第六章 电接触理论()
第六章 电接触理论

§6-2 接触电阻的理论和计算 实际的金属表面加压接触的过程如下:两金属表面开始接
触时,有三个起始的实际接触点,由于刚接触时还未发生形变,
实际接触面积非常小,接近于零。由于此时接触面压强很大 (近似无限大)而发生形变。起始接触点在强大压强下将由弹 性形变过渡到塑性形变。在起始接触面受压变形的同时,总实 际接触面积扩大,两金属表面未接触部分逐渐互相接近。这样 金属表面凸出高度较小的点也会陆续不断接触而出现许多新的 实际接触点。由于总的实际接触面不断增大,实际接触面上所
触头烧损,有时是将主、副和弧触头并联在一起使用。
② 触头根据控制电流的大小分为:弱电流触头(几个培以下, 如继电器的触头)、中电流触头(几个安培~几百个安培,如 低压断路器的触头)和强电流触头(几百个安培以上,如高 压断路器和部分低压断路器)。
§6-1 电接触的分类和要求
§6-1 电接触的分类和要求
§6-1 电接触的分类和要求
四、为保证电接触长期稳定而可靠工作,必须做到:
1、电接触在长期通过额定电流时,温升不超过国家标准规定的数值,
而且温升长期保持稳定;
2、电接触在短时通过短路电流或脉冲电流时,接触处不发生熔焊或松 弛;
3、可分合接触在开断过程中,接触材料损失尽量小;
4、可分、合接触在闭合过程中。接触处不应发生不能断开的熔焊,且 触头表面不应有严重损伤或变形。
§6-2 接触电阻的理论和计算
导体电阻比接触电阻小得多,工程中可近似认为:Rj=Rab’
接触电阻的物理实质是什么呢?
电接触 学科的奠 基人霍尔 姆 (R. Holm)做了正确的解释。
电接触学科的奠基人霍尔姆(R. Holm)指出:任何用肉眼看 来磨得非常光滑的金属表面,实际上都是粗糙不平的,当两 金属表面互相接触时,只有少数凸出的点(小面)发生了真正 的接触,其中仅仅是一小部分金属接触或准金属接触的斑点 才能导电.当电流通过这些很小的导电斑点时,电流线必然 会发生收缩现象,见下图6-4的示意图。
电接触理论

第六章电接触理论§6-1 概述任何一个电系统,都必须将电流(作为电的信号或电的能量)从一个导体通过导体与导体的接触处传向另一个导体。
此导体与导体的接触处称为电接触,它常常是电信号或电能传送的主要障碍。
由电机、电器、自动元件、仪表、计算机等组成的现代化大型复杂电系统,例如通信系统、控制系统、拖动系统、电力系统等,它们所包含的电接触数目往往成千上万。
如果其中一个或几个工作不正常或失效,则将导致整个系统工作紊乱甚至停顿,其后果极其严重。
电系统和电器元件中电接触的具体结构类型是多种多样的,一般分为三类:1.固定接触两接触元件在工作时间内固定接触在一起,不做相对运动,也不相互分离。
例如母线的螺栓连接或铆接(称永久接触),仪表中的塞子、插头(又称半永久接触器)等。
2.滚动和滑动接触器两接触元件能作相对滚动和滑动,但不相互分离。
例如断路器的滚轮触头,电机的滑环与电刷及电气机车的馈电弓与电源线等。
3.可分、合接触两接触元件可随时分离或闭合。
这种可分、合接触元件常称为触头或触电。
一切利用触头实现电路的接通和断开的电器中都可见到这种接触类型。
上述三种接触型式中,它们共有的工作状态是接触元件闭合接通电流。
运行经验表明,当两导体相互接触流过电流时,接触处会出现局部高温,严重时可达接触导体材料的熔点。
在可分、合接触中它的通电状态除闭合通电以外,还有由闭合过渡到分离,最后切断电路,或由分离过渡到闭合,最后接通电路,以及处于开断状态等。
