一阶线性递推数列

合集下载

特征根法

特征根法

(45) 特征方程法求解递推关系中的数列通项一、(一阶线性递推式)设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式。

采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法——特征方程法:针对问题中的递推关系式作出一个方程,d cx x +=称之为特征方程;借助这个特征方程的根快速求解通项公式.下面以定理形式进行阐述.定理1:设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-.证明:因为,1,0≠c 由特征方程得.10cdx -=作换元,0x a b n n -=则.)(110011n n n n n n cb x a c ccd ca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕) 下面列举两例,说明定理1的应用.例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a解:作方程.23,2310-=--=x x x 则当41=a 时,.21123,1101=+=≠a b x a数列}{n b 是以31-为公比的等比数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位。

一阶数列通项公式求法

一阶数列通项公式求法

一阶数列通项公式求法概念不妨将数列递推公式中同时含有 a n 和a n+1 的情况称为一阶数列,显然,等差数列的递推式为 a n = a n-1 + d , 而等比数列的递推式为 a n = a*q ;这二者可看作是一阶数列的特例。

故可定义一阶递归数列 n-1形式为:a(n+1) = A *a n + B ········☉ , 其中A和B 为常系数。

那么,等差数列就是A=1 的特例,而等比数列就是B=0 的特例。

若干求法思路基本思路与方法:复合变形为基本数列(等差与等比)模型;叠加消元;连乘消元思路一:原式复合(等比形式)可令 a(n+1) - ζ = A * (a n - ζ )········① 是原式☉变形后的形式,即再采用待定系数的方式求出ζ的值,整理①式后得a(n+1) = A*an +ζ - A*ζ , 这个式子与原式对比可得,ζ - A*ζ = B即解出ζ = B / (1-A)回代后,令 bn= an - ζ ,那么①式就化为 b(n+1) =A* b n , 即化为了一个以(a1-ζ )为首项,以A为公比的等比数列,可求出bn的通项公式,进而求出 {an} 的通项公式。

思路二:消元复合(消去B)由a(n+1) = A *a n + B ········☉ 有a n = A* a(n-1) +B ··········◎☉式减去◎式可得 a(n+1) - a n = A *( a n - a(n-1))······③ 令 bn = a(n+1) - an 后,③式变为 bn = A* b(n-1) 等比数列,可求出 bn 的通项公式,接下来得到 a n - a(n-1) = f (n) (其中f(n) 为关于n的函数)的式子,进而使用叠加方法可求出 an编辑本段二阶数列通项公式求法概念类比一阶递归数列概念,不妨定义同时含有a(n+2) 、a(n+1)、an的递推式为二阶数列,而对与此类数列求其通项公式较一阶明显难度大了。

特征根法求数列的通项公式

特征根法求数列的通项公式

.
1−
证明:因为 ≠ 0、1, 由特征方程得 =
作换元 = − ,则

−1 = −1 − = −2 + −
= −2 −

1−
1−
= −2 − = −2 .
故数列 是以为公比的等比数列, =
1 −1 , 1 = 1 − .
已知数列 满足:1 = 4,+1 =
1
− − 2, ∈ , 求 的通项公式.
3
3
1
3
+1 + = − 性递推式型题目的做题方法
概念:一阶线性递推式:+1 = + .
1、做出方程 = + ,称之为特征方程;解
出的值称之为特征根.
2、 = + ,其中数列 是以为公比
的等比数列, = 1 −1 , 1 = 1 − .
证明
证明:若数列 满足1 = ,+1 =
+ , 其中 ≠ 0、1,证明:这个数列的通项
公式为 = + ,其中数列 是以为公比
的等比数列, = 1 −1 , 1 = 1 − .
解:做方程 =
1 = 4
=
3

2
1

3
− 2,解得 =
3
− .
2
11
11
1 −1
= , =

2
2
3
3
11
1 −1
= − +

,
2
2
3
1

3
= 1 −1
3
+
2
+

(完整版)一阶线性递推数列的通项公式的5种求法

(完整版)一阶线性递推数列的通项公式的5种求法

一阶线性递推数列的通项公式的5种求法 研究一阶线性递推数列d ca a n n +=-1,(0c ≠,1c ≠,0d ≠),1a a =的通项公式各种求法,分析各种解法的适用条件,比较各种解法的优劣,挖掘各种解法的本质,探寻各种数列通项公式求法.解法一:等式两边同除法d ca a n n +=-1可化为11n n n n n a a d c c c --=+,令n n n a b c =,则1a b c =,1n n n d b b c--=, 因此,11122112111()()()()n n n n n n n b b b b b b b b d c c c -----=-+-++-=+++L L , 即:1(1)(1)n n n d c a b c c c --=+-,所以,1()11n n d d a a c c c -=+---. 解法二:构造法 由解法一可知,1()11n n d d a a c c c -+=+--, 那么d ca a n n +=-1一定可化为1()n n a m c a m -+=+,比较d ca a n n +=-1和1n n a ca cm m -=+-可知1d m c =-,即1()11n n d d a c a c c -+=+-- , 令1n n d b a c =+-,则11d b a c =+-,1n n b cb -=, 因此,数列{n b }是以11d b a c =+-为首项,以c 为公比的等比数列. 所以,111()1n n n d b b c a c c --==+-,即:1()11n n d d a a c c c -=+---. 解法三:“不动点”法设0x 是函数()f x cx d =+的不动点,则00x cx d =+,解得01d x c=-, 那么d ca a n n +=-1可以化为11()111n n n d d d a ca d c a c c c---=+-=---- 下同解法二.解法四:“升降下标作差”法由d ca a n n +=-1…………① 可得 1n n a ca d +=+…………②②-①得11()n n n n a a c a a +--=-,2n ≥.令1n n n b a a +=-,则1n n b cb -=,且121b a a ca d a =-=+-,所以1()n n b ca d a c -=+-,即11()n n n a a ca d a c -+-=+-,22111221()()()()(1)n n n n n n a a a a a a a a ca d a c c c -----=-+-++-=+-++++L L111()()()111n n n c d d a ca d a a a c c c c ---=+-+=+----. 解法五:待定系数法由以上解法得出的结果看,满足d ca a n n +=-1,(0c ≠,1c ≠,0d ≠),1a a =的 数列{n a }的通项公式就是1n n a Ac B -=+型,由于2a ca d =+, 所以有12a A B a a Ac B ca d =+=⎧⎨=+=+⎩解关于A B 、的方程组得,,11d d A a B c c =+=---. 故1()11n n d d a a c c c -=+---.。

特征根法求通项公式

特征根法求通项公式

特征方程法‎ 解递推关系‎中 通项公式一、(一阶线性递‎推式)若已知数列‎}{n a 的项满足d ca a b a n n +==+11,,其中求这个‎,1,0≠≠c c 数列的通项‎公式。

采用数学归‎纳法可以求‎解这一问题‎,然而这样做‎太过繁琐,而且在猜想‎通项公式中‎容易出错,这里提出一‎种易于掌握‎的解法——特征方程法‎:针对问题中‎的递推关系‎式作出一个‎方程称之为‎,d cx x +=特征方程;借助这个特‎征方程的根‎快速求解通‎项公式.下面以定理‎形式进行阐‎述.定理1:设上述递推‎关系式的特‎征方程的根‎为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中是以为‎}{n b c 公比的等比‎数列,即01111,x a b c b b n n -==-.证明:因为由特征‎,1,0≠c 方程得作换‎.10cdx -=元,0x a b n n -=则.)(110011n n n n n n cb x a c ccdca c d d ca x a b =-=--=--+=-=-- 当10a x ≠时,01≠b ,数列是以为‎}{n b c 公比的等比‎数列,故;11-=n n c b b 当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n (证毕) 下面列举两‎例,说说说说明‎定理1的应‎用.例1.已知数列满‎}{n a 足:,4,N ,23111=∈--=+a n a a n n 求.n a解:作方程.23,2310-=--=x x x 则当41=a 时,.21123,1101=+=≠a b x a数列是以为‎}{n b 31-公比的等比‎数列.于是.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n例2.已知数列满‎}{n a 足递推关系‎:,N ,)32(1∈+=+n i a a n n 其中为虚数‎i 单位。

几种递推数列通项公式的求法

几种递推数列通项公式的求法

一阶线性递推数列主要有如下几种形式: (1)1()n n x x f n +=+ (2)1()n n x g n x +=(3)1(,0,1)n+n x =qx +d q,d q q ≠≠为常数;[例1]已知数列n x {}中,11121(2)n n x x x n -==+≥,,求n x {}的通项公式. [例2]已知函数1()22(1)2f x x x =-+≤≤的反函数为121(),1,()yg x x x g x ===,321(),,(),,n n x g x x g x -== 求数列n x {}的通项公式. (4)1(,nn n cx x c d x d+=+为非零常数); (5)1(,1,1)nn+n x =qx +d q,d q d ≠≠为非零常数;[例3]设数列11132(*)nn n n x x x x n N +==+∈.{}满足:,求数列n x {}的通项公式.[例5]设数列12215521(*)333n n n n x x x x x x n N ++===-∈.{}满足:,,求数列n x {}的通项公式.[解析]由2152(*)33n n n x x x n N ++=-∈,可得 2111222()(*)333n n n n n n x x x x x x n N ++++=-=-∈.-设11212521333n n n n y x x y y x x +=-=-=-=,则{}是公比为的等比数列,且,故2(*)3n y n N =∈n ().即12(2)3n n x x n --=≥n-1().用累加法得 12111221222()()()()()333n n n n n n n x x x x x x x x ------=-+-++-=+++ ,或 11221112()()()222()()1333n n n n n n n x x x x x x x x -----=-+-++-+=++++21()233[1()]2313nn -==--). [例6]在数列12211(*)n n n n x x x x x x n N ++===+∈{}中,已知,,求数列n x {}的通项公式.[例9]数列{n x }满足21121,2n n x x x x n x =+++= ,求数列{n x }的同项公式.一、构造等差数列求数列通项公式例1 在数列{}n a 中,1a =12,133n n n a a a +=+(n N +∈),求数列{}n a 通项公式.解析:由313n n a n a a ++=得,a n+1 a n =3 a n+1-3 a n =0,两边同除以a n+1 a n 得,=-+n n a a 11131,设b n =n a 1,则b n+1- b n =31,根据等差数列的定义知, 数列{b n }是首项b 1=2,公差d=31的等差数列,根据等差数列的通项公式得b n =2+31(n-1)=31n +35∴数列通项公式为a n =53+n例2 在数列{a n }中,S n 是其前n 项和,且S n ≠0,a 1=1,a n =1222-n n S S (n ≥2),求S n 与a n 。

