函数的基本性质教案

合集下载

1.3函数的基本性质教学设计教案(最终5篇)

1.3函数的基本性质教学设计教案(最终5篇)

1.3函数的基本性质教学设计教案(最终5篇)第一篇:1.3 函数的基本性质教学设计教案教学准备1. 教学目标(1)理解函数的最大(小)值及其几何意义;(2)学会运用函数图象理解和研究函数的性质;2. 教学重点/难点教学重点:函数的最大(小)值及其几何意义.教学难点:利用函数的单调性求函数的最大(小)值.3. 教学用具投影仪等. 4. 标签数学,函数教学过程一、引入课题画出下列函数的图象,并根据图象解答下列问题:1、说出y=f(x)的单调区间,以及在各单调区间上的单调性;2、指出图象的最高点或最低点,并说明它能体现函数的什么特征?(1)(3)(4)二、新课教学(一)函数最大(小)值定义2)(1.最大值一般地,设函数y=f(x)的定义域为I,如果存在实数M满足:(1)对于任意的x∈I,都有f(x)≤M;(2)存在x0∈I,使得f(x0) = M那么,称M是函数y=f(x)的最大值(Maximum Value).思考:仿照函数最大值的定义,给出函数y=f(x)的最小值(Minimum Value)的定义.(学生活动)注意:1函数最大(小)首先应该是某一个函数值,即存在x0∈I,使得f(x0) = M; 2函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x∈I,都有f(x)≤M(f(x)≥M).2.利用函数单调性的判断函数的最大(小)值的方法1)利用二次函数的性质(配方法)求函数的最大(小)值2)利用图象求函数的最大(小)值3)利用函数单调性的判断函数的最大(小)值如果函数y=f(x)在区间[a,b]上单调递增,在区间[b,c]上单调递减则函数y=f(x)在x=b处有最大值f(b);如果函数y=f(x)在区间[a,b]上单调递减,在区间[b,c]上单调递增则函数y=f(x)在x=b处有最小值f(b);(二)典型例题例1.(教材P30例3)利用二次函数的性质确定函数的最大(小)值.解:(略)说明:对于具有实际背景的问题,首先要仔细审清题意,适当设出变量,建立适当的函数模型,然后利用二次函数的性质或利用图象确定函数的最大(小)值.巩固练习:如图,把截面半径为625px的圆形木头锯成矩形木料,如果矩形一边长为x,面积为y试将y表示成x的函数,并画出函数的大致图象,并判断怎样锯才能使得截面面积最大?例2.(新题讲解)旅馆定价一个星级旅馆有150个标准房,经过一段时间的经营,经理得到一些定价和住房率的数据如下:欲使每天的的营业额最高,应如何定价?解:根据已知数据,可假设该客房的最高价为160元,并假设在各价位之间,房价与住房率之间存在线性关系.设为为旅馆一天的客房总收入,元时,住房率为为与房价160相比降低的房价,因此当房价,于是得=150··.由于≤1,可知0≤≤90.的最大值的问题.因此问题转化为:当0≤将≤90时,求的两边同除以一个常数0.75,得1=-2+50x+17600.由于二次函数1在x=25时取得最大值,可知y也在=25时取得最大值,此时房价定位应是160-25=135(元),相应的住房率为67.5%,最大住房总收入为13668.75(元).所以该客房定价应为135元.(当然为了便于管理,定价140元也是比较合理的)例3.(教材P37例4)求函数解:(略)注意:利用函数的单调性求函数的最大(小)值的方法与格式.巩固练习:(教材P38练习4)三、归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取值→作差→变形→定号→下结论四、作业布置1.书面作业:课本P45 习题1.3(A组)第6、7、8题.2、提高作业:快艇和轮船分别从A地和C地同时开出,如下图,各沿箭头方向航行,快艇和轮船的速度分别是45 km/h和15 km/h,已知AC=150km,经过多少时间后,快艇和轮船之间的距离最短?在区间[2,6]上的最大值和最小值.课堂小结归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取值→作差→变形→定号→下结论课后习题1.书面作业:课本P45 习题1.3(A组)第6、7、8题.2、提高作业:快艇和轮船分别从A地和C地同时开出,如下图,各沿箭头方向航行,快艇和轮船的速度分别是45 km/h和15 km/h,已知AC=150km,经过多少时间后,快艇和轮船之间的距离最短?板书略第二篇:1.3 函数的基本性质教学设计教案教学准备1. 教学目标(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;(2)学会运用函数图象理解和研究函数的性质;(3)能够熟练应用定义判断数在某区间上的的单调性.2. 教学重点/难点教学重点:函数的单调性及其几何意义.教学难点:利用函数的单调性定义判断、证明函数的单调性.3. 教学用具投影仪等. 4. 标签数学,函数教学过程一、引入课题1.观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:1 随x的增大,y的值有什么变化?2 能否看出函数的最大、最小值?3 函数图象是否具有某种对称性?2.画出下列函数的图象,观察其变化规律: 1.f(x) = x1 从左至右图象上升还是下降______?2 在区间____________ 上,随着x的增大,f(x)的值随着 ________ .2.f(x) = -2x+11 从左至右图象上升还是下降______?2 在区间____________ 上,随着x的增大,f(x)的值随着 ________ . 3.f(x) = x21 在区间 ____________ 上,f(x)的值随着x的增大而 ________ .2 在区间____________ 上, f(x)的值随着x的增大而 ________ .二、新课教学(一)函数单调性定义 1.增函数一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1思考:仿照增函数的定义说出减函数的定义.(学生活动)注意:1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; 2必须是对于区间D内的任意两个自变量x1,x2;当x1 如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间: 3.判断函数单调性的方法步骤利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:1 任取x1,x2∈D,且x12 作差 f(x1)-f(x2); 3变形(通常是因式分解和配方); 4定号(即判断差f(x1)-f(x2)的正负);5下结论(即指出函数f(x)在给定的区间D上的单调性).一、新课教学(一)函数单调性定义 1.增函数一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1思考:仿照增函数的定义说出减函数的定义.(学生活动)注意:1函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; 2必须是对于区间D内的任意两个自变量x1,x2;当x1 如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间:3.判断函数单调性的方法步骤利用定义证明函数f(x)在给定的区间D上的单调性的一般步骤:1任取x1,x2∈D,且x12作差f(x1)-f(x2); 3变形(通常是因式分解和配方); 4定号(即判断差f(x1)-f(x2)的正负);5下结论(即指出函数f(x)在给定的区间D上的单调性).(二)典型例题例1.(教材P34例1)根据函数图象说明函数的单调性.解:(略)巩固练习:课本P38练习第1、2题例2.(教材P34例2)根据函数单调性定义证明函数的单调性.解:(略)巩固练习:1课本P38练习第3题; 2证明函数在(1,+∞)上为增函数.例3.借助计算机作出函数y =-x2 +2 | x | + 3的图象并指出它的的单调区间.解:(略)思考:画出反比例函数的图象.1这个函数的定义域是什么?2它在定义域I上的单调性怎样?证明你的结论.说明:本例可利用几何画板、函数图象生成软件等作出函数图象.一、归纳小结,强化思想函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取值→作差→变形→定号→下结论二、作业布置1.书面作业:课本P45 习题1.3(A组)第1- 5题. 2.提高作业:设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),1求f(0)、f(1)的值;2若f(3)=1,求不等式f(x)+f(x-2)>1的解集.课堂小结1、归纳小结,强化思想2、函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取值→作差→变形→定号→下结论课后习题作业布置1.书面作业:课本P45 习题1.3(A组)第1- 5题. 2.提高作业:设f(x)是定义在R上的增函数,f(xy)=f(x)+f(y),(1)求f(0)、f(1)的值;(2)若f(3)=1,求不等式f(x)+f(x-2)>1的解集.板书略第三篇:1.3函数的基本性质教学设计1.3 函数的基本性质一、教材分析函数的单调性是学生在了解函数概念后学习的函数的第一个性质,是函数学习中第一个用数学符号语言刻画的概念,为进一步学习函数其他性质提供了方法依据。

