[第7章]离散傅里叶变换的特性及应用
离散傅里叶变换(DFT)

~
将 x(n)以N为周期进行周期延拓得到 x(n) = x(( n)) N 将
~
x(n) = x((n)) N 左移m位得到 x(n + m)
(3.2.4)
例: ( n) = 3e n , o ≤ n ≤ 15 ,求 f ( n) = x(( n + 5))15 R15 (n) x
的16点离散傅立叶变换DFT。
N=16; n=0:N-1; xn=3*exp(n); m=5; fn=xn(mod((n+m),N)+1); XK=fft(xn, N); subplot(2, 2, 1); stem(n,xn); subplot(2, 2, 2); stem(n,abs(XK)); FK=fft(fn,N); subplot(2, 2, 3); stem(n,fn); subplot(2, 2, 4); stem(n,abs(FK));
x(n)为长度为N的有限长序列
x(n) 是长度为N的有限长序列x(n)的周期延拓序列
x (n ) =
~
~
m =∞
∑
∞
x ( n + mN )
(3.1.5) (3.1.6)
x (n ) = x ( n ) RN (n )
~
~
主值区间:周期序列 x( n) 从n=0到N-1的第一个周期。
~
主值序列:而主值区间上的序列称为 x( n) 的主值序列。
m
~2 m )) N) R x 2 (( (( m )) N ( n ) x (m x
2
1离散傅里叶变换的定义及物理意义2离散傅里叶变换的基本

的主值序列。
第3章 离散傅里叶变换(DFT)
周期延拓序列频谱完全由其离散傅里叶级数系数 X (k ) 确定,因此: X(k) 实质上是 x(n) 的周期延拓序列 x((n)) N 的频谱特性 观察 DFT[R4(n)]4= 4δ(k)。 根据DFT第二种物理解释可知,DFT[R4(n)]4 表示 R4(n)以4为周期的周期延拓序列R4((n))4的频谱特性,因 为R4 ((n))4是一个直流序列,只有直流成分(即零频率 成分),所以, DFT[R4(n)]4 = 4δ(k) 。
第3章 离散傅里叶变换(DFT)
|X(ejω)| (a)R4(n)的幅频特性图
4 3 2 1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
|X(k)|
(b)4点DFT的幅频特性图
5 4 3 2 1 0 0 0.5 1 1.5 2 2.5 3 3.5 4
|X(k)|
ω/π
ω/π
图3.1.3 例3.1.2程序运行结果
第3章 离散傅里叶变换(DFT)
3.2
3.2.1 线性性质
若x1(n)、x2(n)是两个有限长序列,长度为N1、N2,且
y(n)=ax1(n)+bx2(n)
a、b为常数,取N=max[N1, N2],则 y(n) 的 N 点DFT为
Y(k) = DFT[y(n)]N = aX1(k)+bX2(k) 0≤k≤N-1 其中 X1(k) 和 X2(k) 分别为 x1(n) 和 x2(n) 的N点DFT
x(n) x((n)) N
(3)最后取 x(n m) 的主值序列 x((n+m)) NRN(n) 得到有限长序列 x(n) 的循环移位序列 y(n)。
离散时间信号的傅里叶变换和离散傅里叶变换

离散时间信号的傅里叶变换和离散傅里叶变换摘要本文主要介绍了离散时间信号的离散时间傅里叶变换及离散傅里叶变换,说明其在频域的具体表示和分析,并通过定义的方法和矩阵形式的表示来给出其具体的计算方法。
同时还介绍了与离散时间傅里叶变换(DTFT )和离散傅里叶变换(DFT )相关的线性卷积与圆周卷积,并讲述它们之间的联系,从而给出了用圆周卷积计算线性卷积的方法,即用离散傅里叶变换实现线性卷积。
1. 离散时间傅里叶变换1.1离散时间傅里叶变换及其逆变换离散时间傅里叶变换为离散时间序列x[n]的傅里叶变换,是以复指数序列{}的序列来表示的(可对应于三角函数序列),相当于傅里叶级数的展n j e ω-开,为离散时间信号和线性时不变系统提供了一种频域表示,其中是实频率ω变量。
时间序列x[n]的离散时间傅里叶变换定义如下:)(ωj e X (1.1)∑∞-∞=-=nnj j e n x e X ωω][)(通常是实变量的复数函数同时也是周期为的周期函数,并且)(ωj e X ωπ2的幅度函数和实部是的偶函数,而其相位函数和虚部是的奇函数。
)(ωj e X ωω这是由于:(1.2))()()(tan )()()()(sin )()()(cos )()(222ωωωωωωωωωωθωθωθj re j im j im j re j j j im j j re e X e X e X e X e X e X e X e X e X =+===由于式(1.1)中的傅里叶系数x[n]可以用下面给出的傅里叶积分从中算出:)(ωj e X 1(1.3)ωπωππωd e eX n x n j j )(21][⎰-=故可以称该式为离散时间傅里叶逆变换(IDTFT ),则式(1.1)和(1.3)构成了序列x[n]的离散时间傅里叶变换对。
上述定义给出了计算DTFT 的方法,对于大多数时间序列其DTFT 可以用收敛的几何级数形式表示,例如序列x[n]=,此时其傅里叶变换可以写成简单n α的封闭形式。
第7章 傅里叶变换与滤波器形状

第7章 傅里叶变换与滤波器形状 7.1离散时间傅里叶变换基础离散时间傅里叶变换(DTFT )是数字信号分析的一个重要工具。
DTFT 把信号或滤波器从时域变换到频域,主要是为了研究信号或滤波器的频率特性。
该变换主要用于分析信号和滤波器的频谱性质。
对于信号,DTFT 提供的信息称为信号的频谱。
对于滤波系统,DTFT 得到的信息称为滤波器的频率响应(frequency response )。
它由两部分组成:幅度响应(magnitude response )和相位响应(phase response )。
幅度响应给出了滤波器的形状,通过它我们可以深入了解滤波器的工作特性。
信号x[n]的离散时间傅里叶变换定义为:()[]jn n X x n e∞-Ω=-∞Ω=∑,这里Ω为数字频率,单位弧度。
记为(){[]}X x n Ω=F利用欧拉公式,DTFT 变换为()[][](cos()sin())jn n n X x n ex n n j n ∞∞-Ω=-∞=-∞Ω==Ω-Ω∑∑变换()X Ω在每个不同的数字频率上可有不同的值,当信号x[n]与正弦或余弦“共振”时,最大。
也就是说,当x[n]以接近频率Ω变化时,()X Ω较大。
离散时间傅里叶变换反应了信号的频率。
例7.1 求如图信号的离散时间傅里叶变换注意,一般情况,DTFT 是复值。
例7.2 求信号x[n]=4(u[n]-u[n-3])的DTFT 。
离散时间傅里叶变换有两个重要的特性,时延特性和周期性。
00[]()[]()Fjn Fx n X x n n eX -Ω−−→Ω-−−→Ω(2)()X X πΩ+=ΩDTFT 是周期性的,周期为2π。
即离散时间傅里叶变换对所有的数字频率Ω,每2π重复一次,不断重复。
7.2.1 频率响应和差分方程 对差分方程逐项求DTFT∑∑==-=-Mk kN k kk n x b k n y a 0][][][]2[]1[][][]2[]1[][210210M n x b n x b n x b n x b N n y a n y a n y a n y a M N -++-+-+=-++-+-+0101()()()()()()j jN N j jM M a Y a e Y a e Y b X b eX b eX -Ω-Ω-Ω-ΩΩ+Ω++Ω=Ω+Ω++Ω0101()()()()j jN j jM N M a a e a e Y b b e b e X -Ω-Ω-Ω-Ω+++Ω=+++Ω010010()()()Mjk j jM k M k Nj jN jk N k k b eY b b e b eH X a a e a ea e-Ω-Ω-Ω=-Ω-Ω-Ω=Ω+++Ω===Ω+++∑∑例7.3 求差分方程频率响应y[n]=-0.85y[n-1]+0.5x[n].例7.4 求差分方程频率响应y[n]+0.1y[n-1]+0.85y[n-2]=x[n]-0.3x[n-1]7.2.2 频率响应和传输函数10101010()()()MkMkM k NNkN k k b zb b z b zY z H z X z a a z a za z---=---=+++===+++∑∑010010()()()Mjk j jM k M k Nj jN jk N k k b eY b b e b eH X a a e a e a e-Ω-Ω-Ω=-Ω-Ω-Ω=Ω+++Ω===Ω+++∑∑例 7.5 求滤波器的频率响应,它的传输函数21210.2()10.50.9z H z z z ----=++2210.2()10.50.9j j j e H e e-Ω-Ω-Ω-Ω=++频率响应是脉冲响应的DTFT 。
离散周期信号的傅里叶级数_讲义

