九年级数学下册圆的基本性质(1)同步练习含答案

合集下载

人教版九年级数学下圆同步练习含答案

人教版九年级数学下圆同步练习含答案

24.1.1 圆知识点1 圆的定义1.圆的形成定义:在一个平面内,线段绕它固定的一个端点旋转________,另一个端点所形成的图形叫做圆.圆的集合定义:圆心为O、半径为r的圆可以看成是所有到定点O的距离等于________的点的集合.2.下列条件中,能确定圆的是( )A.以已知点O为圆心B.以1 cm长为半径C.经过已知点A,且半径为2 cmD.以点O为圆心,1 cm长为半径3.如图24-1-1所示,以坐标原点O为圆心的圆与y轴交于点A,B,且OA=1,则点B的坐标是( )图24-1-1A.(0,1) B.(0,-1)C.(1,0) D.(-1,0)4.如图24-1-2所示,若BD,CE都是△ABC的高.求证:B,C,D,E四点在同一个圆上.图24-1-2知识点2 与圆有关的概念5.如图24-1-3所示,在⊙O中,________是直径,________是弦,劣弧有________,优弧有________.图24-1-36.如图24-1-4,在⊙O中,点A,O,D以及点B,O,C分别在一条直线上,图中弦的条数是( )图24-1-4A.2 B.3 C.4 D.57.下列命题中是真命题的有( )①两个端点能够重合的弧是等弧;②圆的任意一条弦把圆分成优弧和劣弧两部分;③长度相等的弧是等弧;④半径相等的两个圆是等圆;⑤直径是圆中最长的弦.A.2个B.3个C.4个D.5个8.若圆的半径为3,则弦AB的长度的取值范围是__________.9.已知:如图24-1-5,OA,OB为⊙O的半径,C,D分别为OA,OB的中点.求证:AD=BC.图24-1-510.已知:如图24-1-6,在⊙O中,AB为弦,C,D两点在弦AB上,且AC=BD.求证:△OAC≌△OBD.图24-1-611.如图24-1-7,AB 是⊙O 的直径,点D ,C 在⊙O 上,AD ∥OC ,∠DAB =60°,连接AC ,则∠DAC 等于( )图24-1-7A .15°B .30°C .45°D .60°12.如图24-1-8所示,AB ,MN 是⊙O 中两条互相垂直的直径,点P 在上,且AM ︵ 不与点A ,M 重合,过点P 作AB ,MN 的垂线,垂足分别是D ,C.当点P 在上移动时,AM ︵ 矩形PCOD 的形状、大小随之变化,则PC 2+PD 2的值( )图24-1-8A .逐渐变大B .逐渐变小C .不变D .不能确定13.如图24-1-9,已知P 是⊙O 外一点,Q 是⊙O 上的动点,线段PQ 的中点为M ,连接OP ,OM.若⊙O 的半径为2,OP =4,则线段OM 的最小值是( )图24-1-9A .0B .1C .2D .314.如图24-1-10,在Rt △ABC 中,以点C 为圆心,BC 长为半径的圆交AB 于点D ,交AC 于点E ,∠BCD =40°,则∠A =________°.图24-1-1015.如图24-1-11,C 是以点O 为圆心,AB 为直径的半圆上一点,且CO ⊥AB ,在OC 两侧分别作矩形OGHI 和正方形ODEF ,且点I ,F 在OC 上,点H ,E 在半圆上,可证:IG =FD.小云发现连接图中已知点得到两条线段,便可证明IG =FD.请回答:小云所作的两条线段分别是________和________.图24-1-1116.⊙O 1与⊙O 2的半径分别是r 1,r 2,且r 1和r 2是关于x 的方程x 2-ax +=0的两个14根.若⊙O 1与⊙O 2是等圆,则a 2019的值为________.17.如图24-1-12所示,AB 是⊙O 的弦,半径OC ,OD 分别交AB 于点E ,F ,且AE=BF,请你指出线段OE与OF的数量关系,并给予证明.图24-1-1218.在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O 上,且OP⊥PQ.(1)如图24-1-13①,当PQ∥AB时,求PQ的长;(2)如图24-1-13②,当点P在BC上移动时,求PQ长的最大值.图24-1-13教师详解详析1.一周 定长r2.D [解析] ∵圆心和半径都确定后才可以确定圆,只有D 选项中具备这两个条件,∴D 选项正确.3.B [解析] ∵圆的半径都相等,∴OB =OA =1,∴点B 的坐标是(0,-1).故选B .4.证明:如图,取BC 的中点F ,连接DF ,EF.∵BD ,CE 都是△ABC 的高,∴△BCD 和△BCE 都是直角三角形,∴DF ,EF 分别是Rt △BCD 和Rt △BCE 斜边上的中线,∴DF =EF =BF =CF ,∴B ,C ,D ,E 四点在以点F 为圆心,BF 的长为半径的圆上.5.AD AD ,AC , ,AC ︵ CD ︵ ADC ︵ CAD ︵6.B [解析] 图中的弦有AB ,BC ,CE ,共3条.7.A [解析] 等弧是完全重合的弧,故①③错误;直径把圆分成两条相等的弧,即两个半圆,故②错误;半径相等的圆可以完全重合,是等圆,故④正确;直径是圆中最长的弦,故⑤正确.故选A .8.0<AB ≤69.证明:∵OA ,OB 为⊙O 的半径,∴OA =OB.∵C ,D 分别为OA ,OB 的中点,∴OC =OD.在△AOD 和△BOC 中,∵{OA =OB ,∠O =∠O ,OD =OC ,)∴△AOD ≌△BOC(SAS ),∴AD =BC.10.证明:∵OA =OB ,∴∠A =∠B.在△OAC 和△OBD 中,∵{OA =OB ,∠A =∠B ,AC =BD ,)∴△OAC ≌△OBD(SAS ).11.B [解析] ∵OA =OC ,∴∠CAO =∠ACO.∵AD ∥OC ,∴∠DAC =∠ACO ,∴∠DAC =∠CAO.∵∠DAB =60°,∴∠DAC =∠DAB =30°.1212.C [解析] 连接OP.∵四边形PCOD 是矩形,∴PC =OD ,∴PC 2+PD 2=OD 2+PD 2=OP 2,为一定值.故选C .13.B [解析] 设OP 与⊙O 交于点N ,连接MN ,OQ ,如图.∵OP =4,ON =2,∴N 是OP 的中点.又∵M 是PQ 的中点,∴MN 为△POQ 的中位线,∴MN =OQ =×2=1,1212∴点M 在以点N 为圆心,1为半径的圆上,∴当点M 在ON 上时,OM 的值最小,最小值为1.故选B .14.20 [解析] ∵CB =CD ,∴∠B =∠CDB.∵∠B +∠CDB +∠BCD =180°,∴∠B =(180°-∠BCD)=(180°-40°)=70°.又∵∠ACB =90°,∴∠A =90°1212-∠B =20°.15.OH OE [解析] 连接OH ,OE ,如图所示.∵在矩形OGHI 和正方形ODEF 中,IG =OH ,OE =FD ,又∵OH =OE ,∴IG =FD.16.1 [解析] ∵⊙O 1与⊙O 2是等圆,∴r 1=r 2,即方程x 2-ax +=0有两个相等的实14数根,∴Δ=b 2-4ac =a 2-4×=0,即a 2=1,∴a =±1.14又∵r 1=r 2>0,a =r 1+r 2,∴a =1,∴a 2019=12019=1.17.解:OE =OF.证明:连接OA ,OB.∵OA =OB ,∴∠A =∠B.又∵AE =BF ,∴△OAE ≌△OBF ,∴OE =OF.18.解:(1)连接OQ.∵PQ ∥AB ,PQ ⊥OP ,∴OP ⊥AB.∵AB =6,∴OB =3.∵∠ABC =30°,∴PB =2OP.在Rt △PBO 中,由勾股定理,得PB 2=OP 2+OB 2.设OP =x ,则PB =2x ,则(2x)2=x 2+32,解得x =(负值已舍去),∴OP =.33在Rt △OPQ 中,由勾股定理,得PQ ===.OQ 2-OP 232-(3)26(2)连接OQ ,由勾股定理得PQ ==.OQ 2-OP 29-OP 2要使PQ 取最大值,需OP 取最小值,此时OP ⊥BC.∵∠ABC =30°,∴OP =OB =,1232此时PQ 最大值== .9-94323。

2020-2021沪科版九年级数学24.2圆的基本性质-知识点+习题同步练习提升 (1)

2020-2021沪科版九年级数学24.2圆的基本性质-知识点+习题同步练习提升 (1)

圆的基本性质记忆导图 ()⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧对称、旋转对称对称性:轴对称、中心角形顶点的距离相等定理:三角形外心到三、圆的内接三角形三角形的外接圆、外心圆的作法圆的确定几者之间的关系圆心角的概念距间的关系圆心角、弧、弦、弦心弦心距垂径定理的推论垂径定理垂径分弦点在圆外点在圆内点在圆上点与圆的位置关系半圆、等圆弓形特殊弦:直径普通弦:小于直径的弦弦等弧优弧劣弧或弧圆弧圆、圆心、半径圆的相关概念圆的基本性质 考点1 圆的相关概念1、圆的定义(1)线段OA 绕着它的一个端点O 旋转一周,另一个端点A 所形成的封闭曲线,叫做圆。

(2)圆是到定点的距离等于定长的点的集合。

(3)固定的端点O 叫做圆心。

(4)线段OA 的长为r 叫做半径。

2、圆弧(1)圆上任意两点间的部分叫做圆弧,简称弧。

(2)大于半圆的弧叫做优弧,一般用三个字母表示。

(3)小于半圆的弧叫做劣弧。

(4)在同圆或等圆中,能够互相重合的弧叫做等弧。

3、弦(1)连接圆上任意两点的线段叫做弦。

(2)经过圆心的弦叫做直径。

4、弓形由弦及其所对的弧组成的图形叫做弓形。

5、半圆、等圆(1)圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。

(2)能够重合的两个圆叫做等圆,等圆的半径相等。

考点2 点与圆的位置关系平面上一点P 与⊙O (半径为r )的位置关系有以下三种情况:(1)点P在⊙O上⇔OP=r;(2)点P在⊙O内⇔OP<r;(3)点P在⊙O外⇔OP>r。

考点3垂径分弦1、垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。

2、推论:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

②弦的垂直平分线过圆心,且平分弦对的两条弧。

③平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦。

④平行弦夹的弧相等。

精品 2014年九年级数学圆的基本性质 圆周角圆心角讲义+同步练习题

精品 2014年九年级数学圆的基本性质 圆周角圆心角讲义+同步练习题

九年级数学 圆周角 圆心角知识点:圆心角: 弧度:圆周角:圆心角与圆周角的关系: 同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的一半. 圆周角定理:直径所对的圆周角是直角,反过来,90°的圆周角所对的弦是直径。

例1.如图,已知P 是O 外任意一点,过点P 作直线PAB ,PCD ,分别交O 于点A ,C ,D . 求证:12P ∠=(BD 的度数AC -的度数).例2.如图①,点A 、B 、C 在⊙O 上,连结OC 、OB :⑴ 求证:∠A=∠B+∠C ;⑵ 若点A 在如图②的位置,以上结论仍成立吗?说明理由。

例3.如图,⊙O 的直径AB=8cm,∠CBD=300,求弦DC 的长.30︒DCBAO例4.如图所示,已知AB 为⊙O 的直径,CD 是弦,且AB CD 于点E .连接AC 、OC 、BC .(1)求证:∠ACO=∠BCD ;(2)若EB=8cm ,CD=24cm ,求⊙O 的直径.例5.如图,在⊙O 中,AB 是直径,CD 是弦,AB ⊥CD.(1)P 是CAD 上一点(不与C 、D 重合),试判断∠CPD 与∠COB 的大小关系, 并说明理由. (2)点P /在劣弧CD 上(不与C 、D 重合时),∠CP /D 与∠COB 有什么数量关系?请证明你的结论.DCBPAO例6.如图,A 、B 、C 、D 四点都在⊙O 上,AD 是⊙O 的直径,且AD=6cm,若∠ABC=∠CAD,求弦AC 的长.DCBA O例7.如图所示,在△ABC 中,∠BAC 与∠ABC 的平分线AE 、BE 相交于点E ,延长AE 交△ABC 的外接圆于D 点,连接BD 、CD 、CE ,且∠BDA=600.(1)求证△BDE 是等边三角形;(2)若∠BDC=1200,猜想BDCE 是怎样的四边形,并证明你的猜想。

同步练习:1.在⊙O 中同弦所对的圆周角( )A.相等B.互补C.相等或互补D.以上都不对 2.下列说法正确中的是( )A.顶点在圆周上的角称为圆周角B.相等的圆周角所对的弧相等C.若三角形一边上的中线等于这边的一半,则这一边必为此三角形外接圆的直径D.圆周角等于圆心角的一半3.如图,∠1、∠2、∠3、∠4的大小关系是( )A.∠4<∠1<∠2<∠3B.∠4<∠1=∠3<∠2C.∠4<∠1<∠3∠2D.∠4<∠1<∠3=∠2CBA ODCBAO4.如图,已知圆心角∠BOC=1000,则圆周角∠BAC 的度数是( )A.50°B.100°C.130°D.200°5.如图,A 、B 、C 、D 四个点在同一个圆上,四边形ABCD 的对角线把四个内角分成的八个角中,相等的角有( )A.2对B.3对C.4对D.5对 6.如图,D 是AC 的中点,则图中与∠ABD 相等的角的个数是( )A.4个B.3个C.2个D.1个DCBACBAO7.如图,∠AOB=100°,则∠A+∠B 等于( )A.100°B.80°C.50°D.40° 8.如图,A 、B 、C 三点都在⊙O 上,点D 是AB 延长线上一点,∠AOC=140°, ∠CBD 的度数是( ) A.40° B.50° C.70° D.110° 9.在半径为R 的圆中有一条长度为R 的弦,则该弦所对的圆周角的度数是( )A.30°B.30°或150°C.60°D.60°或120° 10.半径为R 的⊙O 中,弦AB=2R ,弦CD=R ,若两弦的弦心距分别为OE 、OF ,则OE ∶OF 等于( )A.2∶1B.3∶2C.2∶3D.0 11.点P 为⊙O 内一点,且OP=4,若⊙O 的半径为6,则过点P 的弦长不可能为 ( )A 302B 12C 8D 10.512.如图所示,⊙O的半径为5,弧AB所对的圆心角为1200,则弦AB的长为()A.1033 B.532C.8D.5313.如图所示,正方形ABCD内接于⊙O中,P是弧AD上任意一点,则∠ABP+∠DCP等于()A.90°B.45°C.60°D.30°14.如图,同心圆中,大圆的弦AB交小圆于C、D,已知AB=4,CD=2,AB的弦心距等于1,那么两个同心圆的半径之比为( )A.3∶2B.5∶2C.5∶2D.5∶415.如图,AB是⊙O的直径,BC CD DE==,∠COD=35°,则∠AOE的度数为_________.16.如图所示,已知AB、CD是⊙O的两条直径,弦DE∥AB,∠DOE=70°,则∠BOD=__________17.如图,A、B是⊙O的直径,C、D、E都是圆上的点,则∠1+∠2=_______.18.如图所示,在△ABC中,∠ACB=900,∠B=250,以C为圆心,CA为半径的圆交AB于点D,则∠ACD=______19.如图, AB是⊙O的直径,点C在⊙O上,∠BAC=300,点P在线段OB上运动.设∠ACP=x,则x的取值范围是20.如图,CD是圆的直径,O是圆心,E是圆上一点且∠EOD=450,A是DC延长线上一点,AE交圆于B,如果AB=OC,则∠EAD=______21.弦心距是弦的一半时,弦与直径的比是____________,弦所对的圆心角是__________22.如图,CD 是半圆的直径,O 为圆心,E 是半圆上一点,且93EOD ∠=,A 是DC 延长线上一点,AE 与半圆相交于点B ,如果AB=OC ,则EAD ∠=,EOB ∠=,ODE ∠=.23.如图,将某月手机费中各项费用的情况制成扇形统计图,则表示短信费的扇形圆心角的度数为______ 24.⊙O 中,弦AB 垂直直径CD 于点P ,半径OA=4cm ,OP=2cm ,则∠AOB=__________,∠ADC=__________,弧BD 度数为__________,△ADC 周长为__________ cm 。