函数的基本性质教案

函数的基本性质教案

函数的基本性质教案一、教学目标1. 让学生理解函数的概念,掌握函数的基本性质,包括单调性、奇偶性、周期性等。

2. 能够运用函数的基本性质解决实际问题,提高学生的数学应用能力。

3. 培养学生的逻辑思维能力,提高学生分析问题和解决问题的能力。

二、教学内容1. 函数的概念及定义2. 函数的单调性3. 函数的奇偶性4. 函数的周期性5. 函数的基本性质在实际问题中的应用三、教学重点与难点1. 教学重点:函数的基本性质,包括单调性、奇偶性、周期性。

2. 教学难点:函数性质的证明和应用。

四、教学方法1. 采用讲授法,系统地讲解函数的基本性质。

2. 利用实例进行分析,帮助学生理解函数性质的应用。

3. 引导学生进行自主学习,培养学生的逻辑思维能力。

4. 利用小组讨论,提高学生的合作能力。

五、教学过程1. 导入:通过生活中的实例,引导学生认识函数,激发学生的学习兴趣。

2. 讲解:讲解函数的概念,定义,并引入函数的单调性、奇偶性、周期性等基本性质。

3. 分析:分析函数性质的证明方法,并通过实例进行分析,让学生理解函数性质的应用。

4. 练习:布置练习题,让学生巩固所学内容。

5. 总结:对本节课的内容进行总结,强调函数基本性质的重要性。

6. 作业布置:布置课后作业,巩固所学知识。

7. 课后辅导:针对学生学习中遇到的问题进行辅导,提高学生的学习能力。

六、教学评价1. 评价方式:采用课堂表现、课后作业和单元测试相结合的方式进行评价。

2. 评价内容:(1) 函数概念的理解和运用;(2) 函数单调性、奇偶性、周期性的理解和证明;(3) 函数性质在实际问题中的应用能力。

七、教学资源1. 教材:《数学分析》;2. 教学课件;3. 实例素材;4. 练习题库;5. 课后辅导资料。

八、教学进度安排1. 第1周:讲解函数的概念及定义;2. 第2周:讲解函数的单调性;3. 第3周:讲解函数的奇偶性;4. 第4周:讲解函数的周期性;5. 第5周:函数性质在实际问题中的应用。

高中数学教案《函数的基本性质》

高中数学教案《函数的基本性质》

教学计划高:《函数的基本性质》一、教学目标1.知识与技能:学生能够理解并掌握函数单调性、奇偶性的定义及判断方法;能够运用函数图像理解并阐述这些性质;能够识别并解决与函数基本性质相关的简单问题。

2.过程与方法:通过观察、分析、比较等数学活动,引导学生发现函数的基本性质;通过小组讨论、合作探究等学习方式,培养学生团队协作和问题解决的能力;通过练习和实践,提高学生应用函数性质解决实际问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣和好奇心,培养学生的数学审美意识和严谨的科学态度;通过探索函数性质的过程,让学生体会数学中的对称美、和谐美,增强对数学美的感受力。

