1 离散时间傅里叶变换的性质-

合集下载

离散傅里叶变换性质

离散傅里叶变换性质

X [m] X [ N m]
实序列 实部周期偶对称,虚部 周期奇对称
当x[k]是实序列周期偶对称时:X [m] X [ N m]
实序列,周期偶对称 实序列,周期偶对称
当x[k]是实序列周期奇对称时: X [m] X [ N m]
实序列,周期奇对称 纯虚序列,周期奇对称
第2章 离散傅里叶变换(DFT)
问题的提出
有限长序列的傅里叶分析
离散傅里叶变换的性质 利用DFT计算线性卷积 利用DFT分析信号的频谱
离散傅里叶变换的性质
1. 线性
2. 循环位移
3. 对称性 4. 序列的循环卷积 5. 序列DFT与z变换的关系
离散傅里叶变换的性质
1. 线性
X1[m] DFTx1[k ]
k
-5 -4 -3 -2 -1 0 1 2 3 4 5 6 7
x[(k 2) 5 ]R N [k ]
k
0 1 2 3 4
DFT时域循环位移特性
mn ~ ~ DFS {x[k n]} WN X [m]
DFTx[( k n) N ]RN [k ]
mn WN X [m]
时域的循环位移对应频域的相移
DFT{ x [k ]} X [(m)N ]RN [m] X [ N m]



时域共轭 频域周期共轭 ~ DFT{x [(k ) N ]RN [k ]} X [m] 时域周期共轭 频域共轭
DFT性质
离散傅里叶变换的性质
3. 对称性 (symmetry)
当x[k]是实序列时:
DFT性质
离散傅里叶变换的性质
序列的循环卷积步骤: (1)补零
(2)周期延拓

离散傅里叶变换时移-概述说明以及解释

离散傅里叶变换时移-概述说明以及解释

离散傅里叶变换时移-概述说明以及解释1.引言1.1 概述离散傅里叶变换(Discrete Fourier Transform,简称DFT)是一种将一个离散信号(或称时域信号)转换为频域表示的数学工具。

在现代信号处理和通信领域中,DFT被广泛应用于信号分析、滤波、频谱估计等领域。

DFT的概念源于傅里叶分析,它是将一个连续时间函数表示为一组基函数乘以一系列复数系数的线性组合。

而离散傅里叶变换则是将这一思想应用于离散信号,将离散时间序列转换为离散频率表示。

通过使用离散傅里叶变换,我们可以将一个时域上的离散信号转换为频域上的频谱表示,从而可以更加直观地观察信号的频率成分和能量分布。

离散傅里叶变换的时移性质是指当输入信号在时域上发生时移时,其在频域上的表示也随之发生相应的时移。

这一性质使得我们可以通过时移操作对信号进行处理和分析。

具体来说,如果我们对一个信号进行时移操作,即将信号中的每个样本向前或向后平移若干个位置,那么该信号在频域上的表示也会相应地发生同样的平移。

在本文中,我们将着重讨论离散傅里叶变换时移的原理和性质。

我们将介绍离散傅里叶变换的基本概念和原理,包括如何进行DFT变换、如何计算DFT系数以及DFT的逆变换等。

然后,我们将详细解释离散傅里叶变换的时移性质,包括时域上的时移操作如何在频域上体现以及时域和频域之间的变换关系等。

通过对离散傅里叶变换时移性质的研究,我们可以更好地理解信号在时域和频域之间的关系,以及对信号进行时移操作的影响。

同时,我们还将探讨离散傅里叶变换时移的应用,包括在信号处理、通信系统和图像处理等领域中的具体应用案例。

通过这些应用案例,我们将展示离散傅里叶变换时移的重要性以及它在实际问题中的实用价值。

1.2 文章结构文章结构部分的内容:本文主要分为三个部分:引言、正文和结论。

在引言部分,首先概述了离散傅里叶变换时移的主题,介绍了离散傅里叶变换的基本概念和原理。

接着,详细说明了本文的结构,即按照离散傅里叶变换时移的相关性质展开论述。

离散时间傅里叶变换.

离散时间傅里叶变换.