递推数列通项公式的几种求法

递推数列通项公式的几种求法

评价研究2014-06求递推数列的通项公式,既是中学数学学习的一个难点,又是高考的一个热点,而一阶线性递推数列又是考察的重点和主要形式。

如何求出此类递推数列的通项公式,是解决这类数列问题的关键和基础。

本文根据系数的不同取值分类型介绍几种方法。

解法一:等式两边同除法a n =ca n-1可化为a n c n =a n -1c n -1+d c n ,令b n =a n c n ,则b 1=a c ,b n -b n -1=d c n,因此,b n -b 1=(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)=d (1c n +1c n -1+ (1)2)即:b n =d (c n -1-1)(c -1)c n+a c ,所以,a n =(a +d c -1)c n -1-d c -1.解法二:构造法这种方法要根据题目的具体特点来灵活选用是构造等差数列还是等比数列,一旦选好方法做题能达到事半功倍的效果。

(1)形如a n =ka n-1+b 、a n =ka n-1+b n(k ,b 为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求a n .①a n =ka n-1+b 解法:把原递推公式转化为:a n +1-t=p (a n -t ),其中t =q 1-p,再利用换元法转化为等比数列求解。

例1.已知数列{a n }中,a 1=1,a n+1=2a n +3,求a n .解:设递推公式a n+1=2a n +3可以转化为a n+1=-t =2(a n -t ),即a n+1=2a n -t ⇒t =-3.故递推公式为a n+1+3=2(a n +3),令b n =a n +3,则b 1=a 1+3=4,且b n +1b n =a n +1+3a n +3=2,所以{b n }是以b 1=4为首项,2为公比的等比数列,则b n =4×2n -1=2n +1,所以a n =2n +1-3.②a n =ka n-1+b n解法:该类型较类型3要复杂一些。

