一般地,对于m n =的情况,排列数公式变为12321n n P n n n =⋅-⋅-⋅⋅⋅⋅(
)(). 表示从n 个不同元素中取n 个元素排成一列所构成排列的排列数.这种n 个排列全部取出的排列,叫做n 个不同元素的全排列.式子右边是从n 开始,后面每一个因数比前一个因数小1,一直乘到1的乘积,
知识结构
排列组合
记为!n ,读做n 的阶乘,则n n P 还可以写为:!n n P n =,其中!12321n n n n =⋅-⋅-⋅⋅⋅⋅(
)() .
在排列问题中,有时候会要求某些物体或元素必须相邻;求某些物体必须相邻的方法数量,可以将这些物体当作一个整体捆绑在一起进行计算.
三、 组合问题
日常生活中有很多“分组”问题.如在体育比赛中,把参赛队分为几个组,从全班同学中选出几人参加某项活动等等.这种“分组”问题,就是我们将要讨论的组合问题,这里,我们将着重研究有多少种分组方法的问题.
一般地,从n 个不同元素中取出m 个(m n ≤)元素组成一组不计较组内各元素的次序,叫做从n 个不同元素中取出m 个元素的一个组合.
从排列和组合的定义可以知道,排列与元素的顺序有关,而组合与顺序无关.如果两个组合中的元素完全相同,那么不管元素的顺序如何,都是相同的组合,只有当两个组合中的元素不完全相同时,才是不同的组合.
从n 个不同元素中取出m 个元素(m n ≤)的所有组合的个数,叫做从n 个不同元素中取出m 个不同元
素的组合数.记作m
n C .
一般地,求从n 个不同元素中取出的m 个元素的排列数m n P 可分成以下两步:
第一步:从n 个不同元素中取出m 个元素组成一组,共有m
n C 种方法;
第二步:将每一个组合中的m 个元素进行全排列,共有m
m P 种排法.
根据乘法原理,得到m m m
n n m P C P =⨯.
因此,组合数12)112321
m
m
n n
m m
P n n n n m C m m m P ⋅-⋅-⋅⋅-+=
=
⋅-⋅-⋅⋅⨯⨯()(()
()().
这个公式就是组合数公式.
四、 组合数的重要性质
一般地,组合数有下面的重要性质:m n m
n n C C -=(m n ≤)
这个公式的直观意义是:m n C 表示从n 个元素中取出m 个元素组成一组的所有分组方法.n m
n C -表示从
n 个元素中取出(n m -)个元素组成一组的所有分组方法.显然,从n 个元素中选出m 个元素的分组方法
恰是从n 个元素中选m 个元素剩下的(n m -)个元素的分组方法.
例如,从5人中选3人开会的方法和从5人中选出2人不去开会的方法是一样多的,即32
55C C =. 规定1n n
C =,0
1n C =. 五、 插板法一般用来解决求分解一定数量的无差别物体的方法的总数,使用插板法一般有三个要求:
①所要分解的物体一般是相同的:②所要分解的物体必须全部分完:③参与分物体的组至少都分到1
个物体,不能有没分到物体的组出现.
在有些题目中,已知条件与上面的三个要求并不一定完全相符,对此应当对已知条件进行适当的变形,使得它与一般的要求相符,再适用插板法.
六、 使用插板法一般有如下三种类型:
⑴ m 个人分n 个东西,要求每个人至少有一个.这个时候我们只需要把所有的东西排成一排,在其中的
(1)n -个空隙中放上(1)m -个插板,所以分法的数目为1
1m n C --.
⑵ m 个人分n 个东西,要求每个人至少有a 个.这个时候,我们先发给每个人(1)a -个,还剩下
[(1)]n m a --个东西,这个时候,我们把剩下的东西按照类型⑴来处理就可以了.所以分法的数目为
1(1)1m n m a C ----.
⑶ m 个人分n 个东西,允许有人没有分到.这个时候,我们不妨先借来m 个东西,每个人多发1个,这
样就和类型⑴一样了,不过这时候物品总数变成了()n m +个,因此分法的数目为11m n m C -+-.
一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个底数,哪个是指数
【例1】 (1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法?
【解析】:(1)43(2)34 (3)3
4
【例2】 把6名实习生分配到7个车间实习共有多少种不同方法? 【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案,
第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有6
7种不同方案.
【例3】 8名同学争夺3项冠军,获得冠军的可能性有( )A 、38 B 、83 C 、38A D 、3
8C
【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠 军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有3
8种 不同的结果。所以选A
二.相邻问题捆绑法: 题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.
【例1】,,,,A B C D E 五人并排站成一排,如果,A B 必须相邻且B 在A 的右边,那么不同的排法种数有
【解析】:把,A B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,
4424A =种 【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3
位女生中有且只有两位女生相邻,则不同排法的种数是( ) A. 360 B. 188 C. 216 D. 96
【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,
2222
3242C A A A =432
种
例题精讲