第3章 离散时间傅里叶变换在信号与系统中,分析连续时间信号可以采用时域分析方法和频域分析方法,它们之间是通过连续时间的傅里叶变换来完成从时域到频域的变换,它们之间是完成了一种域的变换,从而拓宽了分析连续时间信号的途径。

与连续时间系统的分析类似,在离散时间系统中,也可以采用离散傅里叶变换,将时间域信号转换到频率域进行分析,这样,不但可以得到离散时间信号的频谱,而且也可以使离散时间信号的分析方法更具有多元化。

本章将介绍离散时间系统的频域分析方法。

3.1 非周期序列的傅里叶变换及性质3.1.1 非周期序列傅里叶变换1.定义一个离散时间非周期信号与其频谱之间的关系,可用序列的傅里叶变换来表示。

若设离散时间非周期信号为序列)(n x ,则序列)(n x 的傅里叶变换(DTFT)为:正变换: ∑∞-∞=ω-ω==n nj j en x e X n x DTFT )()()]([ (3-1-1)反变换: ⎰ππ-ωωω-ωπ==d e e X n x e X DTFT n j j j )(21)()]([1 (3-1-2)记为:)()(ω−→←j Fe X n x当然式(3-1-2)等式右端的积分区间可以是)2,0(π或其它任何一个周期。

[例3-1] 设序列)(n x 的波形如图3-1所示,求)(n x 的傅里叶变换)(ωj e X 解:由定义式(3-1-1)可得ωω=--=--===ω-ω-ωω-ω-ωω-ω-ω-ω-=ω-∞-∞=ω∑∑21sin 3sin )()(11)()(25212121333656j j j j j j j j j nj n nj n j ee e e e e e e e een R e X 2.离散时间序列傅里叶变换存在的条件:图3-1离散时间序列)(n x 的傅里叶变换存在且连续的条件为)(n x 满足绝对可和。

即:∞<∑∞-∞=)(n x n (3-1-3)反之,序列的傅里叶变换存在且连续,则序列一定是绝对可和的。

1离散傅里叶变换的定义及物理意义2离散傅里叶变换的基本

1离散傅里叶变换的定义及物理意义2离散傅里叶变换的基本

的主值序列。
第3章 离散傅里叶变换(DFT)
周期延拓序列频谱完全由其离散傅里叶级数系数 X (k ) 确定,因此: X(k) 实质上是 x(n) 的周期延拓序列 x((n)) N 的频谱特性 观察 DFT[R4(n)]4= 4δ(k)。 根据DFT第二种物理解释可知,DFT[R4(n)]4 表示 R4(n)以4为周期的周期延拓序列R4((n))4的频谱特性,因 为R4 ((n))4是一个直流序列,只有直流成分(即零频率 成分),所以, DFT[R4(n)]4 = 4δ(k) 。
第3章 离散傅里叶变换(DFT)
|X(ejω)| (a)R4(n)的幅频特性图
4 3 2 1 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
|X(k)|
(b)4点DFT的幅频特性图
5 4 3 2 1 0 0 0.5 1 1.5 2 2.5 3 3.5 4
|X(k)|
ω/π
ω/π
图3.1.3 例3.1.2程序运行结果
第3章 离散傅里叶变换(DFT)
3.2
3.2.1 线性性质
若x1(n)、x2(n)是两个有限长序列,长度为N1、N2,且
y(n)=ax1(n)+bx2(n)
a、b为常数,取N=max[N1, N2],则 y(n) 的 N 点DFT为
Y(k) = DFT[y(n)]N = aX1(k)+bX2(k) 0≤k≤N-1 其中 X1(k) 和 X2(k) 分别为 x1(n) 和 x2(n) 的N点DFT
x(n) x((n)) N
(3)最后取 x(n m) 的主值序列 x((n+m)) NRN(n) 得到有限长序列 x(n) 的循环移位序列 y(n)。