九年级数学下--第三章--圆同步练习及答案

九年级数学下--第三章--圆同步练习及答案

九年级数学下圆个单元同步练习3.1圆同步练习一、填空题:1.⊙O的直径为10cm,⊙O所在的平面内有一点P,当PO_______时,点P在⊙O上;当PO_____时,点P 在⊙O内;当PO______时,点P在⊙O外.2.已知⊙O的周长为8 cm,若PO=2cm,则点P在_______;若PO=4cm,则点P在_____;若PO=6cm,则点P在_______.3.平面上有两点A、B,若线段AB的长为3cm,则以A为圆心,经过点B的圆的面积为_______.4.点A的坐标为(3,0),点B的坐标为(0,4),则点B在以A为圆心, 6 为半径的圆的_______.5.在半径为5cm的⊙O上有一点P,则OP的长为________.二、选择题:6.在△ABC中,∠C=90°,AC=BC=4cm,D是AB的中点,以C为圆心,4cm长为半径作圆,则A、B、C、D 四点中,在圆内的有( ) A.4个 B.3个 C.2个 D.1个7.与圆心的距离不大于半径的点所组成的图形是( )A.圆的外部(包括边界);B.圆的内部(不包括边界);C.圆;D.圆的内部(包括边界)8.已知⊙O的半径为6cm,P为线段OA的中点,若点P在⊙O上,则OA的长( )A.等于6cmB.等于12cm;C.小于6cmD.大于12cm9.⊙O的半径为5,圆心O的坐标为(0,0),点P的坐标为(4,2),则点P与⊙O 的位置关系是( )A.点P在⊙O内;B.点P的⊙O上;C.点P在⊙O外;D.点P在⊙O上或⊙O外三、解答题:10.如图,点O到直线AB的距离为8cm,点C、D都在直线AB上,OA⊥AB. 若AD= 6cm.CD=2cm,AB=5cm.以O为圆心,10cm为半径作圆,试判断A、B、C、D四点与⊙O 的位置关系.11.设线段AB=4cm,作图说明:到点A的距离大于3cm,且到点B的距离小于2cm的所有点组成的图形.12.作图说明到点O 的距离大于2cm 而小于3cm 的所有点组成的图形13.如图,点P 的坐标为(4,0),⊙P 的半径为5,且⊙P 与x 轴交于点A 、B,与y 轴交于点C 、D,试求出点A 、B 、C 、D 的坐标.14.如图,矩形ABCD 中,对角线AC 、BD 相交于点O,试问:是否存在一个圆,使A 、B 、C 、D 四个点都在这个圆上?如果存在,请指出这个圆的圆心和半径;如果不存在,说明理由.OC DAB15.操场上站着A 、B 、C 三位同学,已知A 、B 相离5米,B 、C 相离3米,试写出A 、C 两位同学之间距离的取值范围.16.如图,⊙O 的半径为2.5,动点P 到定点O 的距离为2,动点Q 到P 点的距离为1,则点P 、Q 与⊙O 有何位置关系?说明理由.m 23.1答案:1.=5cm <5cm >5cm2.⊙O内⊙O外⊙O外3.9π cm24.内部5.5cm6.C7.D8.B9.A10.由已知得===10,OC= ,故OA<10,OB<10,OD=10,OC>10.从而点A, 点B在⊙O内;点C在⊙O外;点D在⊙O上.11.如图所示,所组成的图形是阴影部分(不包括阴影的边界).12.如图所示,所组成的图形是阴影部分(不包括阴影的边界).(11题) (12题)13.由已知得PO=4,PA=5,PB=5,故OA=1,OB=9,从而A点坐标为A(-1,10),B点坐标为(9,0);连结PC、PD,则PC=PD=5,又PO⊥CD,PO=4,故OC==3,OD==3.从而C点坐标为(0,3) ,D点坐标为(0,-3).14.存在,以O为圆心,OA为半径的圆.15.2≤AC≤8.16.∵PO<2.5,故点P在⊙O内部;∵Q点在以P为圆心,1为半径的⊙P上,∴1≤OQ≤3.当Q在Q1点或Q2点处,OQ=2.5,此时Q在⊙O上;当点Q在弧线Q1mQ2上(不包括端点Q1,Q2),则OQ>2.5,这时点Q 在⊙O外;当点Q在弧线Q1nQ2上(不包括端点Q1,Q2),则OQ<2.5,这时点Q在⊙O内.3.2---3.3圆的对称性、垂径定理 同步练习一、填空题:1.圆既是轴对称图形,又是_________对称图形,它的对称轴是_______, 对称中心是____.2.已知⊙O 的半径为R,弦AB 的长也是R,则∠AOB 的度数是_________.3. 圆的一条弦把圆分为5: 1 两部分, 如果圆的半径是2cm, 则这条弦的长是_____cm.4.已知⊙O 中,OC⊥弦AB 于C,AB=8,OC=3,则⊙O 的半径长等于________.5.如图1,⊙O 的直径为10,弦AB=8,P 是弦AB 上的一个动点,那么OP 长的取值范围是_____.BPAO DCBAEDCBAO(1) (2) (3)6.已知:如图2,有一圆弧形拱桥,拱的跨度AB=16cm,拱高CD=4cm,那么拱形的半径是____m.7.如图3,D 、E 分别是⊙O 的半径OA 、OB 上的点,CD⊥OA,CE⊥OB,CD= CE, 则AC 与CB 弧长的大小关系是_________.8.如图4,在⊙O 中,AB 、AC 是互相垂直且相等的两条弦,OD⊥AB,OE⊥AC,垂足分别为D 、E,若AC=2cm,则⊙O 的半径为_____cm.E DC BAOBAOBP AO(4) (5) (6) (7) 二、选择题:9.如图5,在半径为2cm 的⊙O 中有长为cm 的弦AB,则弦AB 所对的圆心角的度数为( ) A.60° B.90° C.120° D.150°10.如图6,⊙O 的直径为10cm,弦AB 为8cm,P 是弦AB 上一点,若OP 的长为整数, 则满足条件的点P 有( ) A.2个 B.3个 C.4个 D.5个11.如图7,A 是半径为5的⊙O 内一点,且OA=3,过点A 且长小于8的弦有( ) A.0条 B.1条 C.2条 D.4条三、解答题:12.如图,AB 是⊙O 的弦(非直径),C 、D 是AB 上两点,并且AC=BD.试判断OC 与OD 的数量关系并说明理由.DCBAO13.如图,⊙O 表示一圆形工件,AB=15cm,OM=8cm,并且MB:MA=1:4, 求工件半径的长.MBAO14.已知:如图,在⊙O 中,弦AB 的长是半径OA,C 为AB 的中点,AB 、OC 相交于点M.试判断四边形OACB 的形状,并说明理由.MCBAO15.如图,AB 是⊙O 的直径,P 是AB 上一点,C 、D 分别是圆上的点,且∠CPB=DPB,DB BC ,试比较线段PC 、PD 的大小关系.B A16.半径为5cm 的⊙O 中,两条平行弦的长度分别为6cm 和8cm.则这两条弦的距离为多少?17.在半径为5cm 的⊙O 中,弦AB 的长等于6cm,若弦AB 的两个端点A 、B 在⊙O 上滑动(滑动过程中AB 的长度不变),请说明弦AB 的中点C 在滑运过程中所经过的路线是什么图形.18.如图,点A 是半圆上的三等分点,B 是BN 的中点,P 是直径MN 上一动点.⊙O 的半径为1,问P 在直线MN 上什么位置时,AP+BP 的值最小?并求出AP+BP 的最小值.NMBPAO3.2答案:1.中心 过圆心的任一条直线 圆心2.60°3.2cm4.55.3≤OP≤56.107.相等12.过O 作OM⊥AB 于M,则AM=BM.又AC=BD,故AM-AC=BM-BD,即CM=DM,又OM ⊥CD, 故△OCD 是等腰三角形.即OC=OD.(还可连接OA 、OB.证明△AOC≌△BOD). 13.过O 作OC⊥AB 于C,则BC=152cm.由BM:AM=1:4,得BM=15×5=3 ,故CM=152-3=4.5 . 在Rt△OCM 中, OC 2=229175824⎛⎫-= ⎪⎝⎭.连接OA,则10==,即工件的半径长为10cm.14.是菱形,理由如下:由BC AC =,得∠BOC=∠AOC .故OM⊥AB,从而AM=BM.在Rt △AOM 中,sin∠AOM=AM OA =,故∠AOM=60°,所以∠BOM=60°.由于OA=OB=OC, 故△BOC 与△AOC 都是等边三角形,故OA=AC=BC=BO=OC,所以四边形OACB 是菱形. 15.PC=PD.连接OC 、OD,则∵BC DB =,∴∠BOC=∠BOD, 又OP=OP,∴△OPC≌△OPD,∴PC=PD.16.可求出长为6cm 的弦的弦心距为4cm,长为8cm 的弦的弦心距为3cm. 若点O 在两平行弦之间,则它们的距离为4+3=7cm, 若点O 在两平行弦的外部,则它们的距离为4- 3=1cm, 即这两条弦之间的距离为7cm 或1cm.17.可求得OC=4cm,故点C 在以O 为圆心,4cm 长为半径的圆上,即点C 经过的路线是O 为圆心,4cm 长为半径的圆.18.作点B 关于直线MN 的对称点B′,则B′必在⊙O 上,且'B N NB =. 由已知得∠AON=60°,故∠B′ON=∠BON= 12∠AON=30°,∠AOB′=90° 连接AB′交MN 于点P′,则P′即为所求的点.此时AP′+BP ′=AP′+P′B′=,即AP+BP .3.4 圆周角和圆心角的关系 同步练习一、填空题:1.如图1,等边三角形ABC 的三个顶点都在⊙O 上,D 是AC 上任一点(不与A 、C 重合),则∠ADC 的度数是________.DDCBAO(1) (2) (3)2.如图2,四边形ABCD 的四个顶点都在⊙O 上,且AD∥BC,对角线AC 与BC 相交于点E,那么图中有_________对全等三角形;________对相似比不等于1的相似三角形.3.已知,如图3,∠BAC 的对角∠BAD=100°,则∠BOC=_______度.4.如图4,A 、B 、C 为⊙O 上三点,若∠OAB=46°,则∠ACB=_______度.BAA(4) (5) (6)5.如图5,AB 是⊙O 的直径, BC BD ,∠A=25°,则∠BOD 的度数为________.6.如图6,AB 是半圆O 的直径,AC=AD,OC=2,∠CA B= 30 °, 则点O 到CD 的距离OE=______. 二、选择题:7.如图7,已知圆心角∠BOC=100°,则圆周角∠BAC 的度数是( ) A.50° B.100° C.130° D.200°DDCBA(7) (8) (9) (10)8.如图8,A 、B 、C 、D 四个点在同一个圆上,四边形ABCD 的对角线把四个内角分成的八个角中,相等的角有( ) A.2对 B.3对 C.4对 D.5对9.如图9,D 是AC 的中点,则图中与∠ABD 相等的角的个数是( ) A.4个 B.3个 C.2个 D.1个 10.如图10,∠AOB=100°,则∠A+∠B 等于( ) A.100° B.80° C.50° D.40°11.在半径为R 的圆中有一条长度为R 的弦,则该弦所对的圆周角的度数是( ) A.30° B.30°或150° C.60° D.60°或120°12.如右图,A 、B 、C 三点都在⊙O 上,点D 是AB 延长线上一点,∠AOC=140°, ∠CBD 的度数是( ) A.40° B.50° C.70° D.110° 三、解答题:13.如图,⊙O 的直径AB=8cm,∠CBD=30°,求弦DC 的长.A14.如图,A 、B 、C 、D 四点都在⊙O 上,AD 是⊙O 的直径,且AD=6cm,若∠ABC= ∠CAD,求弦AC 的长.15.如图,AB 为半圆O 的直径,弦AD 、BC 相交于点P,若CD=3,AB=4,求tan∠BPD 的值16.如图,在⊙O中,AB是直径,CD是弦,AB⊥CD.(1)P是CAD上一点(不与C、D重合),试判断∠CPD与∠COB的大小关系, 并说明理由.(2)点P′在劣弧CD上(不与C、D重合时),∠CP′D与∠COB有什么数量关系?请证明你的结论.17.在足球比赛场上,甲、乙两名队员互相配合向对方球门MN进攻.当甲带球部到A点时,乙随后冲到B点,如图所示,此时甲是自己直接射门好,还是迅速将球回传给乙,让乙射门好呢?为什么?(不考虑其他因素)3.4答案:7.A 8.C 9.B 10.C 11.B 12.C 13.连接OC 、OD,则OC=OD=4c m ,∠COD=60°,故△COD 是等边三角形,从而CD= 4cm. 14.连接DC,则∠ADC=∠ABC=∠CAD,故AC=CD.∵AD 是直径,∴∠ACD=90°, ∴AC 2+CD 2=AD 2,即2AC 2=36,AC 2 15.连接BD,则∴AB 是直径,∴∠ADB=90°. ∵∠C=∠A,∠D=∠B,∴△PCD ∽△PAB,∴PD CDPB AB=. 在Rt△PBD 中,cos∠BPD=PD CD PB AB ==34, 设PD=3x,PB=4x,则,∴tan∠BPD=BD PD ==. 16.(1)相等.理由如下:连接OD,∵AB⊥CD,AB 是直径,∴BC BD =,∴∠COB= ∠DOB.∵∠COD=2∠P,∴∠COB=∠P,即∠COB=∠CPD. (2)∠CP′D+∠COB=180°. 理由如下:连接P′P,则∠P′CD=∠P′PD,∠P′PC=∠P′DC. ∴∠P′CD+∠P′DC=∠P′P D+∠P′PC=∠CPD.∴∠CP′D=180°-(∠P′CD+∠P′DC)=180°-∠CPD=180°-∠COB, 从而∠CP′D+∠COB=180°.17.迅速回传乙,让乙射门较好,在不考虑其他因素的情况下, 如果两个点到球门的距离相差不大,要确定较好的射门位置,关键看这两个点各自对球门MN 的张角的大小,当张角越大时,射中的机会就越大,如图所示,则∠A<MCN=∠B,即∠B>∠A, 从而B 处对MN 的张角较大,在B 处射门射中的机会大些.3.5 确定圆的条件 同步练习一、填空题:1.锐角三角形的外心在_______.如果一个三角形的外心在它的一边的中点上, 则该三角形是______.如果一个三角形的外心在它的外部,则该三角形是_____.2.边长为6cm 的等边三角形的外接圆半径是________.3.△ABC 的三边为2,3,设其外心为O,三条高的交点为H,则OH 的长为_____. 4.三角形的外心是______的圆心,它是_______的交点,它到_______的距离相等. 5.已知⊙O 的直径为2,则⊙O 的内接正三角形的边长为_______. 6.如图,MN 所在的直线垂直平分线段AB,利用这样的工具, 最少使用________ 次就可以找到圆形工件的圆心. 二、选择题:7.下列条件,可以画出圆的是( )A.已知圆心B.已知半径;C.已知不在同一直线上的三点D.已知直径 8.三角形的外心是( )A.三条中线的交点;B.三条边的中垂线的交点;C.三条高的交点;D.三条角平分线的交点 9.下列命题不正确的是( )A.三点确定一个圆B.三角形的外接圆有且只有一个C.经过一点有无数个圆D.经过两点有无数个圆 10.一个三角形的外心在它的内部,则这个三角形一定是( )A.等腰三角形B.直角三角形;C.锐角三角形D.等边三角形 11.等腰直角三角形的外接圆半径等于( ) A.腰长 B.倍; C.D.腰上的高 12.平面上不共线的四点,可以确定圆的个数为( )A.1个或3个B.3个或4个C.1个或3个或4个D.1个或2个或3个或4个 三、解答题:13.如下图1,已知:线段AB 和一点C(点C 不在直线AB 上),求作:⊙O,使它经过A 、B 、C 三点。

河北省中考数学复习 圆 第29讲 圆的基本性质试题(含解析)-人教版初中九年级全册数学试题

河北省中考数学复习 圆 第29讲 圆的基本性质试题(含解析)-人教版初中九年级全册数学试题

第29讲 圆的基本性质1. (2012,某某)如图,CD 是⊙O 的直径,AB 是弦(不是直径),AB ⊥CD 于点E ,则下列结论正确的是(D)第1题图A. AE >BEB. 弧AD =弧BCC. ∠D =12∠AEC D. △ADE ∽△CBE 【解析】 ∵CD 是⊙O 的直径,AB 是弦(不是直径),AB ⊥CD 于点E ,∴AE =BE ,弧AC =弧BC .∴A ,B 两选项错误.∵∠AEC 不是圆心角,∴∠D ≠12∠AE C. ∴C 选项错误.∵∠AED =∠CEB =90°,∠DAE =∠BCE ,∴△ADE ∽△CBE .∴D 选项正确.2. (2015,某某)如图,AC ,BE 是⊙O 的直径,弦AD 与BE 相交于点F .下列三角形中,外心不是点O 的是(B)第2题图A. △ABEB. △ACFC. △ABDD. △ADE【解析】 只有△ACF 的三个顶点不都在⊙O 上,故外心不是点O 的是△ACF .3. (2016,某某)如图所示的为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是(B)第3题图A. △ACD 的外心B. △ABC 的外心C. △ACD 的内心D. △ABC 的内心【解析】 由网格图,知点O 是边AC ,BC 的垂直平分线的交点.根据三角形外心的定义,知点O 是 △ABC 的外心.圆的有关概念例1 下列语句正确的是(D)A. 长度相等的两条弧是等弧B. 平分弦的直径垂直于弦C. 相等的圆心角所对的弧相等D. 经过圆心的每一条直线都是圆的对称轴【解析】 能完全重合的两条弧是等弧,所以A 选项错误.平分弦(不是直径)的直径垂直于弦,所以B 选项错误.在同圆或等圆中,相等的圆心角所对的弧相等,所以C 选项错误.经过圆心的每一条直线都是圆的对称轴,所以D 选项正确.针对训练1 如图,半圆O 是一个量角器,△AOB 为一纸片,AB 交半圆于点D ,OB 交半圆于点C .若点C ,D ,A 在量角器上对应的读数分别为45°,70°,160°,则∠B 的度数为(A)训练1题图A. 20°B. 30°C. 45°D. 60°【解析】 如答图,连接OD ,则∠DOC =70°-45°=25°,∠AOD =160°-70°= 90°.∵OD =OA ,∴∠ADO =∠A =45°.∵∠ADO =∠B +∠DOB ,∴∠B =45°-25°= 20°.训练1答图针对训练2 如图,点P 在线段AB 上,PA =PB =PC =PD .当∠BPC =60°时,∠BDC 的度数为(B)训练2题图A. 15°B. 30°C. 25°D. 60°【解析】 ∵PA =PB =PC =PD ,∴点A ,B ,C ,D 在以点P 为圆心,PB 的长为半径的圆上.∴∠BDC =12∠BPC =12×60°=30°.确定圆的条件例2 (2010,某某)如图,在5×5的正方形网格中,一条圆弧经过A,B,C三点,那么这条圆弧所在圆的圆心是(B)例2题图A. 点PB. 点QC. 点RD. 点M【解析】如答图,连接BC,作AB和BC的垂直平分线,它们相交于点Q,则点Q即为圆心.例2答图针对训练3 在平面直角坐标系中,点A的坐标是(-1,0),点B的坐标是(3,0),在y 轴的正半轴上取一点C,使A,B,C三点确定一个圆,且使AB为圆的直径,则点C的坐标是(A)A. (0,3)B. (3,0)C. (0,2)D. (2,0)【解析】如答图,连接AC,CB.根据题意可证得△AOC∽△COB,∴OCOA=OBOC,即OC2=OA·OB.∴OC2OC= 3.故点C的坐标为(0,3).训练3答图针对训练4 如图,在矩形ABCD中,E为AB的中点,有一圆过C,D,E三点,且此圆分别与AD,BC相交于P,Q两点.甲、乙两人想找到此圆的圆心O,其作法如下:甲:连接DE,EC,作∠DEC的平分线EM,作DE的垂直平分线,交EM于点O,则点O即为所求.乙:连接PC,QD,两线段交于一点O,则点O即为所求.对于甲、乙两人的作法,下列判断正确的是(A)训练4题图A. 两人皆正确B. 两人皆错误C. 甲正确,乙错误D. 甲错误,乙正确【解析】 对于甲,易知ED =EC ,∴△DEC 为等腰三角形.进而易知EM 为CD 的垂直平分线.∴点O 为两垂直平分线的交点,即点O 为△CDE 的外心.∴点O 为此圆的圆心.对于乙,∵∠ADC =90°,∠DCB =90°,∴PC ,QD 为此圆的直径.∴PC 与QD 的交点O 为此圆的圆心.因此甲、乙两人皆正确.圆的基本性质例3 (2018,某某裕华区模拟)如图,在半径为5的⊙O 中,弦AB =6,C 是优弧AB 上一点(不与点A ,B 重合),则cos C 的值为(D)例3题图A. 43B. 34C. 35D. 45【解析】 如答图,作直径AD ,连接BD .∵AD 为直径,∴∠ABD =90°.在Rt △ABD 中,∵AD =10,AB =6,∴BD =102-62=8.∴cos D =BD AD =810=45.∵∠C =∠D ,∴cos C =45.例3答图针对训练5 (2018,某某模拟)如图,在半径为5的⊙A 中,弦BC ,ED 所对的圆心角分别是∠BAC ,∠EAD .若DE =6,∠BAC +∠EAD =180°,则弦BC 的长是(A)训练5题图A. 8B. 10C. 11D. 12【解析】 如答图,作直径CF ,连接BF ,则∠FBC =90°.∵∠BAC +∠EAD =180°,∠BAC +∠BAF =180°,∴∠DAE =∠BAF .∴弧DE =弧BF .∴BF =DE =6.∴BC =CF 2-BF 2=8.训练5答图 针对训练6 (2018,某某)已知⊙O 的半径为10,圆心O 到弦AB 的距离为5,则弦AB 所对的圆周角的度数为(D)A. 30°B. 60°C. 30°或150°D. 60°或120°【解析】 如答图.在Rt △OAD 中,∵OA =10,OD =5,∴cos ∠AOD =OD AO =12.∴∠AOD =60°.同理可得∠BOD =60°.∴∠AOB =∠AOD +∠BOD =60°+60°=120°.∴弦AB 所对的圆周角的度数是60°或120°.训练6答图垂径定理例4 (2018,某某,导学号5892921)已知⊙O 的直径CD =10 cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB =8 cm ,则AC 的长为(C)A. 2 5 cmB. 4 5 cmC. 2 5 cm 或4 5 cmD. 2 3 cm 或4 3 cm【解析】 如答图,连接AC ,AO .∵⊙O 的直径CD =10 cm ,AB ⊥CD ,AB =8 cm ,∴AM =12AB =12×8=4(cm),OD =OC =5 cm.当点C 的位置如答图①所示时,∵OA =5 cm ,AM = 4 cm ,CD ⊥AB ,∴OM =OA 2-AM 2=52-42=3(cm).∴CM =OC +OM =5+3=8(cm).∴AC =AM 2+CM 2=42+82=45(cm).当点C 的位置如答图②所示时,同理可得OM =3 cm.∵OC =5 cm ,∴MC =5-3=2(cm).∴在Rt △AMC 中,AC =AM 2+MC 2=42+22= 25(cm).综上所述,AC 的长为2 5 cm 或4 5 cm.例4答图针对训练7 (2018,某某)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,OC =5 cm ,CD =8 cm ,则AE 的长为(A)训练7题图A. 8 cmB. 5 cmC. 3 cmD. 2 cm【解析】 ∵CD ⊥AB ,CD =8 cm ,∴CE =12CD =4 cm.在Rt △OCE 中,OC =5 cm ,CE =4 cm ,∴OE =OC 2-CE 2=3 cm.∴AE =AO +OE =5+3=8(cm).一、 选择题1. (2018,聊城)如图,在⊙O 中,弦BC 与半径OA 相交于点D ,连接AB ,OC . 若∠A =60°,∠ADC =85°,则∠C 的度数是(D)第1题图A. 25°° C. 30° D. 35°【解析】 ∵∠A =60°,∠ADC =85°,∴∠B =85°-60°=25°,∠CDO =95°. ∴∠AOC =2∠B =50°.∴∠C =180°-95°-50°=35°.2. (2018,威海)如图,⊙O 的半径为5,AB 为弦,C 为弧AB 的中点.若∠ABC =30°,则弦AB 的长为(D)第2题图A. 12B. 5C. 532D. 53 【解析】 如答图,连接OA ,OC ,OC 与AB 相交于点E .∵∠ABC =30°,∴∠AOC = 60°.由AB 为弦,C 为弧AB 的中点,易知OC ⊥AB ,AE =BE .在Rt △OAE 中,AE =OA · sin ∠AOC =5×32=532,∴AB =2AE =5 3.第2题答图3. (2018,某某)如图,⊙A 过点O (0,0),C (3,0),D (0,1),B 是x 轴下方⊙A 上的一点,连接BO ,BD ,则∠OBD 的度数是(B)第3题图A. 15°B. 30°C. 45°D. 60°【解析】 如答图,连接DC .∵C (3,0),D (0,1),∴∠DOC =90°,OD =1,OC = 3.∴∠DCO =30°.∴∠OBD =∠DCO =30°.第3题答图4. (2018,某某)如图,BC 是⊙O 的直径,A 是⊙O 上的一点,∠OAC =32°,则∠B 的度数是(A)第4题图A. 58°B. 60°C. 64°D. 68°【解析】 ∵OA =OC ,∴∠C =∠OAC =32°.∵BC 是直径,∴∠CAB =90°.∴∠B = 90°-32°=58°.5. (2018,贵港)如图,点A ,B ,C 均在⊙O 上.若∠A =66°,则∠OCB 的度数是(A)第5题图A. 24°B. 28°C. 33°D. 48°【解析】 ∵∠A =66°,∴∠COB =132°.∵CO =BO ,∴∠OCB =∠OBC =12×(180°-132°)=24°.6. (2018,某某)如图,AB 为⊙O 的直径,CD 是⊙O 的弦,∠ADC =35°,则∠CAB 的度数为(C)第6题图A. 35°B. 45°C. 55°D. 65°【解析】 由圆周角定理,得∠ABC =∠ADC =35°.∵AB 为⊙O 的直径,∴∠ACB =90°.∴∠CAB =90°-∠ABC =55°.7. (2018,某某)如图,AB 是半圆的直径,O 为圆心,C 是半圆上的点,D 是弧AC 上的点.若∠BOC =40°,则∠D 的度数为(B)第7题图A. 100°B. 110°C. 120°D. 130°【解析】 ∵∠BOC =40°,∴∠AOC =180°-40°=140°.∴∠D =12×(360°-140°)=110°.8. (2018,某某)如图,点A ,B ,C ,D 在⊙O 上,∠AOC =140°,B 是弧AC 的中点,则∠D 的度数是(D)第8题图A. 70°B. 55°° D. 35°【解析】 如答图,连接OB .∵B 是弧AC 的中点,∴∠AOB =12∠AOC =70°.由圆周角定理,得∠D =12∠AOB =35°.第8题答图9. (2018,滨州)已知半径为5的⊙O 是△ABC 的外接圆.若∠ABC =25°,则劣弧AC 的长为(C)A. 25π36B. 125π36C. 25π18D. 5π36【解析】 如答图,连接AO ,CO .∵∠ABC =25°,∴∠AOC =50°.∴劣弧AC 的长为50π·5180=25π18.第9题答图10. (2018,某某)如图,AC 是⊙O 的直径,弦BD ⊥AO 于点E ,连接BC ,过点O 作OF ⊥BC 于点F .若BD =8 cm ,AE =2 cm ,则OF 的长是(D)第10题图A. 3 cmB. 6 cmC. 2.5 cmD. 5 cm【解析】 如答图,连接OB .∵AC 是⊙O 的直径,弦BD ⊥AO ,BD =8,∴BE =DE =4.∵AE =2,∴在Rt △OEB 中,OE 2+BE 2=OB 2,即OE 2+42=(OE +2)2.解得OE =3.∴OB =3+2=5.∴EC Rt △EBC 中,BC =BE 2+EC 2=42+82=4 5.∵OF ⊥BC ,∴∠OFC =∠CEB =90°.∵∠C =∠C ,∴△OFC ∽△BEC .∴OF BE =OC BC ,即OF 4=545.解得OF = 5.所以OF 的长是 5 cm.第10题答图二、 填空题11. (2018,某某)在同圆中,已知弧AB 所对的圆心角是100°,则弧AB 所对的圆周角是50°.【解析】 由圆周角定理,得弧AB 所对的圆周角为50°.12. (2018,某某模拟)如图,截面为圆形的油槽内放入一些油.若圆的直径为150 cm ,油的深度DC 为30 cm ,则油面宽度AB 是120cm.第12题图【解析】 ∵OC ⊥AB ,∴AD =BD =12AB .∵OC =OB =12×150=75(cm),∴OD =OC -CD =75-30=45(cm).在Rt △OBD 中,BD =OB 2-OD 2=752-452=60(cm),∴AB =2BD =120 cm.13. (2018,某某)如图,方格纸上每个小正方形的边长均为1个单位长度,点O ,A ,B ,C 在格点(两条网格线的交点叫格点)上,以点O 为原点建立直角坐标系,则过A ,B ,C 三点的圆的圆心坐标为(-1,-2).第13题图【解析】 如答图,连接AB ,CB ,作AB ,CB 的垂直平分线,相交于点D .所以点D 是过A ,B ,C 三点的圆的圆心.所以点D 的坐标为(-1,-2).第13题答图14. (2018,某某)如图,量角器的0度刻度线为AB ,将一矩形直尺与量角器部分重叠,使直尺一边与量角器相切于点C ,直尺另一边交量角器于点A ,D ,量得AD =10 cm ,点D 在量角器上的读数为60°,则该直尺的宽度为( 533)cm.第14题图【解析】 如答图,连接OC ,OD ,OC 与AD 相交于点E .∵直尺一边与量角器相切于点C ,∴OC ⊥AD .∵AD =10,∠DOB =60°,∴∠DAO =30°.∴OE =533,OA =1033.∴CE =OC -OE =OA -OE =533.即该直尺的宽度是533cm.第14题答图三、 解答题15. (2018,枣庄)如图,在Rt △ACB 中,∠C =90°,AC =3 cm ,BC =4 cm ,以BC 为直径作⊙O 交AB 于点D .(1)求线段AD 的长;(2)E 是线段AC 上的一点,当点E 在什么位置时,直线ED 与⊙O 相切?请说明理由.第15题图【思路分析】 (1)由勾股定理易求得AB 的长.可连接CD ,知CD ⊥AB ,易知Rt △ADC ∽Rt △ACB ,可得关于AC ,AD ,AB 的比例关系式,即可求出AD 的长.(2)当ED 与⊙O 相切时,由切线长定理知EC =ED ,则∠ECD =∠EDC .连接OD ,证OD ⊥DE 即可.解:(1)如答图,连接CD . 在Rt △ACB 中,∵AC =3 cm ,BC =4 cm ,∠ACB =90°, ∴AB =5 cm. ∵BC 为直径,∴∠ADC =∠BDC =90°. ∵∠A =∠A ,∠ADC =∠ACB , ∴Rt △ADC ∽Rt △ACB . ∴AC AB =AD AC. ∴AD =AC 2AB =325=95(cm).(2)当E是AC的中点时,直线ED与⊙O相切.理由:如答图,连接OD.∵DE是Rt△ADC的中线,∴ED=EC.∴∠EDC=∠ECD.∵OC=OD,∴∠ODC=∠OCD.∴∠EDO=∠EDC+∠ODC=∠ECD+∠OCD=∠ACB=90°.∴ED⊥OD.∴直线ED与⊙O相切.第15题答图16. (2018,某某,导学号5892921)如图,在△ABC中,AB=AC,以AB为直径的半圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆形和菱形ABFC的面积.第16题图【思路分析】 (1)根据对角线相互平分的四边形是平行四边形,证明四边形ABFC是平行四边形,再根据邻边相等的平行四边形是菱形即可证明.(2)连接BD.利用勾股定理构建方程即可解决问题.(1)证明:∵AB是直径,∴∠AEB=90°.∴AE⊥BC.∵AB =AC , ∴BE =CE . ∵AE =EF ,∴四边形ABFC 是平行四边形. ∵AC =AB ,∴四边形ABFC 是菱形. (2)解:如答图,连接BD . ∵AB 是直径,∴∠ADB =∠BDC =90°. ∴AB 2-AD 2=CB 2-CD 2. ∴(7+CD )2-72=(2+2)2-CD 2. 解得CD =1.∴AB =AC =AD +CD =7+1=8. ∴BD =82-72=15. ∴S 半圆形=12π·42=8π,S 菱形ABFC =AC ·BD =815.第16题答图1. (2018,襄阳)如图,点A ,B ,C ,D 都在半径为2的⊙O 上.若OA ⊥BC ,∠CDA = 30°,则弦BC 的长为(D)第1题图A. 4B. 2 2C. 3D. 23【解析】 如答图.∵OA ⊥BC ,∴CH =BH ,弧AB =弧AC .∴∠AOB =2∠CDA =60°.∴BH =OB ·sin ∠AOB = 3.∴BC =2BH =2 3.第1题答图2. (2018,某某)如图,AB 是⊙O 的直径,C 是半径OA 的中点,过点C 作DE ⊥AB ,交⊙O 于D ,E 两点,过点D 作直径DF ,连接AF ,则∠DFA =30°.第2题图【解析】 ∵C 是半径OA 的中点,∴OC =12OD .∵DE ⊥AB ,∴∠CDO =30°.∴∠DOA =60°.∴∠DFA =30°.3. (2018,某某,导学号5892921)如图,D 是△ABC 的边BC 上一点,连接AD ,作△ABD 的外接圆,将△ADC 沿直线AD 折叠,点C 的对应点E 落在弧BD 上.(1)求证:AE =AB ;(2)若∠CAB =90°,cos ∠ADB =13,BE =2,求BC 的长.第3题图【思路分析】 (1)由折叠得出∠AED =∠ACD ,AE =AC ,结合∠ABD =∠AED 知∠ABD =∠ACD ,从而得出AB =AC ,据此得证.(2)过点A 作AH ⊥BE 于点H ,由AB =AE 且BE =2知BH =EH =1.根据∠ABE =∠AEB =∠ADB 知cos ∠ABE =cos ∠ADB =BH AB =13,据此得AC =AB =3,利用勾股定理可得答案.(1)证明:由折叠的性质,知△ADE ≌△ADC . ∴∠AED =∠ACD ,AE =AC . ∵∠ABD =∠AED , ∴∠ABD =∠ACD . ∴AB =AC . ∴AE =AB .(2)解:如答图,过点A 作AH ⊥BE 于点H . ∵AB =AE ,BE =2, ∴BH =EH =1.∵∠ABE =∠AEB =∠ADB , ∴cos ∠ABE =cos ∠ADB =13.∴BH AB =13. ∴AB =3.∵∠CAB =90°,AC =AB =3, ∴BC =3 2.第3题答图。