二、教学重点和难点教学重点:函数单调性、奇偶性的定义、性质及判断方法;函数图像在理解函数性质中的应用。

教学难点:理解函数单调性、奇偶性的本质,能够灵活运用这些性质解决问题;通过函数图像准确判断函数的性质。

三、教学过程1. 引入新课(约5分钟)情境导入:通过生活中的实例(如气温变化、股票价格波动等)引出函数的概念,让学生感受到函数在生活中的广泛应用。

提出问题:设问“这些函数有哪些共同的特点或性质?”引导学生思考并引出函数的基本性质——单调性和奇偶性。

明确目标:介绍本节课的学习目标,即掌握函数单调性、奇偶性的定义、性质及判断方法,并能够通过函数图像理解这些性质。

2. 讲授新知(约15分钟)定义讲解:详细讲解函数单调性(增函数、减函数)和奇偶性(奇函数、偶函数)的定义,结合实例帮助学生理解。

性质阐述:阐述函数单调性和奇偶性的基本性质,如单调函数的图像特征、奇偶函数的图像对称性等。

示例分析:通过具体函数示例(如一次函数、二次函数、反比例函数等),分析它们的单调性和奇偶性,加深学生的理解。

3. 观察探究(约10分钟)图像观察:利用多媒体展示不同函数的图像,引导学生观察图像的特点,尝试从图像中判断函数的单调性和奇偶性。

小组讨论:组织学生进行小组讨论,分享各自观察到的图像特征和判断结果,相互纠正错误,共同探究函数性质的图像表示方法。

人教版高中数学《函数的基本性质》优质教案

人教版高中数学《函数的基本性质》优质教案

2.1函数的基本性质一、教学目标1.结合具体函数,了解函数单调性的含义;2.会运用函数奇偶性的定义和函数的图象理解研究函数的奇偶性;3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.二、教学重点1.回顾和理解函数的三大性质单调性、奇偶性以及周期性基础知识,掌握其概念的应用,一般是判断单调性、求参数或求值;2.掌握运用基础知识处理函数性质的综合应用题的解题思路. 其中奇偶性多与单调性相结合,而周期性常与抽象函数相结合,并以结合奇偶性求函数值为主.三、教学难点掌握周期性与抽象函数结合类的题型.高考对函数周期性的考查,常与抽象函数结合,题型主要以选择题或填空的形式出现,常涉及函数求值问题,且与函数的单调性、奇偶性相结合命题.四、教学过程(一)考情解读设计意图:对2016年广东开始高考卷之后的全国卷类型题进行整合,以表格形式呈现,一目了然,分析可得函数的基本性质是高考的常考内容,题型一般为选择填空,占分一般为5-10分.紧接着分析考点内容,明确复习方向.(二)知识梳理设计意图:对函数的单调性、奇偶性、周期性的定义、图像特点等进行梳理,把重点内容标红,并进行相应讲解,为后面的题型讲解奠定知识基础.1.单调函数的定义及几何意义2.函数的最值3.函数的奇偶性4.周期性(三)典例分析题型一:函数的单调性设计意图:精选了两道单调性的题目作为例题,例1为简单地应用单调性定义及函数图像特征判断单调性的题目,通过此题老师可带领学生总结判断函数单调性的方法:定义法、图像法等;例2为已知分段函数单调性求参数范围的题目,通过此题巩固应用单调性求参数、不等式等题型.【例1】(2021·全国甲卷)下列函数中是增函数的为()A .()f x x =-B .()23x f x ⎛⎫= ⎪⎝⎭C .()2f x x =D .()f x 【例2】已知函数()()2313,11,1a x a x f x x x ⎧-+<=⎨-+≥⎩在R 上单调递减,则实数a 的取值范围是( )A .11,63⎛⎫ ⎪⎝⎭B .11,63⎡⎫⎪⎢⎣⎭C .1,3⎛⎫-∞ ⎪⎝⎭D .11,,63⎛⎤⎛⎫-∞+∞ ⎪⎥⎝⎦⎝⎭ 题型二:函数的奇偶性设计意图:精选了两道奇偶性的题目作为例题,例1为简单地应用奇偶性定义求参数的题目,通过此题老师可带领学生巩固奇偶性的定义及图像特征;例2为奇偶性与分段函数结合的题目,但只要把握奇偶性的定义,可很快解决,通过此题再次强化奇偶性相关知识.【例1】(2021·全国Ⅰ卷)已知函数()()322x x x a f x -=⋅-是偶函数,则a =______.【例2】(2019·全国Ⅰ卷)设f (x )为奇函数,且当x ≥0时,f (x )=e 1x -,则当x <0时,f (x )=A .e 1x --B .e 1x -+C .e 1x ---D .e 1x --+题型三:函数的周期性设计意图:由于周期性一般与抽象函数及奇偶性相结合,题目比较综合.这里选取了一道直接利用周期性定义进行求值的题目,教师通过此题引导学生回顾求值由内到外的原则及分段函数求值的相关知识,巩固周期性的定义,为下一题型综合题奠定基础.【例1】(2018·江苏卷)函数()f x 满足()()()4f x f x x +=∈R ,且在区间(]2,2-上,()πcos ,02,21,20,2x x f x x x ⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩则()()15f f 的值为________. 题型四:函数性质的综合应用设计意图:精选了两道函数性质的综合应用的题型.例1为单调性与奇偶性相结合解不等式 的相关问题,教师可引导学生将此类已知单调性和奇偶性的抽象函数问题具体化画图来思考,紧紧扣住定义解题.例2为奇偶性与周期性相结合求值的题,通过此题再次巩固奇偶性和周期性的定义,将题目已知条件转化为熟悉的定义再去解题.()2017(,)(1)11(2)1A.[2,2] B.[1,1] C.[0,4] D.[1,3]f x f f x x ⋅-∞+∞ =- -- --【例1】(全国Ⅰ卷)函数在单调递减,且为奇函数,若,则满足的的取值范围是()≤≤ ()(,)(1)(1).(1)2(1)(2)(3)(502018A.50 B.0 C.2 D.0)5f x f x f f f f f f x -∞+∞ -=+=++++= ⋅-若,则…(【例2】(全国Ⅱ卷)已知是定义域为的奇函数,满足)(四)巩固练习设计意图:精选了三道题作为练习题.第一题考查单调性的判断和奇偶性定义,再次巩固函数基本性质的概念,为基础题.第二题为单调性与奇偶性相结合解不等式的相关问题,巩固数形结合思想.第三题为奇偶性和周期性相结合求值的题,为自编题,难度系数不高,巩固学生对周期性和奇偶性的概念理解,提高信心.1.(2020·全国Ⅰ卷)设函数()331f x x x =-,则()f x ( )A .是奇函数,且在()0,+∞单调递增B .是奇函数,且在()0,+∞单调递减C .是偶函数,且在()0,+∞单调递增D .是偶函数,且在()0,+∞单调递减2.(2014·全国Ⅰ卷)已知偶函数f x ()在[0,)+∞单调递减,f (2)0=.若f x >(-1)0,则x 的取值范围是__________.()()()()()3R ,R,4,22,2022=A.2022 B.2 C.2022 D.2f x x f x f x f f ∈ +=-= --.已知函数是上的奇函数对任意都有若则()(五)总结提升设计意图:制作了本节课的思维导图,引导同学们再次巩固函数基本性质高考重点考查的题型及其对应方法.五、作业设计设计意图:作业选取了两道单选题,一道多选题,四道填空题.题一考查单调性判断和奇偶性定义;题二考查奇偶性的定义,深化概念;题三考查单调性解不等式,为单调性的应用类题;题四考查奇偶性应用求解析式;题五考查偶函数的定义,跟2021出现的题目非常相像,说明研究高考题的重要性,值得深思;题六考查周期性的定义,为周期性和奇偶性的简单综合题;题七需要将题目所给等式经过化简才能变为周期性的定义的模式,进一步深化周期性与奇偶性的概念及其应用.。

函数的基本性质单调性教案

函数的基本性质单调性教案

函数的基本性质——单调性教案一、教学目标1. 知识与技能:(1)理解函数单调性的概念,掌握判断函数单调性的方法;(2)能够运用单调性解决实际问题,如求函数的最值等。

