微积分的产生与发展

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

研究背景概况及意义

背景数学中的转折点是笛卡尔的变数,有了变数,运动进入了数学,有了变数,辩证法进入了数学,有了变数,微分学和积分学也就立刻成为必要的了,而它们也就立刻产生,并且是有牛顿和莱布尼兹大体上完成的,但不是由他们发明的。----恩格斯

从15世纪初欧洲文艺复兴时期起,工业、农业、航海事业与商贾贸易的大规模发展,形成了一个新的经济时代,宗教改革与对教会思想禁锢的怀疑,东方先进的科学技术通过阿拉伯的传入,以及拜占庭帝国覆灭后希腊大量文献的流入欧洲,在当时的知识阶层面前呈现出一个完全斩新的面貌。而十六世纪的欧洲,正处在资本主义萌芽时期,生产力得到了很大的发展,生产实践的发展向自然科学提出了新的课题,迫切要求力学、天文学等基础学科的发展,而这些学科都是深刻依赖于数学的,因而也推动的数学的发展。科学对数学提出的种种要求,最后汇总成车个核心问题:运动中速度与距离的互求问求曲线的切线问题题求长度、面积、体积、与重心问题等

求最大值和最小值问题

背景2 一、微积分产生的背景

文艺复兴之后,资本主义生产方式兴起,生产力有了较大的发展,到17世纪已达到相当程度。生产的发展提出了许多技术上的新要求,而要实现技术要求就必须有相应的科学知识。例如流体力学(与矿井的通风和排水有关),机械力学等都有了突飞猛进的发展。资本主义社会里商品生产,贸易活动占有重要的地位,与此相关的是海运事业的发展,而向外扩张的军事需要,也促进了航海的发展。航海需要精确而方便地确定位置(经纬度)、预报气象,天文学因而发展起来。对经纬度测量的需要使人们进行了这样一些研究:(1)对月亮与太阳及某一恒星距离的计算;(2)对木星卫星蚀的观察;(3)对月球穿越子午圈的观测;(4)摆钟及其他航海时针在海上的应用等等。由于这些研究,产生了近代力学、天文学等的系统理论。

所有这些发展都对数学提出了新的要求,因为这些要求表现为一些亟待数学解决的问题,这些问题可以分为四种类型:

1、已知物体移动的距离表示为时间的函数的公式,求物体在任意时刻的速度和加速度;或者反过来,已知物体的加速度表示为时间的函数,求物体在任意时刻的速度,或已知物体速度表示为时间的函数,求物体在任意时刻的移动距离。上述问题如果对于匀速直线运动来考虑,当时的数学工具已可以解决,但当时天文学、力学等涉及许多非匀速运动,大多数也不是直线运动,所以要求新的数学工具。

2、已知曲线求其切线。这不仅是几何学的问题,而且也是许多其他科学问题的要求:物体作曲线运动时,在每一瞬间的速度方向是该曲线相应的点的切线的方向;在光学中对光的折射和反射的研究要求出界面的法线方向,法线方向是由切线方向决定的。

3、已知函数求函数的极大值和极小值。这与天文学和力学都有关,例如求行星运行的近日点和远日点,抛射体的最大射程和最大高度等问题都可归结为这种类型的问题。

4、求曲线的长度。这是以计算行星或曲线运动的物体走过的路程为背景的;求曲线围成的面积,以计算行星扫过的面积为代表;求物体的重心、求两个天体之间的引力等问题。

这些问题,都是17世纪其他科学,尤其是天文学和力学及某些技术科学所提出的基本数学问题。正是为了解决这些问题,或者说在解决这些问题的努力中,牛顿和莱布尼兹创立了微积分。

微积分是与应用联系着发展起来的,最初牛顿应用微积分学及微分方程为了从万有引力定律导出了开普勒行星运动三定律。此后,微积分学极大的推动了数学的发展,同时也极大的推动了天文学、力学、物理学、化学、生物学、工程学、经济学等自然科学、社会科学及应用科学各个分支中的发展。并在这些学科中有越来越广泛的应用,特别是计算机的出现更有助于这些应用的不断发展。

一切事物,小至粒子,大至宇宙,始终都在运动和变化着。因此在数学中引入了变量的概念后,就有可能把运动现象用数学来加以描述了。

由于函数概念的产生和运用的加深,也由于科学技术发展的需要,一门新的数学分支就继解析几何之后产生了,这就是微积分学。微积分学这门学科在数学发展中的地位是十分重要的,可以说它是继欧氏几何后,全部数学中的最大的一个创造。

一言而蔽之,微积分是研究函数的一个数学分支。函数是现代数学最重要的概念之一,描述变量之间的关系,为什么研究函数很重要呢?还要从数学的起源说起。各个古文明都掌握一些数学的知识,数学的起源也很多很多,但是一般认为,现代数学直承古希腊。古希腊的很多数学家同时又是哲学家,例如毕达哥拉斯,芝诺,这样数学和哲学有很深的亲缘关系。古希腊的最有生命力的哲学观点就是世界是变化的(德谟克利特的河流)和亚里斯多德的因果观念,这两个观点一直被人广泛接受。前面谈到,函数描述变量之间的关系,浅显的理解就是一个变了,另一个或者几个怎么变,这样,用函数刻画复杂多变的世界就是顺理成章的了,数学成为理论和现实世界的一道桥梁。

微积分理论可以粗略的分为几个部分,微分学研究函数的一般性质,积分学解决微分的逆运算,微分方程(包括偏微分方程和积分方程)把函数和代数结合起来,级数和积分变换解决数值计算问题,另外还研究一些特殊函数,这些函数在实践中有很重要的作用。这些理论都能解决什么问题呢?下面先举两个实践中的例子。

举个最简单的例子,火力发电厂的冷却塔的外形为什么要做成弯曲的,而不是像烟囱一样直上直下的?其中的原因就是冷却塔体积大,自重非常大,如果直上直下,那么最下面的建筑材料将承受巨大的压力,以至于承受不了(我们知道,地球上的山峰最高只能达到3万米,否则最下面的岩石都要融化了)。现在,把冷却塔的边缘做成双曲线的性状,正好能够让每一截面的压力相等,这样,冷却塔就能做的很大了。为什么会是双曲线,用于微积分理论5分钟之内就能够解决。

我相信楼主在看这篇文章的时候是在使用电脑,计算机内部指令需要通过硬件表达,把信号转换为能够让我们感知的信息。前几天这里有个探讨算法的帖子,很有代表性。Windows系统带了一个计算器,可以进行一些简单的计算,比如算对数。计算机是计算是基于加法的,我们常说的多少亿次实际上就是指加法运算。那么,怎么把计算对数转换为加法呢?实际上就运用微积分的级数理论,可以把对数函数转换为一系

相关文档
最新文档