递推数列求通项公式-高考数学一题多解

递推数列求通项公式-高考数学一题多解

递推数列求通项公式-高考数学一题多解一、攻关方略数列学习中难度较高的一个内容是递推数列,由递推关系求通项公式是一种十分重要的题型,解题方法丰富多彩,注重分析递推式的结构特点,合理构造得到等差或等比等常见数列是解题的重要策略.下面对一些常见的由递推关系求通项公式的求法做一些归纳.第一类:型如()1n n a a f n +=+的一阶递推式,可改写为()1n n a a f n +-=的形式,左端通过“累加”可以消项;右端()f n 是关于n 的函数,可以求和.故运用“累加法”必定可行,即()()()112132111()n n n n k a a a a a a a a a f k --==+-+-+⋅⋅⋅+-=+∑.第二类:型如1()n n a g n a +=的递推式,可改写为1()n na g n a +=的形式.左端通过“迭乘”可以消项;右端通常也可以化简,故运用“迭乘法”必定可行,即3211121(1)(2)(1)(2)n n n a a a a a a n n g g a a a -=⋅⋅⋅⋅⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅-≥.第三类:型如1n n a pa q +=+(1p ≠,0q ≠)的递推式,可由下面两种构造法求通项公式.构造法一:由1n n a pa q +=+及1n n a pa q -=+,两式相减得()11n n n n a a p a a +--=-,得{}1n n a a +-是首项为21a a -,公比为p 的等比数列,先求{}1n n a a +-的通项公式,再利用“累加法”求{}n a 的通项公式.构造法二:若1p =,则显然是以1a 为首项、q 为公差的等差数列;若1p ≠,0p ≠,0q ≠,则构造数列{}n a λ+,满足()1n n a p a λλ++=+.运用待定系数法,解得1q p λ=-,则1n q a p ⎧⎫+⎨⎬-⎩⎭是首项为11q a p +-,公比为p 的等比数列.第四类:型如1nn n pa a a q+=+(0p ≠,0q ≠,0n a ≠)的递推式,运用取倒数,构造数列1n a ⎧⎫⎨⎬⎩⎭,满足111n n q a pa p +=+,运用换元法,即令1n n b a =,得11n n q b b p p +=+,从而转换为第三类.第五类:型如1rn n a pa +=(0p >,0r ≠,1r ≠)的递推式,运用两边取对数法得1lg lg lg n n a r a p +=+,令lg n n b a =,转化为1lg n n b rb p +=+型,即第三类,再运用待定系数法.第六类:型如1n n a pa qn r +=++(1p ≠,0p ≠,0q ≠)的递推式,可构造数列{}n a n λμ++,满足()1(1)n n a n p a n λμλμ++++=++,运用待定系数法解得1q p λ=-,21(1)r qp p μ=+--,从而由等比数列求通项公式;进一步推广,若递推式中包含n 的二次项、三次项,则构造的数列中也同样包含对应次数项.第七类:型如1()n n a pa f n +=+(1p ≠,0p ≠)的递推式,可在等式两边同除以1n p +,构造数列nn a p ⎧⎫⎨⎬⎩⎭,满足111()n n n n n a a f n p p p +++=+,令n n n a b p =,则转化为11()n n n f n b b p ++=+,即第一类,再利用“累加法”求通项公式.第八类:型如满足:11a m =,22a m =,21n n n a pa qa ++=+(p 、q 是常数)的递推式,则称数列{}n a 为二阶线性递推数列,可构造数列{}1n n a a λ+-,满足()11n n n n a a a a λμλ+--=-,则,,p q λμλμ+=⎧⎨=-⎩即λ,μ为方程20x px q --=的两个根,此方程称之为特征方程,则数列{}n a 的通项公式n a 均可用特征根求得(即转化为第七类进一步求解).第九类:型如1n n n ra sa pa q++=+(0p ≠,0q ≠,0r ≠,0s ≠)的递推式,利用不动点法,其中rx sx px q +=+的根为该数列的不动点,若该数列有两个相异的不动点μ,则n n a a v μ⎧⎫-⎨⎬-⎩⎭为等比数列;若该数列有唯一的不动点μ,即方程等根时,1n a μ⎧⎫⎨⎬-⎩⎭为等差数列,这就是不动点求递推数列通项公式的方法.除上述9种类型之外还有换元法、数学归纳法(归纳一猜想一论证)等.给出相类似的递推式必有相应的破解之道,这是模型思想的运用,对所给的递推式借助于变形、代换、运算等方法转化为等差数列、等比数列这两类基本数列(模型)而求解.切变形、代换、运算的手段都是构造法的体现,真可谓:递推数列变化无穷,变形、代换方法众多.模型思想是根主线,合理构造顿显坦途.【典例】(2021·全国甲卷T17)已知数列{}n a 的各项均为正数,记n S 为{}n a 的前n 项和,从下面①②③中选取两个作为条件,证明另外一个成立.①数列{}n a是等差数列:②数列是等差数列;③213a a =.注:若选择不同的组合分别解答,则按第一个解答计分.选①②作条件证明③:(一)待定系数法解法一:【解析】待定系数法+n a 与n S 关系式(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b-=-=+--+()22a an a b =-+;因为{}n a 也是等差数列,所以()()222a b a a a b +=-+,解得0b =;所以()221n a a n =-,21a a =,故22133a a a ==.解法二:【解析】待定系数法设等差数列{}n a 的公差为d,等差数列的公差为1d ,1(1)n d =-,将1(1)2n n n S na d -=+1(1)n d -,化简得())2222211111222d d n a n d n d n d ⎛⎫+-=+-+⎪⎝⎭对于n +∀∈N 恒成立.则有21211112,240,d d a d d d ⎧=⎪⎪-=-⎨=,解得112d d a ==.所以213a a =.选①③作条件证明②:因为213a a =,{}n a 是等差数列,所以公差2112d a a a =-=,所以()21112n n n S na d n a -=+==,)1n +-=所以是等差数列.选②③作条件证明①:(二)定义法解法一:(0)an b a =+>,则()2n S an b =+,当1n =时,()211a S a b ==+;当2n ≥时,()()221n n n a S S an b an a b-=-=+--+()22a an a b =-+;因为213a a =,所以()()2323a a b a b +=+,解得0b =或43ab =-;当0b =时,()221,21n a a a a n ==-,当2n ≥时,2-1-2n n a a a =满足等差数列的定义,此时{}n a 为等差数列;当43a b =-4=3an b an a =+-03a =-<不合题意,舍去.综上可知{}n a 为等差数列.解法二:求解通项公式因为213a a ===也为等差数列,所以公差1d =()11n d =-=,故21n S n a =,当2n ≥时,()()221111121n n n a S S n a n a n a -=-=--=-,当1n =时,满足上式,故{}n a 的通项公式为()121n a n a =-,所以()1123n a n a -=-,112n n a a a --=,符合题意.【点评】这类题型在解答题中较为罕见,求解的关键是牢牢抓住已知条件,结合相关公式,逐步推演,选①②时,法一:利用等差数列的通项公式是关于n 的一次函数,直接(0)an b a =+>,平方后得到n S 的关系式,利用11,1,2n n n S n a S S n -=⎧=⎨-≥⎩得到{}n a 的通项公式,进而得到213a a =,是选择①②证明③的通式通法;法二:分别设出{}n a 与{}n S的公差,写出各自的通项公式后利用两者的关系,对照系数,得到等量关系1d =12d a =,进而得到213a a =;选①③时,按照正常的思维求出公差,表示出n S进而由等差数列定义进行证明;选②③时,法一:利用等差数列的通项公式是关于n 的一次函数,(0)an b a =+>,结合,n n a S 的关系求出n a ,根据213a a =可求b ,然后可证{}n a1d =11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,求出{}n a 的通项公式,进而证明出结论.【针对训练】(2022年全国高考乙卷)1.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列{}n b :1111b α=+,212111b αα=++,31231111b ααα=+++,…,依此类推,其中(1,2,)k k α*∈=N .则()A .15b b <B .38b b <C .62b b <D .47b b <2.设数列{an }满足a 1=3,134n n a a n +=-.(1)计算a 2,a 3,猜想{an }的通项公式并加以证明;(2)求数列{2nan }的前n 项和Sn .3.已知数列{}n a 满足11a =,11,,2,.n n n a n a a n ++⎧=⎨+⎩为奇数为偶数(1)记2n n b a =,写出1b ,2b ,并求数列{}n b 的通项公式;(2)求{}n a 的前20项和.4.已知公比大于1的等比数列{}n a 满足24320,8a a a +==.(1)求{}n a 的通项公式;(2)记m b 为{}n a 在区间*(0,]()m m ∈N 中的项的个数,求数列{}m b 的前100项和100S .(2022全国甲卷)5.记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.6.记n S 为数列{}n a 的前n 项和,n b 为数列{}n S 的前n 项积,已知212n nS b +=.(1)证明:数列{}n b 是等差数列;(2)求{}n a 的通项公式.7.设{}n a 是首项为1的等比数列,数列{}n b 满足3nn na b =.已知1a ,23a ,39a 成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S 和n T 分别为{}n a 和{}n b 的前n 项和.证明:2nn S T <.8.对负整数a ,数43a +、77a +、283a a ++依次成等差数列.(1)求a 的值;(2)若数列{}n a 满足()112n n n a aa n *++=-∈N ,1a m =,求{}n a 的通项公式;(3)在(2)的条件下,若对任意n *∈N ,有2121n n a a +-<,求m 的取值范围.9.设0b >,数列{}n a 满足1a b =,()1121n n n nba a n a n --=≥+-(1)求数列{}n a 的通项公式;(2)证明:对于一切正整数n ,121n n a b +≤+.10.设数列{}n a 满足:11a =,12n n n a a -=-+(2n ≥),数列{}n b 满足:1(1)3n n n b a +=-⋅.求数列{}n b 的通项公式.参考答案:1.D【分析】根据()*1,2,k k α∈=N …,再利用数列{}n b 与k α的关系判断{}n b 中各项的大小,即可求解.【详解】[方法一]:常规解法因为()*1,2,k k α∈=N ,所以1121ααα<+,112111ααα>+,得到12b b >,同理11223111ααααα+>++,可得23b b <,13b b >又因为223411,11αααα>++112233411111ααααααα++<+++,故24b b <,34b b >;以此类推,可得1357b b b b >>>>…,78b b >,故A 错误;178b b b >>,故B 错误;26231111αααα>++…,得26b b <,故C 错误;11237264111111αααααααα>++++++…,得47b b <,故D 正确.[方法二]:特值法不妨设1,n a =则1234567835813213455b 2,b b ,b b ,b b ,b 2358132134========,47b b <故D 正确.2.(1)25a =,37a =,21n a n =+,证明见解析;(2)1(21)22n n S n +=-⋅+.【分析】(1)方法一:(通性通法)利用递推公式得出23,a a ,猜想得出{}n a 的通项公式,利用数学归纳法证明即可;(2)方法一:(通性通法)根据通项公式的特征,由错位相减法求解即可.【详解】(1)[方法一]【最优解】:通性通法由题意可得2134945a a =-=-=,32381587a a =-=-=,由数列{}n a 的前三项可猜想数列{}n a 是以3为首项,2为公差的等差数列,即21n a n =+.证明如下:当1n =时,13a =成立;假设()n k k *=∈N 时,21k a k =+成立.那么1n k =+时,1343(21)4232(1)1k k a a k k k k k +=-=+-=+=++也成立.则对任意的*n ∈N ,都有21n a n =+成立;[方法二]:构造法由题意可得2134945a a =-=-=,32381587a a =-=-=.由123,5a a ==得212a a -=.134n n a a n +=-,则134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--.令1n n n b a a +=-,且12b =,所以134n n b b -=-,两边同时减去2,得()1232n n b b --=-,且120b -=,所以20n b -=,即12n n a a +-=,又212a a -=,因此{}n a 是首项为3,公差为2的等差数列,所以21n a n =+.[方法三]:累加法由题意可得2134945a a =-=-=,32381587a a =-=-=.由134n n a a n +=-得1114333n n n n n a a n +++-=-,即2121214333a a -=-⨯,3232318333a a -=-⨯,……1114(1)(2)333n n nn n a a n n ---=--⨯≥.以上各式等号两边相加得1123111412(1)33333n n n a a n ⎡⎤-=-⨯+⨯+-⨯⎢⎥⎣⎦ ,所以1(21)33n n n a n =+⋅.所以21(2)n a n n =+≥.当1n =时也符合上式.综上所述,21n a n =+.[方法四]:构造法21322345,387a a a a =-==-=,猜想21n a n =+.由于134n n a a n +=-,所以可设()1(1)3n n a n a n λμλμ++++=++,其中,λμ为常数.整理得1322n n a a n λμλ+=++-.故24,20λμλ=--=,解得2,1λμ=-=-.所以()112(1)13(21)3211n n n a n a n a +-+-=--=⋅⋅⋅=-⨯-.又130a -=,所以{}21n a n --是各项均为0的常数列,故210n a n --=,即21n a n =+.(2)由(1)可知,2(21)2n nn a n ⋅=+⋅[方法一]:错位相减法231325272(21)2(21)2n n n S n n -=⨯+⨯+⨯++-⋅++⋅ ,①23412325272(21)2(21)2n n n S n n +=⨯+⨯+⨯++-⋅++⋅ ,②由①-②得:()23162222(21)2n n n S n +-=+⨯+++-+⋅ ()21121262(21)212n n n -+-=+⨯+⋅⨯-1(12)22n n +=-⋅-,即1(21)22n n S n +=-⋅+.[方法二]【最优解】:裂项相消法112(21)2(21)2(23)2n n n n n n n a n n n b b ++=+=---=-,所以231232222n n n S a a a a =++++ ()()()()2132431n n b b b b b b b b +=-+-+-++- 11n b b +=-1(21)22n n +=-+.[方法三]:构造法当2n ≥时,1(21)2n n n S S n -=++⋅,设11()2[(1)]2n n n n S pn q S p n q --++⋅=+-+⋅,即122n n n pn q p S S ----=+,则2,21,2pq p -⎧=⎪⎪⎨--⎪=⎪⎩,解得4,2p q =-=.所以11(42)2[4(1)2]2n n n n S n S n --+-+⋅=+--+⋅,即{}(42)2n n S n +-+⋅为常数列,而1(42)22S +-+⋅=,所以(42)22n n S n +-+⋅=.故12(21)2n n S n +=+-⋅.[方法四]:因为12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,令12n n b n -=⋅,则()()231()0,11n nx x f x x x x x x x-=++++=≠- ,()121211(1)()1231(1)n n nn x x nx n x f x x x nxx x +-'⎡⎤-+-+=++++==⎢⎥--⎢⎥⎣⎦' ,所以12n b b b +++L 21122322n n -=+⋅+⋅++⋅ 1(2)12(1)2n n f n n +==+-+'⋅.故234(2)2222nn S f =++'+++ ()1212412(1)212n n n n n +-⎡⎤=+⋅-++⎣⎦-1(21)22n n +=-+.【整体点评】(1)方法一:通过递推式求出数列{}n a 的部分项从而归纳得出数列{}n a 的通项公式,再根据数学归纳法进行证明,是该类问题的通性通法,对于此题也是最优解;方法二:根据递推式134n n a a n +=-,代换得134(1)(2)n n a a n n -=--≥,两式相减得()1134n n n n a a a a +--=--,设1n n n b a a +=-,从而简化递推式,再根据构造法即可求出n b ,从而得出数列{}n a 的通项公式;方法三:由134n n a a n +=-化简得1114333n n n n n a a n +++-=-,根据累加法即可求出数列{}n a 的通项公式;方法四:通过递推式求出数列{}n a 的部分项,归纳得出数列{}n a 的通项公式,再根据待定系数法将递推式变形成()1(1)3n n a n a n λμλμ++++=++,求出,λμ,从而可得构造数列为常数列,即得数列{}n a 的通项公式.(2)方法一:根据通项公式的特征可知,可利用错位相减法解出,该法也是此类题型的通性通法;方法二:根据通项公式裂项,由裂项相消法求出,过程简单,是本题的最优解法;方法三:由2n ≥时,1(21)2nn n S S n -=++⋅,构造得到数列{}(42)2n n S n +-+⋅为常数列,从而求出;方法四:将通项公式分解成12(21)2222422n n n n n nn a n n n -=+=⋅+=⋅+,利用分组求和法分别求出数列{}{}12,2n n n -⋅的前n 项和即可,其中数列{}12n n -⋅的前n 项和借助于函数()()231()0,11n nx x f x x x x x x x-=++++=≠- 的导数,通过赋值的方式求出,思路新颖独特,很好的简化了运算.3.(1)122,5,31n b b b n ===-;(2)300.【分析】(1)方法一:由题意结合递推关系式确定数列{}n b 的特征,然后求和其通项公式即可;(2)方法二:分组求和,结合等差数列前n 项和公式即可求得数列的前20项和.【详解】解:(1)[方法一]【最优解】:显然2n 为偶数,则21222212,1n n n n a a a a +++=+=+,所以2223n n a a +=+,即13n n b b +=+,且121+12b a a ===,所以{}n b 是以2为首项,3为公差的等差数列,于是122,5,31n b b b n ===-.[方法二]:奇偶分类讨论由题意知1231,2,4a a a ===,所以122432,15b a b a a ====+=.由11n n a a +-=(n 为奇数)及12n n a a +-=(n 为偶数)可知,数列从第一项起,若n 为奇数,则其后一项减去该项的差为1,若n 为偶数,则其后一项减去该项的差为2.所以*23()n n a a n N +-=∈,则()11331n b b n n =+-⨯=-.[方法三]:累加法由题意知数列{}n a 满足*113(1)1,()22nn n a a a n +-==++∈N .所以11213(1)11222b a a -==++=+=,322433223(1)3(1)11212352222b a a a a a --==++=+=+++=++=+=,则222121222111()()()121221+n n n n n n b a a a a a a a a a ---==-+-+-+=+++++++12(1)131n n n =+-+=-⨯.所以122,5b b ==,数列{}n b 的通项公式31n b n =-.