2. 过程与方法:(1)通过观察实例,引导学生发现函数单调性的规律;(2)利用数形结合,让学生理解函数单调性的几何意义。

3. 情感态度与价值观:培养学生对数学的兴趣,提高学生分析问题和解决问题的能力。

二、教学重点与难点1. 教学重点:(1)函数单调性的概念及其判断方法;(2)单调性在实际问题中的应用。

2. 教学难点:(1)理解函数单调性的几何意义;(2)如何运用单调性解决实际问题。

三、教学过程1. 导入:通过实例引入函数单调性的概念,激发学生的兴趣。

2. 新课讲解:(1)介绍函数单调性的定义及判断方法;(2)利用数形结合,讲解函数单调性的几何意义。

3. 案例分析:分析具体案例,让学生学会运用单调性解决实际问题。

4. 练习巩固:布置练习题,让学生独立完成,检验对单调性的掌握程度。

5. 课堂小结:总结本节课的主要内容,强调单调性在数学中的重要性。

四、课后作业1. 完成练习册的相关题目;2. 选取一个实际问题,运用单调性进行解决。

五、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对函数单调性的理解和运用能力。

关注学生在学习过程中的情感态度,激发学生对数学的兴趣。

六、教学活动设计1. 互动环节:学生分组讨论,举例判断给定函数的单调性;2. 探究活动:学生自主研究,分析函数单调性在实际问题中的应用;3. 小组合作:学生分组完成课后作业,相互检查,共同提高。

七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,评价学生的学习状态;2. 练习完成情况:检查学生课后作业的完成质量,评价学生对单调性的掌握程度;3. 实际问题解决:评估学生在探究活动中的成果,检验学生运用单调性解决问题的能力。

函数的性质教案8篇

函数的性质教案8篇

函数的性质教案8篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!函数的性质教案8篇教案是教师与学生之间沟通的桥梁,教案是教学的路线图,帮助我们不偏离轨道,以下是本店铺精心为您推荐的函数的性质教案8篇,供大家参考。

高一数学上册《函数的基本性质》教案、教学设计

高一数学上册《函数的基本性质》教案、教学设计
2.学生的数学思维能力、逻辑推理能力和直观想象力发展不平衡,部分学生对数形结合的方法还不够熟悉。教师应针对这一情况,设计丰富的教学活动,提高学生的数学素养。
3.学生在小组合作学习中的参与度有待提高。教师应关注学生的个体差异,调动每个学生的积极性,使他们在合作交流中发挥自己的优势,共同进步。
4.学生对于数学知识在实际生活中的应用认识不足,教师可通过引入实际问题,让学生体会数学知识的价值,激发学生学习数学的兴趣。
6.教学评价,关注成长
在教学过程中,教师应关注学生的成长和发展,采用多元化的评价方式,如课堂表现、作业完成情况、小组合作交流等,全面评估学生的学习效果。
7.创设互动氛围,激发学生学习兴趣
8.融入信息技术,提高教学质量
利用多媒体、网络等信息技术手段,丰富教学资源,提高教学质量。如通过数学软件绘制函数图像,让学生更直观地感受函数性质。
3.结合所学函数性质,尝试解决以下拓展性问题:
(1)已知函数f(x) = x^3 - 6x^2 + 9x + 1,判断其奇偶性,并求单调区间。
(2)已知函数g(x) = 3cos(2x) + 4sin(x),求最小正周期及一个周期内的单调区间。
4.请同学们预习下一节课内容,了解函数的极值及其在实际问题中的应用。
3.鼓励学生积极参与课堂讨论,勇于表达自己的观点,培养学生自信、勇敢的品质。
4.通过解决实际问题,让学生认识到数学知识在生活中的重要作用,增强学生应用数学知识解决实际问题的意识,提高学生的社会责任感。
在本章节的教学过程中,教师应以学生为主体,关注学生的个体差异,充分调动学生的积极性、主动性和创造性。通过讲解、示范、讨论等多种教学手段,使学生在掌握函数基本性质的基础上,提高自身的数学素养和综合素质。同时,注重培养学生的团队合作精神,使其在合作交流中相互学习、共同成长。