触头在切断或闭合电路的过程中,触头间往往会出现电弧。
电弧的温度很高,大大超过一般金属材料的熔点或沸点。
即使电弧存在的时间很短,也会使触头表面融化或气化,造成触头材料的损失,或者产生触头的熔焊。
因此,在以上三种电接触类型中,工作任务最重的是分、合接触器。
为了保证电接触长时间稳定而可靠的工作,必须做到:(1)电接触在长期通过额定电流时,温升不超过国家规定的数值,而且温升长期保持稳定。
(2)电接触在短时通过短路电流或脉冲电流时,接触处不发生熔焊成松弛。
电器学课后答案

电器学课后问答题总结第一章电器的发热与电动力第二章点接触与电弧理论第三章电磁机构理论第四章低压控制电器第五章配电电器第六章高压断路器第七章其他高压电器第一章电气的发热与电动力1.1电器中有哪些热源?它们各有什么特点?答:电器中的载流系统通过直流电流时,载流导体中损耗的能量便是电器的唯一热源。
载流系统通过交变电流时,热源包括:导体通过电流时的能量损耗、非载流铁磁质零部件的损耗(铁损包括涡流损耗和磁滞损耗)、电介质损耗。
交变电流导致铜损增大,这是电流在到体内分布不均匀所致。
集肤效应和邻近效应会带来附加损耗。
铁损只在交变电流下才会出现。
电介质损耗介质损耗角与绝缘材料的品种、规格、温度、环境状况及处理工艺有关。
1.2散热方式有几种?各有什么特点?答:热传导、对流、热辐射。
热传导是借助分子热运动实现的,是固态物质传热的主要方式。
对流总是与热传导并存,只是对流在直接毗邻发热体表面处才具有较大意义。
热辐射具有二重性:将热能转换为辐射能,再将辐射能转换为热能,可以穿越真空传输能量。
1.3为什么决定电器零部件工作性能的是其温度,而考核质量的指标确实其温升?答:电器运行场所的环境温度因地而异,故只能人为地规定一个统一的环境温度,据此再规定允许的温升,以便考核。
1.4在整个发热过程中,发热时间常数和综合散热系数是否改变?为什么?答:一般来说,是改变的。
但是在计算中,为了方便起见,假定功率P为恒值,综合散热系数也是均匀的,并且与温度无关,因此发热时间常数也是恒定的。
第二章电接触与电弧理论2.1电弧对电器是否仅有弊而无益?答:否。
弧焊、电弧熔炼、弧光灯是专门利用它的设备,电器本身亦可借助它以防止产生过高的过电压和限制故障电流。
2.2电接触和触头是同一概念么?答:否。
赖以保证电流流通的到体检的联系称为电接触,是一种物理现象。
通过相互接触以实现导电的具体物件称为电触头(简称触头),它是接触时接通电路、操作时因其相对运动而断开或闭合电路的两个或两个以上的导体。
电器理论基础(共5篇)

电器理论基础(共5篇)以下是网友分享的关于电器理论基础的资料5篇,希望对您有所帮助,就爱阅读感谢您的支持。
《电器理论基础》复习提纲篇一第一章绪论1、什么是电器?答:指定信号和要求自动或手动接通和断开电路/断续或连续地改变电路参数的电气设备对电路或非电对象切换、控制、保护、检测、变换和调节2、电器的分类依据有哪些?答:1)耐压等级2)工作职能3)IEC 标准4)动作方式5)灭弧介质3、典型电器的宏观结构原理?答:1)系统角度2)控制角度4、典型电器的微观结构原理?答:1)断路器(开关柜、自由脱口机构结构)2)接触器(结构、吸反力配合)3) 继电器(返回系数与控制系数)5、电器中主要涉及的理论及其实际意义?答:1)电磁机构理论2)电弧理论3)电接触理论4)发热理论5)电动力理论6、电器技术的发展方向第二章电器的发热理论1、电器在工作时为什么会发热?答:内部能量损耗主要热源2、什么是趋肤效应和临近效应及其衡量标准?