2021-2022学年北师大版九年级数学下册第三章 圆同步训练试题(含答案及详细解析)

2021-2022学年北师大版九年级数学下册第三章 圆同步训练试题(含答案及详细解析)

北师大版九年级数学下册第三章圆同步训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,⊙O是正五边形ABCDE的外接圆,点P是AE的一点,则∠CPD的度数是()A.30°B.36°C.45°D.72°2、已知⊙O的半径为4,点P在⊙O外部,则OP需要满足的条件是()A.OP>4 B.0≤OP<4 C.OP>2 D.0≤OP<23、如图,直径AB=6的半圆,绕B点顺时针旋转30°,此时点A到了点A',则图中阴影部分的面积是()A .3πB .34πC .πD .3π4、下列说法正确的是( )A .相等的圆心角所对的弧相等,所对的弦相等B .平分弦的直径垂直于弦,并且平分弦所对的弧C .等弧所对的圆心角相等,所对的弦相等D .圆是轴对称图形,其对称轴是任意一条直径5、已知⊙O 的半径为3cm ,在平面内有一点A ,且OA =6cm ,则点A 与⊙O 的位置关系是( )A .点A 在⊙O 内 ;B .点A 在⊙O 上;C .点A 在⊙O 外;D .不能确定.6、如图,正ABC 的边长为3cm ,边长为1cm 的正RPQ 的顶点R 与点A 重合,点P ,Q 分别在AC ,AB 上,将RPQ 沿着边AB ,BC ,CA 连续翻转(如图所示),直至点P 第一次回到原来的位置,则点P 运动路径的长为( )A .cm πB .2cm πC .3cm πD .6cm π7、如图,四边形ABCD 内接于O ,若四边形ABCO 是菱形,则D ∠的度数为( )A .45°B .60°C .90°D .120°8、如图,一块直角三角板的30°角的顶点P 落在⊙O 上,两边分别交⊙O 于A ,B 两点,连结AO ,BO ,则∠AOB 的度数是( )A .30°B .60°C .80°D .90°9)A .2B .3C .4D .510、圆O 的半径为5cm ,点A 到圆心O 的距离OA =4cm ,则点A 与圆O 的位置关系为( )A .点A 在圆上B .点A 在圆内C .点A 在圆外D .无法确定第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,点N 是直线5y x =-+上动点,M 是C 上动点,若点C 的坐标为()2,0-,且C 与y 轴相切,则MN 长度的最小值为____________.2、在△ABC 中,AB = AC ,以AB 为直径的圆O 交BC 边于点D .要使得圆O 与AC 边的交点E 关于直线AD 的对称点在线段OA 上(不与端点重合),需满足的条件可以是 _________ .(写出所有正确答案的序号)①∠BAC > 60°;②45° < ∠ABC < 60°;③BD > 12AB ;④12AB < DE . 3、若一个正多边形的边长等于它的外接圆的半径,则这个正多边形是正______边形.4、一块直角三角板的30°角的顶点A 落在O 上,两边分别交O 于B 、C 两点,若弦BC 长为4,则O 的半径为______.5、已知O 、I 分别是△ABC 的外心和内心,∠BIC =125°,则∠BOC 的大小是 ___度.三、解答题(5小题,每小题10分,共计50分)1、如图,在Rt ABC 中,90ACB ∠=︒,CD 平分ACB ∠.P 为边BC 上一动点,将DPB 沿着直线DP 翻折到DPE ,点E 恰好落在CDP 的外接圆O 上.(1)求证:D 是AB 的中点.(2)当60BDE ∠=︒,BP =DC 的长.(3)设线段DB 与O 交于点Q ,连结QC ,当QC 垂直于DPE 的一边时,求满足条件的所有QCB ∠的度数.2、如图,在▱ABCD中,∠D=60°,对角线AC⊥BC,⊙O经过点A、点B,与AC交于点M,连接AO并延长与⊙O交于点F,与CB的延长线交于点E,AB=EB.(1)求证:EC是⊙O的切线;O的半径.(2)若AD=3、如图1,抛物线y=ax2﹣2ax+b(a<0)与x轴交于A、B两点(A点在B点的左边),与y轴的正半轴交于点C,顶点为D,OB=OC=3OA.(1)求抛物线解析式;(2)如图2,点E的坐标为(0,7),若过点E作一条直线与抛物线在对称轴右侧有且只有一个交点H,直线y=kx﹣2k﹣5(k≠0)与抛物线交于F、G两点,求当k为何值时,△FGH面积最小,并求出面积的最小值;(3)如图3,已知直线l:y=2x﹣1,将抛物线沿直线l方向平移,平移过程中抛物线与直线l相交于E、F两点.设平移过程中抛物线的顶点的横坐标为m,在x轴上存在唯一的一点P,使∠EPF=90°,求m的值.4、如图,AB是⊙O的直径,点C是圆上一点,弦CD⊥AB于点E,且DC=AD,过点A作⊙O的切线,过点C作DA的平行线,两直线交于点F,FC的延长线与AB的延长线交于点G.(1)求证:FG 是⊙O 的切线;(2)求证:四边形AFCD 是菱形.5、已知:A ,B 是直线l 上的两点. 求作:ABC ,使得点C 在直线l 上方,且AC =BC ,30ACB ∠=︒.作法:①分别以A ,B 为圆心,AB 长为半径画弧,在直线l 上方交于点O ,在直线l 下方交于点E ; ②以点O 为圆心,OA 长为半径画圆;③作直线OE 与直线l 上方的⊙O 交于点C ;④连接AC ,BC .ABC 就是所求作的三角形.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接OA ,OB .∵OA =OB =AB , ∴OAB 是等边三角形.∴60AOB ∠=︒.∵A ,B ,C 在⊙O 上,∴∠ACB =12∠AOB ( )(填推理的依据).∴30ACB ∠=︒.由作图可知直线OE 是线段AB 的垂直平分线,∴AC =BC ( )(填推理的依据). ∴ABC 就是所求作的三角形.-参考答案-一、单选题1、B【分析】连接OC ,OD .求出∠COD 的度数,再根据圆周角定理即可解决问题;【详解】解:如图,连接OC ,OD .∵五边形ABCDE 是正五边形,∴∠COD =3605︒=72°, ∴∠CPD =12∠COD =36°,故选:B【点睛】本题主要考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.2、A【分析】点在圆外,则点与圆心的距离大于半径,根据点与圆的位置关系解答.【详解】解:∵⊙O 的半径为4,点P 在⊙O 外部,∴OP 需要满足的条件是OP >4,故选:A .【点睛】此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的判断方法是解题的关键.3、D【分析】阴影面积为旋转后'A B 为直径的半圆面积加旋转后扇形面积减去旋转前AB 为直径的半圆面积,则阴影面积为旋转后的扇形面积,由扇形面积公式计算即可.【详解】∵直径AB =6的半圆,绕B 点顺时针旋转30°∴A'B ABA'AB S S S S =+-阴影为直径的半圆扇形为直径的半圆又∵'AB A B =∴A'B AB S S =为直径的半圆为直径的半圆∴ABA'S S =阴影扇形∵AB =6,∠ABA ’=30° ∴223063360360ABA'n r S S π︒⋅π⋅====π︒︒阴影扇形 故答案为:D .【点睛】 本题考查了扇形面积公式的应用,扇形面积公式为2360n r π︒,由旋转的性质得出阴影面积为扇形面积是解题的关键.4、C【分析】根据圆心角、弧、弦的关系对AC 进行判断;根据垂径定理的推论对B 进行判断;根据对称轴的定义对D 进行判断.【详解】解:A 、在同圆和等圆中,相等的圆心角所对的弧相等,所对的弦相等,所以本选项错误;B 、平分弦(非直径)的直径垂直于弦,并且平分弦所对的弧,所以本选项错误;C 、等弧所对的圆心角相等,所对的弦相等,所以本选项正确;D 、圆是轴对称图形,其对称轴是任意一条直径所在的直线,所以本选项错误;故选:C .【点睛】本题考查了圆心角、弧、弦的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.也考查了垂径定理.5、C【分析】要确定点与圆的位置关系,主要确定点与圆心的距离与半径的大小关系;利用d >r 时,点在圆外;当d =r 时,点在圆上;当d <r 时,点在圆内判断出即可.【详解】解:∵⊙O 的半径为3cm ,OA =6cm ,∴d >r ,∴点A 与⊙O 的位置关系是:点A 在⊙O 外,故选:C .【点睛】本题主要考查了对点与圆的位置关系的判断.关键要记住若半径为r ,点到圆心的距离为d ,则有:当d >r 时,点在圆外;当d =r 时,点在圆上,当d <r 时,点在圆内.6、B【分析】从图中可以看出在AB 边,翻转的第一次是一个120度的圆心角,半径是1,第二次是以点P 为圆心,所以没有路程,同理在AC 和BC 上也是相同的情况,由此求解即可.【详解】解:从图中可以看出在AB 边,翻转的第一次是一个120度的圆心角,半径是1,所以弧长=1201180⨯π,第二次是以点P 为圆心,所以没有路程,在BC 边上,第一次1201180⨯π,第二次同样没有路程,AC 边上也是如此,点P 运动路径的长为1201180⨯π×3=2π. 故选:B .【点睛】本题主要考查了等边三角形的性质,求弧长,解题的关键在于能够根据题意得到P 点的运动轨迹.7、B【分析】设∠ADC=α,∠ABC=β,由菱形的性质与圆周角定理可得18012,求出β即可解决问题.【详解】解:设∠ADC=α,∠ABC=β;∵四边形ABCO是菱形,∴∠ABC=∠AOCβ=;∴∠ADC=12β;四边形ABCD为圆的内接四边形,∴α+β=180°,∴18012,解得:β=120°,α=60°,则∠ADC=60°,故选:B.【点睛】该题主要考查了圆周角定理及其应用,圆的内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.8、B【分析】延长AO交⊙O于点D,连接BD,根据圆周角定理得出∠D=∠P=30°,∠ABD=90°,由直角三角形的性质可推得AB=BO=AO,然后根据等边三角形的判定与性质可以得解.【详解】解:如图,延长AO交⊙O于点D,连接BD,∵∠P=30°,∴∠D=∠P=30°,∵AD是⊙O的直径,∴∠ABD=90°,∴AB=12AD=AO=BO,∴三角形ABO是等边三角形,∴∠AOB=60°,故选B.【点睛】本题考查圆的综合应用,熟练掌握圆周角定理、圆直径的性质、直角三角形的性质、等边三角形的判定和性质是解题关键.9、B【分析】如图,O为正三角形ABC的外接圆,过点O作OD⊥AB于点D,连接OA,再由等边三角形的性质,可得∠OAB=30°,12AD AB,然后根据锐角三角函数,即可求解.【详解】解:如图,O为正三角形ABC的外接圆,过点O作OD⊥AB于点D,连接OA,根据题意得:OA,∠OAB =30°,12AD AB =, 在Rt AOD △中,3cos 2AD OA OAB =⋅∠== , ∴AB =3,即这个正三角形的边长是3.故选:B【点睛】本题主要考查了锐角三角函数,三角形的外接圆,熟练掌握锐角三角函数,三角形的外接圆性质是解题的关键.10、B【分析】根据点与圆的位置关系的判定方法进行判断.【详解】解:∵⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,即点A 到圆心O 的距离小于圆的半径,∴点A 在⊙O 内.故选:B .【点睛】本题考查了点与圆的位置关系:设⊙O 的半径为r ,点P 到圆心的距离OP =d ,则有点P 在圆外⇔d >r ;点P 在圆上⇔d =r ;点P 在圆内⇔d <r .二、填空题1-2 【分析】由图可知,当CN ⊥AB 且C 、M 、N 三点共线时,MN 长度最小,利用勾股定理求出CN 的长,故可求解.【详解】由图可知,当CN ⊥AB 且C 、M 、N 三点共线时,MN 长度最小∵直线AB 的解析式为5y x =-+当x =0时,y =5,当y =0时,x =5∴B (0,5),A (5,0)∴AO =BO ,△AOB 是等腰直角三角形∴∠BAO =90°当CN ⊥AB 时,则△ACN 是等腰直角三角形∴CN =AN∵C ()2,0-∴AC =7∵AC 2=CN 2+AN 2=2CN 2∴CN 当 C 、M 、N 三点共线时,MN 长度最小即MN =CN -CM -2-2.【点睛】此题主要考查圆与几何综合,解题的关键是根据题意找到符合题意的位置,利用等腰直角三角形的性质求解.2、②④【分析】将所给四个条件逐一判断即可得出结论.【详解】解:在ΔABC 中,AB AC =①当∠BAC > 60°时,若90BAC ∠=︒时,点E 与点A 重合,不符合题意,故①不满足;②当∠ABC 45≤︒时,点E 与点A 重合,不符合题意,当∠ABC 60>︒时,点E 与点O 不关于AD 对称,当4560ABC ︒<∠≤︒时,点E 关于直线AD 的对称点在线段OA 上,所以,当45° < ∠ABC < 60°时,点E 关于直线AD 的对称点在线段OA 上,故②满足条件;③当12AB BD AB ≤<时,点E 关于直线AD 的对称点在线段OA 上,故③不满足条件;④当12AB < DE 时,点E 关于直线AD 的对称点在线段OA 上,故④满足条件; 所以,要使得O 与AC 边的交点E 关于直线AD 的对称点在线段OA 上(不与端点重合),需满足的条件可以是45° < ∠ABC < 60°或12AB < DE故答案为②④【点睛】本题考查了圆周角定理,正确判断出每种情况是解答本题的关键.3、六【分析】由半径与边长相等,易判断等边三角形,然后根据角度求出正多边形的边数.【详解】解:当一个正多边形的边长与它的外接圆的半径相等时,画图如下:∵半径与边长相等,∴这个三角形是等边三角形,∴正多边形的边数:360°÷60°=6,∴这个正多边形是正六边形故答案为:六.【点睛】本题考查了正多边形和圆,等边三角形的性质和判定,结合题意画出合适的图形是解题的关键.4、4【分析】连接OB 、OC ,由题意易得∠BOC =60°,则有△BOC 是等边三角形,然后问题可求解.【详解】连接OB 、OC ,如图所示:∵∠A =30°,∴∠BOC =60°,∵OB =OC ,∴△BOC 是等边三角形,∵4BC =,∴4OB BC ==,即⊙O 的半径为4.故答案为:4.【点睛】本题主要考查圆周角定理,熟练掌握圆周角定理是解题的关键.5、140【分析】作ABC ∆的外接圆,根据三角形内心的性质可得:12IBC ABC ∠=∠,12ICB ACB ∠=∠,再由三角形内角和定理得出:70A ∠=︒,最后根据三角形外心的性质及圆周角定理即可得.【详解】解:如图所示,作ABC ∆的外接圆,∵点I 是ABC ∆的内心,∴BI ,CI 分别平分ABC ∠和ACB ∠, ∴12IBC ABC ∠=∠,12ICB ACB ∠=∠,∵125BIC ∠=︒,∴18012555IBC ICB ∠+∠=︒-︒=︒,∴()2110ABC ACB IBC ICB ∠+∠=∠+∠=︒,∴70A ∠=︒,∵点O 是ABC ∆的外心,∴2140BOC A ∠=∠=︒,故答案为:140.【点睛】题目主要考查三角形内心与外心的性质,三角形内角和定理等,理解题意,熟练掌握三角形内心与外心的性质是解题关键.三、解答题1、(1)证明见解析;(21;(3)当QC垂直于△DPE的一边时,∠QCB=15°或22.5°.【分析】(1)由翻折的性质可得∠B=∠DEP,再由∠DCP=∠DEP,即可得到∠B=∠DCP,CD=BD,再由角平分线的定义得到1==452B DCB ACB=︒∠∠∠,则∠BDC=90°,即可利用三线合一定理得到BD=AD,即D是AB的中点;(2)由△DPE是△DPB翻折得到,得到1302BDP EDP BDE∠=∠=∠=︒,如图所示,过点P作PF⊥AB于F,先利用勾股定理求出1BF PF==,得到22DP PF==,即可求出DF=1CD BD DF BF==+=;(3)分当CQ⊥DP时,当DE⊥CQ时,当PE⊥CQ时三种情况进行讨论求解即可得到答案.【详解】解:(1)∵△DPE是△DPB翻折得到,∴∠B=∠DEP,又∵∠DCP=∠DEP,∴∠B=∠DCP,∴CD=BD,∵∠ACB=90°,CD平分∠ACB,∴1==452B DCB ACB=︒∠∠∠=∠ A,∴∠BDC=90°,CA=CB,∴BD=AD(三线合一定理),∴D是AB的中点;(2)△DPE是△DPB翻折得到,∴1302BDP EDP BDE∠=∠=∠=︒,如图所示,过点P作PF⊥AB于F,∴∠PFB=∠PFD=90°,∴DP=2PF,∵∠B=45°,∴∠BPF=90°-∠B=45°,∴∠BPF=∠B,∴BF=PF,∵2222BF PF BP+==,∴1BF PF==,∴22DP PF==,∴DF∴1 CD BD DF BF==+=;(3)如图所示,当CQ⊥DP时,∵∠CDQ=90°,∴CQ 为圆O 的直径,∴由垂径定理可知DQ PQ =, ∴122.52DCQ PCQ DCB ∠=∠=∠=︒,即=22.5QCB ︒∠;如图所示,当DE ⊥CQ 时,设DE 与CQ 交于点F ,连接CE ,∵△DPE 是△DPB 翻折得到,∴QDP EDP ∠=∠,BD =DE ,又∵BD =CD ,∴CD =ED ,∴∠DEC =∠DCE ,∴∠DEC =∠DCP +∠ECP =∠ECP +45°,∵QDP QCP ∠=∠,ECP EDP ∠=∠,∴∠QCP =∠ECP ,∴∠DEC =∠QCP +45°,又∵CQ ⊥DE ,∴∠CFE =90°,∴∠FCE +∠FEC =90°,∴∠QCP+45°+∠QCP+∠ECP=90°,即3∠QCP+45°=90°,∴∠QCP=15°,即∠QCB=15°,∵当PE⊥CQ时,E点要在CD的下方,此时圆O与直线BD的交点在BD的延长线上,∴不存在PE⊥CQ这种情况,∴综上所述,当QC垂直于△DPE的一边时,∠QCB=15°或22.5°.【点睛】本题主要考查了折叠的性质,圆周角定理,垂径定理,直径所对的圆周角是直角,含30度角的直角三角形的性质,等腰直角三角形的性质与判定,勾股定理等等,解题的关键在于能够熟练掌握圆的相关知识.2、(1)见详解;(2)4.