4
《信号与系统》,清华大学电机系陆超 n n0
内积的定义:两个离散函数φdi (n)和φdj (n) ,在 长度为N的离散时间区间n0≤n≤ n0 +N-1上的 n N 1 内积为:
di ( n), dj ( n)
0
n n0
di ( n) dj ( n)
离散信号的投影或分量:
N 1 1
n 0
xd ( n) e j1kn
以xa(t)的冲激脉冲抽样信号及其变换为“中介”
《信号与系统》,清华大学电机系陆超 19
• 冲激序列及其傅里叶变换:
ap ( t )
n
a
( t nTs )
Δap ( ) s
m
a
( m s )
F p ( ) F f p ( t ) 2
k 《信号与系统》,清华大学电机系陆超
F
gp
( k1 ) ( k1 )
17
• 连续周期信号xa(t)的傅里叶变换:
X a ( ) 2
k
X
ag
( k1 ) ( k1 )
• 离散周期信号xd(n)的离散傅里叶级数: 周期T1内N1个抽样点,满足完整周期抽样
• 冲激脉冲抽样信号:
xas ( t ) xa ( t ) ap ( t )
n
x (nT )
a s
a
( t nTs )
n
x (n)
d
a
( t nTs )
《信号与系统》,清华大学电机系陆超 20
• 冲激脉冲抽样信号的傅里叶级数:
滑块离散傅里叶变换

滑块离散傅里叶变换一、引言在数字信号处理领域,傅里叶变换是一种极其重要的工具,它能够将信号从时域转换到频域,从而揭示出信号在各个频率下的强度。
然而,标准的傅里叶变换是对整个信号进行分析,无法提供信号局部频率信息。
为了解决这个问题,人们引入了滑块离散傅里叶变换(Sliding Discrete Fourier Transform,简称SDFT),这种方法能够在信号的滑动窗口上应用离散傅里叶变换,从而得到信号在不同时间和频率下的信息。
二、滑块离散傅里叶变换的定义滑块离散傅里叶变换是一种计算信号局部频谱的方法。
给定一个长度为N的离散时间信号x[n],滑块离散傅里叶变换在信号的每个长度为M的滑动窗口上计算离散傅里叶变换。
设X[k, m]表示在第m个滑动窗口上的离散傅里叶变换结果,其中k表示频率索引,m表示滑动窗口的索引,那么滑块离散傅里叶变换可以定义为:(X[k, m] = \sum_{n=0}^{M-1} x[n+mM] e^{-j \frac{2\pi}{M} kn})其中,(j)表示虚数单位,(M)表示滑动窗口的长度,(mM)表示第(m)个滑动窗口的起始位置。
需要注意的是,为了保证滑动窗口之间有重叠,通常步长会设置为小于窗口长度的值。
三、滑块离散傅里叶变换的性质局部性:滑块离散傅里叶变换能够提供信号在不同时间和频率下的信息,从而揭示出信号的局部特性。
这对于非平稳信号的分析尤为重要。
时频分辨率权衡:在滑块离散傅里叶变换中,滑动窗口的长度决定了时频分辨率的权衡。
较短的滑动窗口具有较高的时间分辨率和较低的频率分辨率,而较长的滑动窗口则具有较低的时间分辨率和较高的频率分辨率。
因此,在实际应用中,需要根据信号的特点和需求选择合适的滑动窗口长度。
计算复杂度:相对于标准的离散傅里叶变换,滑块离散傅里叶变换的计算复杂度较高。
因为需要在每个滑动窗口上计算离散傅里叶变换,所以计算量会随着滑动窗口数量的增加而增加。
然而,通过采用快速傅里叶变换(FFT)算法和优化技术,可以显著降低计算复杂度,使得滑块离散傅里叶变换在实际应用中更加可行。
【论文】傅里叶变换及应用