(2)[方法一]:奇偶分类讨论20123201351924620++++++++()()S a a a a a a a a a a a a =+=+++ 1231012310(1111)b b b b b b b b =-+-+-++-+++++ 110()102103002b b +⨯=⨯-=.[方法二]:分组求和由题意知数列{}n a 满足12212121,1,2n n n n a a a a a -+==+=+,所以2122123n n n a a a +-=+=+.所以数列{}n a 的奇数项是以1为首项,3为公差的等差数列;同理,由2221213n n n a a a ++=+=+知数列{}n a 的偶数项是以2为首项,3为公差的等差数列.从而数列{}n a 的前20项和为:201351924260()()S a a a a a a a a =+++++++++ 1091091013102330022⨯⨯=⨯++⨯+⨯=.【整体点评】(1)方法一:由题意讨论{}n b 的性质为最一般的思路和最优的解法;方法二:利用递推关系式分类讨论奇偶两种情况,然后利用递推关系式确定数列的性质;方法三:写出数列{}n a 的通项公式,然后累加求数列{}n b 的通项公式,是一种更加灵活的思路.(2)方法一:由通项公式分奇偶的情况求解前n 项和是一种常规的方法;方法二:分组求和是常见的数列求和的一种方法,结合等差数列前n 项和公式和分组的方法进行求和是一种不错的选择.4.(1)2n n a =;(2)100480S =.【分析】(1)利用基本元的思想,将已知条件转化为1,a q 的形式,求解出1,a q ,由此求得数列{}n a 的通项公式.(2)方法一:通过分析数列{}m b 的规律,由此求得数列{}m b 的前100项和100S .【详解】(1)由于数列{}n a 是公比大于1的等比数列,设首项为1a ,公比为q ,依题意有31121208a q a q a q ⎧+=⎨=⎩,解得解得12,2a q ==,或1132,2a q ==(舍),所以2n n a =,所以数列{}n a 的通项公式为2n n a =.(2)[方法一]:规律探索由于123456722,24,28,216,232,264,2128=======,所以1b 对应的区间为(0,1],则10b =;23,b b 对应的区间分别为(0,2],(0,3],则231b b ==,即有2个1;4567,,,b b b b 对应的区间分别为(0,4],(0,5],(0,6],(0,7],则45672b b b b ====,即有22个2;8915,,,b b b 对应的区间分别为(0,8],(0,9],,(0,15] ,则89153b b b ==== ,即有32个3;161731,,,b b b 对应的区间分别为(0,16],(0,17],,(0,31] ,则1617314b b b ==== ,即有42个4;323363,,,b b b 对应的区间分别为(0,32],(0,33],,(0,63] ,则3233635b b b ====L ,即有52个5;6465100,,,b b b L 对应的区间分别为(0,64],(0,65],,(0,100] ,则64651006b b b ====L ,即有37个6.所以23451001222324252637480S =⨯+⨯+⨯+⨯+⨯+⨯=.[方法二]【最优解】:由题意,2n m ≤,即2log n m ≤,当1m =时,10b =.当)12,21k k m +⎡∈-⎣时,,m b k k *=∈N ,则()()()()1001234573233636465100S b b b b b b b b b b b b =++++++++++++++ 0122438416532637480=+⨯+⨯+⨯+⨯+⨯+⨯=.[方法三]:由题意知)1,2,2k k m b k m +⎡=∈⎣,因此,当1m =时,10b =;[2,4)m ∈时,1m b =;[4,8)m ∈时,2m b =;[8,16)m ∈时,3m b =;[16,32)m ∈时,4m b =;[32,64)m ∈时,5m b =;[64,128)m ∈时,6m b =.所以1001234100S b b b b b =+++++ 0(11)(222)(666)=++++++++++ 0122438416532637480=+⨯+⨯+⨯+⨯+⨯+⨯=.所以数列{}n b 的前100项和100480S =.【整体点评】(2)方法一:通过数列{}n a 的前几项以及数列{}m b 的规律可以得到12100,,,b b b 的值,从而求出数列{}m b 的前100项和,这是本题的通性通法;方法二:通过解指数不等式可得数列{}m b 的通项公式,从而求出数列{}m b 的前100项和,是本题的最优解;方法三,是方法一的简化版.5.(1)证明见解析;(2)78-.【分析】(1)依题意可得222n n S n na n +=+,根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,作差即可得到11n n a a --=,从而得证;(2)法一:由(1)及等比中项的性质求出1a ,即可得到{}n a 的通项公式与前n 项和,再根据二次函数的性质计算可得.【详解】(1)因为221nn S n a n+=+,即222n n S n na n +=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n a -+-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈,所以{}n a 是以1为公差的等差数列.(2)[方法一]:二次函数的性质由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭,所以,当12n =或13n =时,()min 78n S =-.[方法二]:【最优解】邻项变号法由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,即有1123210,0a a a a <<<<= .则当12n =或13n =时,()min 78n S =-.【整体点评】(2)法一:根据二次函数的性质求出n S 的最小值,适用于可以求出n S 的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.6.(1)证明见解析;(2)()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【分析】(1)由已知212n nS b +=得221n n n b S b =-,且0n b ≠,取1n =,得132b =,由题意得1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,消积得到项的递推关系111221n n n n b b b b +++=-,进而证明数列{}n b 是等差数列;(2)由(1)可得n b 的表达式,由此得到n S 的表达式,然后利用和与项的关系求得()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【详解】(1)[方法一]:由已知212n n S b +=得221n n n b S b =-,且0n b ≠,12n b ≠,取1n =,由11S b =得132b =,由于n b 为数列{}n S 的前n 项积,所以1212222212121n n n b b b b b b b ⋅⋅⋅⋅=---,所以1121121222212121n n n b b b b b b b +++⋅⋅⋅⋅=---,所以111221n n n nb b b b +++=-,由于10n b +≠所以12121n n b b +=-,即112n n b b +-=,其中*n ∈N 所以数列{}n b 是以132b =为首项,以12d =为公差等差数列;[方法二]【最优解】:由已知条件知1231-⋅=⋅⋅⋅⋅ n n n b S S S S S ①于是11231(2)--=⋅⋅⋅⋅≥ n n b S S S S n .②由①②得1nn n b S b -=.③又212n nS b +=,④由③④得112n n b b --=.令1n =,由11S b =,得132b =.所以数列{}n b 是以32为首项,12为公差的等差数列.[方法三]:由212n nS b +=,得22=-n n n S b S ,且0n S ≠,0n b ≠,1n S ≠.又因为111--=⋅⋅=⋅ n n n n n b S S S S b ,所以1122-==-n n n n b b S S ,所以()1111(2)2222212---=-==≥---n n n n n n n S S b b n S S S .在212n n S b +=中,当1n =时,1132==b S .故数列{}n b 是以32为首项,12为公差的等差数列.[方法四]:数学归纳法由已知212n n S b +=,得221n n n b S b =-,132b =,22b =,352=b ,猜想数列{}n b 是以32为首项,12为公差的等差数列,且112n b n =+.下面用数学归纳法证明.当1n =时显然成立.假设当n k =时成立,即121,21+=+=+k k k b k S k .那么当1n k =+时,11112++⎛⎫==+ ⎪⎝⎭k k k b b S 331(1)1222k k k k ++⋅==+++.综上,猜想对任意的n ∈N 都成立.即数列{}n b 是以32为首项,12为公差的等差数列.(2)由(1)可得,数列{}n b 是以132b =为首项,以12d =为公差的等差数列,()3111222n nb n ∴=+-⨯=+,22211n n n b n S b n+==-+,当n =1时,1132a S ==,当n ≥2时,()121111n n n n n a S S n n n n -++=-=-=-++,显然对于n =1不成立,∴()3,121,21n n a n n n ⎧=⎪⎪=⎨⎪-≥+⎪⎩.【整体点评】(1)方法一从212n nS b +=得221n n n b S b =-,然后利用n b 的定义,得到数列{}n b 的递推关系,进而替换相除消项得到相邻两项的关系,从而证得结论;方法二先从n b 的定义,替换相除得到1nn n b S b -=,再结合212n n S b +=得到112n n b b --=,从而证得结论,为最优解;方法三由212n nS b +=,得22=-n n n S b S ,由n b 的定义得1122-==-n n n n b b S S ,进而作差证得结论;方法四利用归纳猜想得到数列112n b n =+,然后利用数学归纳法证得结论.(2)由(1)的结论得到112n b n =+,求得n S 的表达式,然后利用和与项的关系求得{}n a 的通项公式;7.(1)11()3n n a -=,3n nn b =;(2)证明见解析.【分析】(1)利用等差数列的性质及1a 得到29610q q -+=,解方程即可;(2)利用公式法、错位相减法分别求出,n n S T ,再作差比较即可.【详解】(1)因为{}n a 是首项为1的等比数列且1a ,23a ,39a 成等差数列,所以21369a a a =+,所以211169a q a a q =+,即29610q q -+=,解得13q =,所以11()3n n a -=,所以33n n n na nb ==.(2)[方法一]:作差后利用错位相减法求和211213333n n n n nT --=++++ ,012111111223333-⎛⎫=++++ ⎪⎝⎭n n S ,230121123111112333323333n n n n S n T -⎛⎫⎛⎫-=++++-++++=⎪ ⎪⎝⎭⎝⎭ 012111012222333---++++ 111233---+n n n n .设0121111101212222Γ3333------=++++ n n n ,⑧则1231111012112222Γ33333-----=++++ n n n .⑨由⑧-⑨得1121113312111113322Γ132********--⎛⎫--- ⎪⎛⎫⎝⎭=-++++-=-+- ⎪⎝⎭- n n n n nn n .所以211312Γ432323----=--=-⨯⨯⨯n n n n n n .因此10232323--=-=-<⨯⨯n n n n nS n n nT .故2nn S T <.[方法二]【最优解】:公式法和错位相减求和法证明:由(1)可得11(1)313(1)12313n n n S ⨯-==--,211213333n n n n nT --=++++ ,①231112133333n n n n nT +-=++++ ,②①-②得23121111333333n n n n T +=++++- 1111(1)1133(1)1323313n n n n n n ++-=-=---,所以31(14323n n nn T =--⋅,所以2n n S T -=3131(1)(1043234323n nn n n n ----=-<⋅⋅,所以2nn S T <.[方法三]:构造裂项法由(Ⅰ)知13⎛⎫= ⎪⎝⎭n n b n ,令1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,且1+=-n n n b c c ,即1111()[(1)]333αβαβ+⎛⎫⎛⎫⎛⎫=+-++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭nnn n n n ,通过等式左右两边系数比对易得33,24αβ==,所以331243nn c n ⎛⎫⎛⎫=+⋅ ⎪ ⎪⎝⎭⎝⎭.则12113314423nn n n n T b b b c c +⎛⎫⎛⎫=+++=-=-+ ⎪⎝⎭⎝⎭,下同方法二.[方法四]:导函数法设()231()1-=++++=- n nx x f x x x x x x,由于()()()()()()1221'111'11(1)'1(1)1n n n n n x x x x x x x x nx n x x x x +⎡⎤⎡⎤⎡⎤----⨯--+-+⎣⎦⎣⎦⎢⎥==---⎢⎥⎣⎦,则12121(1)()123(1)+-+-+=++++='- n nn nx n x f x x x nxx .又1111333-⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭n n n b n ,所以2112311111233333n n n T b b b b n -⎡⎤⎛⎫⎛⎫=++++=+⨯+⨯++⋅=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦12111(1)11133333113n nn n f +⎛⎫⎛⎫+-+ ⎪ ⎪⎛⎫⎝⎭⎝⎭⋅=⨯ ⎪⎝⎭⎛⎫- ⎪⎝⎭'13113311(1)4334423n nnn n n +⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=+-+=-+⎢⎥ ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,下同方法二.【整体点评】本题主要考查数列的求和,涉及到等差数列的性质,错位相减法求数列的和,考查学生的数学运算能力,是一道中档题,其中证明不等式时采用作差法,或者作商法要根据式子得结构类型灵活选择,关键是要看如何消项化简的更为简洁.(2)的方法一直接作差后利用错位相减法求其部分和,进而证得结论;方法二根据数列的不同特点,分别利用公式法和错位相减法求得,n n S T ,然后证得结论,为最优解;方法三采用构造数列裂项求和的方法,关键是构造1()3αβ⎛⎫=+ ⎪⎝⎭nn c n ,使1+=-n n n b c c ,求得n T 的表达式,这是错位相减法的一种替代方法,方法四利用导数方法求和,也是代替错位相减求和法的一种方法.8.(1)2a =-(2)()()()1212n nn a m n -=⋅-+-⋅-(3)163m <【分析】(1)根据等差中项的性质可出关于a 的等式,结合a 为负整数可得出a 的值;(2)推导出数列()2n n a ⎧⎫⎪⎪⎨-⎪⎪⎩⎭为等差数列,确定该数列的首项和公差,即可求得数列{}n a 的通项公式;(3)由2121n n a a +-<对*n ∈N 恒成立结合参变量分离法可得出1243n m +<,求出1243n +的最小值,可得出实数m 的取值范围.【详解】(1)解:由题意可得()21414383a a a a +=++++,整理可得2280a a --=,a 为负整数,解得2a =-.(2)解:因为()1122n n n a a ++=-+-,等式两边同时除以()12n +-可得()()11122n nn n a a ++-=--,所以,数列()2n n a ⎧⎫⎪⎪⎨⎬-⎪⎪⎩⎭是首项为2m -,公差为1的等差数列,故()()122n n a m n =-+--,因此,()()()1212n n n a m n -=⋅-+-⋅-.(3)解:由2121n n a a +-<对*n ∈N 恒成立得()()()()()()22122212222222n n n n m n m n +--⋅-+-<⋅--⋅⋅+-对n *∈N 均成立.()2220n --> ,不等式两边同除()222n --,得()()()482222m n m n +-⋅<+-⋅-,得1243n m +<对n *∈N 恒成立,当1n =时,1243n +取最小值163,163m ∴<.9.(1)11(1)011n n n b a nb b b b b =⎧⎪=⎨->≠⎪-⎩且(2)证明见解析【分析】(1)由题设形式可以看出,题设中给出了关于数列a n 的面的一个方程,即一个递推关系,所以应该对此递推关系进行变形整理以发现其中所蕴含的规律,观察发现若对方程两边取倒数则可以得到一个类似等差数列的形式,对其中参数进行讨论,分类求其通项即可.(2)由于本题中条件较少,解题思路不宜用综合法直接分析出,故求解本题可以采取分析法的思路,由结论探究其成立的条件,再证明此条件成立,即可达到证明不等式的目的.【详解】(1)()1121n n n nba a n a n --=≥+- 1111(2)n n n n n a b b a --∴=+⨯≥当1b =时,11(2)1n n n n n a a -=+≥-,∴数列n n a ⎧⎫⎨⎬⎩⎭是以11a 为首项,以1为公差的等差数列,1(1)1n n n n a ∴=+-⨯=,即1n a =,当0b >,且1b ≠时,11111(2)11n n n n n a b b b a -⎛⎫-+=+≥ --⎝⎭即数列11n n a b ⎧⎫+⎨⎬-⎩⎭是以11111(1)a b b b +=--为首项,公比为1b 的等比数列,111111(1)(1)n n n n a b b b b b b -⎛⎫∴+=⨯= ⎪---⎝⎭即(1)1n n nnb b a b -=-,∴数列{}n a 的通项公式是()111011n n n b a nb b b b b =⎧⎪=⎨->≠⎪-⎩且(2)证明:当1b =时,不等式显然成立当0b >,且1b ≠时,(1)1n n nnb b a b -=-,要证对于一切正整数n ,121n n a b +≤+,只需证1(1)211n n n nb b b b+-⨯≤+-,即证()11121011n nn n b b nb b b b +--≤+⨯>--)()1111n n b bb +-+⨯- ()1111n n b b b +-=+⨯-()()11211n n n b b b b +--=+⨯++⋯++()()22121121n n n n n n b b b b b b b -++--=++⋯+++++⋯++()12211111n n n n n b b b b b b bb b --⎡⎤⎛⎫=++⋯+++++⋯++ ⎪⎢⎥⎝⎭⎣⎦(222)2n n b nb ≥++⋯+=∴不等式成立,综上所述,对于一切正整数n ,有121n n a b +≤+,【点睛】本题考点是数列的递推式,考查根据数列的递推公式求数列的通项,研究数列的性质的能力,本题中递推关系的形式适合用取倒数法将所给的递推关系转化为有规律的形式,两边取倒数,条件许可的情况下,使用此技巧可以使得解题思路呈现出来.数列中有请多成熟的规律,做题时要注意积累这些小技巧,在合适的情况下利用相关的技巧,可以简化做题.在(2)的证明中,采取了分析法的来探究解题的思路,通过本题希望能进一步熟悉分析法证明问题的技巧.10.223n n b =-⋅.【分析】利用辅助法,对于数列{}n a 的递推公式,两边同时除以2n ,根据数列构造法,可得答案.【详解】∵12n n n a a -+=,两边同时除以2n 得1111222n n n n a a --+⋅=.令2n n n a c =,则1112n n c c -=-+.两边同时加上23-得1212323n n c c -⎛⎫-=-⋅- ⎪⎝⎭.∴数列23n c ⎧⎫-⎨⎬⎩⎭是以123c -为首项,12-为公比的等比数列.∴112211133232n n n c c -⎛⎫⎛⎫⎛⎫-=-⋅-=⋅- ⎪ ⎪⎝⎭⎝⎭⎝⎭,∴211332n n c ⎛⎫=+⋅- ⎪⎝⎭.∴2122(1)33n n n n n a c ==⋅+⋅-⋅.又∵1(1)3n n n b a +=-⋅,∴12(1)233n n n n b a =⋅--=-⋅,。