与什么有关?答:趋肤效应:感应电动势,涡流场邻近效应:相邻载流导体,电磁场从产生原因推理3、减小铁损的措施有哪些?答:磁通通过铁磁元件涡流80%①②③④⑤4、电器的散热方式?5、热阻如何计算?6、对流的方式? 及其形成原因?答:强制:外部施加作用自由:密度差7、什么是层流和紊流?什么是层流层、紊流层?传导方式如何?答:层流:持续稳定性紊流:紊动变化8、什么是波尔斯满定律?答:黑体发射与接收9、制定电器各部分极限允许温升的依据是什么?答:绝缘性能力学性能工作寿命10、热平衡关系的构成?牛顿公式的结构?答:热力学第一定律11、综合散热系数的主要影响因素?答:电器零部件:热对流、热传导电弧:热对流、热传导、热辐射12、典型电器(变截面导体)的温升分布情况是?答:求解过程分布规律13、温升方式有那些?答:1)升温初始温度变化过程2)冷却14、什么是热时间常数?与什么有关?答:热惯量比热容15、电器的工作制有哪些?温升情况如何?与热时间常数如何?答:1)1小时内的温度变化不超过1度2)未达稳定值周围介质温度3)未达稳定值不下降到周围环境温升16、由什么引出功率过载系数与电流过载系数?不同工作制下的P P 和P i ?什么是通电持续力TD%?答:热惯量热时间常数通电时间18、短路电流通过导体的发热的特点?答:1)通电时间短2)电阻率变化19、什么是电器的热稳定性?影响因数是?答:一定时间短路电流热损伤(与短路情况有关)20、P52-2.3答:短时间,大电流;根据公式,相同。
机车电器基础知识—电器的电接触理论

二、金属陶瓷材料
金属陶冶材料是由两种或两种以上的彼此不相熔合的金属组成的机械混合物, 其中一种金属有很高的导电性(如银、铜等),作为材料中的填料,称为导电 相,另一种金属有很高的熔点和硬度(如钨、镍、钼、氧化镉等),在电弧的 高温作用下不易变形和熔化,称为耐熔相,这类金属在触头材料中起着骨架 的作用。这样,就保持了两种材料的优点,克服了各自的缺点,是比较理想 的触头材料。
触头的参数 (a)断开状态; (b)刚接触时; (c)闭合状态。
五、触头的压力
1、触头的初压力:触头闭合后,其接触处有一定的互压力,称为触头压力。 触头压力是由触头弹簧产生的。 触头弹簧有一预压缩,使得动触头刚与静触头接触时就有一互压力F0,称为触头初
压力,它是由调节触头弹簧预压缩量来保证的。 初压力可以降低触头闭合过程的振动。 2.触头终压力:动、静触头闭合终了时,触头间的接触压力称为终压力FZ。它是由
在同一压力条件下,线接触的接触电阻比前两种较低。 其原因是触头的压力强度和实际接触面得到了适当配合。面接触的接触点虽较多,但
压力强度小,点接触的压力强度虽高,但接触点少,因此它们的接触电阻都比线接触情 况大。 线接触容易做到触头间有滑动和滚动,从而使触头的工作条件得到改善;线接触触头 的制造、调整、装配均比较方便,因而得到广泛的采用。常用于几十安至几百安电流的 中等容量的电器,如接触器、自动开关及高压开关电器的主触头。 触头实现电联接,一般采用触头弹簧压紧,压力较小,并考虑到装配检修的方便和工 作可靠,多采用点接触或线接触的形式。在近代高压断路器和低压自动开关中,有的采 用多个线接触和点接触并联使用,以减小接触电阻,使得工作可靠,制造检修方便。
电压表测量出其AB长度上的电压降为U, 则AB段导体的电阻为 R U
电接触理论基础全套教学课件

第六章 电接触理论
6.4 jq理论和接触电压
一、研究的目的 •确定导电斑点的最高温升及收缩区的温升分布