函数的基本性质单调性教案

函数的基本性质单调性教案

函数的基本性质-单调性教案第一章:函数单调性的概念与定义1.1 引入:通过实际例子,让学生感受函数单调性的存在。

1.2 单调性的定义:函数单调递增和单调递减的定义。

1.3 单调性的表示:用符号表示函数的单调性。

1.4 单调性的性质:单调性的一些基本性质,如传递性、复合函数的单调性等。

第二章:函数单调性的判断与证明2.1 单调性的判断方法:通过导数或者图像来判断函数的单调性。

2.2 单调性的证明:利用导数或者定义来证明函数的单调性。

2.3 单调性的应用:利用单调性解决一些实际问题,如最值问题、不等式问题等。

第三章:函数单调性与极值的关系3.1 极值的概念:函数的极大值和极小值的定义。

3.2 极值与单调性的关系:函数在极值点附近的单调性变化。

3.3 利用单调性求极值:通过单调性来确定函数的极值点。

第四章:函数单调性与图像的关系4.1 图像的单调性:函数图像的单调递增和单调递减。

4.2 单调性与图像的交点:函数图像的交点与单调性的关系。

4.3 利用图像判断单调性:通过观察函数图像来判断函数的单调性。

第五章:函数单调性的应用5.1 函数的单调区间:确定函数的单调递增或单调递减区间。

5.2 单调性与函数值的关系:函数值的变化与单调性的关系。

5.3 应用实例:利用单调性解决实际问题,如最大值、最小值问题等。

第六章:单调性在实际问题中的应用6.1 引言:通过实际问题引入单调性的应用。

6.2 单调性在优化问题中的应用:如最短路径问题、最大收益问题等。

6.3 单调性在经济学中的应用:如市场需求、价格调整等。

第七章:函数单调性的进一步探讨7.1 函数的严格单调性:严格单调递增和严格单调递减的定义。

7.2 单调性的不变性:函数单调性在坐标变换下的性质。

7.3 单调性与连续性的关系:连续函数的单调性性质。

第八章:复合函数的单调性8.1 复合函数的定义:两个函数的组合。

8.2 复合函数的单调性:复合函数单调性的判定方法。

高中数学教案函数的基本性质

高中数学教案函数的基本性质

高中数学教案函数的基本性质教案概述:本节课主要介绍函数的基本性质,包括定义域、值域、奇偶性和周期性等。

通过讲解理论知识和引入实际问题,培养学生对函数性质的理解和运用能力。

教学目标:1.理解函数的定义域和值域的概念;2.掌握函数的奇偶性和周期性的判断方法;3.能够应用函数的基本性质解决实际问题。

教学重点:1.强化函数的定义域和值域的概念;2.提高判断函数的奇偶性和周期性的能力;3.发展解决实际问题的能力。

教学难点:1.理解函数值域的概念;2.掌握函数奇偶性和周期性的判断方法。

教学准备:1.教师准备:教案、课件、黑板、粉笔;2.学生准备:课本、作业本。

教学流程:Step 1:导入与复习(10分钟)1.引导学生回顾上节课的内容,复习函数的定义及其表示方法。

2.引入问题:小明前一天起床时间和当天感冒的程度存在一定的关系,试以小明前一天起床时间为自变量,当天感冒程度为因变量,确定函数的定义域和值域。

Step 2:探究函数的定义域和值域(25分钟)1.讲解函数的定义域:函数的自变量的取值范围称为函数的定义域,记作D(f)。

2.举例说明定义域的确定方法:让学生尝试确定其他函数的定义域。

3.讲解函数的值域:函数的因变量的取值范围称为函数的值域,记作R(f)。

4.通过实际问题引导学生确定函数的值域,如小明的感冒程度等级。

Step 3:探究函数的奇偶性(25分钟)1.讲解函数的奇偶性:若对于定义域内的任意x,都有f(-x)=f(x),则函数为偶函数;若对于定义域内的任意x,都有f(-x)=-f(x),则函数为奇函数。

2.给出函数图像,让学生判断其奇偶性。

3.通过实际问题引导学生思考函数的奇偶性,如一个物体下落的高度与时间的关系。

Step 4:探究函数的周期性(25分钟)1.讲解函数的周期性:若存在一个正数T,对于定义域内的任意x,都有f(x+T)=f(x),则函数为周期函数。

2.给出函数图像,让学生判断其周期性。

3.通过实际问题引导学生思考函数的周期性,如一辆车的速度与时间的关系。

函数概念与基本性质电子教案

函数概念与基本性质电子教案

函数概念与基本性质-电子教案第一章:函数概念1.1 函数的定义介绍函数的概念解释函数的几个基本要素:自变量、因变量、定义域、值域举例说明函数的性质和应用1.2 函数的表示方法解析式和表格式的表示方法图像表示法函数的符号表示法1.3 函数的类型线性函数二次函数三角函数指数函数对数函数第二章:函数的基本性质2.1 函数的单调性单调增函数和单调减函数的定义单调性的判断方法单调性在实际问题中的应用2.2 函数的奇偶性奇函数和偶函数的定义奇偶性的判断方法奇偶性在实际问题中的应用2.3 函数的周期性周期函数的定义周期性的判断方法常见周期函数的性质和应用第三章:函数的图像3.1 函数图像的绘制方法绘制线性函数图像绘制二次函数图像绘制三角函数图像绘制指数函数和对数函数图像3.2 函数图像的特点和分析方法函数图像的形状和位置函数图像的切线和渐近线函数图像的交点和零点3.3 函数图像在实际问题中的应用利用函数图像解决优化问题利用函数图像分析函数的性质和变化趋势第四章:函数的极限与连续性4.1 函数极限的概念极限的定义和性质极限的计算方法无穷大的概念和比较4.2 函数的连续性连续性的定义和性质连续函数的判断方法连续函数在实际问题中的应用4.3 函数的导数和微分导数的定义和计算方法微分的概念和计算方法导数在实际问题中的应用第五章:函数的积分与不定积分5.1 定积分的概念定积分的定义和性质定积分的计算方法定积分在实际问题中的应用5.2 不定积分的概念和性质不定积分的定义和性质基本积分公式和积分方法不定积分在实际问题中的应用5.3 定积分的应用利用定积分求解物理问题利用定积分求解几何问题利用定积分求解面积和体积问题第六章:常见函数的性质与应用6.1 反函数反函数的概念反函数的性质反函数的求法反函数在实际问题中的应用6.2 复合函数复合函数的定义复合函数的求法复合函数的单调性、奇偶性和周期性复合函数在实际问题中的应用6.3 分段函数分段函数的概念分段函数的求法分段函数的性质分段函数在实际问题中的应用第七章:函数的方程与不等式7.1 函数的方程函数方程的概念函数方程的求解方法7.2 函数的不等式函数不等式的概念函数不等式的求解方法函数不等式在实际问题中的应用7.3 函数的优化问题函数优化问题的概念函数优化问题的求解方法函数优化问题在实际问题中的应用第八章:函数与数列8.1 函数数列的概念函数数列的定义函数数列的性质函数数列的求法8.2 函数数列的极限函数数列极限的概念函数数列极限的性质函数数列极限的求法函数数列极限在实际问题中的应用8.3 函数与数列的应用利用函数解决数列问题利用数列解决函数问题第九章:函数与复数9.1 复数的概念复数的基础知识复数的运算复数的图像9.2 函数与复数的关系复数域上的函数复数函数的性质复数函数的应用9.3 复数函数的图像与性质复数函数的图像特点复数函数的性质分析复数函数在实际问题中的应用第十章:函数与线性代数10.1 线性代数基础知识向量、矩阵和行列式的概念线性方程组和矩阵方程的求解线性空间和线性变换10.2 函数与线性方程组线性方程组的解法函数与线性方程组的关系10.3 函数与矩阵矩阵的运算和性质函数与矩阵的关系矩阵在实际问题中的应用重点解析本文档详细介绍了函数概念与基本性质,包括函数的定义、表示方法、类型,以及函数的基本性质如单调性、奇偶性、周期性等。

有关函数性质的教案初中

有关函数性质的教案初中

有关函数性质的教案初中教学目标:1. 了解函数的性质,包括单调性、奇偶性、周期性等;2. 学会运用函数的性质解决实际问题;3. 培养学生的逻辑思维能力和归纳总结能力。

教学重点:1. 函数的单调性;2. 函数的奇偶性;3. 函数的周期性。

教学难点:1. 函数的单调性的判断;2. 函数的奇偶性的判断;3. 函数的周期性的判断。

教学准备:1. 教学课件;2. 例题及练习题。

教学过程:一、导入(5分钟)1. 引导学生回顾已学的函数知识,如函数的定义、图像等;2. 提问:函数有哪些性质呢?我们可以如何来研究这些性质呢?二、新课讲解(20分钟)1. 单调性:a. 定义:若函数f(x)在区间I上单调递增或单调递减,则称f(x)在区间I上具有单调性;b. 判断方法:观察函数的图像或利用导数研究函数的单调性;c. 例子:分析y=x^2,y=2x+1等函数的单调性。