【分析】(1)连接OB,根据平行四边形的性质得到∠ABC=∠D=60°,求得∠BAC=30°,根据等腰三角形的性质和三角形的外角的性质得到∠ABO=∠OAB=30°,于是得到结论;,过O作OH⊥AM于H,则四边形OBCH是矩形,解直角(2)根据平行四边形的性质得到BC=AD三角形即可得到结论.【详解】(1)证明:连接OB,∵四边形ABCD是平行四边形,∴∠ABC=∠D=60°,∵AC ⊥BC ,∴∠ACB =90°,∴∠BAC =30°,∵BE =AB ,∴∠E =∠BAE ,∵∠ABC =∠E +∠BAE =60°,∴∠E =∠BAE =30°,∵OA =OB ,∴∠ABO =∠OAB =30°,∴∠OBC =30°+60°=90°,∴OB ⊥CE ,∴EC 是⊙O 的切线;(2)解:∵四边形ABCD 是平行四边形,∴BC =AD =23 ,过O 作OH ⊥AM 于H ,则四边形OBCH 是矩形,∴OH =BC∴OA =sin 60OH ︒=4, ∴ ⊙O 的半径为4.【点睛】本题考查了切线的判定,平行四边形的性质,矩形的判定和性质,正确的作出辅助线是解题的关键.3、(1)y =-x 2+2x +3;(2)k =-2,面积最小为(3)m 【分析】(1)令x =0,解得y =b ,求出OB =OC =b ,OA =13b ,得到A (-13b ,0),C (0,b ),B (b ,0),把A (-13b ,0),B (b ,0)代入y =ax 2﹣2ax +b 即可求解; (2)设直线EH 的解析式为y =nx +7,联立2723y nx y x x =+⎧⎨=-++⎩,得()2240x n x +-+=,根据直线EH 与函数只有一个交点,求出H (2,3),再得到直线GH 过定点M (2,-5),利用S △FGH =S △FMH +S △GMH =()1212MH x x ⨯-=4()12x x -,求出()12x x -的最小值即可求解; (3)当以EF 为直径的R 与x 轴相切时,x 轴上存在点P 即切点,使∠EPF =90°,设点E ,F 的坐标分别为F (x 1,y 1)、F (x 2,y 2),求出平移后的抛物线的解析式为y =-(x -m )2+2m +2,联立()22221y x m m y x ⎧=--++⎪⎨=-⎪⎩得到()2222230x m x m m -++--=,求出x 1+x 2=2m +2,x 1x 2=223m m --,y 1+y 2=4m -6,表示出点R (m -1,2m -3),求出()12x x -2,利用PR =12EF ,得到EF 2=4PR 2,列出关于m 的方程即可求解.【详解】(1)∵y =ax 2﹣2ax +b (a <0)与x 轴交于A 、B 两点(A 点在B 点的左边),与y 轴的正半轴交于点C ,令x =0,解得y =b∴CO =b∴OB =OC =b ,OA =13b ∴A (-13b ,0),C (0,b ),B (b ,0) 把A (-13b ,0),B (b ,0)代入y =ax 2﹣2ax +b 得22209302ab ab b ab ab b ⎧=++⎪⎨⎪=-+⎩,解得13a b =-⎧⎨=⎩ ∴抛物线解析式为y =-x 2+2x +3;(2)∵点E 的坐标为(0,7),可设直线EH 的解析式为y =nx +7联立2723y nx y x x =+⎧⎨=-++⎩,得()2240x n x +-+= ∵直线EH 与函数只有一个交点,且在对称轴右侧∴△=()224140n --⨯⨯=解得n 1=-2,n 2=6(舍去)∴直线EH 的解析式为y =-2x +7解方程2440x x -+=得x 1=x 2=2∴H (2,3)∵直线GH 解析式y =kx ﹣2k ﹣5=k (x -2)-5∴直线GH 过定点M (2,-5)如图,连接HM∵H (2,3)∴HM ⊥x 轴,MH =8设F (x 2,y 2)、G (x 1,y 1)联立()22523y k x y x x ⎧=--⎨=-++⎩,得到()22280x k x k +---= ∴x 1+x 2=2-k ,x 1x 2=-2k -8∵S △FGH =S △FMH +S △GMH =()1212MH x x ⨯-=4()12x x - 故当()12x x -最小时,S △FGH 最小∵()12x x -2=()()()()222121242428232x x x x k k k +-=----=++ 故当k =-2时,()12x x -2的最小值为32故()12x x -∴此时S △FGH 最小为4()12x x -=(3)当以EF 为直径的R 与x 轴相切时,x 轴上存在点P 即切点,使∠EPF =90° 如图,R 与x 轴相切时,切点为点P ,∵y =-x 2+2x +3=-(x -1)2+4设点E ,F 的坐标分别为F (x 1,y 1)、F (x 2,y 2),当平移后的抛物线的顶点的横坐标为m 时,则抛物线向右平移了m -1个单位,故相应地纵坐标向上平移了2(m -1)=个单位,则平移后的抛物线的解析式为y =-(x -m )2+4+2(m -1)=-(x -m )2+2m +2联立()22221y x m m y x ⎧=--++⎪⎨=-⎪⎩得到()2222230x m x m m -++--=∴x 1+x 2=2m +2,x 1x 2=223m m --∴y 1+y 2=2(x 1+x 2)-2=4m -6,则点R (m -1,2m -3),()12x x -2=()212124x x x x +-=(2m +2)2-4(223m m --)=16,PR =12EF 则EF 2=4PR 2∵EF 2=()12x x -2+()12y y -2=5()12x x -2=5×16=4PR 2∵PR =2m -3∴5×16=4×(2m -3)2解得m∴当m m【点睛】此题主要考查二次函数综合运用,解题的关键是熟知圆的切线的性质、勾股定理、二次函数的图像与性质、一元二次方程相关性质.4、(1)见解析;(2)见解析【分析】(1)连接OC 、AC ,证明△ACD 为等边三角形,得出∠ADC =∠DCA =∠DAC =60°,∠OCD =30°,由FG ∥DA ,得出∠DCF =180°-∠ADC =120°,则∠OCF =∠DCF -∠OCD =90°,即FG ⊥OC ,即可得出结论;(2)证明AF ∥DC ,由FG ∥DA ,得出四边形AFCD 是菱形.【详解】(1)证明:连接OC、AC,如图所示:∵AB是⊙O的直径,弦CD⊥AB,∴CE=DE,AD=AC,∵DC=AD,∴DC=AD=AC,∴△ACD为等边三角形,∴∠ADC=∠DCA=∠DAC=60°,∠DAB=∠BAC=30°,∴∠BOC=2∠BAC=60°,∴∠OCD=90°-60°=30°,∵FG∥DA,∴∠D=∠DCG=60°,∴∠OCG=∠DCG+∠OCD=60°+30°=90°,∴FG⊥OC,∵OC为⊙O的半径,∴FG是⊙O的切线;(2)证明:∵AF与⊙O相切,∴AF⊥AG,∵DC⊥AG,∴AF∥DC,∵FG∥DA,∴四边形AFCD为平行四边形.∵DC=AD,∴四边形AFCD是菱形.【点睛】本题考查了切线的判定与性质,菱形的判定与性质,等边三角形的性质,证明FG是⊙O的切线是解题的关键.5、(1)见解析;(2)同弧所对的圆周角等于圆心角的一半;线段垂直平分线上的点到这条线段两个端点的距离相等【分析】(1)根据题意补全图形;(2)根据同一个圆中,同弧所对的圆周角等于圆心角的一半,及垂直平分线上的点到两端点的距离相等即可.【详解】(1)作图正确;(2)证明:连接OA ,OB .∵OA =OB =AB , ∴OAB 是等边三角形.∴60AOB ∠=︒.∵A ,B ,C 在⊙O 上,∴∠ACB =12∠AOB (同弧所对的圆周角等于圆心角的一半)(填推理的依据).∴30ACB ∠=︒.由作图可知直线OE 是线段AB 的垂直平分线,∴AC =BC (线段垂直平分线上的点到这条线段两个端点的距离相等)(填推理的依据). ∴ABC 就是所求作的三角形,故答案是:同弧所对的圆周角等于圆心角的一半;线段垂直平分线上的点到这条线段两个端点的距离相等.【点睛】本题是圆的综合题、作图、考查了圆周角定理、垂直平分线、等腰三角形,解题的关键是熟练掌握圆周角定理及作图的基本能力.。

九年级圆知识点及习题(含答案)

九年级圆知识点及习题(含答案)

九年级圆知识点及习题(含答案)九年级圆知识点及习题(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(九年级圆知识点及习题(含答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为九年级圆知识点及习题(含答案)的全部内容。

九年级圆知识点及习题(含答案)圆圆的有关概念与性质1.圆上各点到圆心的距离都等于 半径 。

2。

圆是 轴 对称图形,任何一条直径所在的直线都是它的 对称轴 ;圆又是 中心 对称图形, 圆心 是它的对称中心。

3.垂直于弦的直径平分 这条弦 ,并且平分 弦所对的弧 ;平分弦(不是直径)的 直径 垂直于弦,并且平分 弦所对的弧 。

4。

在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量 相等 ,那么它们所对应的其余各组量都分别 相等 。

5。

同弧或等弧所对的圆周角 相等 ,都等于它所对的圆心角的 一半 。

6。

直径所对的圆周角是 90° ,90°所对的弦是 直径 。

7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫 外 心,是三角形 三边垂直平分线 的交点。

8。

与三角形各边都相切的圆叫做三角形的 内切圆 ,内切圆的圆心是三角形 三条角平分线的交点 的交点,叫做三角形的 内心 。

9。

圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.10。

圆内接四边形对角互补,它的一个外角等于它相邻内角的对角与圆有关的位置关系1.点与圆的位置关系共有三种:① 点在圆外 ,② 点在圆上 ,③ 点在圆内 ;对应的点到圆心的距离d 和半径r 之间的数量关系分别为: ①d > r,②d = r ,③d < r.2.直线与圆的位置关系共有三种:① 相交 ,② 相切 ,③ 相离 ; 对应的圆心到直线的距离d 和圆的半径r 之间的数量关系分别为: ①d < r ,②d = r ,③d > r. 3。

北师大版九年级数学下册《3.1圆》同步练习题含答案

北师大版九年级数学下册《3.1圆》同步练习题含答案

北师大版九年级数学下册《3.1圆》同步练习题含答案学校:___________班级:___________姓名:___________考号:___________圆的有关概念1.“车轮为什么都做成圆形?”下面解释最合理的是()A.圆形是轴对称图形B.圆形特别美观大方C.圆形是曲线图形D.从圆心到圆上任意一点的距离都相等2.下列说法正确的是()A.大于半圆的弧叫做优弧B.长度相等的两条弧叫做等弧C.过圆心的线段是直径D.直径一定大于弦3.如图,A,B,C是☉O上三点,∠A=80°,∠C=60°,则∠B的大小为.4.(2024宿迁沭阳县月考)如图,在☉O中,AB是直径,CD是弦,延长AB,CD相交于点P,且AB=2DP,∠P=18°,求∠AOC的度数.点和圆的位置关系5.已知☉O的半径为3,当OP=5时,点P与☉O的位置关系为()A.点在圆内B.点在圆外C.点在圆上D.不能确定6.已知☉O的半径长为2,若OA=√5,则可以得到的正确图形可能是()A B C D7.(2024宜兴二模)已知☉O的半径为5 cm,A为线段OB的中点,当OB=9 cm时,点A与☉O的位置关系是.8.如图,已知矩形ABCD的边AB=3 cm,BC=4 cm,以点A为圆心,4 cm为半径作☉A,则点B,C,D与☉A 有怎样的位置关系?1.(2024大庆二模)已知☉O的半径是4,点P到圆心O的距离d为方程x2-4x+4=0的一个根,则点P 在()A.☉O的外部B.☉O的内部C.☉O上D.无法判断⏜上的点,连接AD并延长与OB的延长线交于点C,若CD=OA,∠O= 2.如图,在扇形AOB中,D为AB72°,则∠A的度数为()A.35°B.52.5°C.70°D.72°3.运动场上的环形跑道的跑道宽都是相同的,若一条跑道的两个边缘所在的环形周长的差等于12π m,则跑道的宽度为m.54.如图,CD是☉O的直径,∠EOD=84°,点A在DC的延长线上,AE交☉O于点B,且AB=OC,则∠A的度数是.5.如图,在平面直角坐标系中,有一圆弧经过三个点A,B,C,且点A,B,C的坐标分别为A(0,4),B(-4,4)C(-6,2).(1)该圆弧所在圆的圆心M的坐标为;(2)☉M的半径为;(3)点D(-5,-2)在☉M(填“内”“外”或“上”);(4)点O到☉M上最近的点的距离为.6.如图,AB是☉O的直径,CD是☉O的弦,AB,CD的延长线交于点E,若AB=2DE,∠C=40°,求∠E及∠AOC 的度数.7.(推理能力)如图,E是菱形ABCD内一点,∠BEC=90°,DF⊥CE,垂足为F,且DF=CE,连接AE.(1)求证:菱形ABCD是正方形;(2)当F是线段CE的中点时,求证:点F在以AB为半径的☉A上.参考答案课堂达标1.D解析:车轮都做成圆形,利用了圆心到圆上任意一点的距离都相等,即圆半径都相等,即车轮滚动时车轴到地面的距离不变,这样子车子才不会颠簸,车子才会更平稳.故选D.2.A解析:A.大于半圆的弧叫做优弧,原说法正确,符合题意;B.在同圆或等圆中长度相等的两条弧叫做等弧,原说法错误,不符合题意;C.过圆心的弦是直径,原说法错误,不符合题意;D.在同圆或等圆中,直径一定大于除直径外的弦,原说法错误,不符合题意.故选A.3.140°解析:连接OB,如图∵OA=OB∴∠A=∠OBA=80°.∵OB=OC∴∠OBC=∠C=60°∴∠ABC=∠OBA+∠OBC=80°+60°=140°.4.解:如图,连接OD∵AB=2DP=2OD,∠P=18°∴OD=DP∴∠DOP=∠P=18°.∵∠ODC是△OPD的外角∴∠ODC=∠P+∠DOP=18°+18°=36°.∵OD=OC∴∠OCD=∠ODC=36°∴∠COD=180°-36°-36°=108°∴∠AOC=180°-∠COD-∠DOP=180°-108°-18°=54°.5.B解析:∵OP=5,r=3∴OP>r则点P在☉O外.故选B.6.D解析:∵☉O的半径为2,OA=√5,且√5>2∴点A在圆外.故选D.7.点A在☉O内解析:∵A为线段OB的中点,∴当OB=9 cm时OB=4.5 cm.得OA=12∵r=5 cm,∴OA<r∴点A与☉O的位置关系是点A在☉O内.8.解:如图,连接AC∵AB=3 cm,BC=AD=4 cm∴AC=5 cm∴点B在☉A内,点D在☉A上,点C在☉A外.课后提升1.B解析:x2-4x+4=0可化为(x-2)2=0解得x=2∴OP=2.∵2<4∴点P在☉O内.故选B.2.D解析:连接OD,如图,设∠C的度数为n∵CD=OA=OD∴∠C=∠DOC=n∴∠ADO=∠DOC+∠C=2n.∵OA=OD∴∠A=∠ADO=2n.∵∠AOC+∠C+∠A=180°,∠AOC=72°∴72°+n+2n=180°解得n=36°∴∠A=2n=72°.故选D.解析:设运动场上的小环半径为r m,大环半径为R m,根据题意,得3.65π2π(R-r)=125解得R-r=65m.即跑道的宽度为654.28°解析:∵AB=OC,OC=OB∴AB=OB∴∠A=∠AOB.∵BO=EO∴∠BEO=∠EBO.由∠EBO是△ABO的外角,得∠EBO=∠A+∠AOB=2∠A∴∠BEO=∠EBO=2∠A.由∠DOE是△AOE的外角,得∠A+∠AEO=∠EOD即∠A+2∠A=84°∴∠A=28°.5.(1)(-2,0)(2)2√5(3)内(4)2√5-2解析:(1)如图,分别作AB,BC的垂直平分线,两直线交于点M则点M即为该圆弧所在圆的圆心由图形可知,点M的坐标为(-2,0).(2)☉M的半径长=√22+42=2√5.(3)MD=√(5-2)2+22=√13,√13<2√5∴MD<☉M的半径∴点D(-5,-2)在☉M内.(4)由题意可得,点O到☉M上最近的点在直线OM上∵☉M的半径长为2√5,OM=2∴点O到☉M上最近的点的距离为2√5-2.6.解:如图,连接OD∵OC=OD,∠C=40°∴∠ODC=∠C=40°.AB∵AB=2DE,OD=12∴OD=DE.∵∠ODC是△DOE的外角∠ODC=20°.∴∠E=∠EOD=12∵∠AOC是△COE的外角∴∠AOC =∠C +∠E =40°+20°=60°. 7.证明:(1)∵DF ⊥CE ∴∠CFD =90° ∴∠CDF +∠FCD =90°. ∵∠BEC =90° ∴∠BEC =∠CFD. ∵四边形ABCD 为菱形 ∴BC =CD.在Rt △BCE 和Rt △CDF 中 {BC =CD ,CE =DF ,∴Rt △BCE ≌Rt △CDF (HL) ∴∠BCE =∠CDF ∴∠BCE +∠FCD =90° ∴∠BCD =90°∴菱形ABCD 为正方形.(2)如图,连接AF ,ED∵四边形ABCD 为正方形 ∴∠ADC =90°,AD =CD. ∵F 为CE 的中点,DF ⊥CE ∴DF 是CE 的垂直平分线 ∴DE =DC =AD∴∠DAE =∠DEA ,∠DEC =∠DCE.∵∠DAE +∠DEA +∠ADE =180°,∠DEC +∠DCE +∠CDE =180° ∴∠AED =180°-∠ADE2∠DEC =180°-∠CDE2∴∠AEF =∠AED +∠DEC =180°-12(∠ADE +∠CDE )=180°-45°=135° ∴∠AEB =360°-135°-90°=135°∴∠AEF=∠AEB.∵△BCE≌△CDF∴BE=CF=FE.在△AFE和△ABE中{AE=AE,∠AEF=∠AEB, EF=EB,∴△AFE≌△ABE(SAS),∴AB=AF ∴点F在以AB为半径的☉A上.。