•斑点尺寸小,分布内表面,使得测量困难
6.4 jq理论和接触电压
二、 对称收缩区的jq 理论
几点假定: ✓接触内表面斑点间相距很远,之间的电位场和温度场不影响; ✓接触元件材料相同,且为均质; ✓忽略热电效应(帕尔帖效应); ✓两收缩区对称,元件间没有传热。
建立热平衡方程 Q Q1 Q2
(dj)2 dn
Aq
Aq
dq
dn
q
Aq dq
d(q dq )
dn
(dj)2 d2q
恒等式 dj dj jd2j d(jdj)
jdj jd2j dq
高阶无穷小
1 j 2
qm
dq
U
2 j
2
q
8
qm
q0
qm
U
2 j
8
6.4 jq理论和接触电压
三、jq 关系的应用
6.4 jq理论和接触电压
六、清洁对称接触的R-U 特性
清洁交叉铜棒的R-U特性
试验条件:改变电流I,测量接触 电压Uj和电流I,可以得到接触电 阻Rj与接触电压Uj之间的关系。 解释说明:
ab段:电流增加,温度升高,收 缩电阻增大;
bc段:达到材料的软化点,接触面 积增大,接触电阻显著减小;
cd段:曲线上升规律同ab段; de段:达到材料的熔化点,斑点处
6.4 jq理论和接触电压
二、 对称收缩区的jq 理论
发热量 传入量
(dj )2
Q dR
Q1
Aq
dq
dn
q
•导电斑点电位j=0,qqm等位
电器学复习重点总结

第一讲电器发热计算一、三种损耗及其影响1、三种损耗:载流体中的能量损耗损耗、交变电磁场在导磁体(铁)中产生的磁滞与涡流损耗和绝缘材料的介质损耗。
结果:⑴散失到周围介质;⑵其余用来加热电器。
2、严重后果:温升超过极限允许温升时降低了电器的机械强度和绝缘强度,导致材料老化、寿命降低。
二、电器各部件的极限允许温升:1、“电器各部件极限允许温升”的定义:电器各部件极限允许温升=极限允许温度-工作环境温度2、电器各部件的极限允许温升制定依据:绝缘不损坏;工作寿命不过分降低;机械寿命不降低(材料软化)。
三、电器极限允许温升1、电器中裸导体的极限允许温升应小于材料软化点(机械性能显著下降即软化);2、对绝缘材料和外包绝缘的导体:其极限允许温升的大小由绝缘材料的老化和击穿特性决定。
产生热源的三个主要方面:电阻(含接触电阻)损耗、交流电器导磁材料的涡流和磁滞损耗,以及交流电器绝缘材料的介质损耗。
3、集肤效应:交变磁通在导体内产生反电势,中心部分的反电势值比外表部分的大,导致导体中心的电流密度比外表部分小。
4、邻近效应:由于相邻载流导体间磁场的相互作用,使两导体内产生电流发布不均匀的现象。
邻近效应与相邻载流导体内电流流向有关。
本质:导线之间的相互影响使各自的电流密度不均影响因素:电流频率、导线间距、截面形状和尺寸等电器散热有三种形式,即热传导、热对流和热辐射。
电器的热损耗由它们散失到周围。
:发热体温升,=θ-θ0,θ0是周围环境温度。
K T :导体表面综合散热系数,单位w/m2·K。
一、工作制的划分长期工作制:八小时工作制、不间断工作t1>>4T短时工作制t1<4T,t2>>4T反复短时断续周期工作制t1<4T,t2<4T第二讲电器的电动力计算电动力:定义:载流导体(有电流通过的导体)在磁场中所受到的磁场对电流的作用力①大小为:危害:1、使绝缘子破裂;2、隔离开关误动作等;价值:1、限流:利用回路电动斥力快速断开触头,实现开关限流的目的,生产限流式开关。
金属半导体(MS)接触

φM,半导体的功函数为φS,亲和势为χ