2. 奇偶性:a. 定义:若函数f(x)满足f(-x)=-f(x),则称f(x)为奇函数;若函数f(x)满足f(-x)=f(x),则称f(x)为偶函数;b. 判断方法:观察函数的图像或利用函数的定义判断;c. 例子:分析y=x,y=-x,y=x^3等函数的奇偶性。

3. 周期性:a. 定义:若函数f(x)满足f(x+T)=f(x),则称f(x)为周期函数,T为函数的周期;b. 判断方法:观察函数的图像或利用函数的定义判断;c. 例子:分析y=sin(x),y=cos(x)等函数的周期性。

三、课堂练习(15分钟)1. 单调性:判断函数f(x)=2x-3在区间[-1,3]上的单调性;2. 奇偶性:判断函数f(x)=x^2在区间[-2,2]上的奇偶性;3. 周期性:判断函数f(x)=sin(x)在区间[0,2π]上的周期性。

四、总结(5分钟)1. 引导学生回顾本节课所学的内容,总结函数的单调性、奇偶性、周期性的定义及判断方法;2. 强调函数的性质在实际问题中的应用。

函数的基本性质教案

函数的基本性质教案

函数的基本性质教案一、教学目标1. 了解函数的定义及其基本性质,理解函数的概念。

2. 掌握函数的单调性、奇偶性、周期性等基本性质,并能够运用这些性质解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容1. 函数的定义及表示方法2. 函数的单调性3. 函数的奇偶性4. 函数的周期性5. 实际问题中的应用三、教学重点与难点1. 教学重点:函数的基本性质,包括单调性、奇偶性、周期性。

2. 教学难点:函数性质的证明和应用。

四、教学方法1. 采用讲授法,讲解函数的基本性质及其证明方法。

2. 利用例题,展示函数性质在实际问题中的应用。

3. 引导学生进行小组讨论,培养学生的合作能力。

4. 利用信息技术辅助教学,提高教学效果。

五、教学过程1. 引入新课:通过复习初中阶段的知识,如一次函数、二次函数的性质,引出高中阶段函数的基本性质。

2. 讲解函数的定义及表示方法,让学生理解函数的概念。

3. 讲解函数的单调性,引导学生掌握单调性的证明方法,并通过例题展示单调性在实际问题中的应用。

4. 讲解函数的奇偶性,引导学生掌握奇偶性的证明方法,并通过例题展示奇偶性在实际问题中的应用。

5. 讲解函数的周期性,引导学生掌握周期性的证明方法,并通过例题展示周期性在实际问题中的应用。

6. 课堂练习:布置有关函数基本性质的练习题,让学生巩固所学知识。

7. 总结:对本节课的内容进行总结,强调函数基本性质的重要性。

8. 布置作业:布置有关函数基本性质的作业,让学生进一步巩固所学知识。

9. 课后反思:根据学生的课堂表现和作业完成情况,对教学进行反思,为下一步教学做好准备。

10. 教学评价:通过课堂表现、作业完成情况和课后反馈,对学生的学习情况进行评价,为后续教学提供参考。

六、教学评价1. 学生能够准确地描述函数的基本性质,包括单调性、奇偶性和周期性。

2. 学生能够理解并应用函数的基本性质解决实际问题。

3. 学生能够通过实例展示对函数性质的理解,并能够进行简单的证明。

函数的基本性质教案

函数的基本性质教案

函数的基本性质教案函数的基本性质教案教学目标:1. 了解函数的定义和基本性质;2. 熟悉函数的图像;3. 能够根据函数的性质进行函数的图像绘制。

教学重点:1. 函数的定义;2. 函数的性质。

教学难点:1. 根据函数的性质进行函数的图像绘制。

教学准备:1. 教师准备:教材、教具、笔记等;2. 学生准备:课本、作业本。

教学过程:一、导入新课(5分钟)教师先向学生展示一张包含多个函数图像的幻灯片,让学生简单观察每个函数图像,并回答一些问题,如图像中的函数有什么特点?是否有交点?交点的特征是什么等。

二、知识讲解(10分钟)通过对观察到的函数图像进行讨论,引出函数的定义。

然后,教师进一步讲解函数的性质,包括奇偶性、单调性、周期性、对称性等。

同时,教师还要向学生解释,如何通过函数的性质来判断函数图像的特点。

三、教学练习(10分钟)教师设立一些简单的函数,并要求学生判断函数的性质,并画出函数的图像。

教师可以针对每个函数给予学生一定的提示,让学生能够通过函数的性质来判断。

四、学生合作探究(15分钟)学生们分成小组,每个小组分配一个函数,要求他们根据函数的性质,通过计算和分析来确定函数的图像特点,并使用工具(如Geogebra等)绘制出函数的图像。

