气相色谱分析法--基本理论
第十四章 气相色谱法
色谱柱 柱管
色谱柱组成
填充柱:2~4米柱长,2~6mm内径 毛细管柱:几十米~几百米柱长 0.1~0.5mm内径
固体吸附剂——气-固吸附色谱柱
填充剂
载体+固定液——气-液分配色谱柱
一、气液分配色谱柱 二、气固吸附色谱柱
(二)固定液
1.要求: (1)操作柱温下固定液呈液态(易于形成均匀液膜) (2)操作条件下固定液热稳定性和化学稳定性好 (3)固定液的蒸气压要低(柱寿命长,检测本底低) (4)固定液对样品应有较好的溶解度及选择性 2.分类: 化学分类法 极性分类法
C.醇类(氢键形固定液)
非聚合醇 聚合醇 聚乙二醇(PEG-20M——2500C)
D.酯类:中强极性固定液
非聚酯类 聚酯类 丁二酸二乙二醇聚酯 (PDEGS或DEGS)
极性分类法:
a.相对极性法
b.固定液常数法(罗氏特征常数法和麦氏常数法)
罗氏特征常数法:β,β/-氧二丙腈的相对极 性为100,非极性的鲨鱼烷为0,其他固定液 的相对极性在0~100之间,每20为一级。 0,+1为非极性,+2,+3为中等极性;+4,+5 为极性
容量因子:指组分在固定相与流动相中的质量比 ms k mm 保留因子不仅与温度和压力有关,还与固定相 和流动相的体积有关
ms C sVS k mm CmVm
分配系数与容量因子的关系
VS kK Vm
气相色谱法的基本理论-基本概念
/ K 2 k2 t R 分配系数比 /2 K1 k1 t R1
注:颗粒太小,柱压过 高不易填均匀 填充柱60~100目 毛细管柱A=0,n理较高
气相色谱法的基本理论-基本理论-速率理论
第2章 气相色谱分析法
将两者混合起来进行色谱实验,如果发现有 新峰或在未知峰上有不规则的形状(例如峰略 有分叉等)出现,则表示两者并非同一物质; 如果混合后峰增高而半峰宽并不相应增加, 则表示两者很可能是同一物质. 3.多柱法:在一根色谱柱上用保留值鉴定组分有 时不一定可靠,因为不同物质有可能在同一色 谱柱上具有相同的保留值.所以应采用双柱或多 柱法进行定性分析.即采用两根或多根性质(极 性)不同的色谱柱进行分离,观察未知物和标 准试样的保留值是否始终重合.
§2.5 GC检测器 一、概述 1.作用:将经色谱柱分离后的各组分按其特性及含 量转换为相应的电讯号。 2.分类: 浓度型:测量的是载气中某组分浓度瞬间的变化, 即检测器的响应值和组分的浓度成正比。 热导TCD ; 电子捕获ECD; 质量型:测量的是载气中某组分进入检测器的速 度变化。即检测器响应值和组分的质量成正比。 氢焰FID; 火焰光度FPD;
二、根据色谱保留值进行定性 定性方法的可靠性与色谱柱的分离效率有密切的 关系,为了提高可靠性,应该采用重现性较好 和较少受到操作条件影响的保留值. 由于保留时间(或保留体积)受柱长、固定液 含量、载气流速等操作条件的影响比较大,因 此一般适宜采用仅与柱温有关,而不受操作条 件影响的相对保留值r21作为定性指标. 1.对于比较简单的多组分混合物,如果其中所有 待测组分均为已知,它们的色谱峰也能一一分 离,那么为了确定各个色谱峰所代表的物质, 可将各个保留值与各相应的标准试样在同一条 件下所测得的保留值进行对照比较,确定各个 组分.
§2.6 气相色谱定性方法
一、概述:各种物质在一定色谱条件下都有确定不 变的保留值,因此保留值可作为一种定性指标 . 现状:GC定性分析还存在一定问题.其应用仅限 于当未知物通过其它方面的考虑(如来源,其它 定性方法的结果等)后,已被确定可能为某几个 化合物或属于某种类型时作最后的确证;其可靠 性不足以鉴定完全未知的物质。 近年,GC/MS、GC/光谱联用技术的开发,计算机 的应用,打开了广阔的应用前景。
气相色谱法PPT课件
沿陡峭。如B
A
B
对称因子[ƒs (symmetry factor)]
即拖尾因子(tailing factor):
用来描述峰形对称程度的。
计算公式为:
fs
W0.05h 2A
一、气相色谱法的分类和特点
(一)分类 按固定相的聚集状态分: 气固色谱法(GSC),属吸附色谱 气液色谱法(GLC),属分配色谱
按操作形式分,气相色谱属柱色谱.