特征方程法求解递推关系中的数列通项

特征方程法求解递推关系中的数列通项

特征方程法求解递推关系中的数列通项一、(一阶线性递推式)设已知数列{a n }的项满足a j = b,a n 4 = ca n • d ,其中c = 0, c = 1,求这个数列的通项公式。

采用数学归纳法可以求解这一问题,然而这样做太过繁琐,而且在猜想通项公式中容易出错,本文提出一种易于被学生掌握的解法一一特征方程 法:针对问题中的递推关系式作出一个方程 x =cx • d,称之为特征方程;借助这个特征方程的根快速求解通项公式•下面以定理形式进行阐述.定理1:设上述递推关系式的特征方程的根为 x 0,则当x 0 = a 4时,a n为常数列,即a n 二a i ;当X o 二a i 时,a^ b n ' x o ,其中{b n }是以c 为公比 的等比数列,即 b n = b 4c n J,b 4 =a 4-x 0.pl证明:因为c = 0,1,由特征方程得x 0——.作换元b n = a n - x 0,贝U 1 -c n 1当X 。

=a 1时,b 1 =0 ,数列{b n }是以c 为公比的等比数列, 故b n =b1C _; 当 x ° 二a 1 时,d =0 , {b n }为 0 数列,故 a * =a 1,n • N.(证毕) 下面列举两例,说明定理 1的应用.1例1•已知数列{a n }满足:a n^^a -2,- N,a—,求a n.13 解:作方程x x -2,则x 0. 3 2b"a n「x0 © d—注乂a .cd1 -c二 c(a n -X °) = cb n . 11一2 -3 一2 +X — a-fl等的比公为11 1 n4丁 3) ,a n-3b n —3叫-」)n‘, n N. 2 2 2 3b n列是例2.已知数列{a n}满足递推关系:a n ^(2a n - 3)i, n,N,其中i为虚数3单位。

当a i 取何值时,数列{a .}是常数数列?a^ :-,a 2二:给出的数列:a n 爲方程x 2- px -q =0,叫做数列 :a n / 的特征方程。

一阶递推数列通项公式的探讨

一阶递推数列通项公式的探讨

2/ x 5 2 - ) 8= + ,g. x2 - ) y 3+ 8 2 g — ( ( — /
当且 仅 当 2 5 r 一 :2 3。 即 :
三相等” 以及连续使用定理 时等号要同时成立 ,结论
才正确.

阶递推数 列通项公式 的探讨
陈 宏杰
江苏省盐城市龙冈中学 ( 2 0 1 24 1 ) 利用数列的递推关系式求数列 的通项公式 是数 列单元 的的常 见问题. 笔者用待 定系数 法对一 阶递 推式 a =t () 了探讨. n +fn 作 a
4 ( , ”≠0, P≠0 g>O , 且q≠1 )
d =ma ¨l +k g n・
a nI m a += + P
・ q”
d, +
』 一q m—q — 一 ‘ ) J

L 一 g
( ≠0 ≠0, , ” , g>O 且 ≠1 )
“ a 加上一次函数” 是否能解 决这个问题呢?

”而 。I
2 a
l ”
( ≠0, Ⅲ a≠0, b≠ 0, C≠O 1
例 2数列{ 中, = , l 3 2 + , } 1 += a + n 1 求
a ・
一1 ( ) m—1 。’ )
分析 本题 与例 1 有相似之处 , 同点在于 厂 不 ()
的表示形式 , 1中 f n 为常数 . 例 () 故可构造了“ n a 加 上常数” 这种新数 列.本题 中 fn 为一 次函数 . () 构造
( ∈N . 1 7 )

al[(+ +。 = I + ” bqI + l 1 6q ,a ( +1 , + k” ) 】 ” )
即 。, +[ + 一 一 】 ④ = ( , 一 呐 矿…

数列递推和数列求和

数列递推和数列求和

个性化辅导教案学生姓名任课老师汪老师上课时间2016-10-23 学科数学年级高二教材版本新人教版课题名称数列课时计划第()课时共()课时教学内容数列递推公式和数列求和方法教学目标掌握数列求和的几种方法,会使用递推规律求递推通项教学重点数列递推公式:1、一阶线性递推数列求通项问题(待定系数法)一阶线性递推数列主要有如下几种形式:(1)1()n na a f n+=+这类递推数列可通过累加法而求得其通项公式(数列{f(n)}可求前n项和).当()f n为常数时,通过累加法可求得等差数列的通项公式.而当()f n为等差数列时,则1()n na a f n+=+为二阶等差数列,其通项公式应当为2na an bn c=++形式,注意与等差数列求和公式一般形式的区别,后者是2nS an bn=+,其常数项一定为0.(2)1()n na g n a+=这类递推数列可通过累乘法而求得其通项公式(数列{g(n)}可求前n项积).当()g n为常数时,用累乘法可求得等比数列的通项公式.(3)1(,0,1)n+na=qa+d q,d q q≠≠为常数;这类数列通常可转化为1()n na p q a p++=+,或消去常数转化为二阶递推式211()n n n na a q a a+++-=-.(4)rn n pa a =+1)0,0(>>n a p这种类型一般是等式两边取对数后转化为q pa a n n +=+1,再利用待定系数法求解。