九年级数学圆的性质及习题

九年级数学圆的性质及习题

一、圆的概念集合形式的概念: 1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;固定的端点O为圆心。

连接圆上任意两点的线段叫做弦,经过圆心的弦叫直径。

圆上任意两点之间的部分叫做圆弧,简称弧。

2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线;3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。

二、点与圆的位置关系1、点在圆内⇒d r<⇒点C在圆内;2、点在圆上⇒d r=⇒点B在圆上;3、点在圆外⇒d r>⇒点A在圆外;三、直线与圆的位置关系1、直线与圆相离⇒d r>⇒无交点;2、直线与圆相切⇒d r=⇒有一个交点;3、直线与圆相交⇒d r<⇒有两个交点;四、圆与圆的位置关系外离(图1)⇒无交点⇒d R r>+;外切(图2)⇒有一个交点⇒d R r=+;相交(图3)⇒有两个交点⇒R r d R r-<<+;内切(图4)⇒有一个交点⇒d R r=-;A内含(图5)⇒ 无交点 ⇒ d R r <-;五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。

推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB CD ⊥ ③CE DE = ④ 弧BC =弧BD ⑤ 弧AC =弧AD 中任意2个条件推出其他3个结论。

初中数学九年级下册第24章圆24.2圆的基本性质作业设

初中数学九年级下册第24章圆24.2圆的基本性质作业设

24.2 圆的基本性质一.选择题(共15小题)1.如图,将大小两块量角器的零度线对齐,且小量角器的中心O2恰好在大量角器的圆周上.设它们圆周的交点为P,且点P在小量角器上对应的刻度为75°,那么点P在大量角器上对应的刻度为( )(第1题图)A.75° B.60° C.45° D.30°2.如图,坐标平面上,A、B两点分别为圆P与x轴、y轴的交点,有一直线L通过点P且与AB垂直,点C为L与y轴的交点.若点A、B、C的坐标分别为(a,0),(0,4),(0,﹣5),其中a<0,则a的值为多少?( )(第2题图)A.﹣2 B.﹣2 C.﹣8 D.﹣73.如图,AB是⊙O的直径,AB=10,P是半径OA上的一动点,PC⊥AB交⊙O于点C,在半径OB上取点Q,使得OQ=CP,DQ⊥AB交⊙O于点D,点C,D位于AB两侧,连结CD交AB 于点E.点P从点A出发沿AO向终点O运动,在整个运动过程中,△CEP与△DEQ的面积和的变化情况是( )(第3题图)A.一直减小 B.一直不变C.先变大后变小 D.先变小后变大4.如图,⊙O经过菱形ABCO的顶点A、B、C,若OP⊥AB交⊙O于点P,则∠PAB的大小为( )(第4题图)A.15° B.20° C.25° D.30°5.在半径为10cm的圆中,两条平行弦分别长为12cm,16cm,则这两条平行弦之间的距离为( )A.28cm或4cm B.14cm或2cm C.13cm或4cm D.5cm或13cm6.如图,在三个等圆上各自有一条劣弧、、,如果+=,那么AB+CD与EF的大小关系是( )(第6题图)A.AB+CD=EF B.AB+CD>EF C.AB+CD<EF D.不能确定7.已知AB是半径为1的圆O的一条弦,且AB=a<1,以AB为一边在圆O内作正△ABC,点D为圆O上不同于点A的一点,且DB=AB=a,DC的延长线交圆O于点E,则AE的长为( )(第7题图)A. B.1 C. D.a8.下列说法正确的个数共有( )(1)如果圆心角相等,那么它们所对的弦一定相等.(2)弦的中垂线一定是这条弦所在圆的对称轴.(3)平分弦的直径一定垂直于这条弦.(4)两条边相等的两个直角三角形一定全等.A.1个 B.2个C.3个 D.0或4个9.如图,等边三角形ABC的边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是( )(第9题图)A.△ADF≌△CGEB.△B′FG的周长是一个定值C.四边形FOEC的面积是一个定值D.四边形OGB'F的面积是一个定值10.下列命题,真命题的个数是( )①经过三点一定可以作圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个外接圆,并且只有一个外接圆;④三角形的外心到三角形的三个顶点的距离相等.A.4个B.3个C.2个 D.1个11.已知:点A(0,4),B(0,﹣6),C为x轴的正半轴上一点,且满足∠ACB=45°,则( )(第11题图)A.△ABC外接圆的圆心在OC上B.∠BAC=60°C.△ABC外接圆的半径等于5 D.OC=1212.如图所示,在边长为1的单位正方形组成的网格中,△ABC的顶点都在网格的交点上,则△ABC的外接圆的半径R为( )(第12题图)A.B. C. D.13.如图,等边三角形内接于⊙O,点P在弧BC上,PA与BC相交于点D,若PB=3,PC=6,则PD=( )(第13题图)A.1.5 B.C.2 D.14.如图,坐标平面上有A(0,a)、B(﹣9,0)、C(10,0)三点,其中a>0.若∠BAC=95°,则△ABC的外心在第几象限?( )(第14题图)A.一 B.二 C.三D.四15.下列给定的三点能确定一个圆的是( )A.线段AB的中点C及两个端点B.角的顶点及角的边上的两点C.三角形的三个顶点D.矩形的对角线交点及两个顶点二.填空题(共10小题)16.如图,大圆和圆的半径都分别是4cm和2cm,两圆外切于点C,一只蚂蚁由点A开始ABCDEFCGA的顺序沿着两圆圆周不断地爬行,其中各点分别是两圆周的四等分点,蚂蚁直到行走2010π cm后才停下来.则这只蚂蚁停在点 .(第16题图)17.如图,⊙M交x轴于B,C两点,交y轴于点A,弦CE⊥AB于点H,M的纵坐标为2,B(3,0),C(﹣,0),则圆心M的坐标为 ,线段AF的长为 .(第17题图)18.如图,直径AB、CD所夹的锐角为60°,P为上的一个动点(不与点B、C重合),PM、PN分别垂直于CD、AB,垂足分别为M、N.若⊙O的半径为2cm,则在点P移动过程中,MN的长是否有变化 (填“是”或“否”),若有变化,写出MN的长度范围;若无变化,写出MN的长度 cm.(第18题图)19.如图,在平面直角坐标系中,⊙O的半径为2,AC、BD是⊙O的两条相互垂直的弦,垂足为M(1,),则四边形ABCD的面积的最大值与最小值的差为 .(第19题图)20.如图,正方形ABCD的顶点A、B和正方形EFGH的顶点G、H在一个半径为5cm的⊙O 上,点E、F在线段CD上,正方形ABCD的边长为6cm,则正方形EFGH的边长为 cm.(第20题图)21.如图是一个圆环形黄花梨木摆件的残片,为求其外圆半径,小林在外圆上任取一点A,然后过点A作AB与残片的内圆相切于点D,作CD⊥AB交外圆于点C,测得CD=15cm,AB=60cm,则这个摆件的外圆半径是 cm.(第21题图)22.如图,△ABC内接于⊙O,AB=BC,直径MN⊥BC于点D,与AC边相交于点E,若⊙O的半径为2,OE=2,则OD的长为 .(第22题图)23.如图,C是以AB为直径的半圆O上一点,连结AC,BC,分别以AC,BC为边向外作正方形ACDE,BCFG,DE,FG,,的中点分别是M,N,P,Q.若MP+NQ=14,AC+BC=18,则AB的长是 .(第23题图)24.在平面直角坐标系中,已知A(3,0),B是以M(3,4)为圆心,1为半径的圆周上的一个动点,连结BO,设BO的中点为C,则线段AC的最小值为 .25.一个直角三角形的两条直角边长是方程x2﹣7x+12=0的两个根,那么这个直角三角形外接圆的半径等于 .三.解答题(共5小题)26.如图,已知OC是⊙O的半径,点P在⊙O的直径BA的延长线上,且OC⊥PC,垂足为C.弦CD垂直平分半径AO,垂足为E,PA=6.求:(1)⊙O的半径;(2)求弦CD的长.(第26题图)27.如图,AB是⊙O的直径,延长BA到点D,使DA=AO,AE垂直于弦AC,垂足为A,点E 在DC上,求S△AEC:S△AOC.(第27题图)28.如图,⊙O的半径为10cm,G是直径AB上一点,弦CD经过点G,CD=16cm,AE⊥CD于点E,BF⊥CD于点F,求AE﹣BF的值.(第28题图)29.如图,⊙O的直径AB和弦CD相交于点E,已知AE=1cm,EB=5cm,∠DEB=60°,(1)求CD的长;(2)若直线CD绕点E顺时针旋转15°,交⊙O于点C、D,直接写出弦CD的长.(第29题图)参考答案一.1.D【解析】设大量角器的左端点是A,小量角器的圆心是B,连接AP,BP,则∠APB=90°,∠ABP=75°,因而∠PAB=90°﹣75°=15°,在大量角器中弧PB所对的圆心角是30°,因而P在大量角器上对应的度数为30°.故选D.(第1题答图)【点评】本题主要考查了直径所对的圆周角是90度.能把实际问题转化为数学问题是解决本题的关键.2.A【解析】连接AC,如答图.由题意,得BC=OB+OC=9.∵直线L通过点P且与AB垂直,∴直线L是线段AB的垂直平分线,∴AC=BC=9.在Rt△AOC中,AO==2.∵a<0,∴a=﹣2,故选A.(第2题答图)【点评】本题考查的是垂径定理、坐标与图形的性质以及勾股定理,掌握垂径定理的推论是解题的关键. 3.C【解析】如答图,连接OC,OD,PD,CQ.设PC=x,OP=y.∵PC⊥AB,QD⊥AB,∴∠CPO=∠OQD=90°.∵PC=OQ,OC=OD,∴Rt△OPC≌Rt△DQO,∴OP=DQ=y,∴S阴=S四边形PCQD﹣S△PFD﹣S△CFQ=(x+y)2﹣y2﹣x2=xy,观察图象可知xy的值先变大后变小.故选C.(第3题答图)【点评】本题考查勾股定理、全等三角形的判定和性质、三角形的面积等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会用分割法求面积,属于中考选择题中的压轴题. 4.A【解析】连接OB,如答图.∵四边形ABCO是菱形,∴OA=AB.∵OA=OB,∴△AOB为等边三角形,∴∠AOB=60°.∵OP⊥AB,∴∠BOP=∠AOB=30°.由圆周角定理得,∠PAB=∠BOP=15°.故选A.(第4题答图)【点评】本题考查的是菱形的性质、圆周角定理、垂径定理,掌握菱形的性质、圆周角定理、垂径定理是解题的关键.5.B【解析】有两种情况:①如图,当AB和CD在点O的两旁时.过点O作MN⊥AB于点M,交CD于点N,连接OB,OD.∵AB∥CD,∴MN⊥CD,由垂径定理,得BM=AB=8(cm),DN=CD=6(cm).∵OB=OD=10cm,由勾股定理,得OM==6(cm),同理ON=8cm,∴MN=8+6=14(cm).②当AB和CD在点O的同旁时,MN=8﹣6=2(cm).故选B.(第5题答图)【点评】本题考查了垂径定理和勾股定理的应用,关键是理解题意,能得出两种情况,题目比较典型,难度适中.注意要进行分类讨论. 6.B【解析】如图,在弧EF上取一点M使弧EM=弧CD,则弧FM=弧AB,∴AB=FM,CD=EM.在△MEF中,FM+EM>EF,∴AB+CD>EF.故选B.(第6题答图)【点评】本题主要考查对三角形的三边关系定理,圆心角、弧、弦的关系等知识点的理解和掌握,能正确作辅助线是解此题的关键.7.B【解析】∵△ABC是等边三角形,∴AB=BC=AC=BD=a,∠CAB=∠ACB=60°.∵AB=BD,∴,∴∠AED=∠AOB.∵BC=AB=BD,∴∠D=∠BCD.∵四边形EABD内接于⊙O,∴∠EAB+∠D=180°,即∠EAC+60°+∠D=180°.又∵∠ECA+60°+∠BCD=180°,∴∠ECA=∠EAC,即△EAC是等腰三角形.在等腰△EAC和等腰△OAB中,∠AEC=∠AOB.∵AC=AB,∴△EAC≌△OAB;∴AE=OA=1.故选B.(第7题答图)【点评】此题考查了圆心角、弧、弦的关系,等边三角形的性质,圆内接四边形的性质,全等三角形的判定和性质等知识,综合性强,难度较大;能够发现并证得△EAC≌△OAB是解答此题的关键. 8.解:(1)在同圆或等圆中,如果圆心角相等,所对的弦相等,故本选项错误;(2)根据垂径定理推出弦的中垂线是这条弦所在圆的对称轴,故本选项正确;(3)平分弦(弦不是直径)的直径垂直于这条弦,故本选项错误;(4)如果有一条直角边和斜边相等,则这两个直角三角形不全等,故本选项错误;∴正确的有1个.故选A.【点评】本题主要考查对圆心角、弧、弦的关系,全等三角形的判定,垂径定理等知识点的理解和掌握,能正确运用性质进行判断是解此题的关键.9. D【解析】A、连接OA、OC.∵点O是等边三角形ABC的外心,∴AO平分∠BAC,∴点O 到AB、AC的距离相等,由折叠,得DO平分∠BDB',∴点O到AB、DB'的距离相等,∴点O到DB'、AC的距离相等,∴FO平分∠DFG,∠DFO=∠OFG=(∠FAD+∠ADF),由折叠,得∠BDE=∠ODF=(∠DAF+∠AFD),∴∠OFD+∠ODF=(∠FAD+∠ADF+∠DAF+∠AFD)=120°,∴∠DOF=60°,同理可得∠EOG=60°,∴∠FOG=60°=∠DOF=∠EOG,∴△DOF≌△GOF≌△GOE,∴OD=OG,OE=OF,∠OGF=∠ODF=∠ODB,∠OFG=∠OEG=∠OEB,∴△OAD≌△OCG,△OAF≌△OCE,∴AD=CG,AF=CE,∴△ADF≌△CGE,故选项A正确;B、∵△DOF≌△GOF≌△GOE,∴DF=GF=GE,∴△ADF≌△B'GF≌△CGE,∴B'G=AD,∴△B'FG的周长=FG+B'F+B'G=FG+AF+CG=AC(定值),故选项B正确;C、S四边形FOEC=S△OCF+S△OCE=S△OCF+S△=S△AOC=(定值),故选项C正确;D、S四边形OGB'F=S△OFG+S△B'GF=S△OFD+△ADF=S四边OAF=S△OAD+S△OAF=S△OCG+S△OAF=S△OAC﹣S△OFG,过点O作OH⊥AC于点H,∴S△OFG=•FG•OH,形OFAD由于OH是定值,FG变化,故△OFG的面积变化,从而四边形OGB'F的面积也变化,故选项D不一定正确.故选D.(第9题答图)【点评】本题考查了等边三角形的性质、三角形全等的性质和判定、角平分线的性质和判定、三角形和四边形的面积及周长的确定以及折叠的性质,有难度,本题全等的三角形比较多,要注意利用数形结合,并熟练掌握三角形全等的判定,还要熟练掌握角平分线的逆定理的运用,证明FO平分∠DFG是本题的关键,10.C【解析】经过不在同一条直线上的三点可以作一个圆,∴①错误;任意一个圆一定有内接三角形,并且有多个内接三角形,∴②错误;任意一个三角形一定有一个外接圆,并且只有一个外接圆,∴③正确;三角形的外心是三角形三边的垂直平分线的交点,到三角形的三个顶点距离相等,∴④正确.故选C.【点评】本题考查了确定圆的条件和三角形的外接圆与外心的应用,主要考查学生运用性质进行说理的能力,题目比较好,但是一道比较容易出错的题目.11.D【解析】设线段BA的中点为E,∵点A(0,4),B(0,﹣6),∴AB=10,E(0,﹣1).如答图,过点E在第四象限作EP⊥BA,且EP=AB=5,则易知△PBA为等腰直角三角形,∠BPA=90°,PA=PB=5;以点P为圆心,PA(或PB)长为半径作⊙P,与y轴的正半轴交于点C.∵∠BCA为⊙P的圆周角,∴∠BCA=∠BPA=45°,即则点C即为所求.过点P 作PF⊥x轴于点F,则OF=PE=5,PF=OE=1,在Rt△PFC中,PF=1,PC=5,由勾股定理,得CF==7,∴OC=OF+CF=5+7=12.故选D.(第11题答图)【点评】本题主要考查了坐标与图形性质、圆周角定理、勾股定理等知识的综合应用,解决问题的关键是作辅助线构造圆周角以及直角三角形,由45°的圆周角联想到90°的圆心角是解题的突破口. 12.A【解析】作AC、AB的垂直平分线交于点O,则点O为△ABC的外接圆圆心,连接OA,则OA==,故选A.(第12题答图)【点评】本题考查的是三角形的外接圆与外心,掌握三角形的外心的定义、灵活运用勾股定理是解题的关键. 13.C【解析】在PA上截取PE=PB,连接BE.∵△ABC是等边三角形,∠ACB=APB,∴∠ACB=∠APB=60°,AB=BC;∴△BEP是等边三角形,BE=PE=PB;∴∠ACB﹣∠EBC=APB﹣∠EBC=60°﹣∠EBC;∴∠ABE=∠CBP;∵在△ABE与CBP 中,,∴△ABE≌△CBP;∴AE=CP;∴AP=AE+PE=PB+PC.∵PB=3,PC=6,∴PA=6+3=9.∵∠BAP=∠DAB(公共角),∠ABC=∠ACB=∠APB=60°,∴△ABD∽△APB,∴=,即=,∴AB=3BD.∵∠PBD=∠PAC,∠BPD=∠APC=60°,∴△BPD∽△APC,∴=,即PD=6×=2.故选C.(第13题答图)【点评】本题通过构造等边三角形,利用等边三角形的性质、全等三角形的判定和性质、求出某些线段的长度,再利用相似的判定定理和性质定理去求出未知线段的长度. 14.D【解析】∵∠BAC=95°,∴△ABC的外心在△ABC的外部,即在x轴的下方.∵外心在线段BC的垂直平分线上,即在直线x=上,∴△ABC的外心在第四象限.故选D.【点评】本题考查的是三角形的外心的确定,掌握外心的概念和外心与锐角、直角、钝角三角形的位置关系是解题的关键,锐角三角形的外心在三角形的内部,直角三角形的外心是斜边的中点,钝角三角形的外心在三角形的外部.15.C【解析】A、线段AB的端点A、B和线段AB的中点C不能确定一个圆,故本选项错误;B、当角的两边上的一个点或两个点和角的顶点重合时就不能确定一个圆,故本选项错误;C、经过三角形的三个顶点作圆,有且只有一个圆,故本选项正确;D、矩形的对角线的交点及两个顶点,如果这三个点在一条直线上,就不能确定一个圆,故本选项错误.故选C.【点评】本题考查了确定圆的条件的应用,注意:不在同一直线上的三个点确定一个圆.二.16.E【解析】从点A开始沿ABCDEFCGA的顺序转一周的路径长是8π+4π=12πcm,蚂蚁直到行走2010πcm所转的周数是2010π÷12π=167…6π.即转167周以后又走了6πcm.从点A到点B所得路径长是2π,再到C的路线长也是2π,从点C到点D,到点E的路线长是2π,则从点A行走6πcm到点E.【点评】本题主要考查了圆的周长的计算,正确而理解蚂蚁行走一周以后又回到A,是一个循环的过程,是解决本题的关键.17.(,2),4【解析】过点M作MN⊥BC于点N,连接CM.∵B(3,0),C(﹣,0),∴OB=3,OC=,∴BC=4.∵MN⊥BC,∴CN=BC=2,∴ON=,∴M(,2),Rt△CMN中,由勾股定理,得CM===4,∴∠MCN=30°,连接EB,∴∠CEB=∠CMN=60°,∴∠ABE=30°,连接AM、EM、AE,∴∠AME=2∠ABE=60°,∴△AME是等边三角形,∴AE=AM=4.∵∠EAB=∠ECB,∠AHE=∠AOC=90°,∴∠AEH=∠CFO.∵∠CFO=∠AFE,∴∠AFE=∠AEH,∴AF=AE=4.(第17题答图)【点评】本题考查的是垂径定理、圆周角定理、坐标与图形特点、勾股定理,根据题意作出辅助线是解答此题的关键.18.否,【解析】MN的长没有变化;理由如下,如答图,延长PN交圆于点E,延长PM 交圆于点F,连接EF、OE、OF,作OH⊥EF于点H.根据垂径定理,PN=NE,PM=MF,∴MN∥EF且MN=EF.∵∠MON=120°,∠PNO=∠PMO=90°,∴∠P=60°,∴弦EF的长为定值,MN的长也为定值.在Rt△EOH中,易知∠EOH=60°,∵OE=2,∴EH=OE•sin60°=,∴EF=2,∴MN=EF=.(第18题答图)19.1【解析】(1)如图,连接OA、OD,作OE⊥AC,OF⊥BD,垂足分别为E、F.(第19题答图)∵AC⊥BD,∴∠EMF=∠OFB=∠OEM=90°,∴四边形OEMF为矩形.∵OA=OC=2,OM=√3,设圆心O到AC、BD的距离分别为d、h,则d2+h2=OM2=3.四边形ABCD的面积为:s=|AC|•(|BM|+|MD|)=|AC|•|BD|,从而s=2≤8﹣(d2+h2)=5,当且仅当d=h时取等号,故四边形ABCD的面积最大值为5.(2)四边形ABCD的面积s=2=2=2,当dh=0即d=0或h=0时(一条弦过原点),s最小,最小值为4.∴四边形ABCD面积最大值与最小值的差5﹣4=1.【点评】本题考查了垂径定理以及坐标与图形的变换,当对角线互相垂直时,四边形的面积等于对角线乘积的一半,这一性质要好好记忆,同时还要注意极值图形的选取方法. 20.2.8【解析】作OM⊥AB于点M,ON⊥HG于点N,连接OA、OH.∵正方形ABCD和正方形EFGH,∴M、O、N在同一条直线上.∵OM⊥AB,∴AM=AB=3,∴OM==4.设正方形EFGH的边长为x,则ON=x+2.∵ON⊥HG,∴NH=HG=x,则(x+2)2+(x)2=25,解得x=2.8.(第20题答图)【点评】本题考查的是垂径定理、勾股定理和正方形的性质,掌握垂直于弦的直径平分这条弦是解题的关键.21.37.5【解析】如图,设点O为外圆的圆心,连接OA和OC.∵CD=15cm,AB=60cm,CD⊥AB,∴OC⊥AB,∴AD=AB=30cm,∴设半径为rcm,则OD=(r﹣15)cm.根据题意,得r2=(r﹣15)2+302,解得r=37.5.∴这个摆件的外圆半径长为37.5cm.(第21题答图)【点评】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是本题的关键. 22.2【解析】连接BO并延长交AC于点F,如图.∵BA=BC,∴=,∴BF⊥AC.∵直径MN⊥BC,∴BD=CD.∵∠BOD=∠EOF,∴Rt△BOD∽Rt△EOF,∴===.设OF=x,则OD=x,∵∠DBO=∠DEC,∴Rt△DBO∽Rt△DEC,∴=,即=,而BD=CD,∴DB2=x(x+2)=3x2+2x,在Rt△OBD中,3x2+2x+3x2=(2)2,解得x 1=,x2=﹣(舍去),∴OD=x=2.(第22题答图)【点评】本题考查了三角形外接圆与外心:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了垂径定理.熟练应用相似比是解决问题的关键.23.13【解析】连接OP,OQ.∵DE,FG,,的中点分别是M,N,P,Q,∴OP⊥AC,OQ⊥BC,∴H、I是AC、BD的中点,∴OH+OI=(AC+BC)=9.∵MH+NI=AC+BC=18,MP+NQ=14,∴PH+QI=18﹣14=4,∴AB=OP+OQ=OH+OI+PH+QI=9+4=13.(第23题答图)【点评】本题考查了中位线定理,解题的关键是正确的作出辅助线,题目中还考查了垂径定理的知识,难度不大. 24.2【解析】过B作BD∥AC交x轴于D.∵C是OB的中点,∴OA=AD,∴AC=BD,∴当BD取最小值时,AC最小,由图可知:当BD经过M时,线段BD的长最小,此时AC有最小值.∵A(3,0),∴D(6,0).∵M(3,4),∴DM==5,∴BD=5﹣1=4,∴AC=BD=2,即线段AC的最小值为2;(第24题答图)【点评】本题考查了点与圆的位置关系、三角形的中位线定理,确定线段长的最值问题,可以利用本身垂线段最短或两点之间线段最短来确定,也可以利用另一量来确定,本题是利用BD的长度来解决问题,是中考填空题的压轴题.25.2.5【解析】解可得方程x2﹣7x+12=0得,x1=3,x2=4,∴斜边边长为5,即直角三角形外接圆的直径是5,∴半径等于2.5.【点评】本题考查的是直角三角形的外接圆半径,重点在于理解直角三角形的外接圆是以斜边中点为圆心,斜边长的一半为半径的圆. 三.26.解:(1)设OC=x.∵弦CD垂直平分半径AO,∴OE=OA=x.∵PC⊥OC,CD⊥OP,∴∠PCO=∠CEO=90°,∴∠P+∠COP=90°,∠ECO+∠COP=90°,∴∠P=∠ECO,∴△CEO∽△PCO,∴,∴=,x=6,则⊙O的半径为6;(2)由(1),得OC=6,OE=3,由勾股定理,得CE==3,∵CD⊥OA,∴CD=2CE=6.【点评】本题考查了垂径定理,线段垂直平分线的性质,相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用. 27.解:作OF⊥AC于点F,延长OF交CD于点G,如答图.∵OA=OC,∴F是AC的中点.∵AE垂直于弦AC,∴AE∥OG,∴G是EC的中点,∴GF=AE.∵AE∥OG,DA=OA,∴E是DG的中点,∴AE是△ODG的中位线,∴AE=OG,∴AE=(OF+GF)=(OF+AE),∴=.∵△AEC的面积=AE•AC,△AOC的面积=AC•OF,∴S△AEC:S△AOC==.(第27题答图)【点评】本题考查了垂径定理、平行线的判定与性质、三角形中位线定理、三角形面积的计算等知识;本题综合性强,有一定的难度,需要通过作辅助线运用三角形中位线的定理才能得出结果. 28.解:如图,连接OC,延长AE交⊙O于点H,连接BH;过点O作ON⊥BH于点N,交CD于点M;则HN=BN,CM=DM=CD=8,∵AB为⊙O的直径,∴∠AHB=90°.∵AE⊥CD,∴CD∥BH.∵ON⊥BH,BF⊥CD,∴EH=MN=BF(设为x).∵AO=B0,HN=BN,∴ON为△ABH的中位线,∴AH=2ON,即AE+x=2(OM+x),AE﹣x=2OM;由勾股定理,得OM2=OC2﹣CG2=100﹣64=36,∴OM=6,2OM=12;∴AE﹣BF=12.(第28题答图)【点评】该命题以圆为载体,以垂径定理、勾股定理、三角形的中位线定理等几何知识点为考查的核心构造而成;对综合的分析问题、解决问题的能力提出了较高的要求. 29.解:(1)作OH⊥CD于点H,连接OD.∵AE=1cm,BE=5cm,E在直径AB上,∴AB=1cm+5cm=6cm,半径OD=3cm.∵在Rt△OHE中,OE=3cm﹣1cm=2cm,∠OEH=60°,∴OH=cm.在Rt△OHD中,由勾股定理,得HD=cm.∵OH⊥CD,∴由垂径定理,得DC=2DH=2cm;(2)作OH⊥CD于点H,连接OD.∵AE=1cm,BE=5cm,E在直径AB上,∴AB=1cm+5cm=cm6,半径OD=3cm.∵若直线CD绕点E顺时针旋转15°,∴∠OEH=60°﹣15°=45°.在Rt△OHE中,OE=3cm﹣1cm=2cm,∠OEH=45°,∴OH=cm,在Rt△OHD中,由勾股定理,得HD==(cm).∵OH⊥CD,∴由垂径定理,得DC=2DH=2cm,即CD=2cm.【点评】本题考查了垂径定理,勾股定理,含30度角的直角三角形的性质,等腰直角三角形性质等知识点的应用,主要考查学生运用性质进行推理和计算的能力,题目比较典型,是一道比较好的题目.。