离散时间傅里叶变换

离散时间傅里叶变换

离散时间傅⾥叶变换1. 离散时间傅⾥叶变换的导出针对离散时间⾮周期序列,为了建⽴它的傅⾥叶变换表⽰,我们将采⽤与连续情况下完全类似的步骤进⾏。

考虑某⼀序列x[n],它具有有限持续期;也就是说,对于某个整数N1和N2,在 −N1⩽以外,x[n]=0。

下图给出了这种类型的⼀个信号。

由这个⾮周期信号可以构成⼀个周期序列\tilde x[n],使x[n]就是\tilde x[n]的⼀个周期。

随着N的增⼤,x[n]就在⼀个更长的时间间隔内与\tilde x[n]相⼀致。

⽽当N\to \infty,对任意有限时间值n⽽⾔,有\tilde x[n]=x[n]。

现在我们来考虑⼀下\tilde x[n]的傅⾥叶级数表⽰式\tag{1}\tilde x[n] = \sum_{k=(N)}a_ke^{jk{(2\pi/N)}n}\tag{2}a_k = \frac{1}{N} \sum_{n=(N)} \tilde x[n]e^{-jk{(2\pi/N)}n}因为在-N_1 \leqslant N \leqslant N_2区间的⼀个周期上\tilde x[n]=x[n],因此我们将上式的求和区间就选在这个周期上\tag{3}a_k = \frac{1}{N} \sum_{n=-N_1}^{N_2} x[n]e^{-jk{(2\pi/N)}n} = \frac{1}{N} \sum_{n=-\infty}^{+\infty} x[n]e^{-jk{(2\pi/N)}n}现定义函数\tag{4}X(e^{j\omega})=\sum_{n=-\infty}^{+\infty}x[n]e^{-j\omega n}可见这些系数a_k正⽐于X(e^{j\omega})的各样本值,即\tag{5}a_k = \frac{1}{N}X(e^{jk\omega_0})式中,\omega_0=2\pi/N⽤来记作在频域中的样本间隔。

离散时间信号的傅里叶变换和离散傅里叶变换

离散时间信号的傅里叶变换和离散傅里叶变换

离散时间信号的傅里叶变换和离散傅里叶变换摘要本文主要介绍了离散时间信号的离散时间傅里叶变换及离散傅里叶变换,说明其在频域的具体表示和分析,并通过定义的方法和矩阵形式的表示来给出其具体的计算方法。

同时还介绍了与离散时间傅里叶变换(DTFT )和离散傅里叶变换(DFT )相关的线性卷积与圆周卷积,并讲述它们之间的联系,从而给出了用圆周卷积计算线性卷积的方法,即用离散傅里叶变换实现线性卷积。

1. 离散时间傅里叶变换1.1离散时间傅里叶变换及其逆变换离散时间傅里叶变换为离散时间序列x[n]的傅里叶变换,是以复指数序列{}的序列来表示的(可对应于三角函数序列),相当于傅里叶级数的展n j e ω-开,为离散时间信号和线性时不变系统提供了一种频域表示,其中是实频率ω变量。

时间序列x[n]的离散时间傅里叶变换定义如下:)(ωj e X (1.1)∑∞-∞=-=nnj j e n x e X ωω][)(通常是实变量的复数函数同时也是周期为的周期函数,并且)(ωj e X ωπ2的幅度函数和实部是的偶函数,而其相位函数和虚部是的奇函数。

)(ωj e X ωω这是由于:(1.2))()()(tan )()()()(sin )()()(cos )()(222ωωωωωωωωωωθωθωθj re j im j im j re j j j im j j re e X e X e X e X e X e X e X e X e X =+===由于式(1.1)中的傅里叶系数x[n]可以用下面给出的傅里叶积分从中算出:)(ωj e X 1(1.3)ωπωππωd e eX n x n j j )(21][⎰-=故可以称该式为离散时间傅里叶逆变换(IDTFT ),则式(1.1)和(1.3)构成了序列x[n]的离散时间傅里叶变换对。

上述定义给出了计算DTFT 的方法,对于大多数时间序列其DTFT 可以用收敛的几何级数形式表示,例如序列x[n]=,此时其傅里叶变换可以写成简单n α的封闭形式。

数字图像处理中的常用变换

数字图像处理中的常用变换

一、离散傅里叶变换1.离散傅里叶变换的特点离散傅里叶变换(DFT),是连续傅里叶变换在时域和频域上都离散的形式,将时域信号的采样变换为在离散时间傅里叶变换(DTFT)频域的采样。

在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。

即使对无限长的离散信号作DFT,也应当将其看作经过周期延拓成为周期信号再作变换。

在实际应用中通常采用快速傅里叶变换以高效计算DFT。

DFT将空域变换到频域,很容易了解到图像的各空间频域的成分。

DFT的应用十分广泛,如:图像的特征提取、空间频率域滤波、图像恢复和纹理分析等。

2.离散傅里叶变换的性质1)线性性质2)比例性质3)可分离性4)平移性质5)图像中心化6)周期性7)共轭对称性8)旋转不变性9)卷积定理10)平均值二、离散余弦变换1.离散余弦变换简介为了快速有效地对图像进行处理和分析,常通过正交变换将图像变换到频域,利用频域的特有性质进行处理。