摘 要线性变换,尤其是傅里叶变换,是众所周知的解决线性系统问题的技术,人们常将变换作为一种数学和物理工具,把问题转到可以解决的域内.在许多科学分支的理论中,傅里叶变换都扮演着重要的角色.就像其它变换一样,它可以单纯的看作数学泛函.在现代数学中,傅里叶变换是一种非常重要的变换,且在频谱信号、波动及热传导等方面有着广泛的应用.本文首先介绍了傅里叶级数以及傅里叶变换的基本概念、性质及发展;其次介绍了傅里叶变换的不同变种以及多种傅里叶变换的定义;最后介绍了傅里叶变换在周期信号、波动这两个方面的具体的应用,在周期信号方面主要介绍的是基于快速傅里叶变换的信号去噪的应用,而在波动方面主要介绍的是海水仿真系统的研究.最后对本文所讨论的内容进行了总结.关键词:傅里叶变换,波动,频谱信号AbstractLinear transforms ,especially those named for Fourier are well know as provide techniques for solving problems in linear systems characteristically, one uses the transformation as a mathematical or physical tool to alter the problem into one that can be solved.Fourier transforms play an important part in the theory of many branches of science while they may be regarded as purely mathematical functional .In modem mathematics, the Fourier transform is a very important transformation. It has a wide range of application in Spectrum Signal Processing, fluctuations and thermal conductivity, etc. This article introduced the Fourier series and Fourier transform of the basic concepts, the nature and development; followed introduced Fourier transform of the different variants and the definition of a variety of Fourier transform. Finally introduced the specific applications in the frequency spectrum, signal fluctuations and thermal conductivity. Fourier transform in different areas, have different forms ,such as modern studies, voice communications, sonar, seismic and even biomedical engineering study of the signal to play an important role in grams. Finally, the scope of our discussion in this article are summarized.Key words: Fourier transform, volatility , the spectrum signal傅里叶变换及应用目 录第一章 前 言 (1)1.1傅里叶变换的发展 (1)1.2 研究傅里叶变换的意义 (1)第二章 傅里叶级数及变换的理论知识 (3)2.1 傅里叶积分 (3)2.2 实数与复数形式的傅里叶积分 (5)2.3 傅里叶变换式的物理意义 (8)第三章 傅里叶变换的性质及变形 (11)3.1 基本性质 (11)3.2 傅里叶变换的不同形式 (12)第四章 傅里叶变换的应用 (15)4.1波动 (15)4.2周期信号中的傅里叶变换 (19)第五章 工作总结及展望 (25)5.1 总结 (25)5.2 展望 (25)参 考 文 献 (26)致 谢 (27)第一章 前 言1.1傅里叶变换的发展傅里叶分析是分析学中的一个重要分支,在数学发展史上,早在18世纪初期,有关三角级数的论述已在D.Bernoulli,D`Alembert,L.Euler等人的工作中出现,但真正重要的一步是由法国数学家J.Fourier迈出的,他在著作《热的解析理论》(1822年)中,系统地运用了三角级数和三角积分来处理热传导问题,此后各国科学家的完善和发展,极大的扩大了傅里叶分析的应用范围,使得这一理论成为研究周期现象不可缺少的工具,特别是现代实用性很强的“小波分析”理论和方法也是从傅里叶分析的思想方法演变出来的,而Fourier变换变换作为Fourier分析中最为重要的内容正是由于其良好性质,傅里叶变换在物理学、数论、组合数学、信号处理、概率、统计、密码学、声学、光学等领域都有着广泛的应用,本文将对傅里叶变换在其中某些领域的应用加以整理和总结.(由于傅里叶在不同的文献中有“傅里叶”和“傅立叶”两种不同的称谓,为了便于阅读,本片论文统一称为“傅里叶”)1.2 研究傅里叶变换的意义从现代数学的眼光来看,傅里叶变换是一种特殊的积分变换.它能将满足一定条件的某个函数表示成正弦基函数的线性组合或者积分.在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换.根据傅里叶变换的一些特殊性质我们可以发现[1]1. 傅里叶变换是线性算子;2. 傅里叶变换的逆变换容易求出,而且形式与正变换非常类似;3. 正弦基函数是微分运算的本征函数,从而使得线性微分方程的求解可以转化为常系数的代数方程的求解.在线性时不变的物理系统内,频率是个不变的性质,从而系统对于复杂激励的响应可以通过组合其对不同频率正弦信号的响应来获取;4.著名的卷积定理指出:傅里叶变换可以化复杂的卷积运算为简单的乘积运算,从而提供了计算卷积的一种简单手段;5.离散形式的傅里叶变换可以利用数字计算机快速的算出(其算法称为快速傅里叶变换算法(FFT)).1在后面的整理中我们可以发现,这些特性的应用为信号周期和波动的研究提供了坚实的基础.2第二章 傅里叶级数及变换的理论知识2.1 傅里叶级数本节简明扼要地复习傅里叶级数的基本内容. 2.1.1 周期函数的傅里叶展开定义2.1.1 傅里叶级数 傅里叶级数展开式 傅里叶系数[4]若函数以为周期,即为)(x f l 2)()2(x f l x f =+的光滑或分段光滑函数,且定义域为[ ,则可取三角函数族]l l ,−,......sin ,.....,2sin ,sin ,.....,cos ,,......,2cos ,cos ,1lx k l x l xlx k l x l xππππππ (2-1)作为基本函数族将展开为傅里叶级数(即下式右端级数))(x f sin cos ()(10l xk b l x k a a x f k k k ππ++=∑∞= (2-2) 式(2-2)称为周期函数的傅里叶级数展开式(简称傅氏级数展开),其中的展开系数称为傅里叶系数(简称傅氏系数).)(x f 函数族(2-1)是正交的.即为:其中任意两个函数的乘积在一个周期上的积分等于零,即⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎨⎧=====∫∫∫∫∫−−−−−l llllll l lldx l x n l x k dx lx n l x k dx l x n l x k dx l x k dx lx k 0sin .cos .10sin .sin .10cos .cos .10sin .10cos .1ππππππππ 利用三角函数族的正交性,可以求得(2.1.3)的展开系数为⎪⎪⎩⎪⎪⎨⎧==∫∫−−l l k l l kk dx l x k x f l b dx l x k x f l a )sin()(1)cos()(1ππδ (2-3) 3其中⎩⎨⎧≠==)0( 1)0( 2k k k δ关于傅里叶级数的收敛性问题,有如下定理: 定理 2.1.1狄利克雷(Dirichlet )若函数满足条件:)(x f (1)处处连续,或在每个周期内只有有限个第一类间断点;(2)在每个周期内只有有限个极值点,则级数(2-3)收敛,且在收敛点有:∑∞=++=10)sin cos ()(k k k l xk b l x k a a x f ππ在间断点有:∑∞=++=−++10)sin cos ()]0()0([21k k k l xk b l x k a a x f x f ππ2.1.2 奇函数及偶函数的傅里叶展开 定义 2.1.2 傅里叶正弦级数 傅里叶余弦级数[2]若周期函数是奇函数,则由傅里叶系数的计算公式(2-3)可见,所有 均等于零,展开式(2-2)成为)(x f k a a ,0∑∞==1sin )(k k l xk b x f π (2-4) 这叫作傅里叶正弦级数.容易检验(2-4)中的正弦级数在l x x ==,0处为零.由于对称性,其展开系数为∫=lk dx lx k x f l b 0)sin()(2π若周期函数是偶函数,则由傅里叶系数计算公式可见,所有均等于零,展开式(2-2)成为)(x f k b ∑∞=+=10cos)(k k lxk a a x f π (2-5) 这称为傅里叶余弦级数.同样由于对称性,其展开系数为∫=lk k dx l x k x f l a 0)cos()(2πδ (2-6)由于余弦级数的导数是正弦级数,所以余弦级数的导数在l x x ==,0处为零.而对于定义在有限区间上的非周期函数的傅里叶级数展开,需要采用类似于高等数学中的延拓法,使其延拓为周期函数.)(x g 42.1.3复数形式的傅里叶级数 定义2.1.3 复数形式的傅里叶级数[8]取一系列复指数函数 ,....,...,,,1,,,..., (22)x k ilx ilxilxilx ilx k i eeeeeeππππππ−−− (2-7)作为基本函数族,可以将周期函数展开为复数形式的傅里叶级数)(xf 利用复指数函数族的正交性,可以求出复数形式的傅里叶系数∫∫−−−==lll x k i l l l xk i k dx e x f l dx e x f l C **])[(21])[(21ππ (2-9)式中“*”代表复数的共轭.上式(2- 9)的物理意义为一个周期为2L 的函数 可以分解为频率为)(x f l n π,复振幅为 的复简谐波的叠加.n c ln π称为谱点,所有谱点的集合称为谱.对于周期函数而言,谱是离散的.尽管是实函数,但其傅里叶系数却可能是复数,且满足:)(x f )(x f *kk C C =−或k k C C =− (2-10) 2.2 实数与复数形式的傅里叶积分上一节我们讨论了周期函数的傅里叶级数展开,下面讨论非周期函数的级数展开. 2.2.1 实数形式的傅里叶积分[6]定义 2.2.1 实数形式的傅里叶变换式 傅里叶积分 傅里叶积分表示式设非周期函数为一个周期函数当周期)(x f )(x g ∞→l 2时的极限情形.这样,的傅里叶级数展开式)(x g ∑∞=++=10)sin cos()(k k k l x k b lxk a a x g ππ (2-11)在时的极限形式就是所要寻找的非周期函数的傅里叶展开.面我们研究这一极限过程:设不连续的参量∞→l )(x f lk l k k k k k πωωωπω=−=Δ==−1,...),2,1,0(故(2-11)为(2-12)∑∞=++=10)sin cos ()(k k k k k x b x a a x g ωω傅里叶系数为5⎪⎪⎩⎪⎪⎨⎧==∫∫−−l l k k l l k k k xdx x f l b xdx x f l a ωωδsin )(1cos )(1 (2-13) 代入到 (2-12),然后取∞→l 的极限.对于系数,有限,则0a ∫−ll dx x f )(lim ∫−∞→∞→==l l l l x f l a 0)(21limlim 0而余弦部分为当0,→=Δ∞→ll kπω,不连续参变量k ω变为连续参量,以符号ω代替.对的求和变为对连续参量k ω的积分,上式变为ωωωπxd xdx x f cos ]cos )(1[0∫∫∞∞−∞ 同理可得正弦部分ωωωπxd xdx x f sin ]sin )(1[∫∫∞∞−∞若令⎪⎪⎩⎪⎪⎨⎧==∫∫∞∞−∞∞−xdxx f B xdx x f A ωπωωπωsin )(1)(cos )(1)( (2-14) 式(2-14)称为的(实数形式)傅里叶变换式.故(2-12)在时的极限形式变为(注意到))(x f ∞→l )()(x f x g →∫∫∞∞+=0sin )(cos )()(ωωωωωωxd B xd A x f (2-15)上式(2-15)右边的积分称为(实数形式)傅里叶积分.(2-15)式称为非周期函数的(实数形式)傅里叶积分表示式.事实上,上式(2-15)还可以进一步改写为)(x f )](/)(arctan[)(),()()()](cos[)()(]sin )(cos )([)(220ωωωϕωωωϕωωωωωωωA B B A x f d x x C x f d x B x A x f =+=−=+=∫∫∫∞∞∞(2-16)上式(2-16)的物理意义为:称为的振幅谱,ωc )(x f ωϕ称为的相位谱.可以对应于物理现象中波动(或振动).我们把上述推导归纳为下述严格定理: )(x f 1.傅里叶积分定理[7]定理2.1.1 傅里叶积分定理 :若函数在区间上满足条件)(x f ),(∞−∞(1)在任一有限区间上满足狄利克雷条件;)(x f (2)在上绝对可积,则可表为傅里叶积分形式(2-15),且在 )(x f ),(∞−∞)(x f )(x f 6的不连续点处傅里叶积分值= 2]0[]0([−++x f x f .2.奇函数的傅里叶积分定义 2.1.2 实数形式的傅里叶正弦积分 傅里叶正弦变换若为奇函数,我们可推得奇函数的傅里叶积分为傅里叶正弦变换:)(x f )(x f ∫∞=0sin )()(ωωωxd B x f (2-17)式(2-1)满足条件其中0)0(=f )(ωB 是的傅里叶正弦变换:)(x f ∫∞=0sin )()(ωωωxd x f B (2-18)3. 偶函数的傅里叶积分定义 2.1.3 实数形式的傅里叶余弦积分 傅里叶余弦变换[8]若为偶函数,的傅里叶积分为傅里叶余弦积分:)(x f )(x f ∫∞=0cos )(2)(ωωωπxd A x f (2-19)式(2-3)满足条件.其中0)0(=′f )(ωB 是的傅里叶余弦变换:)(x f ∫∞=0cos )(2)(ωωπωxd x f A (2-20)上述公式可以写成另一种对称的形式⎪⎪⎩⎪⎪⎨⎧==∫∫∞∞00sin )(2)(sin )(2)(xdx x f B xd B x f ωπωωωωπ (2-21)⎪⎪⎩⎪⎪⎨⎧==∫∫∞∞00cos )(2)(cos )(2)(xdxx f A xd A x f ωπωωωωπ (2-22) 4 复数形式的傅里叶积分定义2.1.4 复数形式的傅里叶积分下面我们讨论复数形式的傅氏积分与变换,而且很多情形下,复数形式(也称为指数形式)的傅氏积分变换使用起来更加方便.利用欧拉公式则有 )(21sin ),(21cos x i x i x i x i e e ix e e x ωωωωωω−−−=+=7代入式(2-15)得到ωωωωωωωωd e iB A d e iB A x f x i x i −∞∞++−=∫∫)]()([21)]()([21)(00将右端的第二个积分中的ω换为ω−,则上述积分能合并为∫∞∞−=ωωωd e F x f x i )()( (2-23)其中⎩⎨⎧<+≥−=0)( ,2/)]()([0)( ,2/)]()([)(ωωωωωωωiB A iB A F将(2-14)代入上式可以证明无论对于0≥ω,还是0<ω均可以合并为∫∞∞−=dx e x f F x i *])[(21)(ωπω (2-24)证明:(1) 0≥ω时∫∫∞∞−∞∞−=−=dx e x f dx x i x x f F x i *])[(21)]sin())[cos((21)(ωπωωπω (2) 0<ω时 ∫∫∞∞−∞∞−=+=dx e x f dx x i x x f F x i *])[(21)]sin())[cos((21)(ωπωωπω ∫∫∞∞−∞∞−−==dx e x f dx e x f x i x i *])[(21)(21ωωππ 证毕.(2-23)是的复数形式的傅里叶积分表示式,(2-24)则是的复数形式的傅里叶变换式.述变换可以写成另一种对称的傅氏变换(对)形式)(x f )(x f ⎪⎪⎩⎪⎪⎨⎧==∫∫∞∞−−∞∞−ωπωωωπωωd e x f F d e F x f x i x i )(21)()(21)( (2-25) 2.3 傅里叶变换式的物理意义傅里叶变换和频谱[2,8]有密切的联系.频谱这个术语来自于光学.通过对频谱的分析,可以了解周期函数和非周期函数的一些基本性质.若已知是以T 为周期的周期函数,且满足狄利克雷条件,则可展成傅里叶级数)(x f )sin cos ()(10x b x a a x f n n n n n ωω++=∑∞= (2-26)其中Tn n n πωω2==,我们将x b x a n n n n ωωsin cos +称为的第次谐波,)(x f n n ω称为第n 次谐波的频率.由于)cos(sin cos 22n n n n n n x b a x b x a ϕωωω−+=+其中abarctan =ϕ称为初相,22b a +称为第次谐波的振幅,记为,即n n A 0022 1,2,...)(n a A b a A n ==+= (2-27)若将傅里叶级数表示为复数形式,即(2-28)∑∞−∞==n xi nn e C x f ω)(其中22212||||n n n n n b a A C C +===−恰好是次谐波的振幅的一半.我们称为复振幅.显然n 次谐波的振幅与复振幅有下列关系:n n c n n C A 2= ,...)2,1,0(=n (2-29)当取这些数值时,相应有不同的频率和不同的振幅,所以式(2-14)描述了各次谐波的振幅随频率变化的分布情况.频谱图通常是指频率和振幅的关系图.称为函数的振幅频谱(简称频谱).若用横坐标表示频率.....3,2,1,0=n n A )(x f n ω,纵坐标表示振幅,把点n A .....3,2,1,0),,(=n A n n ω用图形表示出来,这样的图形就是频谱图.由于,所以频谱的图形是不连续的,称之为离散频谱......3,2,1,0=n n A 2.3.1 傅里叶变换的定义[7]由上一节对实数和复数形式的傅里叶积分的讨论,最后我们以简洁的复数形式(即指数形式)作为傅里叶变换的定义. 定义2.3.1 傅里叶变换若满足傅氏积分定理条件,称表达式)(x f (2-30)∫∞∞−−=dx e x f F x i ωω)()( 为的傅里叶变换式,记作.我们称函数)(x f )]([)(1ωF F x f −=)(ωF 为的傅里叶变换,简称傅氏变换(或称为像函数). )(x f 定义2.3.2 傅里叶逆变换 如果∫∞∞−=dxe F xf x i ωωπ)(21)( (2-31)则上式为的傅里叶逆变换式,记为,我们称为)(x f )]([)(1ωF F x f −=)(x f )(ωF (或称为像原函数或原函数)的傅里叶逆变换,简称傅氏逆变换.由(2-30)和(2-31)知傅里叶变换和傅里叶逆变换是互逆变换,即有)()]([)]]([[)]([111x f x f F F x f F F F F ===−−−ω (2-32)或者简写为)()]([1x f x f F F =− 2.3.2多维傅氏变换在多维(n 维)情况下,完全可以类似地定义函数的傅氏变换如下:),,,(21n x x x f L )],...,,([),...,,(2121n n x x x f F F =ωωωn x x x i n dx dx dx e x x x f n n ...),...,,(....21)...(212211∫∫+∞∞−∞∞−+++−=ωωω它的逆变换公式为:()n x x x i n n n d d d e F x x x f n n ωωωωωωπωωω...),...,,(. (21)),...,,(21)...(21212211∫∫+∞∞−∞∞−+++−=2.3.3傅里叶变换的三种定义式在实际应用中,傅里叶变换常常采用如下三种形式,由于它们采用不同的定义式,往往给出不同的结果,为了便于相互转换,特给出如下关系式: 1.第一种定义式∫∞∞−−=dx e x f F xi ωπω)(21)(1,,)(21)(1∫∞∞−=ωωπωd e F x f x i 2.第二种定义式∫∞∞−−=dx e x f F xi ωω)()(2,∫∞∞−=ωωπωd e F x f x i )(21)(2 3.第三种定义式∫∞∞−−=dx e x f F x i πωω23)()(,∫∞∞−=ωωπωd e F x f x i 23)()(三者之间的关系为)2(21)(21321πωπωπF F F ==三种定义可统一用下述变换对形式描述:⎩⎨⎧==−)]([)()]([)(1ωωF F x f x f F F 特别说明:不同书籍可能采用了不同的傅氏变换对定义,所以在傅氏变换的运算和推导中可能会相差一个常数倍数,比如ππ21,21.本文采用的傅氏变换(对)是大量书籍中常采用的统一定义,均使用的是第二种定义式.第三章 傅里叶变换的重要特性傅里叶变换能将满足一定条件的某个函数表示成三角函数(正弦和/或余弦函数)的积分的线性组合.在不同的研究领域,傅里叶变换具有多种不同的变体形式,如连续傅里叶变换和离散傅里叶变换.3.1 基本性质[1,8]1.线性性质两函数之和的傅里叶变换等于各自变换之和.数学描述是:若函数和的傅里叶变换和都存在,)(x f )(x g )(f F )(g F α和β为任意常系数,][][][g F f F g f F βαβα+=+. 2.平移性质若函数存在傅里叶变换,则对任意)(x f 实数0ω,函数也存在傅里叶变换,且F x i e x f 0)(ω=])([0x i e x f F ω)(o ωω−. 3.微分关系若函数当)(x f ∞→x 时的极限为0,而其导函数的傅里叶变换存在,则有 ,即导函数的傅里叶变换等于原函数的傅里叶变换乘以因子)(x f )]([)](['x f F i x f F ω=ωi .更一般地,若,且存在,则,即k阶0)(....)()()1('=±∞==±∞=±∞−k f f f )]([)(x f F k ][)()]([)(f F i x f F k k ω=导数的傅里叶变换等于原函数的傅里叶变换乘以因子.k i )(ω4.卷积特性若函数及都在上)(x f )(x g ),(+∞−∞绝对可积,则卷积函数∫+∞∞−−=ξξξd g x f g f )()(*的傅里叶变换存在,且][].[]*[g F f F g f F =.卷积性质的逆形式为)]([*)]([)]()([111ωωωωG F F F G F F −−−=即两个函数乘积的傅里叶逆变换等于它们各自的傅里叶逆变换的卷积. 5.Parseval 定理若函数)(x f 可积且平方可积,其中)(ωF 是的傅里叶变换.(查正确性) )(x f 则∫∫+∞∞−+∞∞−=ωωπd F dx x f 22)(21)( 3.2傅里叶变换的不同变种1.连续傅里叶变换[8]一般情况下,若“傅里叶变换”一词的前面未加任何限定语,则指的是“连续傅里叶变换”.“连续傅里叶变换”将平方可积的函数表示成复指数函数的积分或级数形式.)(t f ∫∞∞−−==dt e t f t f F F t i ωπω)(21)]([)(这是将频率域的函数)(ωF 表示为时间域的函数的积分形式. 连续傅里叶变换的逆变换(inverse Fourier transform )为)(t f ∫∞∞−−==ωωπωωd e F F F t f t i )(21)]([)(1即将时间域的函数表示为频率域的函数)(t f )(ωF 的积分.一般可称函数为)(t f 原函数,而称函数)(ωF 为傅里叶变换的像函数,原函数和像函数构成一个傅里叶变换对(transform pair ).除此之外,还有其它型式的变换对,以下两种型式亦常被使用.在通讯或是讯号处理方面,常以πω2=f 来代换,而形成新的变换对 : ∫∞∞−−==dt e t x t x F f X fti π2)()]([)( ∫∞∞−−==df e f X f X F t x ft i π21)()]([)( 或者是因系数重分配而得到新的变换对:∫∞∞−−==dt e t f t f F F t i ωω)()]([)(∫∞∞−−==ωωπωωd eF F F t f ti )(21)]([)(12.离散傅里叶变换定义3.2.1[1]给定一组数据序列{}1.....2,1,0,−==N n y y n ,离散傅里叶变换为序列:10,][10/2−≤≤==∑−=−N n e y y F y N n N kn i n n k π离散傅里叶逆变换为:10,1][1/2−≤≤==∑−=N k ey Ny F y N k Nkn i k k n π定理3.1 对于离散傅里叶变换,以下性质成立.1.移位或平移.若且n s y ∈1+=k k y z ,那么,这里 j j j y F z F ][][ω=n i e /2πω=2.卷积.若且,那么下面的序列n s y ∈n s z ∈∑−=−=10]*[n j j k j k z y z y也在中.序列称为和的卷积.n s z y *y z 3.若是一实数序列,那么n s y ∈k k n k k n y y n k y F y F ))=≤≤=−− 0 , ][][或. 3.快速傅里叶变换快速傅氏变换(FFT),是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。
离散序列的傅里叶变换