数列求和方法:1.公式法:直接利用等差、等比数列的前n 项和公式及常见的求和公式进行求和。

注意在计算等比数列的前n 项和n S 时分两种情况q =1 和q ≠1进行讨论,即:11(1)(1)1)1n n na q S a q q q=⎧⎪=-⎨ (≠ ⎪-⎩常见的求和公式: 1)1nk k ==∑ 1+2+3+...+n =2)1(+n n 2) 1(21)nk k =-=∑1+3+5+...+(2n-1) =2n2.拆项求和法(分组求和法)就是将一个数列的每一项适当拆开,转化成若干个等差、等比、常数数列的形式,分别求和后再相加。

特别解析特征方程法求解递推关系中的数列通项

特别解析特征方程法求解递推关系中的数列通项

特别解析:特征方程法求解递推关系中的数列通项一、一阶线性递推式设已知数列}{n a 的项满足d ca a b a n n +==+11,,其中,1,0≠≠c c 求这个数列的通项公式;定理1:设上述递推关系式的特征方程的根为0x ,则当10a x =时,n a 为常数列,即0101,;x b a a x a a n n n +===时当,其中}{n b 是以c 为公比的等比数列,即01111,x a b c b b n n -==-.证明:因为,1,0≠c 由特征方程得.10cdx -=作换元,0x a b n n -=则.)(110011n n n n n n cb x a c ccdca c d d ca x a b =-=--=--+=-=--当10a x ≠时,01≠b ,数列}{n b 是以c 为公比的等比数列,故;11-=n n c b b当10a x =时,01=b ,}{n b 为0数列,故.N ,1∈=n a a n 证毕例1.已知数列}{n a 满足:,4,N ,23111=∈--=+a n a a n n 求.n a解:作方程.23,2310-=--=x x x 则 当41=a 时,.21123,1101=+=≠a b x a 数列}{n b 是以31-为公比的等比数列. 于是:.N ,)31(2112323,)31(211)31(1111∈-+-=+-=-=-=---n b a b b n n n n n n例2.已知数列}{n a 满足递推关系:,N ,)32(1∈+=+n i a a n n 其中i 为虚数单位;当1a 取何值时,数列}{n a 是常数数列 解:作方程,)32(i x x +=则.5360i x +-=要使n a 为常数,即则必须.53601ix a +-== 二、二阶线性递推式定理2:对于由递推公式n n n qa pa a +=++12,βα==21,a a 给出的数列{}n a ,方程02=--q px x ,叫做数列{}n a 的特征方程;若21,x x 是特征方程的两个根,当21x x ≠时,数列{}n a 的通项为1211--+=n n n Bx Ax a ,其中A,B 由βα==21,a a 决定即把2121,,,x x a a 和2,1=n ,代入1211--+=n n n Bx Ax a ,得到关于A 、B 的方程组;当21x x =时,数列{}n a 的通项为11)(-+=n n x B A a ,其中A,B 由βα==21,a a 决定即把2121,,,x x a a 和2,1=n ,代入11)(-+=n n x Bn A a ,得到关于A 、B 的方程组;例3:已知数列{}n a 满足),0(0253,,1221N n n a a a b a a a n n n ∈≥=+-==++,求数列{}n a 的通项公式;解法一待定系数、迭加法由025312=+-++n n n a a a ,得)(32112n n n n a a a a -=-+++, 且a b a a -=-12;则数列{}n n a a -+1是以a b -为首项,32为公比的等比数列, 于是:11)32)((-+-=-n n n a b a a ;把n n ,,3,2,1⋅⋅⋅=代入,得:a b a a -=-12, )32()(23⋅-=-a b a a , ••• ,21)32)((---=-n n n a b a a ;把以上各式相加,得:])32()32(321)[(21-+⋅⋅⋅+++-=-n n a b a a )(321)32(11a b n ---=-; a b b a a a b a n n n 23)32)((3)]()32(33[11-+-=+--=∴--;解法二特征根法:数列{}n a :),0(025312N n n a a a n n n ∈≥=+-++, b a a a ==21,的特征方程是:02532=+-x x ;32,121==x x , ∴1211--+=n n n Bx Ax a 1)32(-⋅+=n B A ; 又由b a a a ==21,,于是:⎩⎨⎧-=-=⇒⎪⎩⎪⎨⎧+=+=)(32332b a B a b A B A b BA a 故1)32)((323--+-=n n b a a b a三、分式递推式定理3:如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有hra qpa a n n n ++=+1其中p 、q 、r 、h 均为常数,且r h a r qr ph -≠≠≠1,0,,那么,可作特征方程hrx q px x ++=. 1当特征方程有两个相同的根λ称作特征根时,若,1λ=a 则;N ,∈=n a n λ若λ≠1a ,则,N ,1∈+=n b a n n λ其中.N ,)1(11∈--+-=n r p rn a b n λλ特别地,当存在,N 0∈n 使00=n b 时,无穷数列}{n a 不存在;2当特征方程有两个相异的根1λ、2λ时,则112--=n n n c c a λλ,,N ∈n 其中).(,N ,)(211212111λλλλλ≠∈----=-a n rp r p a a c n n 其中例3、已知数列}{n a 满足性质:对于,324,N 1++=∈-n n n a a a n 且,31=a 求}{n a 的通项公式.解:依定理作特征方程,324++=x x x 变形得,04222=-+x x 其根为.2,121-==λλ故特征方程有两个相异的根,使用定理2的第2部分,则有:∴.N ,)51(521∈-=-n c n n ∴.N ,1)51(521)51(52211112∈----⋅-=--=--n c c a n n n nn λλ 即.N ,)5(24)5(∈-+--=n a nn n 例5.已知数列}{n a 满足:对于,N ∈n 都有.325131+-=+n n n a a a1若,51=a 求;n a 2若,31=a 求;n a 3若,61=a 求;n a 4当1a 取哪些值时,无穷数列}{n a 不存在解:作特征方程.32513+-=x x x 变形得,025102=+-x x特征方程有两个相同的特征根.5=λ依定理2的第1部分解答.1∵∴=∴=.,511λa a 对于,N ∈n 都有;5==λn a 2∵.,311λ≠∴=a a ∴λλr p rn a b n --+-=)1(11令0=n b ,得5=n .故数列}{n a 从第5项开始都不存在,当n ≤4,N ∈n 时,51751--=+=n n b a n n λ. 3∵,5,61==λa ∴.1λ≠a ∴.,811)1(11N n n r p r n a b n ∈-+=--+-=λλ令,0=n b 则.7n n ∉-=∴对于.0b N,n ≠∈n∴.N ,7435581111∈++=+-+=+=n n n n b a nn λ 4、显然当31-=a 时,数列从第2项开始便不存在.由本题的第1小题的解答过程知,51=a 时,数列}{n a 是存在的,当51=≠λa 时,则有.N ,8151)1(111∈-+-=--+-=n n a r p r n a b n λλ令,0=n b 则得N ,11351∈--=n n n a 且n ≥2.∴当11351--=n n a 其中N ∈n 且N ≥2时,数列}{n a 从第n 项开始便不存在. 于是知:当1a 在集合3{-或,:1135N n n n ∈--且n ≥2}上取值时,无穷数列}{n a 都不存在.定理3证明:分式递推问题:如果数列}{n a 满足下列条件:已知1a 的值且对于N ∈n ,都有hra q pa a n n n ++=+1其中p 、q 、r 、h 均为常数,且r ha r qr ph -≠≠≠1,0,,那么,可作特征方程hrx qpx x ++=.1当特征方程有两个相同的根λ称作特征根时,若,1λ=a 则;N ,∈=n a n λ若λ≠1a ,则,N ,1∈+=n b a n n λ其中.N ,)1(11∈--+-=n r p r n a b n λλ特别地,当存在,N 0∈n 使00=n b 时,无穷数列}{n a 不存在.2当特征方程有两个相异的根1λ、2λ称作特征根时,则112--=n n n c c a λλ,,N ∈n 其中).(,N ,)(211212111λλλλλ≠∈----=-a n rp r p a a c n n 其中证明:先证明定理的第1部分. 作交换N ,∈-=n a d n n λ, 则λλ-++=-=++h ra q pa a d n n n n 11hra hq r p a n n +-+-=λλ)( h d r h q r p d n n ++-+-+=)())((λλλλλλλλr h rd q p h r r p d n n -+--+--=])([)(2 ①∵λ是特征方程的根,∴λ.0)(2=--+⇒++=q p h r hr qp λλλλ将该式代入①式得.N ,)(1∈-+-=+n rh rd r p d d n n n λλ ②将rpx =代入特征方程可整理得,qr ph =这与已知条件qr ph ≠矛盾.故特征方程的根λ,rp≠于是.0≠-r p λ ③ 当01=d ,即λ+=11d a =λ时,由②式得,N ,0∈=n b n 故.N ,∈=+=n d a n n λλ 当01≠d 即λ≠1a 时,由②、③两式可得.N ,0∈≠n d n 此时可对②式作如下变化:.1)(11rp rd r p r h r p d r h rd d n n n n λλλλλ-+⋅-+=--+=+ ④由λ是方程h rx q px x ++=的两个相同的根可以求得.2r hp -=λ ∴,122=++=---+=-+h p p h rrh p p rr h p h r p r h λλ将此式代入④式得.N ,111∈-+=+n rp rd d n n λ 令.N ,1∈=n d b n n 则.N ,1∈-+=+n rp rb b n n λ故数列}{n b 是以r p r λ-为公差的等差数列.∴.N ,)1(1∈-⋅-+=n rp rn b b n λ其中.11111λ-==a db 当0,N ≠∈n b n 时,.N ,1∈+=+=n b d a nn n λλ当存在,N 0∈n 使00=n b 时,λλ+=+=0001n n n b d a 无意义.故此时,无穷数列}{n a 是不存在的. 再证明定理的第2部分如下:∵特征方程有两个相异的根1λ、2λ,∴其中必有一个特征根不等于1a ,不妨令.12a ≠λ于是可作变换.N ,21∈--=n a a c n n n λλ故21111λλ--=+++n n n a a c ,将hra qpa a n n n ++=+1代入再整理得N ,)()(22111∈-+--+-=+n hq r p a hq r p a c n n n λλλλ ⑤由第1部分的证明过程知r p x =不是特征方程的根,故.,21rp r p ≠≠λλ 故.0,021≠-≠-r p r p λλ所以由⑤式可得:N ,2211211∈--+--+⋅--=+n rp h q a r p hq a rp r p c n n n λλλλλλ ⑥∵特征方程hrx q px x ++=有两个相异根1λ、2λ⇒方程0)(2=--+q p h x rx 有两个相异根1λ、2λ,而方程xrp xh q x --=-与方程0)(2=---q p h x rx 又是同解方程.∴222111,λλλλλλ-=---=--rp hq r p h q将上两式代入⑥式得当,01=c 即11λ≠a 时,数列}{n c 是等比数列,公比为rp rp 21λλ--.此时对于N ∈n 都有当01=c 即11λ=a 时,上式也成立. 由21λλ--=n n n a a c 且21λλ≠可知.N ,1∈=n c n所以.N ,112∈--=n c c a n n n λλ证毕注:当qr ph =时,h ra q pa n n ++会退化为常数;当0=r 时,hra qpa a n n n ++=+1可化归为较易解的递推关系,在此不再赘述.求数列通项公式的方法很多,利用特征方程的特征根的方法是求一类数列通项公式的一种有效途径.1.已知数列{}n a 满足1n n n a a b a c a d+⋅+=⋅+......① 其中*0,,c ad bc n N ≠≠∈.定义1:方程ax bx cx d+=+为①的特征方程,该方程的根称为数列{}n a 的特征根,记为,αβ. 定理1:若1,a αβ≠且αβ≠,则11n n n n a a a c a a c a αααβββ++---=⋅---.定理2: 若1a αβ=≠且0a d +≠,则1121n n c a a d a αα+=+-+-.例109·江西·理·22各项均为正数的数列{}n a ,12,a a a b ==,且对满足m n p q +=+的正数,,,m n p q 都有(1)(1)(1)(1)p q m nm n p q a a a a a a a a ++=++++. 1当14,25a b ==时,求通项n a ;2略. 例2 已知数列{}n a 满足*1112,2,n n a a n N a -==-∈,求通项n a . 例 3 已知数列{}n a 满足11122,(2)21n n n a a a n a --+==≥+,求数列{}n a 的通项n a例4已知数列{}n a 满足*11212,()46n n n a a a n N a +-==∈+,求数列{}n a 的通项n a2.已知数列{}n a 满足2112n n n a c a c a ++=+② 其中12,c c 为常数,且*20,c n N ≠∈. 定义2:方程212x c x c =+为②的特征方程,该方程的根称为数列{}n a 的特征根,记为12,λλ.定理3:若12λλ≠,则1122n nn a b b λλ=+,其中12,b b 常数,且满足111222221122a b b a b b λλλλ=+⎧⎨=+⎩. 定理4: 若12λλλ==,则12()nn a b b n λ=+,其中12,b b 常数,且满足1122212()(2)a b b a b b λλ=+⎧⎨=+⎩. 例5已知数列{}n a 满足*12212,3,32()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a 例6已知数列{}n a 满足*12211,2,44()n n n a a a a a n N ++===-∈,求数列{}n a 的通项n a例7:已知数列{}n a 满足12212,8,44n n n a a a a a ++===-,求通项n a .。