传统的正交变换多是复变换,运算量大,不易实时处理。

随着数字图像处理技术的发展,出现了以离散余弦变换(DCT)为代表的一大类正弦型实变换,均具有快速算法。

目前DCT变换在数据压缩,图像分析,信号的稀疏表示等方面有着广泛的应用。

由于其变换矩阵的基向量很近似于托普利兹(Toeplitz )矩阵的特征向量,而托普利兹矩阵又体现了人类语言及图像信号的相关特性,因此常被认为是对语音和图像信号的最佳变换。

对给定长度为N 的输入序列f(x),它的DCT 变换定义为:⎪⎭⎫ ⎝⎛+⨯=∑-=102)12(cos )()(2)(N x N x x f u C N u F μπ式中:1,,1,0u -=N ,式中的)(u C 的满足:⎪⎩⎪⎨⎧==其它1021)(u u C在数字图像处理中,通常使用二维DCT 变换,正变换为:⎪⎪⎭⎫ ⎝⎛++⨯=∑∑-=-=10102)12(cos 2)12(cos ),()()(2),(N x N y N v y N u x y x f v C u C N v u F ππ 其逆变换IDCT 为:⎪⎭⎫ ⎝⎛++⨯=∑∑-=-=10102)12(cos 2)12(cos ),()()(2),(N u N v N v y N u x v u F v C u C N y x f ππ 式中:1,,1,0u -=N ,1,,1,0v -=N 。

离散时间傅立叶变换(DTFT)

离散时间傅立叶变换(DTFT)

| X (e j ) | sin(N / 2) sin( / 2)
arg[ X (e j )] (N 1) arg[sin(N / 2)]
2
sin( / 2)
当N=4时,序列x(n)及其幅度谱与相位谱如下图示。
程序清单
clc; clear; y=[1 1 1 1]; x=0; n=[0:3]; w=0:0.01:2*pi; subplot(311); stem(n,y); xlabel('n'); ylabel('x(n)'); for n=0:3
xe (n) xe (n)
xo (n) xo(n)
xe (n)
1 2
[x(n)
x(n)]
xo (n)
1 2
[x(n)
x(n)]
(4)对序列x(n)旳X(ejω)
X(ejω)=Xe(ejω)+Xo(ejω)
Xe(ejω)=X*e(e-jω) Xo(ejω)=-X*o(e-jω)
X e (e j
)
对比上面两公式, 左边相等, 所以得到 xer(n)=xer(-n) xei(n)=-xei(-n)
(2)共轭反对称序列: 若满足下式: xO(n)=-x*O(-n) 则称xO(n)为共轭反对称序列。
共轭反对称序列旳性质:实部是奇函数, 虚部是偶函数。
例:共轭对称序列 共轭反对称序列
5-j -5+j
d
5、时域卷积定理

y(n)=x(n)*h(n),
则 Y(ejω)=X(ejω)·H(ejω)
时域卷积, 频域乘法
证明:
令k=n-m
y(n) x(m)h(n m)
m
Y (e j ) FT[ y(n)]

数字信号处理之离散傅里叶变换

数字信号处理之离散傅里叶变换

共轭对称性
对于实数输入信号,DFT 的结果X[k]满足共轭对称 性,即X[-k] = X[k]*。
离散傅里叶变换的矩阵表示
DFT可以表示为一个矩阵运算, 即X = W * x,其中X是DFT的输 出,x是输入信号,W是DFT的
权重矩阵。
权重矩阵W是一个复数矩阵,具 有特殊的结构,可以通过快速傅 里叶变换(FFT)算法进行高效
03
其他信号处理方法还包括短时 傅里叶变换、Wigner-Ville分 布等,可根据具体应用场景选 择合适的信号处理方法。
ቤተ መጻሕፍቲ ባይዱ 06
结论
离散傅里叶变换的重要性和应用价值
离散傅里叶变换(DFT)是数字信号处理领域 中的重要工具,它能够将信号从时域转换到频 域,从而揭示信号的频率成分和特征。
DFT在通信、雷达、声呐、图像处理、语音识 别等领域有着广泛的应用,是实现信号分析和 处理的关键技术之一。
图像压缩
通过对图像进行DFT变换,将图像从空间域变换到频域,可以提取出图像的主要频率成分 ,从而实现图像压缩。常见的图像压缩算法有JPEG和JPEG2000等。
05
离散傅里叶变换的局限性和改进方法
离散傅里叶变换的局限性
计算量大
离散傅里叶变换需要进行大量复杂的复数运算,对于大数据量信 号处理效率较低。
方式。
离散傅里叶变换的编程实现
01
编程语言如Python、C等提供了离散傅里叶变换的库函数,可 以直接调用进行计算。
02
编程实现时需要注意数据的输入输出、内存管理、异常处理等
问题,以保证程序的正确性和稳定性。
编程实现离散傅里叶变换时,可以根据实际需求选择不同的库
03
函数和算法,以达到最优的计算效果。