离散序列的傅里叶变换人类的日常生活中充满了各种各样的信号,比如声音、图像、电压等。
为了更好地理解和处理这些信号,我们需要使用一种数学工具来对其进行分析和处理。
傅里叶变换便是一种常用的工具,能够将信号从时域转换到频域,使我们能够更好地理解信号的频率成分。
在离散序列中,我们同样可以使用傅里叶变换来对信号进行处理。
离散序列是指在一定的时间间隔内,对信号进行采样得到的序列。
傅里叶变换的目的是将这个序列从时域转换到频域,以便我们可以更好地分析信号的频率成分。
离散序列的傅里叶变换是指对离散序列进行傅里叶变换的过程。
在离散序列中,我们可以使用离散傅里叶变换(Discrete Fourier Transform, DFT)来进行变换。
离散傅里叶变换是一种将离散序列从时域转换到频域的数学工具,它能够将一个N点的离散序列变换为一个N点的频域序列。
离散傅里叶变换的计算过程可以通过离散傅里叶变换公式来表示,但为了遵守本文的要求,我们不会在文章中插入任何数学公式。
简单来说,离散傅里叶变换将离散序列分解为一系列正弦和余弦函数的和,每个正弦和余弦函数都对应着一个频率成分。
通过计算这些正弦和余弦函数的振幅和相位,我们可以得到信号在不同频率下的幅度和相位信息。
离散傅里叶变换在信号处理中有着广泛的应用。
例如,在音频处理中,我们可以使用离散傅里叶变换来对音频信号进行频谱分析,以便分析音频信号的频率成分。
在图像处理中,我们可以使用离散傅里叶变换来对图像进行频域滤波,以便去除图像中的噪声或增强图像的某些频率成分。
除了离散傅里叶变换,还有一种更高效的算法,称为快速傅里叶变换(Fast Fourier Transform, FFT)。
快速傅里叶变换是一种基于分治法的算法,能够在O(NlogN)的时间复杂度下计算离散傅里叶变换。
这使得离散傅里叶变换在实际应用中更加高效和可行。
尽管离散傅里叶变换在信号处理中有着广泛的应用,但它也有一些限制。
首先,离散傅里叶变换要求信号是周期性的,即信号在采样窗口内是重复的。
滑块离散傅里叶变换