按柱的粗细不同分:
填充柱色谱法:将固定相填充在金属
或玻璃管中(内径4mm~6mm)
毛细管柱色谱:毛细管柱(0.1mm~0.5mm)
分为
开口毛细管柱
和固体。(沸点在500℃以下,热稳定性 好,分子量在400以下的物质)。 目前气相色谱法所能分析的有机物,约 占全部有机物(约300万种)的20%。
气相色谱两大弱点: a.受试样蒸汽压限制 b.定性困难
二、气相色谱仪 gas chromatographic instruments
气相色谱仪
气相色谱仪
柱制备对柱效有较大影响,填料装填 太紧,柱前压力大,流速慢或将 柱堵 死;反之空隙体积大,柱效低。
4.检测系统(detection system) 色谱仪的眼睛。包括检测器、控温装 置;若作制备,则在检测器后面接分 步收集器。 作用:按组分浓度或质量随时间的变化,
转化成相应电信号
检测器:
广普型——对所有物质均有响应;
气化室: 将液体试样瞬间气化的 装置。无催化作用。
3.色谱柱系统(column system) 包括恒温控制装置,是色谱仪的心脏部
分。
柱材质:不锈钢管或玻璃管,内径3-6 毫米。长度可根据需要确定。
简述气相色谱分析法的基本原理
简述气相色谱分析法的基本原理
气相色谱分析法是一种用于快速分析具有复杂组成的物质的分析
技术,在现代分析化学中有着重要的应用。
气相色谱分析法的基本原理是将微量物质以气体形式进行脱附,然后用色谱柱对其进行分离,再用检测器对分离的各种成分进行
检测。
该分析法以气态物质的不同稳定性、溶解度以及穿透率为基础,通过对物质电离和离子转移作用,使被测物质根据其不同性质在柱身
内分离,具有分离效率高、分析时间短、精度高等优点。
气相色谱分析法的基本步骤主要包括样品的脱附、检测剂的
检测、柱身的分离和筛选等步骤。
样品经过搅拌后进入搅拌室,在这里,样品混合分解,并以气态形式向色谱柱端面施压,也就是在柱子
内进行脱附。
经过样品的脱附和检测剂的加入,所得到的混合气体在
色谱柱内分离,根据其不同稳定性、溶解度以及分子量等性质,各种
成分在柱身中行走时间也不一样,通过检测器可以检测不同成分的浓度,形成各种成分的曲线,从而得出被测物质的组成。
气相色谱分析法在现代化学分析中有着重要的应用价值,以
它为基础,可以开展具有一系列新性质的研究,如食品、环境、生物
医药分析中的有机气体、挥发性有机物、无机气体等物质的组成研究等。
在污染源的检测方面,气相色谱分析法也发挥着重要的作用。
总之,气相色谱分析法具有分离效率高、分析时间短、精度高等
特点,在食品、环境、生物医药以及污染源检测等方面具有重大的应
用价值。
气相色谱基本知识
SSI 分流模式流路图
SSI 不分流模式流路图
SSI分流流量计算
隔垫吹扫填充进样口
对于毛细管柱:
1.增加了隔垫吹扫的功能
隔垫吹扫的作用:由于要让进去的液体或固体样品在汽化室汽化, 这里必然 有高温,高温会使隔垫上的一些易挥发的物质出来,同时 由于进样针的插入,有可能会使垫圈上的物质脱落,若没有隔垫吹 扫,则会使色谱图上出现鬼峰,采用隔垫吹扫,这些物质可以从隔垫 吹扫气路吹走.
原理)
二、气相色谱的定义与分类
定义:
气相色谱法是以惰性气体(N2、He、Ar、H2等)为流动相 的柱色谱分离技术,其应用于化学分析领域,并与适当的检 测手段相结合,就构成了气相色谱分析法。
分类:根据固定相的状态不同,可将其分为气固色谱和气
液色谱。
3.气相色谱流程
气相色谱法用于分离分析样品的基本过程如下图:
3.进样的速度
1)对于有的样品,进样速度要快 2)留针:对于粘滞的样品,先刺入隔垫,进针2/3,推针不马上进
行,待升温使其溶解后再推针.