离散傅里叶变换DFT的性质

离散傅里叶变换DFT的性质

讨论DFT的性质有何意义呢?
1.加深对离散傅里叶变换的理解,更好的掌握DFT 的特性,便于体会出时域和频谱表达存在的内在 联系。
2.这些重要的性质有助于简化变换与反变换的求取, 降低计算的复杂性。例如后面重点学习的FFT算法 就利用了DFT的周期性和对称性。
仔细看书中的性质列表,与DTFT性质表进行对比
N1
[XR(k)cos
k0
2kn
N
Xl
(k)sin
2kn]
N
(2)实偶序列
x(n)x(Nn) 0nN1XI(k)0
N1
2kn
X(k) x(n)cos
n0
N
0kN1
XI(k)0x(n)N 1N k01X(k)cos2Nkn
0nN1
DFT: XR(k)Nn01xR(n)cos2NknxI(n)sin2Nkn XI (k)Nn01xR(n)sin2NknxI(n)cos2Nkn
x'(n)=x(nk,对N求余) x((nk))N
当 k 2和 N 4 x (n ) x ((n 2 )) 4 x (0 ) x (( 2 )) 4 x (2 ) x (1 ) x (( 1 )) 4 x (3 ) x (2 ) x ((0 )) 4 x (0 ) x (3 ) x ((1 )) 4 x (1 )
加深对离散傅里叶变换的理解,更好的掌握DFT的特性,便于体会出时域和频谱表达存在的内在联系。
1 7、序列的圆周时域移位
j
x[n] X (e )e d 这些重要的性质有助于简化变换与反变换的求取,降低计算的复杂性。
jn
3 DFT的隐含周期性、线性、对称性
2
2 加深对离散傅里叶变换的理解,更好的掌握DFT的特性,便于体会出时域和频谱表达存在的内在联系。

离散傅里叶变换的基本性质

离散傅里叶变换的基本性质

x(5 )
A(6 )
W
0 N
x(3 )
A(7 )
x(7 )
W
0 N
A(0 )
A(1 )
A(2 )
W
0 N
A(3 )
W
2 N
A(4 )
A(5 )
A(6 )
W
0 N
A(7 )
W
2 N
A(0 )
A(1 )
A(2 )
A(3 )
A(4 )
W
0 N
A(5 )
W
1 N
A(6 )
W
2 N
A(7 )
W
3 N
N点DIT―FFT运算流图(N=8)
A(5 )
A(6 )
W
0 N
A(7 )
W
2 N
A(0 )
A(1 )
A(2 )
A(3 )
A(4 )
W
0 N
A(5 )
W
1 N
A(6 )
W
2 N
A(7 )
W
3 N
N点DIT―FFT运算流图(N=8)
A(0 ) X(0 ) X(1 ) X(2 ) X(3 ) X(4 ) X(5 ) X(6 )
A(7 ) X(7 )
m N
WN 2
WNm
2. 时域抽取法基2FFT基本原理 FFT算法基本上分为两大类:
时域抽取法FFT(Decimation In Time FFT,简称DITFFT)和频域抽取法FFT(Decimation In Frequency FFT,简 称DIF―FFT)。下面先介绍DIF―FFT算法。
设序列x(n)的长度为N,且满足
N 2M , M 为自然数