一阶线性递推数列

一阶线性递推数列

一阶线性递推数列1、设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52S S =()D(A )11 (B )5 (C )8- (D )11-2、设等差数列{}n a 的前n 项和为n S ,若111a =-,466a a +=-,则当n S 取最小值时, n 等于( A )A .6B .7C .8D .9()()()()36,6,3661222111212,8113411,3,62min 2211515564-==∴--=-=⨯-+-=-+=∴=∴=---=-=∴-=-=∴-==+S S n n n n n n n d n n na S d a a d a a a a a :n 取最小值且时当解3、已知数列{}n a 满足1133,2,n n a a a n +=-=则na n 的最小值为 663解:()()()()()()()663,66365535133,133333311,33,33212,2min 22211211111=⎪⎭⎫ ⎝⎛∴==-+=-+=+-=∴+-+-=∴++=∴=+=+⨯=-∴=-++==+∑∑n a f f nn n f n n n n n n a n n a n n a a nn n n a a i a a n n n n n ni ni i i 令一阶线性递推数列1、已知等差数列{}n a 满足:37a =,5726a a +=.{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令211n n b a =-(n N +∈),求数列{}n b 的前n 项和n T . 解:(Ⅰ) 数列{}n a 是等差数列,又5726a a +=,7,13,262366==∴=∴a a a 2,6713336=∴=-==-∴d d a a ,()()*∈+=⨯-+=-+=∴N n n n d n a a n ,1223733()()()n n n n n n d n n na S n n 2222112212+=⨯--+=--= (Ⅱ)()+∈-=N n a b n n 112, ()⎪⎭⎫ ⎝⎛+-=+=-+=-=∴11141441112111222n n n n n a b n n ()*==∈+=⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-==∴∑∑N n n nn i i b T n i ni i n ,141114111141112、设数列{}n a 的前n 项和为,n S 已知11,a =142n n S a +=+设12n n n b a a +=-,证明数列{}n b 是等比数列 证明:当2≥n 时,1121144,2424-+----=∴--+=-=n n n n n n n n a a a a a S S a又12n n n b a a +=-,()11112222442---+=-=--=-=∴n n n n n n n n n b a a a a a a a b ∴数列{}n b 是公比为2的等比数列 。

数列通项篇(一阶线性递推数列通项万能方法)

数列通项篇(一阶线性递推数列通项万能方法)

数列通项篇(一阶线性递推数列通项万能方法) 数列通项篇:q pa a n n +=+1多种类型q pa a n n +=+1n n n q n f pa a /)(1+=+)()()1(1n g a n f a n f n n +=++方法:待定系数法(1)q pa a n n +=+1型例1、已知数列}{n a 满足:11=a ,321+=+n n a a ,求n a 的通项核心思想:构造等差与等比求解(2)n n n q n f pa a /)(1+=+型 ①)(1n f pa a n n +=+型例2、已知数列}{n a 满足:11=a ,1321++=+n a a n n ,求n a 的通项※思考:)1(+n A 与An 的区别例3、已知数列}{n a 满足:11=a ,n n n a a 321+=+,求n a 的通项③n n n q n f pa a ++=+)(1或n n n q n f pa a •+=+)(1型 例4、已知数列}{n a 满足:11=a ,n n n n a a 3)13(21•++=+,求}{n a 的通项q p =时,切记用相除简单 例5、已知数列}{n a 满足:11=a ,n n n a a 331+=+,求}{n a 的通项⑤)()()1(1n g a n f a n f n n +=++型 例6、已知数列}{n a 满足:11=a ,n n n n a n a 21)11(1+++=+,求}{n a 的通项例7、已知数列}{n a 满足:11=a ,1)1()2(1+-=+-n n a n a n ,求n a 的通项一阶线性递推: q pa a n n +=+1 n n n q n f pa a /)(1+=+ )()()1(1n g a n f a n f n n +=++ 待定系数法 注意两点: 1、)(n g 什么形式,待定成什么形式2、必须反应1+→n n 的动态函数关系。

一阶线性递推数列简易求解方法

一阶线性递推数列简易求解方法

一阶数列的一般求法——转换法对于一般的一阶数列,其求法具有一般式,形如()()()()n g n f n g n f a a a an n n n+=+=--11; 或者()()()n h n g n f a a n n +=-1等等,都可以通过变式求出其通项公式出来。

欲知其通项公式的一般求法还需要从最简单的一阶等差数列开始;下面我就我就告诉大家怎样运用一阶等差数列来求一般的一阶数列。

对于简单的一节数列题目如;题一,数列}{a n 满足()()n f A n f a a a n n ,;11=+=-为已知道的表达式,试求}{a n 的表达式。

解:由题目条件满足()n f a a n n +=-1 所以有:()n f a a n n =--1 ()121-=---n f a a n n()232-=---n f a an n……()212f aa =-然后两边各自叠加,又A a =1,所以有()()11f i f A ni na-+=∑=由题一我们知道了一阶数列之中最简单的形式求和,下面我就一般的一阶数列求和进行分类讨论。

已知数列}{a n 满足()+=-a an nn f 1()n g ,()()n g n f A a ;,1=为已知关于n 的函数,试求数列}{a n 的通项公式解:由}{a n 满足()+=-a an nn f 1()n g ,则定义()()()()()n f f f f n F ......=321那么()+=-a a n n n f 1()n g 可变成为:()()()()n F n g n F n F aan n+-=-11所以有()()()()n F n g n F n F aan n=---11()()()()()()()()223211213221--=-----=-------n F n g n F n F n F n g n F n F aaaan n n n……()()()()221212F g F F aa=-然后左右两边各自叠加,又由A a =1可得;()()()()()∑=+-=n i ni F i g F g A n F a111 最后有:()[n F a n =()()()()]111∑=+-n i n F i g F g A题二,已知数列}{a n 满足()()n g n f a a n n +=-1,()()n g n f A a ;,1=为已知函数,试求}{a n 的表达式。

最新一阶线性递推数列的通项公式的5种求法知识分享

最新一阶线性递推数列的通项公式的5种求法知识分享

一阶线性递推数列的通项公式的5种求法研究一阶线性递推数列d ca a n n +=-1,(0c ≠,1c ≠,0d ≠),1a a =的通项公式各种求法,分析各种解法的适用条件,比较各种解法的优劣,挖掘各种解法的本质,探寻各种数列通项公式求法.解法一:等式两边同除法d ca a n n +=-1可化为11n n n n n a a d c c c --=+,令n n n a b c =,则1a b c =,1n n n d b b c--=, 因此,11122112111()()()()n n n n n n n b b b b b b b b d c c c -----=-+-++-=+++, 即:1(1)(1)n n n d c a b c c c --=+-,所以,1()11n n d d a a c c c -=+---. 解法二:构造法由解法一可知,1()11n n d d a a c c c -+=+--, 那么d ca a n n +=-1一定可化为1()n n a m c a m -+=+,比较d ca a n n +=-1和1n n a ca cm m -=+-可知1d m c =-,即1()11n n d d a c a c c -+=+-- , 令1n n d b a c =+-,则11d b a c =+-,1n n b cb -=, 因此,数列{n b }是以11d b a c =+-为首项,以c 为公比的等比数列. 所以,111()1n n n d b b c a c c --==+-,即:1()11n n d d a a c c c -=+---. 解法三:“不动点”法设0x 是函数()f x cx d =+的不动点,则00x cx d =+,解得01d x c=-, 那么d ca a n n +=-1可以化为11()111n n n d d d a ca d c a c c c---=+-=---- 下同解法二.解法四:“升降下标作差”法由d ca a n n +=-1…………① 可得 1n n a ca d +=+…………②②-①得11()n n n n a a c a a +--=-,2n ≥.令1n n n b a a +=-,则1n n b cb -=,且121b a a ca d a =-=+-,所以1()n n b ca d a c -=+-,即11()n n n a a ca d a c -+-=+-,22111221()()()()(1)n n n n n n a a a a a a a a ca d a c c c -----=-+-++-=+-++++111()()()111n n n c d d a ca d a a a c c c c ---=+-+=+----. 解法五:待定系数法由以上解法得出的结果看,满足d ca a n n +=-1,(0c ≠,1c ≠,0d ≠),1a a =的 数列{n a }的通项公式就是1n n a Ac B -=+型,由于2a ca d =+,所以有12a A B a a Ac B ca d =+=⎧⎨=+=+⎩解关于A B 、的方程组得,,11d d A a B c c =+=---. 故1()11n n d d a a c c c -=+---. 点评房地产营销的7大策略(1-3) 2004年10月3日 南方日报营销策略之一 体验营销大行其道住宅产品,是耐久性消费产品;由于房与房之间的差异较大,往往无法多次消费同样的产品,消费者较难通过尝试消费,来检测所购买产品的质量。