4. 泄漏:
进样垫和柱泄漏会改变保留时间和峰面积。样品可能从泄 漏处跑掉,空气会扩散入进样口造成柱损伤。定期更换进 样垫并在第一次发生问题时检查柱连接。
5.进样口温度、分流比等设置不正确
典型色谱图
问题色谱图
#1 #2 #3 #4 #5 #6 #7 #8 #9
毛细管柱问题2
鬼峰:残留或柱污染
典型色谱图
问题色谱图
#1 #2 #3 #4 #5 #6 #7 #8 #9
毛细管柱问题3
RT 和面积完全不同:用错了柱子
典3 #4 #5 #6 #7 #8 #9
气相色谱仪基础知识培训
43
0.5
11
530
ml/min cm/sec
2.8
21
3.4
26
0.9
7
❖ 气体
作用:
• 1)载气:作为色谱的流动 相
• 2)检测器的工作气体。
载气:
p 惰性:He, Ar, N2, H2. p 根据检测器, 价格及方便程度来决定 p 采用压力调节器以获得恒定的仪器
输入压力 p 控制流量来得到恒定的流速
长度 2-3 meters 2 meters <10 meters
Pack
• 填充柱中填有固态载体,上面涂有液态固定相,用于 气液色谱(GLC)或直接填充多孔固体,用于气固色 谱(GSC).
固态载体
p 是液态固定相附着的载体
p 增加与样品接触的表面积。
p 细小、均匀、多孔。
p 大部分采用硅土. p 标准大小颗粒.
6. 色谱柱
填充柱
• 长:2 - 3 m • 内径:2 - 4 mm • 玻璃和金属材质
毛细管柱
• 长:10 - 100 m • 内径:0.1 - 0.8 mm • 熔融氧化硅或不锈钢,聚酰亚胺涂层
色谱柱材料和结构
p 填充柱
p - 短(2-3 米), 管内径较粗.
p 毛细管柱
p - 长(> 60 米), 内径较细. p 所有材料均要求化学及热性质稳定.
分流/不分流进样
p 用于毛细管柱0.1 mm to 0.53 mm ID. p 可选用分流/不分流进样 (split/splitless.) 分流(split)
p 允许样品中的代表部分进入到色谱柱中。 p 当被测物浓度较高时。
不分流(splitless)
气相色谱的定性分析方法
fm'
Ms Mi
(3)、相对响应值
相对响应值是物质 i 与标准物质 S 的响应值(灵敏度)
之比,单位相同时,与校正因子互为倒数,即
Si
1 fi
和只与试样、标准物质以及检测器类型有关,而与操
作条件和柱温、载气流速、固定液性质等无关,不受
操作条件的影响,因而具有一定的通用性,是一个能
二、气相色谱的定量分析方法
定量分析就是要确定样品中组分的准确含量。气相 色谱的定量分析与大多数的仪器分析方法一样,是一 种相对定量方法,而不是绝对定量方法。
气相色谱定量分析的依据是:在一定的条件下,被
测谱本组峰公分的式峰为i 通面:过积检A测i 成器正的比数。量因(或此浓气度相)色w谱i定与量该分组析分的色基 W i = fi Ai 析再必用式须适中测当的量的f 其 定i称峰量为面计组积算分方A的法i校和,正确将因定色子组谱。分峰由的面式校积可正换知因算,子为定f试量i ,样分
的组分的量 mi ,另一方面要准确测量出峰面积或峰高,
并要求严格控制色谱操作条件,这在实际工作中有一 定困难。因此,实际测量中通常不采用绝对校正因子, 而采用相对校正因子。
(2)、相对校正因子
相对校正因子是指组分 i 与另一标准物 S 的绝
对校正因子之比,用表示:
fi'
fi fs
mi / Ai ms / As
中组分的含量。
1、峰面积的测量
在使用积分仪和色谱工作站测量蜂高和峰面积时,仪器可根据 人为设定积分参数(半峰宽、峰高和最小峰面积等)和基线来计算 每个色谱峰的峰高和峰面积。然后直接打印出峰高和峰面积的结 果,以供定量计算使用。
当使用一般的记录仪记录色谱峰时,则需要用手工测量的方法 对色谱峰和峰面积进行测量。虽然目前已很少采用手工测量法去 测量色谱峰的峰高和峰面积。但是了解手工测量色谱峰峰高和峰 面积的方法对理解积分仪和色谱工作站的工作原理及各种积分参 数的设定是大有裨益的。所以,以下简单介绍两种常用的手工测 量法。
3--第二章色谱分析理论基础