学生们可以互相讨论和交流,以便更好地理解函数的性质。

五、小结归纳(5分钟)教师提醒学生关于函数的性质和如何通过性质来判断函数图像的方法,并概括出一些关键点和规律。

六、实际应用(10分钟)教师设计一些实际问题,并要求学生运用所学的函数性质来解决问题。

这些问题可以是有关距离、速度、图像等方面的应用题,通过解决这些问题,学生可以更好地理解函数的意义和应用。

七、课堂练习(15分钟)教师根据教材或其他资料,设计一些困难程度适中的练习题,并要求学生在规定时间内完成。

教师可以提供一些提示或指导,帮助学生解决问题。

八、课堂讨论(5分钟)教师和学生一起讨论练习题的解答,并解释解决问题的步骤和方法。

函数的基本性质教案

函数的基本性质教案

我的函数的基本性质教案1. .函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.注:如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数;如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.2. 奇偶函数的图象特征函数奇偶性的判定奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.注:若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.注:对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2ba x +=对称. 注:若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称;若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.3. 多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零. 多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零. 23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a bx +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.4. 两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a bx m+=对称.(3)函数)(x f y =和)(1x fy -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.5. 互为反函数的两个函数的关系a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx fy +=-,而函数)([1b kx fy +=-是])([1b x f ky -=的反函数. 6. 几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=. (2)指数函数()xf x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==. 7. 几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]21()()(),(()0,1)2f x f x f x a f x +-=+∈,则)(x f 的周期T=2a ; (3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ; (4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a.8. 分数指数幂(1)1m nnm a a =(0,,a m n N *>∈,且1n >). (2)1m nm naa-=(0,,a m n N *>∈,且1n >).9. 根式的性质(1)()nn a a =.(2)当n 为奇数时,n n a a =; 当n 为偶数时,,0||,0n n a a a a a a ≥⎧==⎨-<⎩.10. 有理指数幂的运算性质(1)(0,,)rsr sa a aa r s Q +⋅=>∈.(2)()(0,,)r s rsa a a r s Q =>∈.(3)()(0,0,)r r rab a b a b r Q =>>∈.注:若a >0,p 是一个无理数,则a p表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m NN a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论 log log m na a nb b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >).11. 对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2)log log log aa a MM N N =-; (3)log log ()na a M n M n R =∈.注:设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.12. 对数换底不等式及其推论若0a >,0b >,0x >,1x a ≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为增函数.(2)(2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<. (2)2log log log 2a a am nm n +<.四.典例解析题型一:判断函数的奇偶性例1.讨论下述函数的奇偶性:解:(1)函数定义域为R,,∴f(x)为偶函数;(另解)先化简:,显然为偶函数;从这可以看出,化简后再解决要容易得多。

函数的基本性质(教案)

函数的基本性质(教案)

函数的基本性质教学目标:1. 了解函数的定义和基本概念。

2. 掌握函数的域和值域的概念。

3. 理解函数的单调性、连续性和可导性的概念。

4. 学会运用函数的基本性质解决实际问题。

教学内容:第一章:函数的定义与域1.1 函数的定义1.2 函数的域第二章:值域2.1 值域的概念2.2 确定函数的值域第三章:函数的单调性3.1 单调性的定义3.2 单调性的判定第四章:函数的连续性4.1 连续性的定义4.2 连续性的判定第五章:函数的可导性5.1 可导性的定义5.2 可导性的判定教学方法:1. 采用问题驱动的教学方法,引导学生通过实例来理解函数的基本性质。

2. 使用多媒体辅助教学,通过动画和图形来直观展示函数的单调性、连续性和可导性。

3. 组织小组讨论和实践活动,培养学生的合作能力和解决问题的能力。

教学评估:1. 课堂讨论和提问,评估学生对函数基本性质的理解程度。

2. 布置课后习题和作业,巩固学生对函数基本性质的掌握。

3. 进行定期的测验和考试,检验学生对函数基本性质的掌握情况。

教学资源:1. 教科书和参考书籍,提供详细的知识点和实例。

2. 多媒体课件和教学软件,提供直观的图形和动画展示。

3. 在线学习平台和论坛,提供额外的学习资源和交流平台。

教学计划:1. 第一章:2课时2. 第二章:2课时3. 第三章:2课时4. 第四章:2课时5. 第五章:2课时教学总结:通过本章的教学,学生应该能够理解函数的定义和基本概念,掌握函数的域和值域的概念,理解函数的单调性、连续性和可导性的概念,并能够运用函数的基本性质解决实际问题。

函数的基本性质(续)教学内容:第六章:函数的极值与最值6.1 极值的概念6.2 函数的最值第七章:函数的周期性7.1 周期性的定义7.2 周期函数的性质第八章:函数的奇偶性8.1 奇偶性的定义8.2 奇偶函数的性质第九章:函数的图像9.1 图像的性质9.2 图像的变换第十章:函数的极限10.1 极限的概念10.2 极限的计算教学方法:1. 采用问题驱动的教学方法,引导学生通过实例来理解函数的极值、周期性、奇偶性、图像和极限的基本性质。

人教版初中函数的性质教案

人教版初中函数的性质教案

人教版初中函数的性质教案教学目标:1. 知识与技能:理解函数的增减性、对称性和周期性等基本性质。

2. 过程与方法:通过观察、实验和推理,探索函数的性质,培养学生的逻辑思维能力。

3. 情感、态度与价值观:培养学生对数学的兴趣,感受数学与生活的联系。

教学重点:函数的增减性、对称性和周期性。

教学难点:理解函数性质的内涵和应用。

教学准备:直尺、圆规、多媒体设备。

教学过程:一、导入(5分钟)1. 复习函数的概念,引导学生回顾已学的函数实例。

2. 提问:函数有哪些基本的性质呢?二、新课(20分钟)1. 函数的增减性a. 实验演示:让学生观察函数图像,体会函数的增减性。

b. 数学解释:引导学生用数学语言描述函数的增减性。

c. 例题讲解:分析具体函数的增减性,让学生学会判断。

2. 函数的对称性a. 实验演示:让学生观察函数图像,发现函数的对称性。

b. 数学解释:引导学生用数学语言描述函数的对称性。

c. 例题讲解:分析具体函数的对称性,让学生学会判断。

3. 函数的周期性a. 实验演示:让学生观察函数图像,探索函数的周期性。

b. 数学解释:引导学生用数学语言描述函数的周期性。

c. 例题讲解:分析具体函数的周期性,让学生学会判断。

三、巩固练习(10分钟)1. 让学生独立完成练习题,检验对函数性质的理解。

2. 教师挑选部分练习题进行讲解,分析解题思路。

四、课堂小结(5分钟)1. 回顾本节课学习的函数性质,让学生总结收获。

2. 提问:如何运用函数性质解决实际问题?五、作业布置1. 完成课后练习题。

2. 调查生活中的函数实例,了解函数性质在实际中的应用。

教学反思:本节课通过观察、实验和推理,让学生了解了函数的增减性、对称性和周期性等基本性质。

在教学过程中,要注意引导学生用数学语言描述函数性质,培养学生的逻辑思维能力。

同时,结合生活中的实例,让学生感受数学与生活的联系,提高学生学习数学的兴趣。

函数的基本性质(教案)

函数的基本性质(教案)

函数的基本性质教学目标:1. 理解函数的概念及其表示方法。

2. 掌握函数的单调性、奇偶性、周期性等基本性质。

3. 学会运用函数的基本性质解决实际问题。

教学内容:第一章:函数的概念与表示方法1.1 函数的定义1.2 函数的表示方法1.2.1 解析法1.2.2 图象法1.2.3 列表法第二章:函数的单调性2.1 单调增函数2.2 单调减函数2.3 单调性判断方法第三章:函数的奇偶性3.1 奇函数3.2 偶函数3.3 奇偶性判断方法第四章:函数的周期性4.1 周期函数的定义4.2 周期函数的性质4.3 周期性判断方法第五章:函数的基本性质的应用5.1 实际问题举例5.2 函数性质在解决问题中的作用教学过程:一、导入(5分钟)1. 引入函数的概念,引导学生回顾已学的数学知识,为新课的学习做好铺垫。