滑块离散傅里叶变换一、引言滑块离散傅里叶变换是一种在信号处理领域应用广泛的数学工具,能够将一个连续周期信号分解为一系列频率成分。
本文将深入探索滑块离散傅里叶变换的原理和应用,带您领略频域的奇妙世界。
二、滑块离散傅里叶变换的原理滑块离散傅里叶变换是指通过将连续信号离散化,然后进行傅里叶变换,得到信号的频域表示。
其核心思想是将连续信号分解为一系列离散的频率分量,从而更好地理解和处理信号。
三、离散化过程为了进行滑块离散傅里叶变换,首先需要将连续信号离散化。
这意味着将连续信号在时间上进行采样,得到一系列离散的采样点。
通过这种方式,我们可以将连续信号转化为离散序列,方便进行后续的频域分析。
四、滑块离散傅里叶变换的计算过程滑块离散傅里叶变换的计算可以通过离散傅里叶变换(DFT)算法来实现。
DFT算法可以将离散序列转化为频域表示,得到信号的频谱信息。
通过对离散序列进行傅里叶变换,我们可以得到信号在不同频率下的振幅和相位信息。
五、滑块离散傅里叶变换的应用滑块离散傅里叶变换在信号处理领域有着广泛的应用。
它可以用于音频和图像信号的压缩与解压缩、滤波器设计、频域滤波、信号分析等方面。
通过对信号进行频域分析,我们可以更好地理解信号的特征和结构,从而实现更精确的信号处理。
六、总结滑块离散傅里叶变换是信号处理领域中重要的数学工具,能够帮助我们理解和处理信号的频域特性。
通过离散化和傅里叶变换,我们可以获得信号的频谱信息,从而实现更精确和高效的信号处理。
滑块离散傅里叶变换在音频、图像以及其他领域的应用也越来越广泛,为我们带来了更多的可能性和创新。
通过本文的介绍,相信您已经对滑块离散傅里叶变换有了更深入的了解。
希望本文能够激发您对信号处理领域的兴趣,并为您进一步探索频域的奇妙世界提供了一些启示。
五种傅里叶变换解析