2.1离散时间序列的傅里叶变换DTFT

2.1离散时间序列的傅里叶变换DTFT
-11-

n = −∞ π

∑ x ( n )e
∫ π X (e


− jωn
)e
jωn

2、时移与频移性 4、时域卷积定理 6、帕斯维尔定理 8、周期性
DTFT的周期性
由序列的傅里叶变换公式:
X ( e jω ) =
n取整数,可以把频率分成两部分 ω → ω + 2πM
n = −∞
∑ x(n)e − jωn
-28-
序列分成共轭对称部分和共轭反对称部分 x(n) = xe (n) + xo (n)
傅里叶变换
= X ( e jω ) DTFT = [ x ( n )] DTFT [ xe ( n ) + xo ( n )] = DTFT [ xe ( n )] + DTFT [ xo ( n )] =
n = −∞
∞ *
( )
( )
( ) ( )
DTFT性质应用举例
例2.1.7
P38
-19-
时域卷积定理
设 则
y (n ) = x(n ) * h(n )
Y (e jω )=X (e jω )H (e jω )
该定理说明,两序列卷积的DTFT,服从相乘的 关系。对于线性时不变系统输出的DTFT等于输 。 入信号的 DTFT乘以单位脉冲响应DTFT。因此 求系统的输出信号,可以在时域用卷积公式计算, 也可以在频域求出输出的DTFT,再作逆DTFT 求出输出信号。
由上式表明,共轭对称序列的实部确实是偶 函数,虚部是奇函数。
-25-
一般序列 分解为 其中
= x ( n ) xe ( n ) + xo (n )

离散傅里叶变换

离散傅里叶变换

离散傅里叶变换离散傅里叶变换(DFT),是连续傅里叶变换在时域和频域上都离散的形式,将时域信号的采样变换为在离散时间傅里叶变换(DTFT)频域的采样。

在形式上,变换两端(时域和频域上)的序列是有限长的,而实际上这两组序列都应当被认为是离散周期信号的主值序列。

即使对有限长的离散信号作DFT,也应当将其看作经过周期延拓成为周期信号再作变换。

在实际应用中通常采用快速傅里叶变换以高效计算DFT。

目录对换实例离散傅里叶变换的基本性质对换实例离散傅里叶变换的基本性质展开编辑本段对换实例傅里叶变换的变换对对于N点序列{x[n ]} 0 ≤ n < N ,它的离散傅里叶变换(DFT)为?x[k ] = N - 1Σn = 0 e - i 2 π–––––N n k x[n ] k = 0,1, …,N-1.其中e 是自然对数的底数,i 是虚数单位。

通常以符号F表示这一变换,即?x= Fx离散傅里叶变换的逆变换(IDFT)为:x[n ] = 1––N N - 1Σk = 0 e i 2 π–––––N nk ?x[k ] n = 0,1, …,N-1.可以记为:x = F -1 ?x实际上,DFT和IDFT变换式中和式前面乘上的归一化系数并不重要。

在上面的定义中,DFT和IDFT前的系数分别为1 和1/N。

有时会将这两个系数都改成1/ √––N,这样就有x = FFx,即DFT成为酉变换。

从连续到离散连续时间信号x(t) 以及它的连续傅里叶变换(CT)?x( ω)都是连续的。

由于数字系统只能处理有限长的、离散的信号,因此必须将x 和?x都离散化,并且建立对应于连续傅里叶变换的映射。

数字系统只能处理有限长的信号,为此假设x(t)时限于[0, L],再通过时域采样将x(t) 离散化,就可以得到有限长的离散信号。

设采样周期为T,则时域采样点数N=L/T。

x discrete (t) = x (t) N - 1Σn = 0 δ(t-nT) = N - 1Σn = 0 x (nT) δ(t-nT)它的傅里叶变换为?xdiscrete ( ω) = N - 1Σn = 0 x (nT)F δ(t-nT) = 1––T N - 1Σn = 0 x (nT)e - i 2 π n ω T这就是x(t)时域采样的连续傅里叶变换,也就是离散时间傅里叶变换,它在频域依然是连续的。

离散时间傅里叶变换对

离散时间傅里叶变换对

离散时间傅里叶变换对介绍离散时间傅里叶变换(Discrete Fourier Transform, DFT)是信号处理中常用的一种变换方法,它将时域中的离散信号转换到频域中,通过分析信号在频域上的特性,可以揭示信号中隐藏的信息。