热平衡情形下,M和S之间电子的运动达到动态平衡。 热平衡时,电子从1到2(F1→2)和从2到1(F2 → 1 )的 流量应该相等,即 F1 → 2=F2 → 1 fD1g1(1-fD2)g2=fD2g2(1-fD1)g1 fD1= fD2 则 Ef1=Ef2
其中fD1和fD2为电子的费米分布函数,g1和g2为电子的态密度
qφ B = q (φ M − χ )
qφi = qφ B − (EC − E f ) = q(φM − φS )
§6.1 金属/半导体接触
6.1.4 理想肖特基(Schottky)势垒 半导体表面电子的再分布和半导体表面势的形成,与金属的 功函数相关。M/S之间形成的肖特基势垒通常会形成如下图 所示的特征。
§6.1 金属/半导体接触
6.1.2 M/S接触的形成 M/S结构通常是通过在干净的半导体表面淀积金属而 形成。利用金属硅化物(Silicide)技术可以优化和 减小接触电阻,有助于形成低电阻欧姆接触。
§6.1 金属/半导体接触
6.1.3 理想M/S接触的平衡能带图 1. 热平衡条件:形成统一的费米能级,即Ef = Const 在前面的讨论中,我们已经说明,任意半导体系统 在达到热平衡时,费米能级在空间范围内保持平直, 即Ef=常数。相关的能带图特征,在非均匀掺杂的半 导体系统(PN结)中已有演示。这一法则在两种不同 类型的材料接触形成的系统中仍然适用。 考虑两种材料:金属(M)与半导体(S)形成接触 ,设其各自费米能级分别为Ef1和Ef2。金属的功函数为
6.3.2偏置的肖特基二极管的电容特性 外加偏置为VA时,耗尽区上有:
Q = A 2 qε Si N d (φ i − V A )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实际接触面积 接触点压强
视在接触面积
>>
实际接触面积
>>
导电斑点面积
导电斑点
氧化膜破裂
2020/3/3
第六章 电接触理论
10
第六章 电接触理论
§6-1 概述 §6-2 电接触内表面的物理图景 §6-3 接触电阻的理论和计算 §6-4 ψ-θ理论和接触电压 §6-5 触头闭合过程的振动分析 §6-6 触头间的电动斥力 §6-7 触头熔焊与焊接力 §6-8 触头的质量转移和磨损
2020/3/3
第六章 电接触理论
21
§6-4 ψ-θ理论和接触电压
在ψ,θ相同的边界条件下,两接触元件收缩区中热流
(温度场)与电流(电位场)完全重合 求解原理:导电(导热)薄层中的能量平衡方程
θm: 导电斑点温度 θ0: 收缩区外导体温度 Uj: 接触电压降 λ: 热导率(温度的函数)
ρ: 电阻率(温度的函数)
可分、合接触在开断过程中,触头材料损失应尽量小
可分、合接触在闭合过程中,接触处不应发生不能断 开的熔焊,且触头表面不应有严重的损伤或变形
主要研究内容
接触电阻 温升 熔焊 触头材料损失
2020/3/3
第六章 电接触理论
7
第六章 电接触理论
§6-1 概述 §6-2 电接触内表面的物理图景 §6-3 接触电阻的理论和计算 §6-4 ψ-θ理论和接触电压 §6-5 触头闭合过程的振动分析 §6-6 触头间的电动斥力 §6-7 触头熔焊与焊接力 §6-8 触头的质量转移和磨损
19
§6-4 ψ-θ理论和接触电压
由于接触电阻的存在,电流通过时,接触处的温度最高
单位体积的发热功率:
电接触区域的散热
接触内表面气隙很小,对流的作用可忽略 空气的热导率很小,热传导可忽略 电接触处绝对温度不高,辐射可忽略 电流收缩区的热量只能通过两接触元件传导出去
关心的问题?