五种傅里叶变换解析标题:从简到繁:五种傅里叶变换解析引言:傅里叶变换是数学中一种重要且广泛应用于信号处理、图像处理和物理等领域的工具。
它的基本思想是将一个信号或函数表示为若干个不同频率的正弦波的叠加,从而揭示信号或函数的频谱特性。
本文将展示五种常见的傅里叶变换方法,包括离散傅里叶变换(DFT)、快速傅里叶变换(FFT)、连续傅里叶变换(CTFT)、离散时间傅里叶变换(DTFT)和傅里叶级数展开,帮助读者逐步理解傅里叶变换的原理与应用。
第一部分:离散傅里叶变换(DFT)在此部分中,我们将介绍离散傅里叶变换的基本概念和算法。
我们将讨论DFT的离散性质、频域和时域之间的关系,以及如何利用DFT进行频域分析和滤波等应用。
此外,我们还将探讨DFT算法的时间复杂度,以及如何使用DFT来解决实际问题。
第二部分:快速傅里叶变换(FFT)在这一部分中,我们将深入研究快速傅里叶变换算法,并详细介绍其原理和应用。
我们将解释FFT如何通过减少计算量和优化计算过程来提高傅里叶变换的效率。
我们还将讨论FFT算法的时间复杂度和几种不同的FFT变体。
第三部分:连续傅里叶变换(CTFT)本部分将介绍连续傅里叶变换的概念和定义。
我们将讨论CTFT的性质、逆变换和时频分析的应用。
进一步,我们将引入傅里叶变换对信号周期性的描述,以及如何利用CTFT对信号进行频谱分析和滤波。
第四部分:离散时间傅里叶变换(DTFT)在这一章节中,我们将介绍离散时间傅里叶变换的基本原理和应用。
我们将详细讨论DTFT的定义、性质以及与DFT之间的关系。
我们还将探讨DTFT的离散频率响应、滤波和频谱分析的相关内容。
第五部分:傅里叶级数展开最后,我们将深入研究傅里叶级数展开的原理和应用。
我们将解释傅里叶级数展开如何将周期函数分解为多个不同频率的正弦波的叠加。
我们还将讨论傅里叶级数展开的收敛性和逼近性,并探讨如何利用傅里叶级数展开来处理周期信号和周期性问题。
结论:综上所述,本文介绍了五种常见的傅里叶变换方法,包括离散傅里叶变换(DFT)、快速傅里叶变换(FFT)、连续傅里叶变换(CTFT)、离散时间傅里叶变换(DTFT)和傅里叶级数展开。
数字信号处理之离散傅里叶变换

共轭对称性
对于实数输入信号,DFT 的结果X[k]满足共轭对称 性,即X[-k] = X[k]*。
离散傅里叶变换的矩阵表示
DFT可以表示为一个矩阵运算, 即X = W * x,其中X是DFT的输 出,x是输入信号,W是DFT的
权重矩阵。
权重矩阵W是一个复数矩阵,具 有特殊的结构,可以通过快速傅 里叶变换(FFT)算法进行高效
03
其他信号处理方法还包括短时 傅里叶变换、Wigner-Ville分 布等,可根据具体应用场景选 择合适的信号处理方法。
ቤተ መጻሕፍቲ ባይዱ 06
结论
离散傅里叶变换的重要性和应用价值
离散傅里叶变换(DFT)是数字信号处理领域 中的重要工具,它能够将信号从时域转换到频 域,从而揭示信号的频率成分和特征。
DFT在通信、雷达、声呐、图像处理、语音识 别等领域有着广泛的应用,是实现信号分析和 处理的关键技术之一。
图像压缩
通过对图像进行DFT变换,将图像从空间域变换到频域,可以提取出图像的主要频率成分 ,从而实现图像压缩。常见的图像压缩算法有JPEG和JPEG2000等。
05
离散傅里叶变换的局限性和改进方法
离散傅里叶变换的局限性
计算量大
离散傅里叶变换需要进行大量复杂的复数运算,对于大数据量信 号处理效率较低。
方式。
离散傅里叶变换的编程实现
01
编程语言如Python、C等提供了离散傅里叶变换的库函数,可 以直接调用进行计算。
02
编程实现时需要注意数据的输入输出、内存管理、异常处理等
问题,以保证程序的正确性和稳定性。
编程实现离散傅里叶变换时,可以根据实际需求选择不同的库
03
函数和算法,以达到最优的计算效果。
DSP-离散傅里叶变换(DFT)

由于:
N1
N 1 W k0
k(mn) N
{1 0
mnM N,MM为整数
mnM N,M
所以, 在变换区间上满足下式:
IDFT[X(k)]=x(n),
0≤n≤N-1
离散傅里叶逆变换是唯一的。
3.1 离散傅里叶变换的定义
[例]
解:
序(1)列设x变(n换)=区R4间(nN) ,=8求,x(则n):的X (8k点) 和n1760 点x(DnF)WT 8。kn
设序列x(n)的长度为N, 其Z变换和DFT分别为:
N1
X(z)ZT[x(n)] x(n)zn
n0
N1
X(k)DFT[x(n)] x(n)WNkn
n0
比较上面二式可得关系式
0kN-1
X(k) XXX(((kkkX )))(XXX(z(z(z)z)))zzezej2jN 2Njk2ke ,k,j,2N k00,0kkkNN--N 11-10((33k ..1(1.3.33. )1).3)N ze N
离散傅里叶变换(DFT)
本章主要内容
▪ 离散傅里叶变换的定义 ▪ 离散傅里叶变换的基本性质 ▪ 频率域采样 ▪ 离散傅里叶变换的应用举例
离散傅里叶变换(DFT)
DFT变换的实质:有限长序列的傅里叶变换的有限点离散采
样(时域和频域都是离散化的有限点长的序列)。
DFT变换的意义:
▪ 开辟了频域离散化的道路,使数字信号处理可以在频域中进 行处理,增加了数字信号处理的灵活性。 ▪ DFT具有多种快速算法(FFT),实现了信号的实时处理和设备 的简化。
3 N 0
j 2 kn
e8
XX(k(k)
77
)
n n0 0
信号与系统分析——宗伟 7

4.离散时间与离散频率的傅里叶变换(DFS) 离散时间与离散频率的傅里叶变换(DFS)
离散周期时间信号 x ( k ) 的傅里叶变换 X ( n ) 也是离 散周期, 与 构成一对傅里叶变换对, 散周期, x ( k ) X ( n )构成一对傅里叶变换对,又称 为离散傅里叶级数. 为离散傅里叶级数. 傅里叶级数对为
D F T [ x1 ( k )] = X 1 ( n ), D F T [ x 2 ( k )] = X 2 ( n ),
则
D F T [ x1 ( k ) ⊗ x 2 ( k )] = X 1 ( n ) X 2 ( n )
证明: 证明
D F T [ x1 ( k ) ⊗ x 2 ( k )] = D F T [ ∑ x1 ( i ) x 2 (( k − i )) N G N ( i )]
N
)k
的离散傅里叶变换
W 40 W 40 W 40 x (0) 1 1 1 1 0 0 W 41 W 42 W 43 x (1) 1 − j − 1 j 1 − 2 j = = 2 4 6 W 4 W 4 W 4 x (2) 1 − 1 1 − 1 0 0 3 6 9 x (3) 1 j − 1 − j − 1 2 j W4 W4 W4
频域:周期 连续 频域 周期,连续 周期
综合以上三对傅里叶变换的规律可以得出: 综合以上三对傅里叶变换的规律可以得出 一个域中的连续性对应于另一个域中的非周期 性;一个域中的周期性对应于另一个域中的离散 一个域中的周期性对应于另一个域中的离散 性. 除了以上三种变换外,还有第四种变换存在,时 除了以上三种变换外,还有第四种变换存在, 域中周期离散函数对应于频域中离散周期函数, 域中周期离散函数对应于频域中离散周期函数, 即时域频域之间的傅里叶变换规律4: 即时域频域之间的傅里叶变换规律4: 时域:离散, 时域:离散,周期 DFS 频域:周期, 频域:周期,离散
离散时间傅里叶变换对