人教版 九年级数学 24.1 圆的有关性质 课后训练(含答案)

人教版 九年级数学 24.1 圆的有关性质 课后训练(含答案)

人教版 九年级数学 24.1 圆的有关性质 课后训练一、选择题(本大题共10道小题)1. 如图,已知直径MN ⊥弦AB ,垂足为C ,有下列结论:①AC =BC ;②AN ︵=BN ︵;③AM ︵=BM ︵;④AM =BM .其中正确的个数为( )A .1B .2C .3D .42. 小红不小心把家里的一块圆形玻璃镜打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A ,B ,C ,给出三角形ABC ,则这块玻璃镜的圆心是 ( )A .AB ,AC 边上的中线的交点 B .AB ,AC 边上的垂直平分线的交点 C .AB ,AC 边上的高所在直线的交点D .∠BAC 与∠ABC 的角平分线的交点3. 2018·济宁如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( )A .50°B .60°C .80°D .100°4. (2019•广元)如图,AB ,AC分别是⊙O 的直径和弦,OD AC ⊥于点D ,连接BD ,BC ,且10AB =,8AC =,则BD 的长为A.5B.4C.13D.4.85.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF.若∠AOF=40°,则∠F的度数是( )A.20°B.35°C.40°D.55°6. 如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为P,则OP的长为() A.3 B.2.5 C.4 D.3.57. 2019·滨州如图,AB为⊙O的直径,C,D为⊙O上两点.若∠BCD=40°,则∠ABD的大小为()A.60°B.50°C.40°D.20°8. 2019·天水如图,四边形ABCD是菱形,⊙O经过点A,C,D,与BC相交于点E ,连接AC ,AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°9. 如图,在半径为5的⊙O 中,AB ,CD 是互相垂直的两条弦,垂足为P ,且AB =CD =8,则OP 的长为( )A .3B .4C .3 2D .4 210. 如图,⊙P与x 轴交于点A(—5,0),B(1,0),与y 轴的正半轴交于点C.若∠ACB =60°,则点C 的纵坐标为( )A.13+ 3B .2 2+ 3C .4 2D .2 2+2二、填空题(本大题共8道小题)11. 如图所示,AB 为☉O 的直径,点C 在☉O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC=65°,连接AD ,则∠BAD= 度.12. (2019•娄底)如图,C 、D 两点在以AB 为直径的圆上,2AB =,30ACD ∠=︒,则AD __________.13. 如图,以△ABC的边BC为直径的⊙O分别交AB,AC于点D,E,连接OD,OE.若∠A=65°,则∠DOE=________°.14. 如图,在⊙O中,BD为⊙O的直径,弦AD的长为3,AB的长为4,AC平分∠DAB,则弦CD的长为________.15. 如图,在⊙O中,半径OA垂直于弦BC,点D在圆上,且∠ADC=30°,则∠AOB的度数为________.16. 如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E 在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为________.17. 当宽为3 cm 的刻度尺的一边与⊙O 相切于点A 时,另一边与⊙O 的两个交点B ,C 处的读数如图所示(单位: cm),那么该圆的半径为________cm.18. 如图,△ABC 内接于⊙O ,若∠OAB =32°,则∠C =________°.三、解答题(本大题共4道小题)19. 如图,在⊙O 中,M ,N 分别是半径OA ,OB 的中点,且CM ⊥OA 交⊙O 于点C ,DN ⊥OB 交⊙O 于点D .求证:AC ︵=BD ︵.20. 如图,AB 为O 的直径,点C 在O 上.(1)尺规作图:作BAC 的平分线,与O 交于点D ;连接OD ,交BC 于点E (不写作法,只保留作图痕迹,且用黑色墨水笔将作图痕迹加黑); (2)探究OE 与AC 的位置及数量关系,并证明你的结论.21. 如图,直线AB经过⊙O的圆心,与⊙O相交于点A,B,点C在⊙O上,且∠AOC=30°,P是直线AB上的一个动点(与点O不重合),直线PC与⊙O相交于点Q.在直线AB上使QP=QO成立的点P共有几个?请相应地求出∠OCP的度数.22. 如图,点E是△ABC的内心,线段AE的延长线交BC于点F(∠AFC≠90°),交△ABC的外接圆于点D.(1)求点F与△ABC的内切圆⊙E的位置关系;(2)求证:ED=BD;(3)若∠BAC=90°,△ABC的外接圆的直径是6,求BD的长;(4)B,C,E三点可以确定一个圆吗?若可以,则它们确定的圆的圆心和半径分别是什么?若不可以,请说明理由.人教版 九年级数学 24.1 圆的有关性质 课后训练-答案一、选择题(本大题共10道小题) 1. 【答案】D2. 【答案】B[解析]本题实质上是要确定三角形外接圆的圆心,三角形外接圆的圆心是三边垂直平分线的交点,故选B .3. 【答案】D[解析] 由同弧所对的圆周角等于圆心角的一半, 可知∠α=2∠BCD =260°. 而∠α+∠BOD =360°, 所以∠BOD =100°.4. 【答案】C【解析】∵AB 为直径,∴90ACB ∠=︒,∴6BC ===, ∵OD AC ⊥,∴142CD AD AC ===,在Rt CBD △中,BD ==C .5. 【答案】B6. 【答案】C7. 【答案】B[解析] 如图,连接AD.∵AB 为⊙O 的直径,∴∠ADB =90°.∵∠A 和∠BCD 都是BD ︵所对的圆周角,∴∠A =∠BCD =40°,∴∠ABD =90°-40°=50°.故选B.8. 【答案】C9. 【答案】C[解析] 如图,过点O 作OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F ,连接AO.∵OE ⊥AB ,∴AE =12AB =4.在Rt △OAE 中,OA =5,由勾股定理可得OE =3,同理得OF =3.又∵AB ⊥CD ,∴四边形OEPF 是正方形,∴PE =OE = 3.在Rt △OPE 中,由勾股定理可得OP =3 2.10. 【答案】B[解析] 如图,连接PA ,PB ,PC ,过点P 作PD ⊥AB 于点D ,PE⊥OC 于点E.∵∠ACB =60°,∴∠APB =120°. ∵PA =PB ,∴∠PAB =∠PBA =30°. ∵A(-5,0),B(1,0), ∴AB =6, ∴AD =BD =3,∴PD =3,PA =PB =PC =2 3. ∵PD ⊥AB ,PE ⊥OC ,∠AOC =90°,∴四边形PEOD 是矩形,∴OE =PD =3,PE =OD =3-1=2, ∴CE =PC2-PE2=12-4=2 2, ∴OC =CE +OE =2 2+3, ∴点C 的纵坐标为2 2+ 3. 故选B.二、填空题(本大题共8道小题)11. 【答案】20 [解析]如图,连接DO ,∵CO ⊥AB , ∴∠COB=90°,∵∠AEC=65°,∴∠C=25°,∵OD=OC ,∴∠ODC=∠C=25°,∴∠DOC=130°,∴∠DOB=40°,∵2∠BAD=∠DOB , ∴∠BAD=20°.12. 【答案】1【解析】∵AB 为直径,∴90ADB ∠=︒,∵30B ACD ∠=∠=︒,∴112122AD AB ==⨯=. 故答案为:1.13. 【答案】50[解析] 由三角形的内角和定理,得∠B +∠C =180°-∠A .再由OB =OD =OC =OE ,得到∠BDO =∠B ,∠CEO =∠C .在等腰三角形BOD 和等腰三角形COE 中,∠DOB +∠EOC =180°-2∠B +180°-2∠C =360°-2(∠B +∠C )=360°-2(180°-∠A )=2∠A ,所以∠DOE =180°-2∠A =50°.14. 【答案】52 2 [解析] ∵BD 为⊙O 的直径,∴∠DAB =∠DCB =90°. ∵AD =3,AB =4,∴BD =5.又∵AC 平分∠DAB ,∴∠DAC =∠BAC =45°, ∴∠DBC =∠DAC =45°,∠CDB =∠BAC =45°, 从而CD =CB ,∴CD =52 2.15. 【答案】60°[解析] ∵OA ⊥BC ,∴AB ︵=AC ︵,∴∠AOB =2∠ADC.∵∠ADC=30°,∴∠AOB =60°.16. 【答案】52°[解析] ∵四边形ABCD 是圆内接四边形,∴∠B +∠D =180°.∵∠B =64°,∴∠D =116°.又∵点D 关于AC 的对称点是点E , ∴∠AEC =∠D =116°.又∵∠AEC =∠B +∠BAE ,∴∠BAE =52°.17. 【答案】25618. 【答案】58[解析] 方法一:如图①,连接OB.∵在△OAB 中,OA =OB ,∴∠OAB =∠OBA.又∵∠OAB =32°,∴∠OBA =32°,∴∠AOB =180°-2×32°=116°.又∵∠C =12∠AOB(一条弧所对的圆周角是它所对的圆心角的一半), ∴∠C =58°.方法二:如图②,过点A 作直径AD ,连接BD ,则∠ABD =90°,∴∠C =∠D =90°-32°=58°(同弧所对的圆周角相等).三、解答题(本大题共4道小题)19. 【答案】证明:如图,连接OC ,OD , 则OC =OD .∵M ,N 分别是半径OA ,OB 的中点,∴OM =ON .∵CM ⊥OA ,DN ⊥OB ,∴∠OMC =∠OND =90°. 在Rt △OMC 和Rt △OND 中,⎩⎨⎧OC =OD ,OM =ON , ∴Rt △OMC ≌Rt △OND (HL),∴∠MOC =∠NOD ,∴AC ︵=BD ︵.20. 【答案】(1)如图所示:(2)OE AC ∥,12OE AC =. 理由如下: ∵AD 平分BAC ∠,∴12BAD BAC ∠=∠, ∵12BAD BOD ∠=∠, ∴BOD BAC ∠=∠,∴OE AC ∥,∵OA OB =,∴OE 为ABC △的中位线,∴OE AC ∥,12OE AC =.21. 【答案】 解:在直线AB 上使QP =QO 成立的点P 共有3个.(1)如图①.在△QOC 中,OC =OQ ,∴∠OQC =∠OCQ .在△OPQ 中,QP =QO ,∴∠QOP =∠QPO .又∵∠QPO =∠OCQ +∠AOC ,且∠AOC =30°,∠QOP +∠QPO +∠OQC =180°,∴3∠OCQ =120°,∴∠OCQ =40°.即∠OCP =40°.(2)如图②.∵QO =QP ,∴∠QPO =∠QOP .设∠QPO =x ,则∠OQC =∠QPO +∠QOP =2x .又∵OC =OQ ,∴∠OCQ =∠OQC =2x ,∴∠AOC =∠OPC +∠OCP =x +2x =3x .∵∠AOC =30°,∴3x =30°,解得x =10°,∴∠OCP =2x =20°.(3)如图③.∵QO =QP ,∴∠QOP =∠QPO .∵OC =OQ ,∴∠OQC =∠OCQ .设∠QPO =y ,则∠OQC =∠OCQ =∠QPO +∠AOC =y +30°,∴在△OPQ中,有y+y+y+30°=180°,解得y=50°,∴∠OCP=180°-50°-30°=100°.综上所述,在直线AB上使QP=QO成立的点P共有3个,∠OCP的度数分别为40°,20°,100°.22. 【答案】解:(1)设⊙E切BC于点M,连接EM,则EM⊥BC.又线段AE的延长线交BC 于点F,∠AFC≠90°,∴EF>EM,∴点F在△ABC的内切圆⊙E外.(2)证明:∵点E是△ABC的内心,∴∠BAD=∠CAD,∠ABE=∠CBE.∵∠CBD=∠CAD,∴∠BAD=∠CBD.∵∠BED=∠ABE+∠BAD,∠EBD=∠CBE+∠CBD,∴∠BED=∠EBD,∴ED=BD.(3)如图①,连接CD.设△ABC的外接圆为⊙O.∵∠BAC=90°,∴BC是⊙O的直径,∴∠BDC=90°.∵⊙O的直径是6,∴BC=6.∵E为△ABC的内切圆的圆心,∴∠BAD=∠CAD,∴BD=CD.又∵BD2+CD2=BC2,∴BD=CD=3 2.(4)B,C,E三点可以确定一个圆.如图②,连接CD.∵点E是△ABC的内心,∴∠BAD=∠CAD,∴BD=CD.又由(2)可知ED=BD,∴BD=CD=ED,∴B,C,E三点确定的圆的圆心为点D,半径为BD(或ED,CD)的长度.。