在一定的电流下,斑点的最高温度以及收缩区的温度分布
接触电阻(Rj)
接触电阻一般包含三个部分 表面膜
清洁的金属表面吸附一层气体,其中的氧气或其他活泼气体常 与反应生成表面膜 表面膜的类型
绝缘膜:厚10-8 ~ 10-9 m,如金属表面氧化膜,颜色灰暗,又称为 暗膜 导电膜:厚度极薄、厚度为10-10 m,电子可借“隧道效应”透过 薄膜而导电,又称为吸附膜
可分、合接触的工作条件最苛刻,对其要求也最高
闭合状态:局部发热 分断、关合:产生电弧、触头烧蚀、触头材料损失、熔焊
2020/3/3
第六章 电接触理论
6
§6-1 概述
对电接触的要求
长期通过额定电流时,温升不超过国家标准规定的数 值,而且温升长期保持稳定
短时通过短路电流或脉冲电流时,不发生熔焊或松弛
电器理论基础
Fundamentals of Electrical Apparatus
电气与控制工程学院 王智勇
第六章 电接触理论
本章教学目的与要求:
• 掌握接触电阻的理论和计算,熟悉各种电接触,了解电接 触内表面的物理图景;
• 掌握接触点最高温升的计算,了解触头闭合过程的振动; • 掌握触头间的电动斥力、熔焊与焊接力,熟悉触头材料,
2020/3/3
第六章 电接触理论
8
§6-2 电接触内表面的物理图景
电接触
宏观 平坦光滑
微观 凸凹不平
电接触的表面状况与材料、加工方法、工艺有关
2020/3/3
第六章 电接触理论
9
§6-2 电接触内表面的物理图景
电接触的物理过程
视在接触面积(大)
实际接触面积(很小) 接触点压强(很大)
直流测量的难点
接触导电斑点尺寸非常小,且分布于接触内表面之中
ψ-θ理论:给出了接触压降与接触点温度的关系
2020/3/3
第六章 电接触理论
20
§6-4 ψ-θ理论和接触电压
在ψ-θ相同的边界条件下,两接触元件收缩区中热流(温 度场)与电流(电位场)完全重合
求解原理:导电(导热)薄层中的能量平衡方程
铜
在空气中会由吸附膜发展为氧化暗膜
2020/3/3
第六章 电接触理论
16
§6-3 接触电阻的理论和计算
接触电阻(Rj)
对于电接触,最关于的是膜的导电性和是否易于破坏 设电子透过势垒形成的电流密度为J,接触面之间的
电压为U
膜的隧道电阻率(面电阻率)
膜电阻
n个并联导电斑点的膜电阻
绝缘膜的破坏
cd
I
Uj
Ta
Rj 曲线上升
d点 熔点
2020/3/3
熔点对应的接触电压称为接触 材料的熔化电压
铜的熔化电压:0.43V 对应的熔化温度:1083˚C
第六章 电接触理论
28
§6-4 ψ-θ理论和接触电压
电接触的Rj-Uj静特性
清洁交叉铜棒接触的静特性
d点 熔点
de 斑点金属熔为一体
Rj显著减小
第六章 电接触理论
30
第六章 电接触理论
§6-1 概述 §6-2 电接触内表面的物理图景 §6-3 接触电阻的理论和计算 §6-4 ψ-θ理论和接触电压 §6-5 触头闭合过程的振动分析 §6-6 触头间的电动斥力 §6-7 触头熔焊与焊接力 §6-8 触头的质量转移和磨损
2020/3/3
第六章 电接触理论
31
§6-5 触头闭合过程的振动分析
触头在闭合过程中会产生弹跳(Bounce),称为 触头的机械振动(Vibration) 触头振动的危害
接触电阻周期性地增大,甚至分离产生电弧,使触头 熔焊和烧损
电器中触头结构的分类
动触头装有弹簧,静触头刚性联接