离散时间傅里叶变换对介绍离散时间傅里叶变换(Discrete Fourier Transform, DFT)是信号处理中常用的一种变换方法,它将时域中的离散信号转换到频域中,通过分析信号在频域上的特性,可以揭示信号中隐藏的信息。
离散时间傅里叶变换对作为傅里叶变换对的一种形式,在数字图像处理、通信系统等领域有着广泛的应用。
一级标题DFT的定义离散时间傅里叶变换对将离散时间域序列x[n](n为整数)转换为离散频率域序列X[k](k为整数)。
其数学定义如下:其中,N为序列的长度,k为频率序列的索引。
DFT的计算复杂度较高,通常采用快速傅里叶变换(Fast Fourier Transform, FFT)算法来加速计算。
DFT的性质DFT具有一些重要的性质,它们对于理解和应用DFT至关重要。
1.线性性质:DFT是线性的,即对信号的线性组合的DFT等于DFT的线性组合。
2.循环移位性质:对于输入信号x[n],将其向右循环移位m个单位,得到新的信号x_m[n]=x[(n-m) mod N],则x_m[n]的DFT等于x[n]的DFT乘以旋转因子的m次幂。
3.对称性质:当输入信号x[n]是实数序列时,其DFT具有共轭对称性,即X[k]=X^*[N-k]。
4.周期性质:对于周期为N的信号,其DFT为离散频率域上的周期函数,频率分辨率为1/N。
DFT的应用DFT在信号处理中有着广泛的应用,如下所示:1.频谱分析:通过计算信号的DFT,可以将信号转换到频域中,从而分析信号中各个频率成分的强度和相位,揭示信号的频域特性。
2.信号压缩:DFT可以将时域信号转换为频域信号,在频域中进行处理,然后再通过逆变换将频域信号转换为时域信号,实现信号的压缩。
3.滤波器设计:DFT可以用来设计滤波器,通过将滤波器的频率响应转换为时域响应,从而得到滤波器的系数。
4.信号恢复:通过对信号的部分采样数据进行DFT,可以恢复出信号的完整信息,实现信号的恢复。
信号与系统课后答案郑君里第7章

信号与系统课后答案:郑君里第7章简介本文是《信号与系统》课程的第7章课后答案,该章节由著名作者郑君里所撰写。
本章主要介绍了信号与系统的离散傅里叶变换(DFT)和离散时间傅里叶变换(DTFT)。
信号处理是一门研究如何用数学方法描述和处理各种信号的科学。
信号是信息的载体,而系统是对信号进行处理的载体。
离散傅里叶变换和离散时间傅里叶变换是信号与系统理论中最基本的工具之一,它们具有广泛的应用。
理解离散傅里叶变换和离散时间傅里叶变换的原理和性质对于理解信号与系统的基本原理和实际应用非常重要。
第7章课后题答案第1题根据定义,离散傅里叶变换(DFT)的计算公式如下:$$ X(k) = \\sum_{n=0}^{N-1} x(n) \\cdot e^{-j\\frac{2\\pi}{N} nk} $$其中,N表示信号的长度,N(N)表示输入信号的离散采样值,N(N)表示变换结果中的频谱系数。
根据公式,我们可以计算出给定信号的DFT变换。
第2题离散傅里叶变换的逆变换公式如下:$$ x(n) = \\frac{1}{N}\\sum_{k=0}^{N-1} X(k) \\cdot e^{j \\frac{2\\pi}{N} nk} $$逆变换可以将频域表示的信号转换回时域表示。
第3题离散时间傅里叶变换(DTFT)的计算公式如下:$$ X(e^{j\\omega}) = \\sum_{n=-\\infty}^{\\infty} x(n)\\cdot e^{-j\\omega n} $$DTFT是连续的频域表示,它不仅适用于周期信号,也适用于非周期信号。
第4题DTFT的逆变换公式如下:$$ x(n) = \\frac{1}{2\\pi} \\int_{-\\pi}^{\\pi}X(e^{j\\omega}) \\cdot e^{j\\omega n} d\\omega $$逆变换可以将频域表示的信号转换回时域表示。
第5题离散时间傅里叶变换的频谱无法在计算机中实现,因为DTFT变换结果是连续的函数。
傅里叶变换在信号处理中的应用

傅里叶变换在信号处理中的应用概述傅里叶变换是一种重要的数学工具,广泛应用于信号处理领域。
通过将信号从时域转换到频域,傅里叶变换可以帮助我们了解信号的频率特性,从而对信号进行分析和处理。
本文将介绍傅里叶变换的基本原理,并探讨其在信号处理中的几个常见应用。
1. 傅里叶变换的基本原理傅里叶变换是将一个连续时间域的信号转换到连续频率域的过程。
其基本原理可以用以下公式表示:X(f) = ∫[x(t) * exp(-j2πft)] dt其中,X(f)表示信号的频谱,x(t)表示信号在时域的表示,f表示频率,j是虚数单位。
通过将信号分解为多个频率成分,傅里叶变换可以使我们更好地理解信号的频率分布情况。
2. 傅里叶级数和离散傅里叶变换傅里叶级数是傅里叶变换在周期信号上的应用。
它将周期信号表示为一系列正弦波的叠加。
傅里叶级数的表示形式为:x(t) = Σ[Cn * exp(j2πnft)]其中,Cn为信号的频谱系数,它描述了信号在各个频率分量上的能量大小。
通过计算每个频率分量的系数,我们可以还原出原始的周期信号。
离散傅里叶变换是傅里叶变换在离散信号上的应用。
它将离散信号转化为离散频率信号。
离散傅里叶变换的计算公式为:X(k) = Σ[x(n) * exp(-j2πnk/N)]其中,X(k)为信号的频谱,x(n)为离散信号的值,N为信号的长度。
通过离散傅里叶变换,我们可以分析离散信号的频谱特性。
3. 傅里叶变换在滤波中的应用滤波是信号处理中常见的操作,用于去除信号中的噪声或不需要的频率成分。
傅里叶变换在滤波中有着重要的应用。
我们可以通过分析信号的频谱,并根据需求选择性地去除特定频率分量,从而实现信号的滤波。
4. 傅里叶变换在图像处理中的应用傅里叶变换在图像处理领域也有着广泛的应用。
通过将图像转换到频域,我们可以分析图像的频率特征,进而实现图像的增强、去噪等操作。
例如,可以通过高通滤波器来增强图像的边缘信息,或者通过低通滤波器来去除图像中的高频噪声。
信号的采集与离散时间傅里叶变换