九数下册第27章圆27.1圆的认识同步练习(附答案华东师大版)

九数下册第27章圆27.1圆的认识同步练习(附答案华东师大版)

九数下册第27章圆27.1圆的认识同步练习(附答案华东师大版)九年级数学下册第27章圆27.1圆的认识同步练习(附答案华东师大版)27.1 圆的认识第1课时1.下列结论正确的是( )A.弦是直径B.弧是半圆C.半圆是弧D.过圆心的线段是直径2.如图,在半圆的直径上作4个正三角形,若半圆周长为C1,4个正三角形的周长和A.C1>C2B.C 1C.C1=C2D.不能确定3.如图,在☉ O中,弦的条数是( )A.2B.3C.4D.以上均不正确4.如图,以坐标原点O为圆心的圆与y轴交于点A,B,且OA=1,则点B的坐标是A.(0,1)B.(0,-1)C.(1,0)D.(-1,0)5.如图,弧AD是以等边三角形ABC一边AB为半径的四分之一圆周,P为弧AD上任意一点,若AC=5,则四边形ACBP周长的最大值是( )A.15B.15+5√2C.20D.15+5 √56.如图,AB是☉O的直径,点C,D在☉O上,且点C,D在AB的异侧,连结AD,OD,OC.若∠AOC=70°,且AD∥OC,则∠AOD的度数为.7.已知,如图,OA,OB为☉O的半径,C,D分别为OA,OB的中点.求证:(1)∠A=∠B;(2)AE=BE.8.已知:如图, AB是☉O的直径,点C,D在☉O上,CE⊥AB于E,DF⊥AB于F,且AE=BF,AC与BD相等吗?为什么?参考答案1.C2.B3.C4.B5.B6. 40°7. 证明:(1)因为C,D分别是OA,OB的中点,所以OC=OD=AC=BD,在△AOD和△BOC中,OC=OD,∠AOD=∠BOC,OA=OB,所以△AOD≌△BOC(S.A.S.),所以∠A=∠B.(2)在△ACE和△BDE中,AC=BD,∠A=∠B,∠AEC=∠BED,所以△ACE≌△ BDE(A.A.S.),所以AE=BE.8. 解:AC与BD相等.理由如下:如图,连结OC,OD.因为OA=OB,AE= BF,所以OE=OF.因为CE⊥AB,DF⊥AB,所以∠OEC=∠OFD=90°.在Rt△OEC和R t△OFD中,{■(OE=OF”,” @OC=OD”,” )┤所以Rt△OEC≌Rt△OFD(H.L.),所以∠COE=∠DOF.在△AOC和△BOD中,{■(AO=BO”,” @∠AOC=∠BOD”,” @OC=OD”,” )┤所以△AOC≌△BOD(S.A.S.),所以AC=BD.第2课时1.下列说法中,正确的是( )A.等弦所对的弧相等B.等于半径的弦所对的圆心角为60°C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等2.如图,AB,CD是☉ O的直径,⏜AE=⏜BD,若∠AOE=32°,则∠COE 的度数是( )A.32°B.60°C.68°D.64°3.如图,AB是圆O的直径,BC,CD,DA是圆O的弦,且BC=CD=DA,则∠BCD等于( )A,1 00° B.11 0°C.120°D.135°4.如图,已知点A,B,C均在☉O上,并且四边形OABC是菱形,那么∠AOC与2∠OAB 之间的关系是( )A.∠AOC>2∠OABB.∠AOC=2∠OABC.∠AOC5.如图,弦AC,BD相交于E,并且⏜AB=⏜BC=⏜CD,∠BEC=110°,则∠ACD的度数是.6.如图,AB是☉O的直径,已知AB=2,C,D是☉O上的两点,且⏜BC+⏜BD=2/3 ⏜AB,M是AB上一点,则MC+MD的最小值是.7.如图所示,在☉O中,AB,CD为直径,判断AD与BC的位置关系.8.如图,已知AB为☉O的直径,点C为半圆ACB上的动点(不与A,B两点重合),过点C作弦CD⊥AB,∠OCD的平分线交圆于点P,则点P的位置有何规律?请证明你的结论.参考答案7. 解:AD∥BC.理由:因为AB,CD为☉O的直径,所以OA=OD=O C=OB.又∠ AOD=∠BOC,所以△AOD≌△BOC.所以∠A=∠B.所以AD∥BC,即AD与BC的位置关系为平行.8. 解:点P为半圆ADB的中点.理由如下:连结OP,如图,因为∠OCD的平分线交圆于点P,所以∠PCD=∠PCO,因为OC=OP,所以∠PCO=∠OPC,所以∠PCD=∠OPC,所以OP∥CD,因为CD⊥AB,所以O P⊥AB,所以⏜PA=⏜PB,即点P为半圆ADB的中点.第3课时1.如图,在☉O中,⏜AB=⏜AC,∠AOB=40°,则∠ADC的度数是( )A.40°B.30°C.20°D.15°2.如图,BC是☉O的直径,A是☉O上一点,∠OAC=32°, 则∠B的度数是( )A.58°B.60°C.64°D.68°3.如图,点A,B,C,D都在☉O 上,且四边形OABC是平行四边形,则∠D的度数为( )A.45°B.60°C.75°D.不能确定4.如图,在半径为5的☉O中,弦AB=6,点C是优弧⏜ACB上一点(不与A,B重合),则cos C的值为( )A.4/3B.3/4C.3/5D.4/55.如图,☉C过原点,且与两坐标轴分别交于点A,点B,点A的坐标为(0,3),M是第三象限内☉C上一点,∠BMO=120°,则☉C的半径为( )A.6B.5C.3D.√(2 2/3)6. AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为.7.如图,圆心角∠AOB=30°,弦CA∥OB,延长CO与圆交于点D ,则∠BOD=.8.如图,已知☉O的内接四边形ABCD两组对边的延长线分别交于点E,F,若∠E+∠F=70°,则∠A的度数是.9.如图,已知A,B,C,D是☉O上的四点,延长DC,AB相交于点E,若BC=BE.10.如图所示,☉O的直径AB为10 cm,弦AC为6 cm,∠ACB的平分线交☉O于D,求BC,AD,BD的长.11. A,B是圆O上的两点,∠AOB=60°,C是圆O上不与A,B重合的任一点,求∠ACB 的度数是多少?12.如图,在☉O中,AB 是直径,CD是弦(不过圆心),AB⊥CD .(1)E是优弧CAD上一点(不与C,D重合),求证:∠CED=∠COB;(2)点E′在劣弧CD上(不与C,D重合)时,∠ CE′D与∠COB有什么数量关系?请证明参考答案1.C2.A3.B4.D5.C6. √27. 30°8. 55°9. 证明:因为A,D,C,B四点共圆,所以∠A+∠BCD=180°,因为∠BCD+∠BCE=180°,所以∠A=∠BCE,因为BC=BE,所以∠BCE=∠E,即△ADE是等腰三角形.10. 解:因为AB是直径,所以∠ACB=∠ADB=90°,在Rt△ABC中,AB2=AC2+BC2, AB=10 cm,AC=6 cm,所以BC2=AB2-AC2=102-62=64, 所以BC=√64=8(cm),所以⏜AD=⏜DB,所以AD=BD,又在Rt△ABD中,AD2+BD2=A B2,所以AD2+BD2=102,所以AD=BD=√(100/2)=5√2(cm).11. 解:分两种情况:(1)当C点在劣弧AB上时,如图所示,A,B是圆O上两点,∠AOB=60°,所以弧AB的度数为60°,优弧ADB的度数为300°,所以∠ACB=150°.(2)当点C在优弧ADB上时, ∠ACB=1/2∠AOB=30°.综上所述∠ACB为30°或150°.12. (1)证明:如图所示,连结OD. 因为AB是直径,AB⊥CD,所以⏜BC=⏜BD,所以∠COB=∠DOB=1/2∠COD.又因为∠CED=1/2∠COD,所以∠CED=∠COB.(2)解:∠CE′D与∠COB的数量关系是∠CE′D+∠COB=180°.理由:因为∠CED=1/2∠COD,∠CE′D=180°-∠CED,由(1)知,∠CED=∠COB,所以∠CE′D+∠COB=180°.。

27.1 圆的认识 华东师大版九年级数学下册同步练习(含答案)

27.1 圆的认识 华东师大版九年级数学下册同步练习(含答案)

华师大版九下 27.1 圆的认识一、选择题(共13小题)1. 如图所示的四个图形的阴影部分面积之间的关系是( )A. S甲>S乙>S丙>S丁B. S甲>S乙(=S丙)>S丁C. S甲(=S丁)>S乙(=S丙)D. 无法判断2. 在⊙O中,直径AB=15,弦DE⊥AB于点C,若OC:OB=3:5,则DE的长为( )A. 6B. 9C. 12D. 153. 如图,AB是⊙O的直径,C,D是圆上两点,连接AC,BC,AD,CD.若∠CAB=55∘,则∠ADC的度数为( )A. 55∘B. 45∘C. 35∘D. 25∘4. 如图所示,半径为1的小圆在半径为9的大圆内滚动,且始终与大圆相切,则小圆扫过的阴影部分的面积为( )A. 17πB. 32πC. 49πD. 80π5. 图中有两张型号完全一样的折叠式饭桌,将正方形桌面边上的四个弓形面板翻折起来后,就能形成一个圆形桌面(可近似看做正方形的外接圆),正方形桌面与翻折成的圆形桌面的面积之比最接近于( )A. 45B. 34C. 23D. 126. 一个圆的半径增加2 cm,则这个圆( )A. 周长增加4 cmB. 周长增加4π cmC. 面积增加4 cm2D. 面积增加4π cm27. 下列图形中的角,是圆心角的是( )A. B.C. D.8. 同圆中扇形甲的弧长是扇形乙的弧长的16,那么扇形乙的面积是扇形甲面积的( )A. 36倍B. 12倍C. 6倍D. 3倍9. 下列说法正确的是( )A. 弦是直径B. 弧是半圆C. 一条弦把圆分成两条弧,这两条弧可能是等弧D. 半圆是圆中最长的弧10. 圆的面积扩大到原来的16倍,半径扩大到原来的( )A. 4倍B. 8倍C. 16倍D. 32倍11. 如图,AB,AC,CD,BD分别为四个圆的直径,甲、乙两人分别沿图示方向从A到B,结果是( )A. 甲、乙走的路程一样多B. 甲走的路程多C. 乙走的路程多D. 无法比较12. 在⊙O中,弦AB,CD的弦心距分别是3,4,如果AB∥CD,则AB,CD之间的距离为( )A. 7B. 1C. 7或1D. 不能确定13. 下列选项中,∠ACB是圆心角的是( )A. B.C. D.二、填空题(共8小题)14. 圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆.其中,定点称为,定长称为.15. 下列图形中的角,是圆心角的是,不是圆心角的是.(写图形编号)⊙O于点D,则CD的最大值为.17. 如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E,F分别是AD,BA的延长线与⊙O的交点,则图中阴影部分的面积是.(结果保留π)18. 如图,ABCD是围墙,AB∥CD,∠ABC=120∘,一根6 m长的绳子,一端拴在围墙一角的柱子B处,另一端E处拴着一只羊,这只羊活动区域的最大面积为.19. 某海关大钟钟面的直径是5.8米,该大钟钟面的面积是平方米.(结果保留一位小数)20. 已知:如图,在⊙O中,AB=BC=CD,OB,OC分别交AC,BD于E,F,则下列结论:①OE=BE;②OC⊥BD;③AE=DF;④OE=OF中正确的有.(填序号)21. 如图,在锐角△ABC中,∠A=45∘,BC=2 cm,能够将△ABC完全覆盖的最小圆形纸片的直径是cm.三、解答题(共5小题)22. 如图,已知CD,BE是⊙A的弦,CD=EB.请在图中的圆心角及其所对的弧、所对的弦之间,至少找出5对相等关系.23. 如图,已知⊙O的半径OA,OB,C在AB上,CD⊥OA于点D,CE⊥OB于点E,且CD=CE,求证:AC=BC.24. 某开发区的大标记牌上,要用油漆漆出如图所示(图中阴影部分)的三种标点符号:句号、逗号、问号.已知大圆半径为R,小圆半径为r,且R=2r.如果均匀用料.那么哪一个标点符号的油漆用得多?25. 如图,AB是⊙O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:CF=BF;(2)若AD=6,⊙O的半径为5,求BC的长.26. 有一个周长为62.8米的圆形草坪,准备为它安装自动旋转喷灌装置进行喷灌.现有射程为20米,15米,10米的三种装置,你认为选哪种比较合适?安装在什么地方?答案一选择题1. C2. C【解析】如图所示,∵直径AB=15,∴BO=7.5,∵OC:OB=3:5,∴CO=4.5,∴DC=DO2―CO2=6,∴DE=2DC=12.3. C【解析】∵AB是⊙O的直径,∴∠ACB=90∘,又∵∠CAB=55∘,∴∠B=35∘,∴∠ADC=∠B=35∘.4. B5. C【解析】如图,连接AC,设正方形的边长为a,∵四边形ABCD是正方形,∴∠B=90∘,∴AC为圆的直径,∴AC =2AB =2a ,则正方形桌面与翻折成的圆形桌面的面积之比为2=2π≈23,故选C .6. B7. C8. C9. C 10. A【解析】圆的面积与半径的平方成正比,面积扩大 16 倍,则半径扩大 4 倍.11. A【解析】甲走的路程:12πAB ,乙走的路程:12πAC +12πCD +12πBD =12π(AC +CD +BD )=12πAB , ∴ 甲、乙走的路程一样多.12. C 13. B 二 填空题14. 圆心,半径15. (1),(2),(3),(4),(5),(6)【解析】根据圆心角的定义可得(1),(2)是圆心角;(3),(4),(5),(6)不是圆心角.16. 12【解析】连接 OD ,如图,∵CD ⊥OC , ∴∠DCO =90∘,∴CD =OD 2―OC 2,当 OC 的值最小时,CD 的值最大,当 OC ⊥AB 时,OC 最小,此时 D ,B 两点重合,∴CD =CB =12AB =12×1=12,即 CD 的最大值为 12.17. π―1【解析】延长 DC ,CB 交 ⊙O 于 M ,N ,则 图中阴影部分的面积=14×(S 圆O ―S 正方形ABCD )=14×(4π―4)=π―1.18.38π3【解析】(1)如图,扇形 BFG 和扇形 CGH 为羊活动的区域;(2)S 扇形GBF =120π×62360=12π m 2,S 扇形HCG =60π×22360=23π m 2,∴ 羊活动区域的面积为:12π+23π=38π3 m 2.19. 26.420. ②③④21. 22【解析】由题意可知,锐角 △ABC 的最小覆盖圆为 △ABC 的外接圆,则作 △ABC 的外接圆,如图,作圆的直径 CH ,连接 BH ,由圆周角定理的推论得∠H =∠A =45∘,∠HBC =90∘,∵BC=2 cm,∴CH=2BC=22 cm.三解答题22. CD=EB,∠DAC=∠EAB,DE=CB,∠DAE=∠CAB,S△ADC=S△ABE.23. ∵CD=CE,CD⊥OA,CE⊥OB,∴∠AOC=∠BOC,∴AC=BC.24. 问号的面积最大,油漆用得最多(提示:S句号=π(R2―r2)=3πr2,S逗号=12πR2=2πr2,S问号=πR2―2―12πr2=134πr2).25. (1)连接AC,如图(1)所示,∵C是弧BD的中点,∴∠DBC=∠BAC.在△ABC中,∠ACB=90∘,CE⊥AB,∴∠BCE+∠ECA=∠BAC+∠ECA=90∘,∴∠BCE=∠BAC,又C是弧BD的中点,∴∠DBC=∠CDB.∴∠BCE=∠DBC.∴CF=BF.(2)连接OC交BD于G,如图(2)所示.∵AB是⊙O的直径,AB=2OC=10,∴∠ADB=90∘.∴BD=AB2―AD2=102―62=8.∵C是弧BD的中点,∴OC⊥BD,DG=BG=1BD=4,2∵OA=OB,∴OG是△ABD的中位线.∴OG=1AD=3,2∴CG=OC―OG=5―3=2,在Rt△BCG中,由勾股定理得BC=CG2+BG2=22+42=25.26. 选10米的装置合适,安装在圆形草坪中心位置.。

华东师大版九年级数学下册《27.1.1圆基本元素》同步练习〔含答案解析〕

华东师大版九年级数学下册《27.1.1圆基本元素》同步练习〔含答案解析〕

直径把圆分成两个半圆,它们相等,所以 C 错误;
2x)°,∠C=∠ODC=()°. ∵∠AOB+∠C=180°,∴180-2x+=180,
应地在 x 轴正半轴上滑动,当∠OAB=n°时,半圆片上的点 D 与原点 O 的 27-1-14 详解详析 1.B [解析] 圆是一条封闭的曲线,它是由圆
距离最大,则 n 的值为( ) 图 27-1-12 A.64 B.52 C.38 D.26 心和半径确定的,圆心确定圆的位置,半径确定圆的大小,圆是到定点的
④弦 AC 所对的弧是劣弧;
⑤AB=2OB.其中正确的选项是( ) 图 27-1-9 A.①⑤ B.③④
第1页共4页
本文格式为 Word 版,下载可任意编辑,页眉双击删除即可。
C.④⑤ D.②⑤ 14.如图 27-1-10,AB 是⊙O 的直径,D,C 在⊙O (2)到点 A 的距离小于 1.5 cm,且到点 B 的距离小于 1 cm 的全部点组成
示,以下说法中正确的选项是( )
图 27-1-6 A.线段 AB,AC,
CD 都是⊙O 的弦 B.线段 AC 经过圆心 O,所以线段 AC 是直径 C.弦 AC
把⊙O 分成了两条不相等的弧 D.弦 AB 把圆分成两条弧,其中是劣弧
11.如图 27-1-7 所示,在△ABC 中,∠ACB=90°,∠A=40°,以点 C
的图形;
项是正确的. 9.A [解析] ∵OM=ON,∴∠N=∠M=40°. 应选 A. 10.B
[解析] 因为弦的两个端点都在圆上,所以线段 CD 不是弦,所以 A 错误;
第2页共4页
本文格式为 Word 版,下载可任意编辑,页眉双击删除即可。
经过圆心的弦是圆的直径,所以 B 正确;

北师版九年级数学下册《圆》同步练习(含答案)

北师版九年级数学下册《圆》同步练习(含答案)