当待分离组分随着载气进入色谱柱,组分就开始在两相间进行 分配,平衡后,再随着载气进入下一个塔板进行分配,平衡后 再进入下一个塔板。以此类推,从而不断达到分配平衡。
1.塔板理论基本假设
(1)在色谱柱中的每一小段长度H内,组分迅速达到分 配平衡,这一小段色谱柱称为理论塔板,其长度称为理论 塔板高度,简称板高,记为H; (2)载气不是连续通过色谱柱,而是脉冲式,每次进气 量为一个板体积; (3)试样开始时都加在0号塔板上,且试样沿柱纵向扩 散忽略不计; (4)分配系数在各塔板上是常数; (5)塔板与塔板之间不连续。
结论: 分配系数K是色谱分离中的一个重要参数。 两组分分配系数K相差越大,两峰分离的就越好。 不同物质的分配系数K相同时,组分不能分离。因此是色 谱分离依据。
3.分配比k
又叫容量比、容量因子。
在一定温度、压力下,在两相间达到分配平衡时,组分在 两相之间的质量比值,以k表示。
组分在固定相中的质量
k=
分子扩散大。
3.传质阻力项C
组分在气相和液相两相间进行反复分配时,遇到阻力。传质阻 力C包括气相传质阻力Cg和液相传质阻力CL 。液相传质阻力 大于气相传质阻力。
C =(Cg + CL)
气相传质过程是指试样组分从气相移动到固定相表面的过程。
这一过程中试样组分将在两相间进 行质量交换,即进行浓度分配。有 的分子还来不及进入两相界面,就 被气相带走;有的则在进入两相界 面后又来不及返回气相。这样,使 得试样在两相界面上不能瞬间达到 分配平衡,引起滞后现象,从而使 色谱峰变宽。
(3)对于某确定的色谱分配体系,组分的分离最终决定于 组分在每相中的相对量,而不是决定于组分在每相中的相对 浓度,因此分配比是衡量色谱柱对组分保留能力的重要参数。 k越大,组分保留时间越长,k=0,组分的保留时间为死时间。
气相色谱基本原理、相关知识
5.在柱垫圈上端以上留出柱4-6mm,用打印机改正液在柱螺 母下作标记.
6.将柱插入进样口,把螺帽和垫圈上部的柱子滑向进样口 底部.用手指拧紧柱螺帽直至柱被固定.
7.调节柱位置,使柱上改正液标记正好在柱螺帽底部.
8.拧紧螺帽1/4-1/2圈,用轻微的力部能将柱从接头上拉下.
9.在检测器上安装毛细管柱 其步骤与进样口相同,但是在柱垫圈上端以上留出的距离不 一样(FID:48mm) 注意:如果在应用中系统所使用的是ECD或是NPD等, 那么在老化色谱柱时,不接检测器。
#1 #2 #3 #4 #5 #6 #7 #8 #9
分流比设置问题
进样口的日常维护
更换隔垫
清洗或更换进样针
进行泄漏测试和维修
清洗或更换衬管/内插件 更换O-形环 清洗或更换分流平板和金属垫片(SSI)
2.气化室
为了让样品在气化室中瞬间气化而不分解,因此要求
气化室热容量大,并不使样品分解。为了尽量减少柱前谱峰
进样口类型:
1)分流/不分流进样口 (SSI) 2)隔垫吹扫填充柱进样口 (PPI) 3)冷柱头进样口
4)程序升温汽化进样口 (PTV):进样口的加热丝可程序升温, 适合多组分难分离的物质分离
5)顶空进样 6)微相固萃取进样
SSI 分流模式流路图
SSI 不分流模式流路图
SSI分流流量计算
隔垫吹扫填充进样口
变宽,气化室的死体积应尽可能小。常用金属块制成汽化室、
外套加热块,为消除金属表面的催化作用,在汽化室管内有 石英衬管,衬管有分流与不分流之分。衬管是可以清洗的。
3.分离系统:
分离系统是指把混合样品中各组分分离的装置,它由 色谱柱组成
色谱柱的分类:
气相色谱法及其应用-PPT
第二部分 气相色谱仪系统及功能
GC工作过程示意图
载气系统
分离系统
检测和 记录系统
进样系统
温控系统
一、载气系统
{ 气源
载气系统 净化干燥管
载气流速控制装置
常用载气:氮气、氦气、氢气及氩气
{ 载气选择依据 检测器 柱效
{
二、进样系统
进样系统
色谱柱的温度控制方式有: 恒温和程序升温 程序升温指在一个分析周期内柱温随时间由
低温向高温作线性或非线性变化,以达到用 最短时间获得最佳分离的目的。 对于沸点范围很宽的混合物,往往采用程序 升温法进行分析。
恒温150 ℃
程序升温50~250℃, 8℃/min
正构烷烃恒温和程序升温色谱图比较
程序升温不仅可以改善分离,而且可 以缩短分析时间。
组分峰影响。
优点
准确度高
岛津GC-2014型