静触头装有弹簧,动触头刚性联接 动、静触头都装有弹簧
2020/3/3
第六章 电接触理论
32
§6-5 触头闭合过程的振动分析
以第一类触头结构为例
弹簧的作用 施加触头压力 提高刚分速度 减小触头弹跳
2020/3/3
第六章 电接触理论
33
§6-5 触头闭合过程的振动分析
以第一类触头结构为例
碰撞瞬间 触头开始发生变形
弹性 塑性 可恢复 不可恢复
2020/3/3
由电流线收缩而形成的附加电阻称为收缩电阻 若实际接触面之间的薄膜能导电,则当电流通过薄膜时有 另一附加电阻,称膜电阻
接触电阻一般包含三个部分
一个接触元件 的收缩电阻
接触面间的 膜电阻
另一个接触元件 的收缩电阻
2020/3/3
第六章 电接触理论
13
§6-3 接触电阻的理论和计算
接触电阻(Rj)
接触电阻一般包含三个部分
测得θ0,Uj即可求得斑点温度θm
2020/3/3
第六章 电接触理论
22
§6-4 ψ-θ理论和接触电压
在ψ,θ相同的边界条件下,两接触元件收缩区中热流
(温度场)与电流(电位场)完全重合 求解原理:导电(导热)薄层中的能量平衡方程
θm: 导电斑点温度 θ0: 收缩区外导体温度 Uj: 接触电压降 λ: 热导率(温度的函数)
ef 斑点熔化
Rj减小 发热减小 热传导增强 温度降低、凝固
2020/3/3
第六章 电接触理论
29
§6-4 ψ-θ理论和接触电压
电接触的Rj-Uj静特性
清洁交叉铜棒接触的静特性
b点 软化点
d点 熔点
实用意义
若已知材料的软化电压和熔化电压,就可估计触头不发生熔焊的 最大允许通过的电流
2020/3/3
第六章 电接触理论
18
第六章 电接触理论
§6-1 概述 §6-2 电接触内表面的物理图景 §6-3 接触电阻的理论和计算 §6-4 ψ-θ理论和接触电压 §6-5 触头闭合过程的振动分析 §6-6 触头间的电动斥力 §6-7 触头熔焊与焊接力 §6-8 触头的质量转移和磨损
2020/3/3
第六章 电接触理论
2020/3/3
第六章 电接触理论
25
§6-4 ψ-θ理论和接触电压
电接触的Rj-Uj静特性
清洁交叉铜棒接触的静特性
ab
I
Uj
Ta
Rj 曲线上升
b点 软化点
软化点对应的接触电压称为接触 材料的软化电压
铜的软化电压:0.12V 对应的软化温度:180˚C
2020/3/3
第六章 电接触理论
26
§6-4 ψ-θ理论和接触电压
面电阻率:Ω·m2
2020/3/3
第六章 电接触理论
15
§6-3 接触电阻的理论和计算
接触电阻(Rj)
接触电阻一般包含三个部分 表面膜
金
表面无暗膜,只有吸附膜。这种膜极易隧道导电,在电子设备中 大量使用
银
不易氧化,但大气中有臭氧存在时,氧化成Ag2O(易于清除,且 在200˚С时即分解),大量用于触头材料
达到最大变形 动触头开始反弹
达到最大反跳距离 动触头向下运动
第六章 电接触理论
34
§6-5 触头闭合过程的振动分析
以第一类触头结构为例
动触头运动
碰撞(变形) 消耗能量
反跳
< 反跳力
减小触头弹跳
弹簧压缩 弹簧压力
2020/3/3
第六章 电接触理论
35
§6-5 触头闭合过程的振动分析
触头振动弹开距离与时间的关系
2020/3/3
第六章 电接触理论
4
§6-1 概述
电接触(Electrical Contact)
电流从一个导体传向另一个导体,导体间的接触处称 为电接触