4-三角形一边平行线判定定理
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.如图,BD、CE是△ABC的中线,P、Q分别是BD、EC的中点.Baidu NhomakorabeaPQ:BC等于( )
5.如图,在△ABC中,DE∥BC,求证:EF∥CD.
6.如图,若DE∥AB,DF∥BC,,AB=9cm,BC=6cm.求平行四边形BEDF的周长.
7、如图,已知DE∥BC,DE=6,AE=5,AF=2,AG=3,CG=9,BF=6.求FG、AD的长.
签字确认
学员教师班主任
三、练习
1.梯形两底分别为m、n,过梯形的对角线的交点,引平行于底边的直线被两腰所截得的线段长为( )
(A) (B) (C) (D)
2.如图,AD是△ABC的中线,E是AC边上的三等分点,BE交AD于点F.则AF:FD为( )
3.如图,梯形ABCD的中位线MN与对角线BD、AC分别相交于点E、F,若AD:BC=1:3.则EF:MN等于( ).
一、基础知识点
1、三角形一边平行线判定定理如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.
如果D ,E分别在AB,AC的延长线上时,或在反向延长线上时,以上结论同样成立.
2、三角形一边的平行线判定定理推论如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.
4、如图,在△ABC中,点D是AC的中点,3BE=2EC,AE与BD相交于点F.求DF:BF的值.
5.如图4,点O为△ABC的中线AD上任意一点,BO、CO的延长线分别交AC、AB于点E、F,连结EF,且 。求证:EF∥BC.
6、如图,D、E分别为△ABC的AB和AC上的点,且BC的延长线于F点,且求证:DB=EC.
二、例题解析
1.已知:如图,点D,F在 的边AB上,点E在边AC上,且DE//BC, ,求证:EF∥DC .
2.如图,在平行四边形ABCD中,E是AB的中点,在AD上截取AF=FD,EF交AC于点G.求的值.
3.如图,已知在△ABC中,点D、E、F分别在AB、BC、CA上,且,CF=CE.求证:四边形CFDE是菱形。
5.如图,在△ABC中,DE∥BC,求证:EF∥CD.
6.如图,若DE∥AB,DF∥BC,,AB=9cm,BC=6cm.求平行四边形BEDF的周长.
7、如图,已知DE∥BC,DE=6,AE=5,AF=2,AG=3,CG=9,BF=6.求FG、AD的长.
签字确认
学员教师班主任
三、练习
1.梯形两底分别为m、n,过梯形的对角线的交点,引平行于底边的直线被两腰所截得的线段长为( )
(A) (B) (C) (D)
2.如图,AD是△ABC的中线,E是AC边上的三等分点,BE交AD于点F.则AF:FD为( )
3.如图,梯形ABCD的中位线MN与对角线BD、AC分别相交于点E、F,若AD:BC=1:3.则EF:MN等于( ).
一、基础知识点
1、三角形一边平行线判定定理如果一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.
如果D ,E分别在AB,AC的延长线上时,或在反向延长线上时,以上结论同样成立.
2、三角形一边的平行线判定定理推论如果一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.
4、如图,在△ABC中,点D是AC的中点,3BE=2EC,AE与BD相交于点F.求DF:BF的值.
5.如图4,点O为△ABC的中线AD上任意一点,BO、CO的延长线分别交AC、AB于点E、F,连结EF,且 。求证:EF∥BC.
6、如图,D、E分别为△ABC的AB和AC上的点,且BC的延长线于F点,且求证:DB=EC.
二、例题解析
1.已知:如图,点D,F在 的边AB上,点E在边AC上,且DE//BC, ,求证:EF∥DC .
2.如图,在平行四边形ABCD中,E是AB的中点,在AD上截取AF=FD,EF交AC于点G.求的值.
3.如图,已知在△ABC中,点D、E、F分别在AB、BC、CA上,且,CF=CE.求证:四边形CFDE是菱形。