1 . 热导池检测器 (TCD)
A R1 R2 B 参比 测量
工作原理:纯载气是一条 直线,当有有试样气通过 时,由于导热系数与载气 不同,测量池中热敏电阻 上的温度发生变化,其阻 值随之改变,电桥平衡遭 破坏,AB两点间的电位 不再相等,记录仪上即出 现峰电位。待测组分的导 热系数越大,测量池中热 敏电阻上的温度变化越大, 其电阻值也越大。
V0 t0Fc
5 . 保留体积Vr
Vr tr Fc
6 .校正(调整)保留体积
三、峰高与峰面积-定量分析的依据
四、区域宽度-柱效
峰底宽度W
半峰宽W1/2 标准偏差σ
W 4 W1/2 2.35
五、 分离度 定义: R tr2tr1 2(tr2tr1) 12(W1W2) (W1W2) tr2, tr1: 组分2和组分1的保留时间 W2, W1: 组分2和组分1的峰底宽度
气相色谱分析法
3. 分配比(容量因子)k 分配比(容量因子)k 在实际工作中,也常用分配比来表征色谱分配 在实际工作中, 平衡过程.分配比是指,在一定温度下, 平衡过程.分配比是指,在一定温度下,组分在两 相间分配达到平衡时的质量比: 相间分配达到平衡时的质量比:
组分在固定相中的质量 ms k= = 组分在流动相中的质量mM
色谱法: 又称色层法或层析法,是一种 色谱法: 物理化学分析方法,它利用不同溶质(样 品)与固定相和流动相之间的作用力(分 配,吸附,离子交换等)的差别,当两相 做相对移动时,使得各组分按一定顺序从 固定相中流出,实现混合物中各组分的分 离.
2. 色谱法分类
流动相为气体( (1)气相色谱:流动相为气体(称为载气). 气相色谱 流动相为气体 称为载气) 按分离柱不同可分为:填充柱色谱和毛细管柱色谱; 按分离柱不同可分为:填充柱色谱和毛细管柱色谱; 按固定相的不同又分为: 按固定相的不同又分为:气固色谱和气液色谱
组分在固定相中的浓度 cs K= = 组分在流动相中的浓度 cM
分配系数是色谱分离的依据. 分配系数是色谱分离的依据.
分配系数 K 的讨论
组分在固定相中的浓度 K= 组分在流动相中的浓度
一定温度下,组分的分配系数 越大,出峰越慢; 一定温度下,组分的分配系数K越大 出峰越慢; 越大,
试样一定时,K主要取决于固定相性质; 试样一定时, 主要取决于固定相性质 主要取决于固定相性质; 试样一定时 每个组份在各种固定相上的分配系数 不同; 每个组份在各种固定相上的分配系数K不同 每个组份在各种固定相上的分配系数 不同; 选择适宜的固定相可改善分离效果; 选择适宜的固定相可改善分离效果; 选择适宜的固定相可改善分离效果 试样中的各组分具有不同的 值是分离的基础; 试样中的各组分具有不同的K值是分离的基础 试样中的各组分具有不同的 值是分离的基础; 某组分的 = 0时,即不被固定相保留,最先流出. 某组分的K 某组分的 时 即不被固定相保留,最先流出.
第2章气相色谱法
对分离较差,峰底宽度难于测量,则用下式表示分离度
R'
tR2 tR1
1 2
(Y12(1)
Y1 2
(
2)
)
20
C
W G
色谱分离基本方程式
体系的热力 学性质
R 1 n ( 1) ( k )
4
k 1
n
(
k
k
1)
2
n有效
R1 4
n有效
( 1)
现现 代代 仪器分析 仪器分析
改变k的方法是:
改变柱温:影响分配系数 改变相比:即改变固定相的量及柱的死体积(采用细颗粒的固定相,
填充紧密且均匀)
分离度与柱选择性的关系
α是色谱柱选择性的量度, α越大,色谱柱选择性越好,分离效 果越好
通过改变固定相,使各组分的分配系数有较大的差别
L
16R
2
(
1)2
17
W CG
现现 代代 仪器分析 仪器分析
B/u分子扩散项:“塞子”前后存在着浓度差
B 2Dg
弯曲因子
气相分子扩散系数
Dg
1
M 载气
摩尔质量大的载气可使B值变小,有利于分离
载气流速愈小,保留时间愈长,分子扩散项的影响也愈 大,从而成为色谱峰扩散的主要因素
18
W CG
现现 代代 仪器分析 仪器分析
调VM整,保或留V体R’=积tRV’·RF’0:指扣除死体积后的保留体积:VR’=VR-
相对保留值r21