离散时间傅里叶变换对作为傅里叶变换对的一种形式,在数字图像处理、通信系统等领域有着广泛的应用。

一级标题DFT的定义离散时间傅里叶变换对将离散时间域序列x[n](n为整数)转换为离散频率域序列X[k](k为整数)。

其数学定义如下:其中,N为序列的长度,k为频率序列的索引。

DFT的计算复杂度较高,通常采用快速傅里叶变换(Fast Fourier Transform, FFT)算法来加速计算。

DFT的性质DFT具有一些重要的性质,它们对于理解和应用DFT至关重要。

1.线性性质:DFT是线性的,即对信号的线性组合的DFT等于DFT的线性组合。

2.循环移位性质:对于输入信号x[n],将其向右循环移位m个单位,得到新的信号x_m[n]=x[(n-m) mod N],则x_m[n]的DFT等于x[n]的DFT乘以旋转因子的m次幂。

3.对称性质:当输入信号x[n]是实数序列时,其DFT具有共轭对称性,即X[k]=X^*[N-k]。

4.周期性质:对于周期为N的信号,其DFT为离散频率域上的周期函数,频率分辨率为1/N。

DFT的应用DFT在信号处理中有着广泛的应用,如下所示:1.频谱分析:通过计算信号的DFT,可以将信号转换到频域中,从而分析信号中各个频率成分的强度和相位,揭示信号的频域特性。

2.信号压缩:DFT可以将时域信号转换为频域信号,在频域中进行处理,然后再通过逆变换将频域信号转换为时域信号,实现信号的压缩。

3.滤波器设计:DFT可以用来设计滤波器,通过将滤波器的频率响应转换为时域响应,从而得到滤波器的系数。

4.信号恢复:通过对信号的部分采样数据进行DFT,可以恢复出信号的完整信息,实现信号的恢复。

离散时间傅里叶变换的性质

离散时间傅里叶变换的性质

π
k 0
离散非周期序列DTFT的性质
谢谢
本课程所引用的一些素材为主讲老师多年的教学积累,来源 于多种媒体及同事、同行、朋友的交流,难以一一注明出处,特 此说明并表示感谢!
...

Y (ej ) X(ej( π) ) X (ej( π) ) 2
例:已知x[k]的频谱如图所示,求y[k]的频谱。
X(ej )
1
解:

π π 2 0 π 2 π

X(ej( )
1

π π 2
π2 π

X(ej( )
1

π π 2
π2 π

Y(ej )
1
π π 2
主讲人:陈后金
电子信息工程学院
离散非周期序列DTFT的性质
※ 线性特性 ※ 对称特性 ※ 位移特性 ※ 卷积特性 ※ 微分特性 ※ Parseval定理
离散非周期序列DTFT的性质
1. 线性特性

x [k]DTFTX (ej )
1
1
x [k]DTFTX (ej )
2
2

ax [k] bx [k]DTFTaX (ej ) bX (ej )
解: (1) (2) (3) (4)
3
3
X (ej0 ) x[k] e-jk0 x[k] 1 2 3 4 10
k 0
k 0
3
3
X (e j ) x[k] e-jk x[k] (1)k 1 2 3 4 2
k 0
k 0
π X (ej )d 2x[0] 2 π
3
π X (ej ) 2 d 2π x[k] 2 60π

离散傅里叶变换及其性质

离散傅里叶变换及其性质

kn
N 1
f
(k )W
kn (0
n
N
1)
2N-1 k
k 0
k 0
f (k) IDFT[ F(n)]
1
N 1
j2 kn
F(n) e N
1
N 1
F(n)W kn (0 k N 1)
N n0
N n0
若将f(k),F(n)分别理解为fN(k),FN(n)的主值序列,那 么,DFT变换对与DFS变换对的表达式完全相同。
|F(n) |2
k 0
N n0
表明,在一个频域带限之内,功率谱之和与信号的能 量成比例。


第 10 页
证明 ▲

第5页
4. 频移特性(调制)
若 f(k)←→ F(n)

W–l kf (k) ←→ F((n –l))NGN(n)


第6页
5. 时域循环卷积(圆卷积)定理
• 线卷积: 有限长序列f1(k)和f2(k)的长度分别为N和M,则两 序列的卷积和f(k)(称为线卷积)仍为有限长序列序 列,长度为N+M –1。