一阶递推数列通项公式求法的再探讨

一阶递推数列通项公式求法的再探讨
X S ) t +f +tx+s +1
+f


+ 8 + f t +r + t + (x 9 + ) 8 9) 1 x t
+f
B /
/ 。 / . /

9 +1t +9 9 +f +1 8x t +1 ( )
x七 t x+ t
/6

一6, +( ] ) ,
除 以 =2 实现转 化 . ”
・ . ~
解 由
・ . .
=2 a +2得 Biblioteka =. + , 1 ・
. .
n [ - +( ) - n 5 4 一6( I
当“ =q≠1 时一 阶递推 数 列 a = ma ”
等 一 =, 数 . } 以 为 项 1 1即 列{ 是 2 首 , a n
的数列 需 要注 明条件 :13 需 要“ — m≠1 ;45 需 要 ” .
m≠q ,否 则表格 右边 的新 数列将 不成立 .以下举 ”
例 对 一 阶递 推 数 列 +:m n ()q + ()( l a +pn・” rn m≠0 )
2 1 第 8期 0 0年
福 建 中学数 学
4 3

当且仅当9 f — ,即x t ÷ +) J = _ + = 时, 上述不
等式取“ ’ _’ .
+ v+ z= 1 , 3 +z≥ 2,
易 知 当直 线 , 过 点 D 与 点 B( 点 A) 经 或 时直 线 在 轴 上 的截 距取 得最 值 ,此 时 U也相 应地 取得 最
+ ()q +rn m≠0 型通 项 公 式 求 法 就 是 递 推 关 p ・ ()( )
为 公 差 的 等 差 数 7 , .- =2 1x =" ' _ J . +( 一 ) l +1,

一阶线性递推公式求通项的方法

一阶线性递推公式求通项的方法

一阶线性递推公式求通项的方法
康红霞
【期刊名称】《中学数学:高中版》
【年(卷),期】2022()4
【摘要】本文中基于一阶线性递推公式分常系数和非常系数两种类型,以一题多解的发散性思维方式介绍几种求递推公式通项的方法.
【总页数】3页(P65-67)
【作者】康红霞
【作者单位】甘肃省定西市安定区交通路中学
【正文语种】中文
【中图分类】G63
【相关文献】
1.求一阶常系数线性递归数列通项公式的数学思想方法
2.求一阶常系数线性递归数列通项公式的数学思想方法
3.由数列的递推公式求通项公式的常用方法
4.渗透思想方法精准专题教学——以“数列小专题--如何由递推公式求通项公式”为例
5.由数列递推公式求通项的7种方法
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一阶线性递推数列
1、设n S 为等比数列{}n a 的前n 项和,2580a a +=,则5
2
S S =()D
(A )11 (B )5 (C )8- (D )11-
2、设等差数列{}n a 的前n 项和为n S ,若111a =-,466a a +=-,则当n S 取最小值时, n 等于( A )
A .6
B .7
C .8
D .9
()()()()36
,6,3661222
111212
,8113411,3,62min 2211515564-==∴--=-=⨯-+-=-+=∴=∴=---=-=∴-=-=∴-==+S S n n n n n n n d n n na S d a a d a a a a a :n 取最小值且时当解
3、已知数列{}n a 满足1133,2,n n a a a n +=-=则n
a n 的最小值为 6
63
解:
()()()()()()()6
63
,66365535133
,133333311,33,33212,2min 222112111
11=
⎪⎭⎫ ⎝⎛∴==-+=-+=+-=∴+-+-=∴++=∴=+=+⨯=-∴=-++==+∑∑n a f f n
n n f n n n n n n a n n a n n a a n
n n n a a i a a n n n n n n
i n
i i i 令
一阶线性递推数列
1、已知等差数列{}n a 满足:37a =,5726a a +=.{}n a 的前n 项和为n S . (Ⅰ)求n a 及n S ; (Ⅱ)令2
11
n n b a =
-(n N +
∈),求数列{}n b 的前n 项和n T . 解:(Ⅰ) 数列{}n a 是等差数列,又5726a a +=,7,13,262366==∴=∴a a a 2,6713336=∴=-==-∴d d a a ,
()()*
∈+=⨯-+=-+=∴N n n n d n a a n ,1223733
()()()n n n n n n d n n na S n n 2222112212+=⨯--+=--
= (Ⅱ)()
+
∈-=N n a b n n 1
12
, ()⎪⎭
⎫ ⎝⎛+-=+=
-+=
-=
∴11141441
1
121
1
12
22n n n n n a b n n ()*==∈+=
⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-==∴∑∑N n n n
n i i b T n i n
i i n ,14111411114111
2、设数列{}n a 的前n 项和为,n S 已知11,a =142n n S a +=+
设12n n n b a a +=-,证明数列{}n b 是等比数列 证明:当2≥n 时,
1121144,2424-+----=∴--+=-=n n n n n n n n a a a a a S S a
又12n n n b a a +=-,()11112222442---+=-=--=-=∴n n n n n n n n n b a a a a a a a b ∴数列{}n b 是公比为2的等比数列 。

3、在数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-(2,0n q ≥≠). (Ⅰ)设1n n n b a a +=-(*n N ∈),证明{}n b 是等比数列; (Ⅱ)求数列{}n a 的通项公式;
(Ⅰ)证明:(){}。

q b qb a a q b n n n n n 的等比数列是公比为数列∴=-=--,11 (Ⅱ)解:()()111121112----=-=-==n n n n n q q q a a q b b 11-+=-=∴n n n n q a a b
()n
a n n a ,a q 、q
q a q q a q q a a q 、q a a n n n n n n n n n
i i n i i i =∴+=+==--+=∴--+=∴--=-∴≠=-∴+-++=-=+∑∑,112111,111,1111,
111
1111
11
1时当时当
综上所述知:⎪⎩
⎪⎨⎧=≠--+=-1,1,1111q n q q
q a n n
课后作业
1.等差数列{a n }中,若a 2+a 4+a 9+a 11=32, 则a 6+a 7= ( D ) (A )9 (B )12 (C )15 (D )16
2.在数列
中,


的值为: ( D )
(A )49 (B )50 (C )51 (D)52
3.已知数列
1,

则其前n 项的和等于
1
2+n n
4、已知{a n }是公差不为零的等差数列,a 1=1,且a 1,a 3,a 9成等比数列. (Ⅰ)求数列
的通项; (Ⅱ)求数列{}n
a 2
的前n 项和n S .
()()()()()()()
*
+*
∈-=--=++++=∈=-+=-+=∴==∴≠=∴+=++∴+=+∴=∴N n S ⅡN n n n d n a a d a d d a d d
a a d d a a d a a d a a a a ,a a a :Ⅰn n
n n n ,222
12
122222,111,
1,0,44844,82,,13211112121212111219
123931 成等比数列解
5. 已知数列
中,
,当
时,

(1
)证明数列 是一个等差数列; (2)求
.
(1)证明:当2≥n 时,
()()
{}。

S S S S S S S S S S S S S a n n n n n n n n n n n n n n 的等差数列是一个公差为数列2
1
,212
11
112
1
21∴=-∴+=
-+=-=-=------ (2)解:由(1)知:数列{}n a 是一个公差为2
1
的等差数列,
()()
()
1
4
11,4
1,21
21112
12
1=+=
∴+=
∴∈+=-+=-+=∴*
a n S N n n n d n S S n n
()⎪⎩⎪
⎨⎧≥+==∴+=-
+=-=≥∴-2,4
1
21,14
1
244
12221
n n n a n n n S S ,a
n n n n n
时当
6.数列}{n a 的前n 项为n S ,∈-=n n a S n n (32N )*. (1)证明:数列{}3+n a 是等比数列;(2)求数列{}n
a 的通项公式n a
解:①当1=n 时,3,1321111=∴⨯-==a a S a ;当2≥n 时,
()()()
{}。

a a a a a a a a a a a n a n a S S a n n n n n n n n n n n n n n n n 的等比数列是公比为数列设23323,32,23
2,322132*********++=+∴=∴+=∴+=++=∴--=-+--=-=-------λλ
λλ
②}()()*
----∈-⋅=∴⋅=⋅+=⋅+=+∴+N n a a a a n n n n n n n ,32626233233,
2311111的等比数列是公比为数列
7.已知数列{}a n 的前n 项和S n b n n =+()1,其中{}b n 是首项为1,公差为2的等差 数列。

(1)求数列{}a n 的通项公式;
(2)若c a b n n n =
+
1
25(),求数列{}c n 的前n 项和n T
8.解:(1) 数列{}b n 是首项为1,公差为2的等差数列,().12211-=⨯-+=∴n n b n
()()().1212112-+=-+=+=∴n n n n b n S n n
1、当1=n 时,211==S a , 当2≥n 时,
()()()[]
()[]
()⎩⎨⎧
∈≥-==∴-=+-=--+--=+-----+=-=*
-N
n n n n a n n n n n n n n n n S S a n n n n ,2,141,2,14112211211121222221
(2)当2≥n 时,
()()()()
()()14
151221521,3411414134141
524141111=+⨯=+=⎪⎭⎫ ⎝⎛+--=+-=
+--=b a C n n n n n n C n 又
()
*∈+-=⎪
⎭⎫ ⎝⎛+-+=
⎥⎦
⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+--++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+=++++=∴N n n n n n C C C C T n
n ,34412833417141141341141
1511111117141141321。

相关文档
最新文档