指组分2与另一组分1的调整保留值之比。相对保留值只与柱 温及固定相性质有关,与其它色谱操作条件无关,它表示了 色谱柱对这两种组分的选择性: r21相差越大,分离越好。 r21 =1,不能分离
气相色谱理论基础
• 三色谱特点及应用范围 • 二 气相色谱法的特点: • 1灵敏度高:可检出ng/g数量级。 • 2分离效能高:有报道可分离同位素。 • 3快速:一般几分钟可完成一个试样的全分
析
• 4应用范围:各行各业都离不开GC。(化工、 环保、食品、医药等)。
• 不足之处:需要相应的纯物质,沸点高 的组分不能分析。大部分无机物不能分析。
• K=kVM/VL=4.0x50.0/2=100.0
• VR=5x50=250mL
已知物质A和B在一根30.00 cm长的柱上的保留时 间分别为16.40 min和17.63 min。不被保留组分 通过该柱的时间为1.30 min。峰底宽度分别为 1.11 min和1.21 min,计算:
(1)柱的分离度;
• (2)有关保留值的述语 • 保留时间(tR):组分从进样到出现峰最大
值时所需时间。
• 死时间(tM):不被固定相滞留的组分的保 留时间。
• 使用热导检测器(TCD)时,空气的保留时 间为死时间;使用氢火焰检测器(FID)时
• 甲烷的保留时间为死时间。 • 调整保留时间(t/R): 扣除死时间的保留
于载体分子与固体分子间作用力的大小;后者, 则与组分、固定液分子相互作用力的不同有关。
分子间的作用力是一种极弱的吸引力,主要 包括静电力、诱导力、色散力和氢键力等。
如在极性固定液柱上分离极性样品时,分子 间的作用力主要是静电力。被分离组分的极性越 大,与固定液间的相互作用力就越强,因而该组 分在柱内滞留时间就越长。
• 柱效:常用塔板数n和塔板高 度H来衡量。
• n=5.54(tR/w1/2)2=16(tR/w)2 • H=L/n
• 实际工作中,常用有效塔板数 neff来表示:
仪器分析-气相色谱分析
• 3、保留值:是试样各组分在
色谱柱中保留行为的量度,它 反映组分与固定相间作用力大 小,通常用保留时间和保留体 积表示。 死时间tM:不被固定相吸附或 溶解的组分(如空气、甲烷) 从进样到出现其色谱蜂最大值 所需的时间,图中O'A'所示。 保留时间tR :指某组分通过 色谱柱所需时间,即试样从进 样到出现峰极大值时的时间, 图中O‘B所示。 调整保留时间tR’ 死时间后的 保留时间,它是组分在固定相 中的滞留时间。图中A’B所示, 即 tR’ = tR - tM
通常以有效塔板数neff 和有效塔板高度Heff 表示:
neff H eff
t t 2 5.5 4( ) 1 6( )2 W1 / 2 Wb L neff
' R
' R
2-2-3 速率理论
• 塔板理论存在的假定有缺陷,不能解释塔板高度H
受那些因素影响. 1956年,荷兰化学工程师van Deemter提出了色谱过程动力学速率理论。 • van Deemter方程:H=A+B/u+C*u u 为流动相线速度; A,B,C 为常数. 其中: A — 涡流扩散系数; B — 分子扩散系数; C — 传质阻力系数(包括液相和固相传质阻力系 数)
• 1、气路系统
• 载气:H2,N2,He,Ar等 • 净化器:提高载气纯度 • 稳压恒流装置,气体流速控制和测量。
• 2、进样系统
• 进样器: 微量注射器、六通阀 • 气化室:瞬间气化,死体积尽可能小
• 3、分离系统
• 色谱柱有填充柱和毛细管柱两大类
2-1-3 组成
• • • • •
4、温控系统 色谱柱、气化室、检测室三处温度控制 气化室温度应使试样瞬间气化但又不分解; 检测器除氢火焰外都对温度敏感; 柱温的变化影响柱的选择性和柱效,因此柱室的 温度控制要求精确,温控反复根据需要可以恒温, 也可以程序升温。
气相色谱基础知识
气相色谱基本知识1、什么是气相色谱法以气体为流动相(称载气)的色谱分析法称气相色谱法(GC )。
2.、气相色谱是基于时间的差别进行分离在加温的状态下使样品瞬间气化,由载气带入色谱柱,由于各组分在固定相与流动相(载气)间相对吸附能力/保留性能不同而在两相间进行分配,在色谱柱中以不同速度移动,经一段时间后得到分离,再依次被载气带入检测器,将各组分的浓度或质量转换成电信号变化并记录成色谱图,每一个峰代表最初混合物中不同的组分。