信号的采集与离散时间傅里叶变换信号的采集与离散时间傅里叶变换引言:信号的采集与处理在现代通信和控制系统中扮演着重要角色。
离散时间傅里叶变换(Discrete Time Fourier Transform,DTFT)作为一种重要的信号分析工具,被广泛应用于信号的频谱分析和滤波器设计等领域。
本文将介绍信号的采集过程以及离散时间傅里叶变换的基本原理和应用。
一、信号的采集过程信号的采集是指将连续时间域的信号转化为离散时间域的信号。
在采集过程中,需要对连续时间信号进行采样和量化两个基本步骤。
采样是指在一定时间间隔内对信号进行离散的取样,而量化则是将每个样本的幅度转化为离散的数值。
通过采样和量化,连续时间信号可以转化为离散时间信号,方便后续的数字信号处理。
1. 采样采样是将连续时间信号在时间上进行离散化的过程。
采样频率决定了采样间隔的时间长度,即每隔多久进行一次采样。
采样频率必须满足奈奎斯特采样定理,即采样频率应大于信号最高频率的两倍,以避免采集到的离散点之间信息的丢失。
2. 量化量化是将连续时间信号的幅度转化为离散数值的过程。
在量化过程中,需要将连续的信号幅度映射到一个有限的取值范围内。
通常使用均匀量化或非均匀量化的方法,将连续信号幅度量化为离散的幅度,以便于数字信号处理和存储。
二、离散时间傅里叶变换的基本原理离散时间傅里叶变换是一种将离散时间域信号转化为频域信号的数学工具。
它包括离散傅里叶变换(DFT)和离散傅里叶逆变换(IDFT)两个部分。
1. 离散傅里叶变换(DFT)离散傅里叶变换将离散时间信号变换为离散频域信号。
对于长度为N的离散时间域信号x(n),其离散傅里叶变换X(k)可以用以下公式表示:X(k) = Σ[x(n) * e^(-j2πkn/N)]其中,k为频域的离散频率,n为时间域的离散时间,j为虚数单位。
2. 离散傅里叶逆变换(IDFT)离散傅里叶逆变换将离散频域信号恢复为离散时间域信号。
对于长度为N的离散频域信号X(k),其离散傅里叶逆变换x(n)可以用以下公式表示:x(n) = (1/N) * Σ[X(k) * e^(j2πkn/N)]离散傅里叶变换和逆变换的具体计算可以通过快速傅里叶变换(Fast Fourier Transform,FFT)和快速傅里叶逆变换(InverseFast Fourier Transform,IFFT)算法进行高效实现。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
延边大学工学院 电子信息通信学科
许一男
7.1.1 离散时间信号的频域采样和重建
➢对离散时间信号进行频域分析:时域序列转换
成频域表达式来分析
➢频域采用方式:离散傅立叶变换(DFT) ➢DTFT - DFT
2
傅立叶变换的频域采样
➢非周期离散时间信号x(n)的傅立叶变换:
下线性关系
a1x1
(n)
a2
x2
(n)
DFT N
a1
X1
(k
)
a2
X
2
(k
)
14
序列的圆周对称特性
➢长度为L≤N的有限长序列x(n)的N点DFT等于周
期为N的周期序列xp(n)的N点DFT 其中xp(n)是x(n)的周期延拓
15
➢对x(n)进行周期延拓,得到:
xp (n) x(n lN) l
➢DFT:
Xk
N 1
j
xn
sin
2kn
,
n0
N
➢IDFT:
0 k N 1
xn
j
1
N1
Xk s in
2kn
,
0 n N 1
N k0
N
23
纯虚数序列
➢现有序列 xn jx I n
xI
ncos 2kn
N
➢IDFT
x R n
1 N
N 1 k0
X
R
k
c
os
2kn N
XI ksin
2kn N
x I k
1 N
N1
k0
X
R
k
sin
2kn N
X
I
k
c
os
2kn N
20
实值序列
➢如果序列x(n)是实数
XN k X k X k
因此,可以写成
XN k Xk
≮ XN k ≮ Xk
➢N点DFT的符号表示:
x
n
DFT
Xk
N
12
7.2.1 周期性、线性和对称性
➢ 周期性: ➢ 如果x(n)和X(k)是N点DFT对,那么对所有的n
满足以下关系式
x(n N) x(n)
X (k N) X (k)
13
线性
➢如果
DFT
x1n X1k
,并且
DFT
x 2 n X2 k
N
N
那么,对于任何实值或复值常数a1和a2满足以
对N求余
17
xp (n) x(n lN) l
x'
(n)
x' 0,
p
(n),
0 n N 1 otherwise
18
x'(n) x(n k)N
x'(n) x(n 2)4
x'(0) x(2)4 x(2)
x'(1) x(1)4 x(3)
x'(2) x(0)4 x(0)
DFT : IDFT:
N 1
X (k) x(n)WNkn, n0
k 0,1, , N 1
x(n)
1 N
N 1
X (k)WNkn,
n0
n 0,1, , N 1
5
例 7.1.2 (pp 337)
➢长为L的有限长序列为
x(n)
1, 0,
0 n L 1 otherwise
计算该序列的N点DFT
X xnejn n
➢连续样本的间隔:rad
3
7.1.2 离散傅里叶变换
➢DFT的定义:
设序列x(n)的长度为L,
定义x(n)的N点DFT和IDFT为(式7.1.20-21)
N1
j2 kn
DFT : X(k) x(n)e N ,
k 0,1, , N 1
n0
逆变换: I DF T :
x(n)
➢IDFT的矩阵形式:
xN
1 N
WN X N
➢定义: WN* 表示 WN 的复共轭
x
1 N
1 N
WN
10
7.1.4 DFT与其他变换的关系
➢与周期序列傅里叶级数系数的关系
X (k) Nck
➢与非周期序列傅里叶变换的关系
X (k ) X () |2k / N
➢与z变换的关系
X (k ) X (z) |ze j 2kn/ N
➢若将xp(n)向右移位k个单位,得到:
x'p (n) xp (n k) x(n k lN ) l
➢取x’p(n)的主值区(一个周期),得到:
x'(n) 0x,'p (n),
0 n N 1 otherwise
16
➢序列的圆周移位(循环移位) ➢ x’p(n)是x(n)在圆周上的移位
XN :频率样本的N点矢量
WN :N x N矩阵,线性变换、逆矩阵
x0
xN
x1
,
xN 1
x0
XN
x1
xN 1
1 1
1
1
1 WN
WN
1
WN2
WN2
WNN1
WN4
WN2N1
1 WNN1 WN2N1 WNN1N1
9
➢N点DFT的矩阵形式: X N WNN ➢IDFT的表达形式:x N WN1X N
x'(3) x(1)4 x(1)
19
DFT的对称性
➢现有序列 xn xR n jx I n, 0 n N 1
Xk XR k jX I k, 0 k N 1
➢DFT
X R
k
N 1 n0
x
R
ncos 2kn
N
x I nsin
2kn N
X I
k
N 1
n0
x R
n s in
2kn N
X()
sinL sin /
/ 2 2
e
j(
L1)
/
2
X(k)
sinkL / N sink / N
e
jk
( L 1)
/
N
,
k 0,1, , N 1
6
L=10时,幅度和相位角特性
7
L=50,100时,幅度和相位角特性
➢线
8
7.1.3 DFT的线性变换
➢ DFT – IDFT 对序列x(n)和X(k)的线性变换 ➢ 定义: xN :序列x(n)的N点矢量
21
实值偶序列
➢如果x(n)是实值且是偶数
xn xN n, 0 n N 1
➢DFT:
Xk N1 xncos 2kn ,
n0
N
➢IDFT:
0 k N 1
xn 1 N1 Xkcos 2kn , 0 n N 1
N k0
N
22
实值奇序列
➢如果x(n)是实值且是奇数
xn xN n, 0 n N 1
(7.1.33) (7.1.34) (7.1.39)
11
7.2 DFT的性质
➢若定义 j 2 WN e N
➢ DFT和IDFT为:
DFT : IDFT:
N 1
X (k) x(n)WNkn, n0
x(n)
1 N
N 1
X (k)WNkn,
n0
k 0,1, , N 1 n 0,1, , N 1
1
N 1
j2 kn
X(k)e N ,
n 0,1, , N 1
N n0
➢ N:离散傅里叶变换区间长度,且要求N≥L
4
DFT : IDFT:
N 1
j 2 kn
X (k) x(n)e N ,
n0
x(n)
1
N 1
j 2 kn
X (k)e N ,
N n0
现定义:WN e j2/ N
可以写成:
k 0,1, , N 1 n 0,1, , N 1