北师版九年级数学下册3.1《圆》同步练习一.选择题(本大题共10小题,每小题3分,共30分)1.以已知点O为圆心,线段长a为半径作圆,可以作( )A.1个B.2个C.3个D.无数个2.下列说法中,正确的是()①弦是直径;②半圆是弧;③过圆心的线段是直径;④半圆是最长的弧;⑤直径是圆中最长的弦.A.②③B.③⑤C.④⑤D.②⑤3.如图,AB为⊙O的直径,点C在⊙O上,若∠C=16°,则∠BOC的度数是( )A.74°B.48°C.32°D.16°4.如图,在⊙O中,点A,O,D及点B,O,C分别在一条直线上,图中的弦共有()A.2条B.3条C.4条D.5条5.下列命题中正确的有( )①弦是圆上任意两点之间的部分;②半径是弦;③直径是最长的弦;④弧是半圆,半圆是弧.A.1个B.2个C.3个D.4个6.已知⊙O的半径是5,点A到圆心O的距离是7,则点A与⊙O的位置关系是( )A.点A在⊙O上B.点A在⊙O内C.点A在⊙O外D.点A与圆心O重合7.已知⊙O的半径为6 cm,P为线段OA的中点,若点P在⊙O上,则OA的长( )A.等于6 cm B.等于12 cmC.小于6 cm D.大于12 cm8.若⊙O的半径为5 cm,点A到圆心O的距离为4 cm,则点A与⊙O的位置关系是()A.点A在圆外B.点A在圆上C.点A在圆内D.不能确定9.在平面直角坐标系中,⊙O的圆心在原点,半径为2,则下面各点在⊙O上的是( )A.(1,1) B.(-1,3)C.(-2,-1) D.(2,-2)10.下列图形中,四个顶点在同一圆上的是( )A.菱形、平行四边形B.矩形、正方形C.正方形、直角梯形D.矩形、不等腰梯形二.填空题(共8小题,3*8=24)11.如图所示,在⊙O中,弦有_____________,直径是___________,优弧有________________,劣弧有________________.12.已知点A在以O为圆心,3 cm为半径的⊙O内,则点A到圆心O的距离d的取值范围是__________________.13.在同一平面内,点P到圆上的点的最大距离为14 cm,最小距离为4 cm,则此圆的半径为___________________.14.在Rt△ABC中,∠ACB=90°,BC=8 cm,AB=10 cm,CD是斜边AB的中线,以AC为直径作⊙O,P为CD的中点,则点C在⊙O________,点P在⊙O________,点D在⊙O________. 15. 如图,AB为⊙O的直径,点C,D在⊙O上,已知∠BOC=70°,AD∥OC,则∠AOD=_____________.16.如图,AB是⊙O的直径,CD是⊙O的弦,AB,CD的延长线相交于点E,已知AB=2DE,∠E=18°,则求∠AOC的度数是_________.17. 如图,点A,B,C都在圆O上,OC⊥OB,点A在劣弧BC上,且OA=AB,则∠ABC=________.18. 如图,在网格中(每个小正方形的边长均为1个单位长度)选取9个格点(格线的交点称为格点).如果以A为圆心,r为半径画圆,选取的格点中除点A外恰好有3个在圆内,则r的取值范围为_______________.三.解答题(共7小题,46分)19.(6分) 如图,AB,AC为⊙O的弦,连接CO,BO并延长,分别交弦AB,AC于点E,F,∠B=∠C,求证:CE=BF.20.(6分) 如图,点A,D,G,M在半圆O上,四边形ABOC,DEOF,HMNO均为矩形,设BC=a,EF=b,NH=c,试比较a,b,c的大小.21.(6分)如图,AB是⊙O的弦,半径OC,OD分别交AB于点E,F,且AE=BF.请你判断线段OE 与OF的数量关系,并给予证明.22.(6分) 如图,△ABC和△ABD都为直角三角形,且∠C=∠D=90°.求证:A,B,C,D四点在同一个圆上.23.(6分)如图,有一个三角形的钢架ABC,∠A=30°,∠C=45°,AC=2(3+1)m.请计算说明,工人师傅搬运此钢架能否通过一个直径为2.1 m的圆形门?24.(8分) 如图,已知在Rt△ABC中,∠C=90°,AC=4,BC=3,D,E分别为AB,AC的中点,现以点B为圆心,BC的长为半径作⊙B,分别判断A,C,D,E四点与⊙B的位置关系.25.(8分)在⊙O中,直径AB=6,BC是弦,∠ABC=30°,点P在BC上,点Q在⊙O上,且OP⊥PQ.如图,当PQ∥AB时,求PQ的长度;参考答案:1-5ADCBA 6-10 CBCBB11. AC ,AB ;AB ;ABC ︵,CAB ︵;AC ︵,BC ︵12. 0≤d <313. 9 cm 或5 cm14. 上,内,外15. 40°16. 54°17. 15°18.17<r≤3 219. 解:∵OB ,OC 是⊙O 的半径,∴OB =OC.又∵∠B =∠C ,∠BOE =∠COF ,∴△EOB ≌△FOC(ASA).∴OE =OF ,∴CE =BF20. 解:连接OA ,OD ,OM.∵四边形ABOC ,DEOF ,HMNO 均为矩形,∴BC =OA ,EF =OD ,NH =OM.又∵A ,D ,M 都在半圆O 上,∴OA =OD =OM ,∴BC =EF =NH ,即a =b =c21. 解:OE =OF.证明如下:如图,连接OA ,OB.∵OA =OB ,∴∠OAE =∠OBF.又∵AE =BF ,∴△OAE ≌△OBF(SAS).∴OE =OF.22. 证明:如图,取AB 的中点O ,连接OC ,OD.∵△ABC 和△ABD 都为直角三角形,且∠C =∠D =90°,∴DO ,CO 分别为Rt △ABD 和Rt △ABC 斜边上的中线.∴OA =OB =OC =OD.∴A ,B ,C ,D 四点在同一个圆上.23. 解:工人师傅搬运此钢架能通过一个直径为2.1 m 的圆形门,理由是: 过B 作BD ⊥AC 于D ,∵AB >BD ,BC >BD ,AC >AB ,∴求出DB 长和2.1 m 比较即可,设BD =x m ,∵∠A =30°,∠C =45°,∴DC =BD =x m ,AD =3BD =3x m , ∵AC =2(3+1)m ,∴x +3x =2(3+1),∴x =2,即BD =2 m <2.1 m ,∴工人师傅搬运此钢架能通过一个直径为2.1 m 的圆形门24. 如图,连接EB.∵∠C =90°,AC =4,BC =3, ∴AC 2+BC 2=42+32=5又∵D ,E 分别为AB ,AC 的中点,∴DB =12AB =2.5,EC =12AC =2. ∴EB =EC 2+BC 2=22+32=13∵AB =5>3,25. 解:连接OQ.∵PQ ∥AB ,PQ ⊥OP ,∴OP ⊥AB.∵AB =6,∴OB =3.∵∠ABC =30°,∴PB =2OP.在Rt △PBO 中,PB 2=OP 2+OB 2.设OP =x ,则PB =2x.∴(2x)2=x 2+32,解得x = 3 (负值舍去),∴OP = 3.由勾股定理,得PQ =OQ 2-OP 2=32-(3)2= 6。

人教版九年级数学下圆同步练习含答案.doc

人教版九年级数学下圆同步练习含答案.doc

24. 1.1圆知识点 1 圆的定义1.圆的形成定义:在一个平面内,线段绕它固定的一个端点旋转________,另一个端点所形成的图形叫做圆.圆的集合定义:圆心为O、半径为r 的圆可以看成是所有到定点O 的距离等于 ________的点的集合.2.下列条件中,能确定圆的是( )A.以已知点O 为圆心B.以1 cm 长为半径C.经过已知点A,且半径为 2 cmD.以点O 为圆心, 1 cm 长为半径则点3.如图 24- 1- 1 所示,以坐标原点B的坐标是 ()O 为圆心的圆与y 轴交于点A, B,且OA= 1,图 24-1- 1A. (0, 1) B . (0,-1)C. (1, 0) D. (- 1,0)4.如图 24- 1- 2 所示,若 BD, CE 都是△ ABC 的高.求证: B, C, D, E 四点在同一个圆上.图 24-1- 2知识点2与圆有关的概念5.如图 24- 1- 3 所示,在⊙ O 中, ________是直径, ________是弦,劣弧有________,优弧有 ________.图 24-1- 36.如图 24- 1- 4,在⊙ O 中,点 A, O, D 以及点 B, O,C 分别在一条直线上,图中弦的条数是()图 24-1- 4A. 2 B.3 C.4D. 57.下列命题中是真命题的有()①两个端点能够重合的弧是等弧;②圆的任意一条弦把圆分成优弧和劣弧两部分;③长度相等的弧是等弧;④半径相等的两个圆是等圆;⑤直径是圆中最长的弦.A.2个B.3 个C.4 个D.5 个8.若圆的半径为3,则弦 AB 的长度的取值范围是__________ .9.已知:如图24- 1-5, OA, OB 为⊙ O 的半径, C, D 分别为 OA, OB 的中点.求证: AD= BC.图 24-1- 510.已知:如图24- 1-6,在⊙ O 中, AB 为弦, C, D 两点在弦AB 上,且 AC=BD .求证:△ OAC≌△ OBD.图 24-1- 611. 如图 24-1- 7, AB 是⊙ O 的直径 ,点 D , C 在⊙ O 上,AD ∥OC ,∠DAB =60°,连接 AC ,则∠ DAC 等于 ( )图 24-1- 7A .15°B . 30°C . 45°D . 60°︵ 12. 如图 24-1- 8 所示 , AB , MN 是⊙ O 中两条互相垂直的直径 AM,点 P 在上,且︵AM上移动时 ,不与点 A ,M 重合,过点 P 作 AB ,MN 的垂线,垂足分别是 D ,C.当点 P 在 矩形 PCOD 的形状、大小随之变化,则 PC 2+ PD 2 的值 ()图 24-1- 8A.逐渐变大B.逐渐变小C.不变D.不能确定13.如图 24-1- 9,已知 P 是⊙ O 外一点, Q 是⊙ O 上的动点,线段 PQ 的中点为M ,连接 OP, OM. 若⊙ O 的半径为2,OP= 4,则线段 OM 的最小值是 ()图 24-1- 9A.0 B.1 C. 2 D.314.如图 24 -1- 10,在 Rt△ ABC 中,以点 C 为圆心, BC 长为半径的圆交AB 于点D,交 AC 于点 E,∠ BCD = 40°,则∠ A = ________°.图 24- 1-1015.如图 24-1- 11, C 是以点 O 为圆心, AB 为直径的半圆上一点,且CO⊥AB,在 OC 两侧分别作矩形OGHI 和正方形ODEF ,且点 I, F 在 OC 上,点 H ,E 在半圆上,可证: IG= FD. 小云发现连接图中已知点得到两条线段,便可证明IG=FD.请回答:小云所作的两条线段分别是________和 ________.图 24- 1-111 16.⊙O1与⊙ O2的半径分别是 r1, r2,且 r1和 r2是关于 x 的方程 x2- ax+4= 0 的两个根.若⊙ O1与⊙ O2是等圆,则 a2019的值为 ________.17.如图 24-1- 12 所示, AB 是⊙ O 的弦,半径 OC, OD 分别交 AB 于点 E,F,且AE = BF,请你指出线段OE 与 OF 的数量关系,并给予证明.图 24- 1-1218.在⊙ O 中,直径 AB =6,BC 是弦,∠ABC = 30°,点 P 在 BC 上,点 Q 在⊙ O 上,且 OP⊥ PQ.(1)如图 24-1- 13①,当 PQ∥ AB 时,求 PQ 的长;(2)如图 24-1- 13②,当点 P 在 BC 上移动时,求 PQ 长的最大值.图 24- 1-13教师详解详析1.一周 定长 r2. D [ 解析 ] ∵圆心和半径都确定后才可以确定圆 ,只有 D 选项中具备这两个条件 ,∴ D 选项正确.3. B [解析 ] ∵圆的半径都相等, ∴OB = OA = 1,∴点 B 的坐标是 (0, -1) .故选 B.4. 证明: 如图,取 BC 的中点 F ,连接 DF , EF.∵ BD ,CE 都是△ ABC 的高 ,∴△ BCD 和△ BCE 都是直角三角形 ,∴ DF , EF 分别是 Rt △ BCD 和 Rt △ BCE 斜边上的中线 , ∴ DF = EF = BF = CF ,∴ B , C , D , E 四点在以点 F 为圆心 ,BF 的长为半径的圆上.︵︵︵︵5. ADACCDADCCADAD ,AC ,,6. B [解析 ] 图中的弦有 AB , BC , CE ,共 3 条.7. A [解析 ]等弧是完全重合的弧 ,故①③错误;直径把圆分成两条相等的弧,即两个半圆 ,故②错误;半径相等的圆可以完全重合 ,是等圆 ,故④正确;直径是圆中最长的弦,故⑤正确.故选 A.8. 0<AB ≤ 69.证明: ∵OA ,OB 为⊙ O 的半径, ∴OA = OB.∵ C , D 分别为 OA , OB 的中点 ,∴ OC =OD.在△ AOD 和△ BOC 中,OA = OB,{∠O=∠O,)∵OD= OC,∴△ AOD ≌△ BOC( SAS),∴AD = BC.10.证明:∵ OA= OB ,∴∠ A=∠ B.在△ OAC 和△ OBD 中,OA=OB,{∠A=∠B,)∵AC= BD ,∴△ OAC ≌△ OBD( SAS).11.B [解析 ] ∵OA=OC,∴∠ CAO =∠ ACO.∵AD ∥ OC,∴∠ DAC =∠ ACO ,∴∠ DAC =∠ CAO.1∵∠ DAB =60°,∴∠ DAC = 2∠ DAB = 30°.12. C [解析 ]连接OP.∵四边形PCOD是矩形,∴PC= OD ,∴ PC2+ PD2= OD 2+ PD2= OP2,为一定值.故选 C.13.B [解析 ] 设 OP 与⊙ O 交于点 N,连接 MN ,OQ,如图.∵OP= 4,ON = 2,∴N 是 OP 的中点.又∵M 是 PQ的中点,∴MN 为△ POQ 的中位线,1 1∴MN =2OQ=2× 2= 1,∴点 M 在以点 N 为圆心, 1 为半径的圆上,∴当点 M 在 ON 上时, OM 的值最小,最小值为 1.故选 B.14. 20 [解析 ] ∵ CB=CD ,∴∠ B=∠ CDB.∵∠ B+∠ CDB +∠ BCD =180°,1 1∴∠ B= 2(180° -∠ BCD) = 2(180° -40° )= 70°.又∵∠ ACB = 90°,∴∠ A =90°-∠ B=20° .15. OH OE [解析 ] 连接 OH, OE,如图所示.∵在矩形 OGHI 和正方形 ODEF 中, IG= OH , OE=FD,又∵ OH= OE,∴IG= FD.116. 1 [解析 ] ∵⊙ O1与⊙ O2是等圆,∴ r1= r2,即方程 x2- ax+ 4=0 有两个相等的实数根,1∴Δ= b2- 4ac= a2- 4×4= 0,即 a2= 1,∴ a=±1.又∵ r1= r2>0, a= r1+ r2,∴ a=1,∴a2019=12019=1.17.解: OE= OF.证明:连接OA, OB.∵OA= OB,∴∠ A =∠ B.又∵ AE= BF,∴△ OAE ≌△ OBF ,∴OE=OF.18.解: (1)连接 OQ.∵PQ∥ AB ,PQ⊥ OP,∴ OP⊥ AB.∵AB =6,∴ OB =3.∵∠ ABC = 30°,∴PB= 2OP.在 Rt△PBO 中,由勾股定理,得 PB2= OP2+ OB 2. 设 OP= x,则 PB= 2x ,则 (2x) 2=x2+32,解得 x= 3(负值已舍去 ),∴ OP= 3.在 Rt△OPQ 中,由勾股定理,得 PQ= OQ2- OP2=32-(3)2= 6.(2)连接 OQ,由勾股定理得PQ= OQ2-OP2= 9- OP2.要使 PQ 取最大值,需 OP 取最小值,此时 OP⊥ BC. ∵∠ ABC = 30°,1 3∴OP= 2OB= 2,9 39-3.此时 PQ 最大值=4= 2。

北师大版九年级数学下《3.5确定圆的条件》同步习题含答案

北师大版九年级数学下《3.5确定圆的条件》同步习题含答案

九年级数学下册 第三章 圆 3.5 确定圆的条件 同步俩习题一、选择题(8分×3=24分)1.有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( )A .4个B .3个C .2个D .1个2.等边三角形外接圆的半径等于边长的____倍.( ) A.12 B.32 C.33 D. 33.如图,点P 是等边三角形ABC 外接圆⊙O 上的点,在以下判断中,不正确的是( )A .当弦PB 最长时,△APC 是等腰三角形B .当△APC 是等腰三角形时,PO ⊥ACC .当PO ⊥AC 时,∠ACP =30°D .当∠ACP =30°时,△BPC 是直角三角形二、填空题(8分×3=24分)4.如图,△ABC 的外心坐标是_________.5.直角三角形的两边长分别为16和12,则此三角形外接圆的半径是_______.6.如图,在△ABC 中,BC =3cm ,∠BAC =60°,那么△ABC 能被半径至少为______cm 的圆形纸片所覆盖.三、解答题(15分+17分+20分=52分)7.如图,要把残破的轮片复制完整,已知弧上的三点A 、B 、C.(1)用尺规作图法找出BAC ︵所在圆的圆心(保留作图痕迹,不写作法);(2)设△ABC 是等腰三角形,底边BC =8cm ,腰AB =5cm ,求圆片的半径R.8.如图,AD 是△ABC 的高,AE 是△ABC 的外接圆⊙O 的直径,且AC =5,DC =3,AB =42,求⊙O 的直径AE.9.如图,AD 为△ABC 外接圆的直径,AD ⊥BC ,垂足为点F ,∠ABC 的平分线交AD 于点E ,连接BD 、CD.(1)求证:BD =CD ;(2)请判断B 、E 、C 三点是否在以D 为圆心,以DB 为半径的圆上?并说明理由答案:1. D2. C3. C4. (-2,-1)5. (10或8)6. 37. 解:(1)分别作AB 、AC 的垂直平分线,两线交于点O ,则点O 为BAC ︵所在圆的圆心(2)连接OA ,则OA ⊥BC ,设垂足为D ,在Rt △ABD 中,易求AD =3cm.连接OB ,在Rt △OBD 中,设OB =R ,易求得R =256cm.8. 解:连接BE.∵AE 为⊙O 直径,∴∠ABE =90°,∵AD 为△ABC 的高,∴∠ADC =90°,∴∠ABE =∠ADC ,∵∠E =∠C ,∴△ABE ∽△ADC ,∴AB AD =AE AC ,∵Rt △ADC 中,AC =5,DC =3,∴AD =4, ∴424=AE 5,∴AE =5 29. 解:(1)∵AD 为直径,AD ⊥BC ,∴BD ︵=CD ︵,∴BD =CD(2)B 、E 、C 三点在以D 为圆心,以DB 为半径的圆上,理由:由(1)知BD ︵=CD ︵,∴∠BAD =∠CBD.∵∠DBE =∠CBD +∠CBE ,∠DEB =∠BAD +∠ABE ,∠CBE =∠ABE ,∴∠DBE =∠DEB , ∴DB =DE.由(1)知BD =CD ,∴DB =DE =DC ,∴B 、E 、C 三点在以D 为圆心,以DB 为半径的圆上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学下册圆的基本性质(1)同步练习含答案
24.1 圆(第一课时)
知识点
1·圆的定义:
⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随
之旋转形成的图形叫做圆,固定的端点叫,线段OA叫做。

⑵描述性定义:圆是到定点的距离等于的点的集合
【特别注意】:1·在一个圆中,圆心决定圆的,半径决定圆的。

2·直径是圆中的弦,弦不一定是直径。

2·弦与弧:
弦:连接圆上任意两点的叫做弦。

弧:圆上任意两点间的叫做弧,弧可分为··三类。

3·圆的对称性:
⑴轴对称性:圆是轴对称图形,有条对称轴, 的直线都是它
的对称轴。

⑵中心对称性:圆是中心对称图形,对称中心是。

一·选择题
1.下列命题正确的有()
①弦是圆上任意两点之间的部分②半径是弦③直径是最长的弦④弧是半圆,半圆是弧
A.1个
B.2个
C.3个
D.4个
2.如图所示,MN为⊙O的弦,∠N=52°,则∠MON的度数为()
A.38°
B.52°
C.76°
D.104°
3.如图,已知CD为⊙O的直径,过点D的弦DE平行于半径OA,若∠D的度数是50°,则∠C 的度数是()
A.25°
B.40°
C.30°
D.50°
4.一个点到圆上的最小距离是4cm,最大距离是9cm,则圆的半径是().
A.2.5cm或6.5 cm
B.2.5cm
C.6.5cm
D.5cm或13cm
5.如图,已知在⊙O中,AB·CD为直径,则AD与BC的关系是().
A.AD=BC
B.AD∥BC
C.AD∥BC且AD=BC
D.不能确定
6.如图,已知AB 为⊙O 的直径,点C 在⊙O 上,∠C=15°,则∠BOC 的度数为( )
A .15°
B . 30°
C . 45°
D .60°
二·填空题
1.⊙O 的半径为2cm ,则它的弦长d cm 的取值范围是
.
2.⊙O 中若弦AB 等于⊙O 的半径,则△AOB 的形状是 .
3.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,点D 是BC 的
中点,若AC =10cm,则OD = cm.
4.如图4,AB 是⊙O 的直径,CD 是⊙O 的弦,AB,CD 的延长线交于E,若AB=2DE,
∠E=18°,∠C=______,∠AOC=________;
5. P 为⊙O 内一点,OP=3cm,⊙O 半径为5cm,则经过P 点的最长弦长为_______,最短弦长为________;
三·解答题
B
D
O C
A
A
B
C
O
B
C
D
O
1.在Rt △ABC 中,∠C=90°,BC=3cm,AC=4cm,D 为AB 的中点,E 为AC 的中点,以B 为圆心,BC 为半径作⊙B,A ·C ·D ·E 与⊙B 的位置关系如何?
D
C B
A
2·如图, M,N 为线段AB 上的两个三等分点,点A ·B 在⊙O 上,
求证:∠OMN =∠ONM 。

N M
B A O
24.1 圆(第一课时)
知识点
1.(1)圆心 半径
(2)定长 位置 大小 最长
2.线段 部分 优弧 劣弧 半圆
3.(1)无数 经过圆心的直线(2)圆心
一·选择题
1.A ; 2. C ; 3. A ; 4.A ; 5.C ; 6.B 。

二·填空题
1. 0cm <d ≤4cm
;2.等边三角形;3.5cm.;4.36°,108°;5.10 cm,8 cm ;
三·解答题
1. 解:连接BE, 22222222C 90,BC 3cm,AC 4cm
AB BC AC 345cm
D AB 15AB cm 22
E AC 1CE AC 2cm 2
BE BC CE 3213cm
BA BC,BE BC BD BC
∠===∴=+=+=∴=∴==∴=+=+=∴〉〉〈∴是的中点
BD=是的中点
;点A 、E 均在B 外;点D 在B 内;点C 在B 上。

OAN OBM OA OB
OAN OBM OMN ONM ∴∠∠∴∴∆∆=⎧⎪∠∠⎨⎪⎩∴∆≅∆∴∠=∠2、证明:连接OA 、OB OA=OB
A=B
M 、N 是AB 的三等分点AM=MN=NB AN=BM
在和中A=B
AN=BM。

相关文档
最新文档