峰出现的时间称为保留时间(t R ),可以用来对每个组分进行定性,根据峰的大小(峰面积)对每个组分进行定量。
涉及的几个术语:固定相(stationary phase ): 在色谱分离中固定不动、对样品产生保留的一相; 流动相(mobile phase ):与固定相处于平衡状态、带动样品向前移动的另一相; 色谱图:若干物质的流出曲线,即在不同时间的浓度或响应大小;保留时间 (retention time ,t R ):样品注入到色谱峰最大值出现的时间;3、气相色谱法特点3.⒈选择性高:能分离同位素、同分异构体等物理、化学性质十分相近的物质。
3.⒉分离效能高:一次可进行含有150多个组分的烃类混合物的分离分析。
3.⒊灵敏度高:气相色谱可检测1110-~1310-g的物质。
3.⒋分析速度快:一般几分钟或几十分钟便可完成一个分析周期。
3.⒌应用范围广:450℃以下有不低于27~330Pa 的蒸气压,热稳定性好的物质。
3.⒍缺点:不适应于大部分沸点高的和热不稳定的化合物;需要有已知标准物作对照。
4、气相色谱系统主要包括五大系统:载气系统、进样系统、分离系统、检测系统和记录系统。
基本流程如下脱水管限流器4.1、载气系统:可控而纯净的载气源。
载气从起源钢瓶/气体发生器出来后依次经过减压阀、净化器、气化室、色谱柱、检测器,然后放空。
载气必须是纯洁的(99.999%),要求化学惰性,不与有关物质反应。
气相色谱分析的基本原理
气相色谱分析的基本原理
气相色谱分析是一种基于化合物在气相中的分布系数和色谱柱对化合物的分离性能的关系来进行物质分析的方法。
其基本原理包括样品的挥发性和化合物的分配系数。
首先,样品中的化合物需要具备一定的挥发性,以便能够在气相色谱柱中迅速挥发转化为气相状态。
为了实现这一步骤,通常需要进行前处理,例如固相微萃取或者冷凝浓缩。
其次,样品进入气相色谱柱后,会与固定在柱内涂层或填充剂表面的固定相发生相互作用。
在此过程中,化合物会按照其不同的亲疏性与固定相相互作用,从而产生不同的分配系数。
化合物与固定相的亲疏性决定了它们在柱内的停留时间,即保留时间。
这样,具有不同的挥发性和亲疏性的化合物就可以在柱内被分离出来。
最后,在柱内分离后,化合物的分离程度可以通过检测器进行检测。
常用的检测器包括火焰离子化检测器(FID)、电子捕获检测器(ECD)和质谱检测器(MS)等。
这些检测器可以根据样品中化合物浓度的不同提供不同灵敏度的检测。
总的来说,气相色谱分析的基本原理是依靠化合物在气相中的分布系数和色谱柱对化合物的分离性能的关系来实现化合物的定性和定量分析。
通过控制不同的操作条件,如柱温、载气流速和固定相的选择等,可以实现对复杂样品中化合物的有效分离和检测。
气相色谱法(gas chromatography,GC)
短,两者的乘积不变。在理论上VR要比
tR准确,但测量VR没有测量tR方便。
(2)死体积VM(dead volume) 是
指不与固定相作用的惰性物质通过色谱 柱后出峰时所需的载气体积。也就是从
样进器经色谱柱到检测器出口的流路中,
由气相所占有的体积。即
线相交部分的宽度。
W
在理想状态下,色谱峰呈正态分布。根 据正态分布曲线的特征,在两拐点之间的距
离(此处峰高为0.607 h)为两倍标准偏差
()
W0.607h 2
Wh / 2 2 2 ln 2
W 4
色谱峰宽度是衡量色谱柱分离效能
的参数。标准偏差 的大小表示经色谱 柱分离后组分流出色谱柱的分散程度。
(四)色谱峰区域宽度
半峰宽Wh/2 (peak width at half height)
即色谱峰高一半处的宽度,又称半高峰宽。
Wh/2
h h/2
基线宽度Wb(peak width at the baseline) 又称峰底宽度(peak width at the base),
是通过色谱峰两侧的拐点所作的切线与基
气相色谱仪由五部分组成 1.载气系统 包括气源、气体净化和 气体流速控制等装置。
2.进样系统 包括进样器、气化室和
温控装置。
3.分离系统 包括色谱柱、柱箱和温
控装置。
4.检测系统 包括检测器和温控装置。 5.记录系统 包括放大器、数据处理