第4页
3. 时移特性
•圆周位移(循环位移): 将有限长序列f(k)周期拓展成周期序列fN(k),
再右移m位,得到时移序列fN(k –m),最后取其主 值而得到的序列称为f(k)的圆周位移序列,记为
f ((k –m))NGN(k)
•时移特性 若 f(k)←→ F(n) 则 f ((k –m))NGN(k) ←→ WmnF(n)

第1页
一.离散傅里叶变换(DFT)
借助周期序列DFS的概念导出有限长序列的DFT。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

X (ej ) 4cos2 2
()
… p
4 …
0 p

p…
p
p
离散非周期序列DTFT的性质
3. 位移特性 (a) 时域位移特性
x[k n]DTFT X (ej )e jn
序列在时域的位移,对应其频域的相移。
例:已知x[k]如图所示,求y[k]=x[k-1]的频谱。
)


k
x[k ]e jk

d


1 2p
X (ej ) X (e j )d
2p
1
X (ej ) 2 d
2p 2p
例:已知x[k]为一有限长序列且

x[k] {1, 2,3, 4},不计算x[k]
的频谱 X(ej),直接确定下列表达式的值。
X R (e j ) X R (e j ) X I (e j ) X I (e j )
例:求序列x[k]={1,2,1;k=0,1,2}的幅度谱和相位谱。
解:
X (ej ) 1 2e j e j2 (1 e j )2
4cos2 2 ej
2 x[k]
1
X (ej ) 21 cos …
X (e j )
4

-1 0 1 k
解:
2 y[k]
1
0 12 k
Y (ej ) e-j X (ej )
4 Y (e j )
… p
… 0 p
p 0 p
( )
p
p
p
离散非周期序列DTFT的性质
3. 位移特性 (b) 频域位移特性
离散非周期序列DTFT的性质
※ 线性特性 ※ 对称特性 ※ 位移特性 ※ 卷积特性 ※ 微分特性 ※ Parseval定理
离散非周期序列DTFT的性质
1. 线性特性

x1[k]DTFT X1(ej )
x2[k]DTFT X 2 (ej )

ax1[k] bx2[k]DTFT aX1(ej ) bX 2 (ej )
1

π π 2
π2 π


Y(ej)
1
π π 2
பைடு நூலகம்
π2 π

离散非周期序列DTFT的性质
4. 卷积特性 (a) 时域卷积特性
x[k] h[k]DTFT X (ej )H (ej )
序列时域的卷积对应频域的乘积。
离散非周期序列DTFT的性质
4. 卷积特性 (b) 频域卷积特性
离散非周期序列DTFT的性质
2. 对称特性 x[k]DTFT X (e j )
x[k]DTFT X (ej )
当 x[k]是实序列时 X (ej ) X (e j )
幅度与相位
实部与虚部
X (e j ) X (e j )
( ) ( )
...

Y (ej ) X (ej( π) ) X (ej( π) ) 2
例:已知x[k]的频谱如图所示,求y[k]的频谱。
X(ej)
1
解:

π π 2 0 π 2 π


X(ej(p)
1

π π 2
π2 π


X(ej(p)
ej 0k x[k]DTFT X (e j( 0 ) )
序列在时域的相移,对应其频域的频移。
例:已知x[k]的频谱如图所示,求y[k]的频谱。
x[k]
y[k]
...
X (e j ) 1
cos[pk ]

π π/2 0 π/2 π
解: y[k] x[k]cosπk x[k](ejπk e jπk ) 2
X (ej ) 2 d
k
2π 2p
序列时域的能量等于频域的能量。
证明: k
x[k] 2


k
x[k ]x[k ]

k

x[k
]

1 2p
X
(e j
)
e j k
d

2p

1
2p
2p
X (ej
x[k]h[k]DTFT 1 π X (ej )H (ej( ) )d
2π π
序列时域的乘积对应频域的卷积。
离散非周期序列DTFT的性质
5. 频域微分特性
kx[k]DTFT j dX (ej )
d
离散非周期序列DTFT的性质
6. Parseval定理
x[k] 2 1
解: (1) (2) (3) (4)
3
3
X (ej0 ) x[k] e-jk0 x[k] 1 2 3 4 10
k 0
k 0
3
3
X (ejp ) x[k] e-jkp x[k] (1)k 1 2 3 4 2
k 0
k 0
π X (ej ) d 2px[0] 2p π
π
X (ej ) 2 d
3

x[k] 2 60π
π
k 0
相关文档
最新文档