2. 提问:同学们,你们认为函数是什么?函数有哪些表示方法?二、新课讲解(20分钟)1. 讲解函数的表示方法,包括解析法、图象法和列表法,并通过实例进行演示。

2. 讲解函数的单调性,引导学生理解单调增函数和单调减函数的概念,并介绍单调性判断方法。

3. 讲解函数的奇偶性,引导学生理解奇函数和偶函数的概念,并介绍奇偶性判断方法。

4. 讲解函数的周期性,引导学生理解周期函数的定义和性质,并介绍周期性判断方法。

三、课堂练习(15分钟)1. 针对本节课的内容,设计一些练习题,让学生巩固所学知识。

2. 引导学生独立完成练习题,并对答案进行讲解和分析。

四、课堂小结(5分钟)2. 强调函数的基本性质在实际问题中的应用。

五、课后作业(课后自主完成)1. 根据本节课所学内容,设计一些课后作业,让学生进一步巩固函数的基本性质。

2. 要求学生在课后独立完成作业,并按时提交。

教学评价:1. 通过课堂讲解、练习和课后作业,评价学生对函数的基本性质的理解和掌握程度。

2. 结合学生的实际问题解决能力,评价学生运用函数的基本性质解决实际问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

我的函数的基本性质教案1. .函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数; []1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数. (2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.注:如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数;如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数. 2. 奇偶函数的图象特征函数奇偶性的判定奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.注:若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.注:对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2b a x +=对称. 注:若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a 对称;若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.3. 多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零.多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零.23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=-(2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a b x +=对称()()f a mx f b mx ⇔+=- ()()f a b mx f mx ⇔+-=.4. 两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称. (2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m+=对称.(3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.5. 互为反函数的两个函数的关系 a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f ky -=-,并不是)([1b kx f y +=-,而函数)([1b kx f y +=-是])([1b x f ky -=的反函数. 6. 几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠.(4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+, 0()(0)1,lim 1x g x f x→==. 7. 几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ;(2)0)()(=+=a x f x f , 或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x +=+∈,则)(x f 的周期T=2a ; (3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ; (4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ;(6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a. 8. 分数指数幂(1)m n a=(0,,a m n N *>∈,且1n >). (2)1mn mn a a -=(0,,a m n N *>∈,且1n >).(2)当na =;当n ,0||,0a a a a a ≥⎧==⎨-<⎩. 10. 有理指数幂的运算性质(1)(0,,)r s r s a a aa r s Q +⋅=>∈. (2)()(0,,)r srsa a a r s Q =>∈. (3)()(0,0,)r r r ab a b a b r Q =>>∈.注:若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式 log b a N b a N =⇔=(0,1,0)a a N >≠>.34.对数的换底公式log log log m a m N N a=(0a >,且1a ≠,0m >,且1m ≠, 0N >). 推论 log log m n a a n b b m =(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 11. 对数的四则运算法则若a >0,a ≠1,M >0,N >0,则(1)log ()log log a a a MN M N =+;(2)log log log aa a M M N N=-; (3)log log ()n a a M n M n R =∈. 注:设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.12. 对数换底不等式及其推论若0a >,0b >,0x >,1x a≠,则函数log ()ax y bx = (1)当a b >时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为增函数. (2)(2)当a b <时,在1(0,)a 和1(,)a +∞上log ()ax y bx =为减函数. 推论:设1n m >>,0p >,0a >,且1a ≠,则(1)log ()log m p m n p n ++<.(2)2log log log 2a a a m n m n +<.四.典例解析题型一:判断函数的奇偶性例1.讨论下述函数的奇偶性:解:(1)函数定义域为R,,∴f(x)为偶函数;(另解)先化简:,显然为偶函数;从这可以看出,化简后再解决要容易得多。

(2)须要分两段讨论:①设②设③当x=0时f(x)=0,也满足f(-x)=-f(x);由①、②、③知,对x∈R有f(-x) =-f(x),∴f(x)为奇函数;(3),∴函数的定义域为,∴f(x)=log21=0(x=±1) ,即f(x)的图象由两个点A(-1,0)与B(1,0)组成,这两点既关于y轴对称,又关于原点对称,∴f(x)既是奇函数,又是偶函数;(4)∵x2≤a2, ∴要分a >0与a <0两类讨论,①当a >0时,,∴当a >0时,f(x)为奇函数;既不是奇函数,也不是偶函数.点评:判断函数的奇偶性是比较基本的问题,难度不大,解决问题时应先考察函数的定义域,若函数的解析式能化简,一般应考虑先化简,但化简必须是等价变换过程(要保证定义域不变)。

例2.(2002天津文.16)设函数f(x)在(-∞,+∞)内有定义,下列函数:①y=-|f(x)|;②y=xf(x2);③y=-f(-x);④y=f(x)-f(-x)。

必为奇函数的有_____(要求填写正确答案的序号)答案:②④;解析:y=(-x)f[(-x)2]=-xf(x2)=-y;y=f(-x)-f(x)=-y。

点评:该题考察了判断抽象函数奇偶性的问题。

对学生逻辑思维能力有较高的要求。

题型二:奇偶性的应用例3.(2002上海春,4)设f(x)是定义在R上的奇函数,若当x≥0时,f(x)=lo g3(1+x),则f(-2)=____ _。

答案:-1;解:因为x≥0时,f(x)=lo g3(1+x),又f(x)为奇函数,所以f(-x)=-f(x),设x<0,所以f(x)=-f(-x)=-f(1-x),所以f(-2)=-lo g33=-1。

点评:该题考察函数奇偶性的应用。

解题思路是利用函数的奇偶性得到函数在对称区域上函数的取值。

例4.已知定义在R上的函数y= f(x)满足f(2+x)= f(2-x),且f(x)是偶函数,当x∈[0,2]时,f(x)=2x-1,求x∈[-4,0]时f(x)的表达式。

解:由条件可以看出,应将区间[-4,0]分成两段考虑:①若x∈[-2,0],-x∈[0,2],∵f(x)为偶函数,∴当x∈[-2,0]时,f(x)= f(-x)=-2x-1,②若x∈[-4,-2,∴4+ x∈[0,2,∵f(2+x)+ f(2-x),∴f(x)= f(4-x),∴f(x)= f(-x)= f[4-(-x)]= f(4+x)=2(x+4)-1=2x+7;综上,点评:结合函数的数字特征,借助函数的奇偶性,处理函数的解析式。

相关文档
最新文档