装置及记录仪。
6 2
8
9 10
13
3 5 7
1
11
4
12
14
力有关。
气相色谱
气化温度 进样后要有足够的气化温度,使液体试样 迅速气化被载气带入柱中,在得证试样不分解 的情况下,适当提高气化温度对分离及定量有 利。 气化温度比柱温高30~70℃。
对固定相的要求:
①挥发性小,操作温度下有较低蒸气压,以
免流失;
②热稳定性好,操作温度下不发生分解;
③对试样各组分有适当的溶解能力。
假设试样中有n个组分,每个组分的质量分别为m1, m2,……,mn各组分含量的总和m为100%,其中组分i的质量ωi 分数可按下式计算:
mi mi Ai f i i 100% 100% 100% m m1 m2 mn Ai f1 A2 f 2 An f n
3、分离系统
色谱柱(心脏部分)、柱箱和恒温控制装置。
色谱柱:填充柱、空心毛细管柱。
填充柱:
制备简单,可供使用的单体、固定液、吸附剂繁多, 可解决各种分离分析问题。 填充柱外形有U型、W型和螺旋型三种,内径均为2~ 6mm,长度在1~10m之间,通常2~4m。不锈钢、玻璃、 聚四氟乙烯。
空心毛细管:
气相色谱法
信 号
气相色谱法是采用气体作为
流动相的一种色谱分析法。在此法 中,载气(不与被测物作用,用来 载送试样的惰性气体,如氢气、氮 气等)载着欲分离的试样通过色谱 柱中的固定相,使试样中各组分分 离,然后分别检测。检测器信号由 记录仪记录,得到“色谱图”。
时间
气相色谱的工作流程
6 7 9 2 4 5 8 3 1
现今,“色谱”这一名词仍沿用下来。但随着技术的发展, 色谱法研究的对象已不局限于有色物质。
Tsweet的实验
色谱法的原理
分离原理:使混合物中各组分在两相间进行分配,
一相是不动的,称为固定相。另一相是携带混合物流
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本理论
吴朝华
气相色谱要解决的问题?
问题1:什么是色谱法? 问题2:为什么色谱法能将混合物分开? 问题3:什么是气相色谱法? 问题4:用气相色谱法能做些什么?
Байду номын сангаас
色谱法由来?
茨维特实验(动画) 色谱柱 流动相 固定相 色谱法
色谱法分类
气固色谱法(GSC) 气相色谱法(GC)
以气体为流动相 以固体为固定相 以液体为固定相?
1 1
t ' R2
V ' R2
分配系数K 色谱流出曲线图
K= 组分在固定相中的浓度 组分在流动相中的浓度
色谱峰及相关术语
峰高 h 峰面积 A 峰拐点 E、F 峰宽 前伸峰 拖尾峰 分叉峰 a、d b、c e wb 半峰宽 w1/2
“馒头”峰 f
B A
¼Ç¼ÒÇ
A A B
t4
É«Æ×Öù
t8
É«Æ×Öù
¼ì²âÆ÷
¼Ç¼ÒÇ
¼ì²âÆ÷
¼Ç¼ÒÇ
色谱分离图
认识色谱图
色谱图是色谱 输出数据 如何“看”懂 色谱图? 从色谱图中如 何获取相应检测 结果的信息?
色谱流出曲线常用术语
色谱峰 色谱流出曲线 基线 保留值 死时间 t M 保留时间t ' R 调整保留时间 t ' R = t R − t M ′ ′ t Ri VRi 相对保留值 riS = ′ = ′ t V t ' R RS V ' R RS α = 选择性因子 =
溶解-挥发
吸附-脱附
色谱分离示意图
A+B
t1
É«Æ×Öù
t5
¼ì²âÆ÷ ¼Ç¼ÒÇ
É«Æ×Öù
B
A
¼ì²âÆ÷
B
¼Ç¼ÒÇ
A
A+B A
t2
É«Æ×Öù
t6
É«Æ×Öù
¼ì²âÆ÷
¼Ç¼ÒÇ
¼ì²âÆ÷
B
¼Ç¼ÒÇ
t3
É«Æ×Öù
B
A
t7
É«Æ×Öù
A
B
¼ì²âÆ÷
¼Ç¼ÒÇ
¼ì²âÆ÷
气液色谱法(GLC) 液固色谱法(LSC)
以固体为固定相 以液体为固定相?
液相色谱法(LC)
以液体为流动相
液液色谱法(LLC)
气相色谱分析流程(动画)
打开流动相气体(载气) 开机,设置参数 进样 分析 信号记录显示
认识气相色谱仪
色谱分离原理
色谱分离的基本原理是试样组分通过色谱柱时与填料之间发生 相互作用,这种相互作用大小的差异使各组分互相分离而按先后次 序从色谱柱后流出。 (动画1、动画2) 气-液色谱 气-固色谱